adma.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676
  1. /*
  2. * Copyright (C) 2006-2009 DENX Software Engineering.
  3. *
  4. * Author: Yuri Tikhonov <yur@emcraft.com>
  5. *
  6. * Further porting to arch/powerpc by
  7. * Anatolij Gustschin <agust@denx.de>
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program; if not, write to the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. * The full GNU General Public License is included in this distribution in the
  24. * file called COPYING.
  25. */
  26. /*
  27. * This driver supports the asynchrounous DMA copy and RAID engines available
  28. * on the AMCC PPC440SPe Processors.
  29. * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  30. * ADMA driver written by D.Williams.
  31. */
  32. #include <linux/init.h>
  33. #include <linux/module.h>
  34. #include <linux/async_tx.h>
  35. #include <linux/delay.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/slab.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/proc_fs.h>
  42. #include <linux/of.h>
  43. #include <linux/of_platform.h>
  44. #include <asm/dcr.h>
  45. #include <asm/dcr-regs.h>
  46. #include "adma.h"
  47. #include "../dmaengine.h"
  48. enum ppc_adma_init_code {
  49. PPC_ADMA_INIT_OK = 0,
  50. PPC_ADMA_INIT_MEMRES,
  51. PPC_ADMA_INIT_MEMREG,
  52. PPC_ADMA_INIT_ALLOC,
  53. PPC_ADMA_INIT_COHERENT,
  54. PPC_ADMA_INIT_CHANNEL,
  55. PPC_ADMA_INIT_IRQ1,
  56. PPC_ADMA_INIT_IRQ2,
  57. PPC_ADMA_INIT_REGISTER
  58. };
  59. static char *ppc_adma_errors[] = {
  60. [PPC_ADMA_INIT_OK] = "ok",
  61. [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  62. [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  63. [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  64. "structure",
  65. [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  66. "hardware descriptors",
  67. [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  68. [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  69. [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  70. [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  71. };
  72. static enum ppc_adma_init_code
  73. ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  74. struct ppc_dma_chan_ref {
  75. struct dma_chan *chan;
  76. struct list_head node;
  77. };
  78. /* The list of channels exported by ppc440spe ADMA */
  79. struct list_head
  80. ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  81. /* This flag is set when want to refetch the xor chain in the interrupt
  82. * handler
  83. */
  84. static u32 do_xor_refetch;
  85. /* Pointer to DMA0, DMA1 CP/CS FIFO */
  86. static void *ppc440spe_dma_fifo_buf;
  87. /* Pointers to last submitted to DMA0, DMA1 CDBs */
  88. static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  89. static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
  90. /* Pointer to last linked and submitted xor CB */
  91. static struct ppc440spe_adma_desc_slot *xor_last_linked;
  92. static struct ppc440spe_adma_desc_slot *xor_last_submit;
  93. /* This array is used in data-check operations for storing a pattern */
  94. static char ppc440spe_qword[16];
  95. static atomic_t ppc440spe_adma_err_irq_ref;
  96. static dcr_host_t ppc440spe_mq_dcr_host;
  97. static unsigned int ppc440spe_mq_dcr_len;
  98. /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
  99. * the block size in transactions, then we do not allow to activate more than
  100. * only one RXOR transactions simultaneously. So use this var to store
  101. * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
  102. * set) or not (PPC440SPE_RXOR_RUN is clear).
  103. */
  104. static unsigned long ppc440spe_rxor_state;
  105. /* These are used in enable & check routines
  106. */
  107. static u32 ppc440spe_r6_enabled;
  108. static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
  109. static struct completion ppc440spe_r6_test_comp;
  110. static int ppc440spe_adma_dma2rxor_prep_src(
  111. struct ppc440spe_adma_desc_slot *desc,
  112. struct ppc440spe_rxor *cursor, int index,
  113. int src_cnt, u32 addr);
  114. static void ppc440spe_adma_dma2rxor_set_src(
  115. struct ppc440spe_adma_desc_slot *desc,
  116. int index, dma_addr_t addr);
  117. static void ppc440spe_adma_dma2rxor_set_mult(
  118. struct ppc440spe_adma_desc_slot *desc,
  119. int index, u8 mult);
  120. #ifdef ADMA_LL_DEBUG
  121. #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
  122. #else
  123. #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
  124. #endif
  125. static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
  126. {
  127. struct dma_cdb *cdb;
  128. struct xor_cb *cb;
  129. int i;
  130. switch (chan->device->id) {
  131. case 0:
  132. case 1:
  133. cdb = block;
  134. pr_debug("CDB at %p [%d]:\n"
  135. "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
  136. "\t sg1u 0x%08x sg1l 0x%08x\n"
  137. "\t sg2u 0x%08x sg2l 0x%08x\n"
  138. "\t sg3u 0x%08x sg3l 0x%08x\n",
  139. cdb, chan->device->id,
  140. cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
  141. le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
  142. le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
  143. le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
  144. );
  145. break;
  146. case 2:
  147. cb = block;
  148. pr_debug("CB at %p [%d]:\n"
  149. "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
  150. "\t cbtah 0x%08x cbtal 0x%08x\n"
  151. "\t cblah 0x%08x cblal 0x%08x\n",
  152. cb, chan->device->id,
  153. cb->cbc, cb->cbbc, cb->cbs,
  154. cb->cbtah, cb->cbtal,
  155. cb->cblah, cb->cblal);
  156. for (i = 0; i < 16; i++) {
  157. if (i && !cb->ops[i].h && !cb->ops[i].l)
  158. continue;
  159. pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
  160. i, cb->ops[i].h, cb->ops[i].l);
  161. }
  162. break;
  163. }
  164. }
  165. static void print_cb_list(struct ppc440spe_adma_chan *chan,
  166. struct ppc440spe_adma_desc_slot *iter)
  167. {
  168. for (; iter; iter = iter->hw_next)
  169. print_cb(chan, iter->hw_desc);
  170. }
  171. static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
  172. unsigned int src_cnt)
  173. {
  174. int i;
  175. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  176. for (i = 0; i < src_cnt; i++)
  177. pr_debug("\t0x%016llx ", src[i]);
  178. pr_debug("dst:\n\t0x%016llx\n", dst);
  179. }
  180. static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
  181. unsigned int src_cnt)
  182. {
  183. int i;
  184. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  185. for (i = 0; i < src_cnt; i++)
  186. pr_debug("\t0x%016llx ", src[i]);
  187. pr_debug("dst: ");
  188. for (i = 0; i < 2; i++)
  189. pr_debug("\t0x%016llx ", dst[i]);
  190. }
  191. static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
  192. unsigned int src_cnt,
  193. const unsigned char *scf)
  194. {
  195. int i;
  196. pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
  197. if (scf) {
  198. for (i = 0; i < src_cnt; i++)
  199. pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
  200. } else {
  201. for (i = 0; i < src_cnt; i++)
  202. pr_debug("\t0x%016llx(no) ", src[i]);
  203. }
  204. pr_debug("dst: ");
  205. for (i = 0; i < 2; i++)
  206. pr_debug("\t0x%016llx ", src[src_cnt + i]);
  207. }
  208. /******************************************************************************
  209. * Command (Descriptor) Blocks low-level routines
  210. ******************************************************************************/
  211. /**
  212. * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
  213. * pseudo operation
  214. */
  215. static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
  216. struct ppc440spe_adma_chan *chan)
  217. {
  218. struct xor_cb *p;
  219. switch (chan->device->id) {
  220. case PPC440SPE_XOR_ID:
  221. p = desc->hw_desc;
  222. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  223. /* NOP with Command Block Complete Enable */
  224. p->cbc = XOR_CBCR_CBCE_BIT;
  225. break;
  226. case PPC440SPE_DMA0_ID:
  227. case PPC440SPE_DMA1_ID:
  228. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  229. /* NOP with interrupt */
  230. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  231. break;
  232. default:
  233. printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
  234. __func__);
  235. break;
  236. }
  237. }
  238. /**
  239. * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
  240. * pseudo operation
  241. */
  242. static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
  243. {
  244. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  245. desc->hw_next = NULL;
  246. desc->src_cnt = 0;
  247. desc->dst_cnt = 1;
  248. }
  249. /**
  250. * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
  251. */
  252. static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
  253. int src_cnt, unsigned long flags)
  254. {
  255. struct xor_cb *hw_desc = desc->hw_desc;
  256. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  257. desc->hw_next = NULL;
  258. desc->src_cnt = src_cnt;
  259. desc->dst_cnt = 1;
  260. hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
  261. if (flags & DMA_PREP_INTERRUPT)
  262. /* Enable interrupt on completion */
  263. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  264. }
  265. /**
  266. * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
  267. * operation in DMA2 controller
  268. */
  269. static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
  270. int dst_cnt, int src_cnt, unsigned long flags)
  271. {
  272. struct xor_cb *hw_desc = desc->hw_desc;
  273. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  274. desc->hw_next = NULL;
  275. desc->src_cnt = src_cnt;
  276. desc->dst_cnt = dst_cnt;
  277. memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
  278. desc->descs_per_op = 0;
  279. hw_desc->cbc = XOR_CBCR_TGT_BIT;
  280. if (flags & DMA_PREP_INTERRUPT)
  281. /* Enable interrupt on completion */
  282. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  283. }
  284. #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
  285. #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
  286. #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
  287. /**
  288. * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
  289. * with DMA0/1
  290. */
  291. static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
  292. int dst_cnt, int src_cnt, unsigned long flags,
  293. unsigned long op)
  294. {
  295. struct dma_cdb *hw_desc;
  296. struct ppc440spe_adma_desc_slot *iter;
  297. u8 dopc;
  298. /* Common initialization of a PQ descriptors chain */
  299. set_bits(op, &desc->flags);
  300. desc->src_cnt = src_cnt;
  301. desc->dst_cnt = dst_cnt;
  302. /* WXOR MULTICAST if both P and Q are being computed
  303. * MV_SG1_SG2 if Q only
  304. */
  305. dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
  306. DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
  307. list_for_each_entry(iter, &desc->group_list, chain_node) {
  308. hw_desc = iter->hw_desc;
  309. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  310. if (likely(!list_is_last(&iter->chain_node,
  311. &desc->group_list))) {
  312. /* set 'next' pointer */
  313. iter->hw_next = list_entry(iter->chain_node.next,
  314. struct ppc440spe_adma_desc_slot, chain_node);
  315. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  316. } else {
  317. /* this is the last descriptor.
  318. * this slot will be pasted from ADMA level
  319. * each time it wants to configure parameters
  320. * of the transaction (src, dst, ...)
  321. */
  322. iter->hw_next = NULL;
  323. if (flags & DMA_PREP_INTERRUPT)
  324. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  325. else
  326. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  327. }
  328. }
  329. /* Set OPS depending on WXOR/RXOR type of operation */
  330. if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
  331. /* This is a WXOR only chain:
  332. * - first descriptors are for zeroing destinations
  333. * if PPC440SPE_ZERO_P/Q set;
  334. * - descriptors remained are for GF-XOR operations.
  335. */
  336. iter = list_first_entry(&desc->group_list,
  337. struct ppc440spe_adma_desc_slot,
  338. chain_node);
  339. if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
  340. hw_desc = iter->hw_desc;
  341. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  342. iter = list_first_entry(&iter->chain_node,
  343. struct ppc440spe_adma_desc_slot,
  344. chain_node);
  345. }
  346. if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
  347. hw_desc = iter->hw_desc;
  348. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  349. iter = list_first_entry(&iter->chain_node,
  350. struct ppc440spe_adma_desc_slot,
  351. chain_node);
  352. }
  353. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  354. hw_desc = iter->hw_desc;
  355. hw_desc->opc = dopc;
  356. }
  357. } else {
  358. /* This is either RXOR-only or mixed RXOR/WXOR */
  359. /* The first 1 or 2 slots in chain are always RXOR,
  360. * if need to calculate P & Q, then there are two
  361. * RXOR slots; if only P or only Q, then there is one
  362. */
  363. iter = list_first_entry(&desc->group_list,
  364. struct ppc440spe_adma_desc_slot,
  365. chain_node);
  366. hw_desc = iter->hw_desc;
  367. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  368. if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
  369. iter = list_first_entry(&iter->chain_node,
  370. struct ppc440spe_adma_desc_slot,
  371. chain_node);
  372. hw_desc = iter->hw_desc;
  373. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  374. }
  375. /* The remaining descs (if any) are WXORs */
  376. if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
  377. iter = list_first_entry(&iter->chain_node,
  378. struct ppc440spe_adma_desc_slot,
  379. chain_node);
  380. list_for_each_entry_from(iter, &desc->group_list,
  381. chain_node) {
  382. hw_desc = iter->hw_desc;
  383. hw_desc->opc = dopc;
  384. }
  385. }
  386. }
  387. }
  388. /**
  389. * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
  390. * for PQ_ZERO_SUM operation
  391. */
  392. static void ppc440spe_desc_init_dma01pqzero_sum(
  393. struct ppc440spe_adma_desc_slot *desc,
  394. int dst_cnt, int src_cnt)
  395. {
  396. struct dma_cdb *hw_desc;
  397. struct ppc440spe_adma_desc_slot *iter;
  398. int i = 0;
  399. u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
  400. DMA_CDB_OPC_MV_SG1_SG2;
  401. /*
  402. * Initialize starting from 2nd or 3rd descriptor dependent
  403. * on dst_cnt. First one or two slots are for cloning P
  404. * and/or Q to chan->pdest and/or chan->qdest as we have
  405. * to preserve original P/Q.
  406. */
  407. iter = list_first_entry(&desc->group_list,
  408. struct ppc440spe_adma_desc_slot, chain_node);
  409. iter = list_entry(iter->chain_node.next,
  410. struct ppc440spe_adma_desc_slot, chain_node);
  411. if (dst_cnt > 1) {
  412. iter = list_entry(iter->chain_node.next,
  413. struct ppc440spe_adma_desc_slot, chain_node);
  414. }
  415. /* initialize each source descriptor in chain */
  416. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  417. hw_desc = iter->hw_desc;
  418. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  419. iter->src_cnt = 0;
  420. iter->dst_cnt = 0;
  421. /* This is a ZERO_SUM operation:
  422. * - <src_cnt> descriptors starting from 2nd or 3rd
  423. * descriptor are for GF-XOR operations;
  424. * - remaining <dst_cnt> descriptors are for checking the result
  425. */
  426. if (i++ < src_cnt)
  427. /* MV_SG1_SG2 if only Q is being verified
  428. * MULTICAST if both P and Q are being verified
  429. */
  430. hw_desc->opc = dopc;
  431. else
  432. /* DMA_CDB_OPC_DCHECK128 operation */
  433. hw_desc->opc = DMA_CDB_OPC_DCHECK128;
  434. if (likely(!list_is_last(&iter->chain_node,
  435. &desc->group_list))) {
  436. /* set 'next' pointer */
  437. iter->hw_next = list_entry(iter->chain_node.next,
  438. struct ppc440spe_adma_desc_slot,
  439. chain_node);
  440. } else {
  441. /* this is the last descriptor.
  442. * this slot will be pasted from ADMA level
  443. * each time it wants to configure parameters
  444. * of the transaction (src, dst, ...)
  445. */
  446. iter->hw_next = NULL;
  447. /* always enable interrupt generation since we get
  448. * the status of pqzero from the handler
  449. */
  450. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  451. }
  452. }
  453. desc->src_cnt = src_cnt;
  454. desc->dst_cnt = dst_cnt;
  455. }
  456. /**
  457. * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
  458. */
  459. static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
  460. unsigned long flags)
  461. {
  462. struct dma_cdb *hw_desc = desc->hw_desc;
  463. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  464. desc->hw_next = NULL;
  465. desc->src_cnt = 1;
  466. desc->dst_cnt = 1;
  467. if (flags & DMA_PREP_INTERRUPT)
  468. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  469. else
  470. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  471. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  472. }
  473. /**
  474. * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
  475. */
  476. static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
  477. int value, unsigned long flags)
  478. {
  479. struct dma_cdb *hw_desc = desc->hw_desc;
  480. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  481. desc->hw_next = NULL;
  482. desc->src_cnt = 1;
  483. desc->dst_cnt = 1;
  484. if (flags & DMA_PREP_INTERRUPT)
  485. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  486. else
  487. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  488. hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
  489. hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
  490. hw_desc->opc = DMA_CDB_OPC_DFILL128;
  491. }
  492. /**
  493. * ppc440spe_desc_set_src_addr - set source address into the descriptor
  494. */
  495. static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
  496. struct ppc440spe_adma_chan *chan,
  497. int src_idx, dma_addr_t addrh,
  498. dma_addr_t addrl)
  499. {
  500. struct dma_cdb *dma_hw_desc;
  501. struct xor_cb *xor_hw_desc;
  502. phys_addr_t addr64, tmplow, tmphi;
  503. switch (chan->device->id) {
  504. case PPC440SPE_DMA0_ID:
  505. case PPC440SPE_DMA1_ID:
  506. if (!addrh) {
  507. addr64 = addrl;
  508. tmphi = (addr64 >> 32);
  509. tmplow = (addr64 & 0xFFFFFFFF);
  510. } else {
  511. tmphi = addrh;
  512. tmplow = addrl;
  513. }
  514. dma_hw_desc = desc->hw_desc;
  515. dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
  516. dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
  517. break;
  518. case PPC440SPE_XOR_ID:
  519. xor_hw_desc = desc->hw_desc;
  520. xor_hw_desc->ops[src_idx].l = addrl;
  521. xor_hw_desc->ops[src_idx].h |= addrh;
  522. break;
  523. }
  524. }
  525. /**
  526. * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
  527. */
  528. static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
  529. struct ppc440spe_adma_chan *chan, u32 mult_index,
  530. int sg_index, unsigned char mult_value)
  531. {
  532. struct dma_cdb *dma_hw_desc;
  533. struct xor_cb *xor_hw_desc;
  534. u32 *psgu;
  535. switch (chan->device->id) {
  536. case PPC440SPE_DMA0_ID:
  537. case PPC440SPE_DMA1_ID:
  538. dma_hw_desc = desc->hw_desc;
  539. switch (sg_index) {
  540. /* for RXOR operations set multiplier
  541. * into source cued address
  542. */
  543. case DMA_CDB_SG_SRC:
  544. psgu = &dma_hw_desc->sg1u;
  545. break;
  546. /* for WXOR operations set multiplier
  547. * into destination cued address(es)
  548. */
  549. case DMA_CDB_SG_DST1:
  550. psgu = &dma_hw_desc->sg2u;
  551. break;
  552. case DMA_CDB_SG_DST2:
  553. psgu = &dma_hw_desc->sg3u;
  554. break;
  555. default:
  556. BUG();
  557. }
  558. *psgu |= cpu_to_le32(mult_value << mult_index);
  559. break;
  560. case PPC440SPE_XOR_ID:
  561. xor_hw_desc = desc->hw_desc;
  562. break;
  563. default:
  564. BUG();
  565. }
  566. }
  567. /**
  568. * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
  569. */
  570. static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
  571. struct ppc440spe_adma_chan *chan,
  572. dma_addr_t addrh, dma_addr_t addrl,
  573. u32 dst_idx)
  574. {
  575. struct dma_cdb *dma_hw_desc;
  576. struct xor_cb *xor_hw_desc;
  577. phys_addr_t addr64, tmphi, tmplow;
  578. u32 *psgu, *psgl;
  579. switch (chan->device->id) {
  580. case PPC440SPE_DMA0_ID:
  581. case PPC440SPE_DMA1_ID:
  582. if (!addrh) {
  583. addr64 = addrl;
  584. tmphi = (addr64 >> 32);
  585. tmplow = (addr64 & 0xFFFFFFFF);
  586. } else {
  587. tmphi = addrh;
  588. tmplow = addrl;
  589. }
  590. dma_hw_desc = desc->hw_desc;
  591. psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
  592. psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
  593. *psgl = cpu_to_le32((u32)tmplow);
  594. *psgu |= cpu_to_le32((u32)tmphi);
  595. break;
  596. case PPC440SPE_XOR_ID:
  597. xor_hw_desc = desc->hw_desc;
  598. xor_hw_desc->cbtal = addrl;
  599. xor_hw_desc->cbtah |= addrh;
  600. break;
  601. }
  602. }
  603. /**
  604. * ppc440spe_desc_set_byte_count - set number of data bytes involved
  605. * into the operation
  606. */
  607. static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
  608. struct ppc440spe_adma_chan *chan,
  609. u32 byte_count)
  610. {
  611. struct dma_cdb *dma_hw_desc;
  612. struct xor_cb *xor_hw_desc;
  613. switch (chan->device->id) {
  614. case PPC440SPE_DMA0_ID:
  615. case PPC440SPE_DMA1_ID:
  616. dma_hw_desc = desc->hw_desc;
  617. dma_hw_desc->cnt = cpu_to_le32(byte_count);
  618. break;
  619. case PPC440SPE_XOR_ID:
  620. xor_hw_desc = desc->hw_desc;
  621. xor_hw_desc->cbbc = byte_count;
  622. break;
  623. }
  624. }
  625. /**
  626. * ppc440spe_desc_set_rxor_block_size - set RXOR block size
  627. */
  628. static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
  629. {
  630. /* assume that byte_count is aligned on the 512-boundary;
  631. * thus write it directly to the register (bits 23:31 are
  632. * reserved there).
  633. */
  634. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
  635. }
  636. /**
  637. * ppc440spe_desc_set_dcheck - set CHECK pattern
  638. */
  639. static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
  640. struct ppc440spe_adma_chan *chan, u8 *qword)
  641. {
  642. struct dma_cdb *dma_hw_desc;
  643. switch (chan->device->id) {
  644. case PPC440SPE_DMA0_ID:
  645. case PPC440SPE_DMA1_ID:
  646. dma_hw_desc = desc->hw_desc;
  647. iowrite32(qword[0], &dma_hw_desc->sg3l);
  648. iowrite32(qword[4], &dma_hw_desc->sg3u);
  649. iowrite32(qword[8], &dma_hw_desc->sg2l);
  650. iowrite32(qword[12], &dma_hw_desc->sg2u);
  651. break;
  652. default:
  653. BUG();
  654. }
  655. }
  656. /**
  657. * ppc440spe_xor_set_link - set link address in xor CB
  658. */
  659. static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
  660. struct ppc440spe_adma_desc_slot *next_desc)
  661. {
  662. struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
  663. if (unlikely(!next_desc || !(next_desc->phys))) {
  664. printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
  665. __func__, next_desc,
  666. next_desc ? next_desc->phys : 0);
  667. BUG();
  668. }
  669. xor_hw_desc->cbs = 0;
  670. xor_hw_desc->cblal = next_desc->phys;
  671. xor_hw_desc->cblah = 0;
  672. xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
  673. }
  674. /**
  675. * ppc440spe_desc_set_link - set the address of descriptor following this
  676. * descriptor in chain
  677. */
  678. static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
  679. struct ppc440spe_adma_desc_slot *prev_desc,
  680. struct ppc440spe_adma_desc_slot *next_desc)
  681. {
  682. unsigned long flags;
  683. struct ppc440spe_adma_desc_slot *tail = next_desc;
  684. if (unlikely(!prev_desc || !next_desc ||
  685. (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
  686. /* If previous next is overwritten something is wrong.
  687. * though we may refetch from append to initiate list
  688. * processing; in this case - it's ok.
  689. */
  690. printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
  691. "prev->hw_next=0x%p\n", __func__, prev_desc,
  692. next_desc, prev_desc ? prev_desc->hw_next : 0);
  693. BUG();
  694. }
  695. local_irq_save(flags);
  696. /* do s/w chaining both for DMA and XOR descriptors */
  697. prev_desc->hw_next = next_desc;
  698. switch (chan->device->id) {
  699. case PPC440SPE_DMA0_ID:
  700. case PPC440SPE_DMA1_ID:
  701. break;
  702. case PPC440SPE_XOR_ID:
  703. /* bind descriptor to the chain */
  704. while (tail->hw_next)
  705. tail = tail->hw_next;
  706. xor_last_linked = tail;
  707. if (prev_desc == xor_last_submit)
  708. /* do not link to the last submitted CB */
  709. break;
  710. ppc440spe_xor_set_link(prev_desc, next_desc);
  711. break;
  712. }
  713. local_irq_restore(flags);
  714. }
  715. /**
  716. * ppc440spe_desc_get_link - get the address of the descriptor that
  717. * follows this one
  718. */
  719. static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
  720. struct ppc440spe_adma_chan *chan)
  721. {
  722. if (!desc->hw_next)
  723. return 0;
  724. return desc->hw_next->phys;
  725. }
  726. /**
  727. * ppc440spe_desc_is_aligned - check alignment
  728. */
  729. static inline int ppc440spe_desc_is_aligned(
  730. struct ppc440spe_adma_desc_slot *desc, int num_slots)
  731. {
  732. return (desc->idx & (num_slots - 1)) ? 0 : 1;
  733. }
  734. /**
  735. * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
  736. * XOR operation
  737. */
  738. static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
  739. int *slots_per_op)
  740. {
  741. int slot_cnt;
  742. /* each XOR descriptor provides up to 16 source operands */
  743. slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
  744. if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
  745. return slot_cnt;
  746. printk(KERN_ERR "%s: len %d > max %d !!\n",
  747. __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  748. BUG();
  749. return slot_cnt;
  750. }
  751. /**
  752. * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
  753. * DMA2 PQ operation
  754. */
  755. static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
  756. int src_cnt, size_t len)
  757. {
  758. signed long long order = 0;
  759. int state = 0;
  760. int addr_count = 0;
  761. int i;
  762. for (i = 1; i < src_cnt; i++) {
  763. dma_addr_t cur_addr = srcs[i];
  764. dma_addr_t old_addr = srcs[i-1];
  765. switch (state) {
  766. case 0:
  767. if (cur_addr == old_addr + len) {
  768. /* direct RXOR */
  769. order = 1;
  770. state = 1;
  771. if (i == src_cnt-1)
  772. addr_count++;
  773. } else if (old_addr == cur_addr + len) {
  774. /* reverse RXOR */
  775. order = -1;
  776. state = 1;
  777. if (i == src_cnt-1)
  778. addr_count++;
  779. } else {
  780. state = 3;
  781. }
  782. break;
  783. case 1:
  784. if (i == src_cnt-2 || (order == -1
  785. && cur_addr != old_addr - len)) {
  786. order = 0;
  787. state = 0;
  788. addr_count++;
  789. } else if (cur_addr == old_addr + len*order) {
  790. state = 2;
  791. if (i == src_cnt-1)
  792. addr_count++;
  793. } else if (cur_addr == old_addr + 2*len) {
  794. state = 2;
  795. if (i == src_cnt-1)
  796. addr_count++;
  797. } else if (cur_addr == old_addr + 3*len) {
  798. state = 2;
  799. if (i == src_cnt-1)
  800. addr_count++;
  801. } else {
  802. order = 0;
  803. state = 0;
  804. addr_count++;
  805. }
  806. break;
  807. case 2:
  808. order = 0;
  809. state = 0;
  810. addr_count++;
  811. break;
  812. }
  813. if (state == 3)
  814. break;
  815. }
  816. if (src_cnt <= 1 || (state != 1 && state != 2)) {
  817. pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
  818. __func__, src_cnt, state, addr_count, order);
  819. for (i = 0; i < src_cnt; i++)
  820. pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
  821. BUG();
  822. }
  823. return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
  824. }
  825. /******************************************************************************
  826. * ADMA channel low-level routines
  827. ******************************************************************************/
  828. static u32
  829. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
  830. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
  831. /**
  832. * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
  833. */
  834. static void ppc440spe_adma_device_clear_eot_status(
  835. struct ppc440spe_adma_chan *chan)
  836. {
  837. struct dma_regs *dma_reg;
  838. struct xor_regs *xor_reg;
  839. u8 *p = chan->device->dma_desc_pool_virt;
  840. struct dma_cdb *cdb;
  841. u32 rv, i;
  842. switch (chan->device->id) {
  843. case PPC440SPE_DMA0_ID:
  844. case PPC440SPE_DMA1_ID:
  845. /* read FIFO to ack */
  846. dma_reg = chan->device->dma_reg;
  847. while ((rv = ioread32(&dma_reg->csfpl))) {
  848. i = rv & DMA_CDB_ADDR_MSK;
  849. cdb = (struct dma_cdb *)&p[i -
  850. (u32)chan->device->dma_desc_pool];
  851. /* Clear opcode to ack. This is necessary for
  852. * ZeroSum operations only
  853. */
  854. cdb->opc = 0;
  855. if (test_bit(PPC440SPE_RXOR_RUN,
  856. &ppc440spe_rxor_state)) {
  857. /* probably this is a completed RXOR op,
  858. * get pointer to CDB using the fact that
  859. * physical and virtual addresses of CDB
  860. * in pools have the same offsets
  861. */
  862. if (le32_to_cpu(cdb->sg1u) &
  863. DMA_CUED_XOR_BASE) {
  864. /* this is a RXOR */
  865. clear_bit(PPC440SPE_RXOR_RUN,
  866. &ppc440spe_rxor_state);
  867. }
  868. }
  869. if (rv & DMA_CDB_STATUS_MSK) {
  870. /* ZeroSum check failed
  871. */
  872. struct ppc440spe_adma_desc_slot *iter;
  873. dma_addr_t phys = rv & ~DMA_CDB_MSK;
  874. /*
  875. * Update the status of corresponding
  876. * descriptor.
  877. */
  878. list_for_each_entry(iter, &chan->chain,
  879. chain_node) {
  880. if (iter->phys == phys)
  881. break;
  882. }
  883. /*
  884. * if cannot find the corresponding
  885. * slot it's a bug
  886. */
  887. BUG_ON(&iter->chain_node == &chan->chain);
  888. if (iter->xor_check_result) {
  889. if (test_bit(PPC440SPE_DESC_PCHECK,
  890. &iter->flags)) {
  891. *iter->xor_check_result |=
  892. SUM_CHECK_P_RESULT;
  893. } else
  894. if (test_bit(PPC440SPE_DESC_QCHECK,
  895. &iter->flags)) {
  896. *iter->xor_check_result |=
  897. SUM_CHECK_Q_RESULT;
  898. } else
  899. BUG();
  900. }
  901. }
  902. }
  903. rv = ioread32(&dma_reg->dsts);
  904. if (rv) {
  905. pr_err("DMA%d err status: 0x%x\n",
  906. chan->device->id, rv);
  907. /* write back to clear */
  908. iowrite32(rv, &dma_reg->dsts);
  909. }
  910. break;
  911. case PPC440SPE_XOR_ID:
  912. /* reset status bits to ack */
  913. xor_reg = chan->device->xor_reg;
  914. rv = ioread32be(&xor_reg->sr);
  915. iowrite32be(rv, &xor_reg->sr);
  916. if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
  917. if (rv & XOR_IE_RPTIE_BIT) {
  918. /* Read PLB Timeout Error.
  919. * Try to resubmit the CB
  920. */
  921. u32 val = ioread32be(&xor_reg->ccbalr);
  922. iowrite32be(val, &xor_reg->cblalr);
  923. val = ioread32be(&xor_reg->crsr);
  924. iowrite32be(val | XOR_CRSR_XAE_BIT,
  925. &xor_reg->crsr);
  926. } else
  927. pr_err("XOR ERR 0x%x status\n", rv);
  928. break;
  929. }
  930. /* if the XORcore is idle, but there are unprocessed CBs
  931. * then refetch the s/w chain here
  932. */
  933. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
  934. do_xor_refetch)
  935. ppc440spe_chan_append(chan);
  936. break;
  937. }
  938. }
  939. /**
  940. * ppc440spe_chan_is_busy - get the channel status
  941. */
  942. static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
  943. {
  944. struct dma_regs *dma_reg;
  945. struct xor_regs *xor_reg;
  946. int busy = 0;
  947. switch (chan->device->id) {
  948. case PPC440SPE_DMA0_ID:
  949. case PPC440SPE_DMA1_ID:
  950. dma_reg = chan->device->dma_reg;
  951. /* if command FIFO's head and tail pointers are equal and
  952. * status tail is the same as command, then channel is free
  953. */
  954. if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
  955. ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
  956. busy = 1;
  957. break;
  958. case PPC440SPE_XOR_ID:
  959. /* use the special status bit for the XORcore
  960. */
  961. xor_reg = chan->device->xor_reg;
  962. busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
  963. break;
  964. }
  965. return busy;
  966. }
  967. /**
  968. * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
  969. */
  970. static void ppc440spe_chan_set_first_xor_descriptor(
  971. struct ppc440spe_adma_chan *chan,
  972. struct ppc440spe_adma_desc_slot *next_desc)
  973. {
  974. struct xor_regs *xor_reg = chan->device->xor_reg;
  975. if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
  976. printk(KERN_INFO "%s: Warn: XORcore is running "
  977. "when try to set the first CDB!\n",
  978. __func__);
  979. xor_last_submit = xor_last_linked = next_desc;
  980. iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
  981. iowrite32be(next_desc->phys, &xor_reg->cblalr);
  982. iowrite32be(0, &xor_reg->cblahr);
  983. iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
  984. &xor_reg->cbcr);
  985. chan->hw_chain_inited = 1;
  986. }
  987. /**
  988. * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
  989. * called with irqs disabled
  990. */
  991. static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
  992. struct ppc440spe_adma_desc_slot *desc)
  993. {
  994. u32 pcdb;
  995. struct dma_regs *dma_reg = chan->device->dma_reg;
  996. pcdb = desc->phys;
  997. if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
  998. pcdb |= DMA_CDB_NO_INT;
  999. chan_last_sub[chan->device->id] = desc;
  1000. ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
  1001. iowrite32(pcdb, &dma_reg->cpfpl);
  1002. }
  1003. /**
  1004. * ppc440spe_chan_append - update the h/w chain in the channel
  1005. */
  1006. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
  1007. {
  1008. struct xor_regs *xor_reg;
  1009. struct ppc440spe_adma_desc_slot *iter;
  1010. struct xor_cb *xcb;
  1011. u32 cur_desc;
  1012. unsigned long flags;
  1013. local_irq_save(flags);
  1014. switch (chan->device->id) {
  1015. case PPC440SPE_DMA0_ID:
  1016. case PPC440SPE_DMA1_ID:
  1017. cur_desc = ppc440spe_chan_get_current_descriptor(chan);
  1018. if (likely(cur_desc)) {
  1019. iter = chan_last_sub[chan->device->id];
  1020. BUG_ON(!iter);
  1021. } else {
  1022. /* first peer */
  1023. iter = chan_first_cdb[chan->device->id];
  1024. BUG_ON(!iter);
  1025. ppc440spe_dma_put_desc(chan, iter);
  1026. chan->hw_chain_inited = 1;
  1027. }
  1028. /* is there something new to append */
  1029. if (!iter->hw_next)
  1030. break;
  1031. /* flush descriptors from the s/w queue to fifo */
  1032. list_for_each_entry_continue(iter, &chan->chain, chain_node) {
  1033. ppc440spe_dma_put_desc(chan, iter);
  1034. if (!iter->hw_next)
  1035. break;
  1036. }
  1037. break;
  1038. case PPC440SPE_XOR_ID:
  1039. /* update h/w links and refetch */
  1040. if (!xor_last_submit->hw_next)
  1041. break;
  1042. xor_reg = chan->device->xor_reg;
  1043. /* the last linked CDB has to generate an interrupt
  1044. * that we'd be able to append the next lists to h/w
  1045. * regardless of the XOR engine state at the moment of
  1046. * appending of these next lists
  1047. */
  1048. xcb = xor_last_linked->hw_desc;
  1049. xcb->cbc |= XOR_CBCR_CBCE_BIT;
  1050. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
  1051. /* XORcore is idle. Refetch now */
  1052. do_xor_refetch = 0;
  1053. ppc440spe_xor_set_link(xor_last_submit,
  1054. xor_last_submit->hw_next);
  1055. ADMA_LL_DBG(print_cb_list(chan,
  1056. xor_last_submit->hw_next));
  1057. xor_last_submit = xor_last_linked;
  1058. iowrite32be(ioread32be(&xor_reg->crsr) |
  1059. XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
  1060. &xor_reg->crsr);
  1061. } else {
  1062. /* XORcore is running. Refetch later in the handler */
  1063. do_xor_refetch = 1;
  1064. }
  1065. break;
  1066. }
  1067. local_irq_restore(flags);
  1068. }
  1069. /**
  1070. * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
  1071. */
  1072. static u32
  1073. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
  1074. {
  1075. struct dma_regs *dma_reg;
  1076. struct xor_regs *xor_reg;
  1077. if (unlikely(!chan->hw_chain_inited))
  1078. /* h/w descriptor chain is not initialized yet */
  1079. return 0;
  1080. switch (chan->device->id) {
  1081. case PPC440SPE_DMA0_ID:
  1082. case PPC440SPE_DMA1_ID:
  1083. dma_reg = chan->device->dma_reg;
  1084. return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
  1085. case PPC440SPE_XOR_ID:
  1086. xor_reg = chan->device->xor_reg;
  1087. return ioread32be(&xor_reg->ccbalr);
  1088. }
  1089. return 0;
  1090. }
  1091. /**
  1092. * ppc440spe_chan_run - enable the channel
  1093. */
  1094. static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
  1095. {
  1096. struct xor_regs *xor_reg;
  1097. switch (chan->device->id) {
  1098. case PPC440SPE_DMA0_ID:
  1099. case PPC440SPE_DMA1_ID:
  1100. /* DMAs are always enabled, do nothing */
  1101. break;
  1102. case PPC440SPE_XOR_ID:
  1103. /* drain write buffer */
  1104. xor_reg = chan->device->xor_reg;
  1105. /* fetch descriptor pointed to in <link> */
  1106. iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
  1107. &xor_reg->crsr);
  1108. break;
  1109. }
  1110. }
  1111. /******************************************************************************
  1112. * ADMA device level
  1113. ******************************************************************************/
  1114. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
  1115. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
  1116. static dma_cookie_t
  1117. ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
  1118. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1119. dma_addr_t addr, int index);
  1120. static void
  1121. ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
  1122. dma_addr_t addr, int index);
  1123. static void
  1124. ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1125. dma_addr_t *paddr, unsigned long flags);
  1126. static void
  1127. ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
  1128. dma_addr_t addr, int index);
  1129. static void
  1130. ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
  1131. unsigned char mult, int index, int dst_pos);
  1132. static void
  1133. ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1134. dma_addr_t paddr, dma_addr_t qaddr);
  1135. static struct page *ppc440spe_rxor_srcs[32];
  1136. /**
  1137. * ppc440spe_can_rxor - check if the operands may be processed with RXOR
  1138. */
  1139. static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
  1140. {
  1141. int i, order = 0, state = 0;
  1142. int idx = 0;
  1143. if (unlikely(!(src_cnt > 1)))
  1144. return 0;
  1145. BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
  1146. /* Skip holes in the source list before checking */
  1147. for (i = 0; i < src_cnt; i++) {
  1148. if (!srcs[i])
  1149. continue;
  1150. ppc440spe_rxor_srcs[idx++] = srcs[i];
  1151. }
  1152. src_cnt = idx;
  1153. for (i = 1; i < src_cnt; i++) {
  1154. char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
  1155. char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
  1156. switch (state) {
  1157. case 0:
  1158. if (cur_addr == old_addr + len) {
  1159. /* direct RXOR */
  1160. order = 1;
  1161. state = 1;
  1162. } else if (old_addr == cur_addr + len) {
  1163. /* reverse RXOR */
  1164. order = -1;
  1165. state = 1;
  1166. } else
  1167. goto out;
  1168. break;
  1169. case 1:
  1170. if ((i == src_cnt - 2) ||
  1171. (order == -1 && cur_addr != old_addr - len)) {
  1172. order = 0;
  1173. state = 0;
  1174. } else if ((cur_addr == old_addr + len * order) ||
  1175. (cur_addr == old_addr + 2 * len) ||
  1176. (cur_addr == old_addr + 3 * len)) {
  1177. state = 2;
  1178. } else {
  1179. order = 0;
  1180. state = 0;
  1181. }
  1182. break;
  1183. case 2:
  1184. order = 0;
  1185. state = 0;
  1186. break;
  1187. }
  1188. }
  1189. out:
  1190. if (state == 1 || state == 2)
  1191. return 1;
  1192. return 0;
  1193. }
  1194. /**
  1195. * ppc440spe_adma_device_estimate - estimate the efficiency of processing
  1196. * the operation given on this channel. It's assumed that 'chan' is
  1197. * capable to process 'cap' type of operation.
  1198. * @chan: channel to use
  1199. * @cap: type of transaction
  1200. * @dst_lst: array of destination pointers
  1201. * @dst_cnt: number of destination operands
  1202. * @src_lst: array of source pointers
  1203. * @src_cnt: number of source operands
  1204. * @src_sz: size of each source operand
  1205. */
  1206. static int ppc440spe_adma_estimate(struct dma_chan *chan,
  1207. enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
  1208. struct page **src_lst, int src_cnt, size_t src_sz)
  1209. {
  1210. int ef = 1;
  1211. if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
  1212. /* If RAID-6 capabilities were not activated don't try
  1213. * to use them
  1214. */
  1215. if (unlikely(!ppc440spe_r6_enabled))
  1216. return -1;
  1217. }
  1218. /* In the current implementation of ppc440spe ADMA driver it
  1219. * makes sense to pick out only pq case, because it may be
  1220. * processed:
  1221. * (1) either using Biskup method on DMA2;
  1222. * (2) or on DMA0/1.
  1223. * Thus we give a favour to (1) if the sources are suitable;
  1224. * else let it be processed on one of the DMA0/1 engines.
  1225. * In the sum_product case where destination is also the
  1226. * source process it on DMA0/1 only.
  1227. */
  1228. if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
  1229. if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
  1230. ef = 0; /* sum_product case, process on DMA0/1 */
  1231. else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
  1232. ef = 3; /* override (DMA0/1 + idle) */
  1233. else
  1234. ef = 0; /* can't process on DMA2 if !rxor */
  1235. }
  1236. /* channel idleness increases the priority */
  1237. if (likely(ef) &&
  1238. !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
  1239. ef++;
  1240. return ef;
  1241. }
  1242. struct dma_chan *
  1243. ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
  1244. struct page **dst_lst, int dst_cnt, struct page **src_lst,
  1245. int src_cnt, size_t src_sz)
  1246. {
  1247. struct dma_chan *best_chan = NULL;
  1248. struct ppc_dma_chan_ref *ref;
  1249. int best_rank = -1;
  1250. if (unlikely(!src_sz))
  1251. return NULL;
  1252. if (src_sz > PAGE_SIZE) {
  1253. /*
  1254. * should a user of the api ever pass > PAGE_SIZE requests
  1255. * we sort out cases where temporary page-sized buffers
  1256. * are used.
  1257. */
  1258. switch (cap) {
  1259. case DMA_PQ:
  1260. if (src_cnt == 1 && dst_lst[1] == src_lst[0])
  1261. return NULL;
  1262. if (src_cnt == 2 && dst_lst[1] == src_lst[1])
  1263. return NULL;
  1264. break;
  1265. case DMA_PQ_VAL:
  1266. case DMA_XOR_VAL:
  1267. return NULL;
  1268. default:
  1269. break;
  1270. }
  1271. }
  1272. list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
  1273. if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
  1274. int rank;
  1275. rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
  1276. dst_cnt, src_lst, src_cnt, src_sz);
  1277. if (rank > best_rank) {
  1278. best_rank = rank;
  1279. best_chan = ref->chan;
  1280. }
  1281. }
  1282. }
  1283. return best_chan;
  1284. }
  1285. EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
  1286. /**
  1287. * ppc440spe_get_group_entry - get group entry with index idx
  1288. * @tdesc: is the last allocated slot in the group.
  1289. */
  1290. static struct ppc440spe_adma_desc_slot *
  1291. ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
  1292. {
  1293. struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
  1294. int i = 0;
  1295. if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
  1296. printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
  1297. __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
  1298. BUG();
  1299. }
  1300. list_for_each_entry(iter, &tdesc->group_list, chain_node) {
  1301. if (i++ == entry_idx)
  1302. break;
  1303. }
  1304. return iter;
  1305. }
  1306. /**
  1307. * ppc440spe_adma_free_slots - flags descriptor slots for reuse
  1308. * @slot: Slot to free
  1309. * Caller must hold &ppc440spe_chan->lock while calling this function
  1310. */
  1311. static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
  1312. struct ppc440spe_adma_chan *chan)
  1313. {
  1314. int stride = slot->slots_per_op;
  1315. while (stride--) {
  1316. slot->slots_per_op = 0;
  1317. slot = list_entry(slot->slot_node.next,
  1318. struct ppc440spe_adma_desc_slot,
  1319. slot_node);
  1320. }
  1321. }
  1322. /**
  1323. * ppc440spe_adma_run_tx_complete_actions - call functions to be called
  1324. * upon completion
  1325. */
  1326. static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
  1327. struct ppc440spe_adma_desc_slot *desc,
  1328. struct ppc440spe_adma_chan *chan,
  1329. dma_cookie_t cookie)
  1330. {
  1331. int i;
  1332. BUG_ON(desc->async_tx.cookie < 0);
  1333. if (desc->async_tx.cookie > 0) {
  1334. cookie = desc->async_tx.cookie;
  1335. desc->async_tx.cookie = 0;
  1336. /* call the callback (must not sleep or submit new
  1337. * operations to this channel)
  1338. */
  1339. if (desc->async_tx.callback)
  1340. desc->async_tx.callback(
  1341. desc->async_tx.callback_param);
  1342. dma_descriptor_unmap(&desc->async_tx);
  1343. }
  1344. /* run dependent operations */
  1345. dma_run_dependencies(&desc->async_tx);
  1346. return cookie;
  1347. }
  1348. /**
  1349. * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
  1350. */
  1351. static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
  1352. struct ppc440spe_adma_chan *chan)
  1353. {
  1354. /* the client is allowed to attach dependent operations
  1355. * until 'ack' is set
  1356. */
  1357. if (!async_tx_test_ack(&desc->async_tx))
  1358. return 0;
  1359. /* leave the last descriptor in the chain
  1360. * so we can append to it
  1361. */
  1362. if (list_is_last(&desc->chain_node, &chan->chain) ||
  1363. desc->phys == ppc440spe_chan_get_current_descriptor(chan))
  1364. return 1;
  1365. if (chan->device->id != PPC440SPE_XOR_ID) {
  1366. /* our DMA interrupt handler clears opc field of
  1367. * each processed descriptor. For all types of
  1368. * operations except for ZeroSum we do not actually
  1369. * need ack from the interrupt handler. ZeroSum is a
  1370. * special case since the result of this operation
  1371. * is available from the handler only, so if we see
  1372. * such type of descriptor (which is unprocessed yet)
  1373. * then leave it in chain.
  1374. */
  1375. struct dma_cdb *cdb = desc->hw_desc;
  1376. if (cdb->opc == DMA_CDB_OPC_DCHECK128)
  1377. return 1;
  1378. }
  1379. dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
  1380. desc->phys, desc->idx, desc->slots_per_op);
  1381. list_del(&desc->chain_node);
  1382. ppc440spe_adma_free_slots(desc, chan);
  1383. return 0;
  1384. }
  1385. /**
  1386. * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
  1387. * which runs through the channel CDBs list until reach the descriptor
  1388. * currently processed. When routine determines that all CDBs of group
  1389. * are completed then corresponding callbacks (if any) are called and slots
  1390. * are freed.
  1391. */
  1392. static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1393. {
  1394. struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
  1395. dma_cookie_t cookie = 0;
  1396. u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
  1397. int busy = ppc440spe_chan_is_busy(chan);
  1398. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  1399. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
  1400. chan->device->id, __func__);
  1401. if (!current_desc) {
  1402. /* There were no transactions yet, so
  1403. * nothing to clean
  1404. */
  1405. return;
  1406. }
  1407. /* free completed slots from the chain starting with
  1408. * the oldest descriptor
  1409. */
  1410. list_for_each_entry_safe(iter, _iter, &chan->chain,
  1411. chain_node) {
  1412. dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
  1413. "busy: %d this_desc: %#llx next_desc: %#x "
  1414. "cur: %#x ack: %d\n",
  1415. iter->async_tx.cookie, iter->idx, busy, iter->phys,
  1416. ppc440spe_desc_get_link(iter, chan), current_desc,
  1417. async_tx_test_ack(&iter->async_tx));
  1418. prefetch(_iter);
  1419. prefetch(&_iter->async_tx);
  1420. /* do not advance past the current descriptor loaded into the
  1421. * hardware channel,subsequent descriptors are either in process
  1422. * or have not been submitted
  1423. */
  1424. if (seen_current)
  1425. break;
  1426. /* stop the search if we reach the current descriptor and the
  1427. * channel is busy, or if it appears that the current descriptor
  1428. * needs to be re-read (i.e. has been appended to)
  1429. */
  1430. if (iter->phys == current_desc) {
  1431. BUG_ON(seen_current++);
  1432. if (busy || ppc440spe_desc_get_link(iter, chan)) {
  1433. /* not all descriptors of the group have
  1434. * been completed; exit.
  1435. */
  1436. break;
  1437. }
  1438. }
  1439. /* detect the start of a group transaction */
  1440. if (!slot_cnt && !slots_per_op) {
  1441. slot_cnt = iter->slot_cnt;
  1442. slots_per_op = iter->slots_per_op;
  1443. if (slot_cnt <= slots_per_op) {
  1444. slot_cnt = 0;
  1445. slots_per_op = 0;
  1446. }
  1447. }
  1448. if (slot_cnt) {
  1449. if (!group_start)
  1450. group_start = iter;
  1451. slot_cnt -= slots_per_op;
  1452. }
  1453. /* all the members of a group are complete */
  1454. if (slots_per_op != 0 && slot_cnt == 0) {
  1455. struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
  1456. int end_of_chain = 0;
  1457. /* clean up the group */
  1458. slot_cnt = group_start->slot_cnt;
  1459. grp_iter = group_start;
  1460. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  1461. &chan->chain, chain_node) {
  1462. cookie = ppc440spe_adma_run_tx_complete_actions(
  1463. grp_iter, chan, cookie);
  1464. slot_cnt -= slots_per_op;
  1465. end_of_chain = ppc440spe_adma_clean_slot(
  1466. grp_iter, chan);
  1467. if (end_of_chain && slot_cnt) {
  1468. /* Should wait for ZeroSum completion */
  1469. if (cookie > 0)
  1470. chan->common.completed_cookie = cookie;
  1471. return;
  1472. }
  1473. if (slot_cnt == 0 || end_of_chain)
  1474. break;
  1475. }
  1476. /* the group should be complete at this point */
  1477. BUG_ON(slot_cnt);
  1478. slots_per_op = 0;
  1479. group_start = NULL;
  1480. if (end_of_chain)
  1481. break;
  1482. else
  1483. continue;
  1484. } else if (slots_per_op) /* wait for group completion */
  1485. continue;
  1486. cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
  1487. cookie);
  1488. if (ppc440spe_adma_clean_slot(iter, chan))
  1489. break;
  1490. }
  1491. BUG_ON(!seen_current);
  1492. if (cookie > 0) {
  1493. chan->common.completed_cookie = cookie;
  1494. pr_debug("\tcompleted cookie %d\n", cookie);
  1495. }
  1496. }
  1497. /**
  1498. * ppc440spe_adma_tasklet - clean up watch-dog initiator
  1499. */
  1500. static void ppc440spe_adma_tasklet(unsigned long data)
  1501. {
  1502. struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
  1503. spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
  1504. __ppc440spe_adma_slot_cleanup(chan);
  1505. spin_unlock(&chan->lock);
  1506. }
  1507. /**
  1508. * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
  1509. */
  1510. static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1511. {
  1512. spin_lock_bh(&chan->lock);
  1513. __ppc440spe_adma_slot_cleanup(chan);
  1514. spin_unlock_bh(&chan->lock);
  1515. }
  1516. /**
  1517. * ppc440spe_adma_alloc_slots - allocate free slots (if any)
  1518. */
  1519. static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
  1520. struct ppc440spe_adma_chan *chan, int num_slots,
  1521. int slots_per_op)
  1522. {
  1523. struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
  1524. struct ppc440spe_adma_desc_slot *alloc_start = NULL;
  1525. struct list_head chain = LIST_HEAD_INIT(chain);
  1526. int slots_found, retry = 0;
  1527. BUG_ON(!num_slots || !slots_per_op);
  1528. /* start search from the last allocated descrtiptor
  1529. * if a contiguous allocation can not be found start searching
  1530. * from the beginning of the list
  1531. */
  1532. retry:
  1533. slots_found = 0;
  1534. if (retry == 0)
  1535. iter = chan->last_used;
  1536. else
  1537. iter = list_entry(&chan->all_slots,
  1538. struct ppc440spe_adma_desc_slot,
  1539. slot_node);
  1540. list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
  1541. slot_node) {
  1542. prefetch(_iter);
  1543. prefetch(&_iter->async_tx);
  1544. if (iter->slots_per_op) {
  1545. slots_found = 0;
  1546. continue;
  1547. }
  1548. /* start the allocation if the slot is correctly aligned */
  1549. if (!slots_found++)
  1550. alloc_start = iter;
  1551. if (slots_found == num_slots) {
  1552. struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
  1553. struct ppc440spe_adma_desc_slot *last_used = NULL;
  1554. iter = alloc_start;
  1555. while (num_slots) {
  1556. int i;
  1557. /* pre-ack all but the last descriptor */
  1558. if (num_slots != slots_per_op)
  1559. async_tx_ack(&iter->async_tx);
  1560. list_add_tail(&iter->chain_node, &chain);
  1561. alloc_tail = iter;
  1562. iter->async_tx.cookie = 0;
  1563. iter->hw_next = NULL;
  1564. iter->flags = 0;
  1565. iter->slot_cnt = num_slots;
  1566. iter->xor_check_result = NULL;
  1567. for (i = 0; i < slots_per_op; i++) {
  1568. iter->slots_per_op = slots_per_op - i;
  1569. last_used = iter;
  1570. iter = list_entry(iter->slot_node.next,
  1571. struct ppc440spe_adma_desc_slot,
  1572. slot_node);
  1573. }
  1574. num_slots -= slots_per_op;
  1575. }
  1576. alloc_tail->group_head = alloc_start;
  1577. alloc_tail->async_tx.cookie = -EBUSY;
  1578. list_splice(&chain, &alloc_tail->group_list);
  1579. chan->last_used = last_used;
  1580. return alloc_tail;
  1581. }
  1582. }
  1583. if (!retry++)
  1584. goto retry;
  1585. /* try to free some slots if the allocation fails */
  1586. tasklet_schedule(&chan->irq_tasklet);
  1587. return NULL;
  1588. }
  1589. /**
  1590. * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
  1591. */
  1592. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
  1593. {
  1594. struct ppc440spe_adma_chan *ppc440spe_chan;
  1595. struct ppc440spe_adma_desc_slot *slot = NULL;
  1596. char *hw_desc;
  1597. int i, db_sz;
  1598. int init;
  1599. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1600. init = ppc440spe_chan->slots_allocated ? 0 : 1;
  1601. chan->chan_id = ppc440spe_chan->device->id;
  1602. /* Allocate descriptor slots */
  1603. i = ppc440spe_chan->slots_allocated;
  1604. if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
  1605. db_sz = sizeof(struct dma_cdb);
  1606. else
  1607. db_sz = sizeof(struct xor_cb);
  1608. for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
  1609. slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
  1610. GFP_KERNEL);
  1611. if (!slot) {
  1612. printk(KERN_INFO "SPE ADMA Channel only initialized"
  1613. " %d descriptor slots", i--);
  1614. break;
  1615. }
  1616. hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
  1617. slot->hw_desc = (void *) &hw_desc[i * db_sz];
  1618. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  1619. slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
  1620. INIT_LIST_HEAD(&slot->chain_node);
  1621. INIT_LIST_HEAD(&slot->slot_node);
  1622. INIT_LIST_HEAD(&slot->group_list);
  1623. slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
  1624. slot->idx = i;
  1625. spin_lock_bh(&ppc440spe_chan->lock);
  1626. ppc440spe_chan->slots_allocated++;
  1627. list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
  1628. spin_unlock_bh(&ppc440spe_chan->lock);
  1629. }
  1630. if (i && !ppc440spe_chan->last_used) {
  1631. ppc440spe_chan->last_used =
  1632. list_entry(ppc440spe_chan->all_slots.next,
  1633. struct ppc440spe_adma_desc_slot,
  1634. slot_node);
  1635. }
  1636. dev_dbg(ppc440spe_chan->device->common.dev,
  1637. "ppc440spe adma%d: allocated %d descriptor slots\n",
  1638. ppc440spe_chan->device->id, i);
  1639. /* initialize the channel and the chain with a null operation */
  1640. if (init) {
  1641. switch (ppc440spe_chan->device->id) {
  1642. case PPC440SPE_DMA0_ID:
  1643. case PPC440SPE_DMA1_ID:
  1644. ppc440spe_chan->hw_chain_inited = 0;
  1645. /* Use WXOR for self-testing */
  1646. if (!ppc440spe_r6_tchan)
  1647. ppc440spe_r6_tchan = ppc440spe_chan;
  1648. break;
  1649. case PPC440SPE_XOR_ID:
  1650. ppc440spe_chan_start_null_xor(ppc440spe_chan);
  1651. break;
  1652. default:
  1653. BUG();
  1654. }
  1655. ppc440spe_chan->needs_unmap = 1;
  1656. }
  1657. return (i > 0) ? i : -ENOMEM;
  1658. }
  1659. /**
  1660. * ppc440spe_rxor_set_region_data -
  1661. */
  1662. static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
  1663. u8 xor_arg_no, u32 mask)
  1664. {
  1665. struct xor_cb *xcb = desc->hw_desc;
  1666. xcb->ops[xor_arg_no].h |= mask;
  1667. }
  1668. /**
  1669. * ppc440spe_rxor_set_src -
  1670. */
  1671. static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
  1672. u8 xor_arg_no, dma_addr_t addr)
  1673. {
  1674. struct xor_cb *xcb = desc->hw_desc;
  1675. xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
  1676. xcb->ops[xor_arg_no].l = addr;
  1677. }
  1678. /**
  1679. * ppc440spe_rxor_set_mult -
  1680. */
  1681. static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
  1682. u8 xor_arg_no, u8 idx, u8 mult)
  1683. {
  1684. struct xor_cb *xcb = desc->hw_desc;
  1685. xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
  1686. }
  1687. /**
  1688. * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
  1689. * has been achieved
  1690. */
  1691. static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
  1692. {
  1693. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
  1694. chan->device->id, chan->pending);
  1695. if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
  1696. chan->pending = 0;
  1697. ppc440spe_chan_append(chan);
  1698. }
  1699. }
  1700. /**
  1701. * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
  1702. * (it's not necessary that descriptors will be submitted to the h/w
  1703. * chains too right now)
  1704. */
  1705. static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  1706. {
  1707. struct ppc440spe_adma_desc_slot *sw_desc;
  1708. struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
  1709. struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
  1710. int slot_cnt;
  1711. int slots_per_op;
  1712. dma_cookie_t cookie;
  1713. sw_desc = tx_to_ppc440spe_adma_slot(tx);
  1714. group_start = sw_desc->group_head;
  1715. slot_cnt = group_start->slot_cnt;
  1716. slots_per_op = group_start->slots_per_op;
  1717. spin_lock_bh(&chan->lock);
  1718. cookie = dma_cookie_assign(tx);
  1719. if (unlikely(list_empty(&chan->chain))) {
  1720. /* first peer */
  1721. list_splice_init(&sw_desc->group_list, &chan->chain);
  1722. chan_first_cdb[chan->device->id] = group_start;
  1723. } else {
  1724. /* isn't first peer, bind CDBs to chain */
  1725. old_chain_tail = list_entry(chan->chain.prev,
  1726. struct ppc440spe_adma_desc_slot,
  1727. chain_node);
  1728. list_splice_init(&sw_desc->group_list,
  1729. &old_chain_tail->chain_node);
  1730. /* fix up the hardware chain */
  1731. ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
  1732. }
  1733. /* increment the pending count by the number of operations */
  1734. chan->pending += slot_cnt / slots_per_op;
  1735. ppc440spe_adma_check_threshold(chan);
  1736. spin_unlock_bh(&chan->lock);
  1737. dev_dbg(chan->device->common.dev,
  1738. "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
  1739. chan->device->id, __func__,
  1740. sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
  1741. return cookie;
  1742. }
  1743. /**
  1744. * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
  1745. */
  1746. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
  1747. struct dma_chan *chan, unsigned long flags)
  1748. {
  1749. struct ppc440spe_adma_chan *ppc440spe_chan;
  1750. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  1751. int slot_cnt, slots_per_op;
  1752. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1753. dev_dbg(ppc440spe_chan->device->common.dev,
  1754. "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
  1755. __func__);
  1756. spin_lock_bh(&ppc440spe_chan->lock);
  1757. slot_cnt = slots_per_op = 1;
  1758. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  1759. slots_per_op);
  1760. if (sw_desc) {
  1761. group_start = sw_desc->group_head;
  1762. ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
  1763. group_start->unmap_len = 0;
  1764. sw_desc->async_tx.flags = flags;
  1765. }
  1766. spin_unlock_bh(&ppc440spe_chan->lock);
  1767. return sw_desc ? &sw_desc->async_tx : NULL;
  1768. }
  1769. /**
  1770. * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
  1771. */
  1772. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
  1773. struct dma_chan *chan, dma_addr_t dma_dest,
  1774. dma_addr_t dma_src, size_t len, unsigned long flags)
  1775. {
  1776. struct ppc440spe_adma_chan *ppc440spe_chan;
  1777. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  1778. int slot_cnt, slots_per_op;
  1779. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1780. if (unlikely(!len))
  1781. return NULL;
  1782. BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
  1783. spin_lock_bh(&ppc440spe_chan->lock);
  1784. dev_dbg(ppc440spe_chan->device->common.dev,
  1785. "ppc440spe adma%d: %s len: %u int_en %d\n",
  1786. ppc440spe_chan->device->id, __func__, len,
  1787. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  1788. slot_cnt = slots_per_op = 1;
  1789. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  1790. slots_per_op);
  1791. if (sw_desc) {
  1792. group_start = sw_desc->group_head;
  1793. ppc440spe_desc_init_memcpy(group_start, flags);
  1794. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  1795. ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
  1796. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  1797. sw_desc->unmap_len = len;
  1798. sw_desc->async_tx.flags = flags;
  1799. }
  1800. spin_unlock_bh(&ppc440spe_chan->lock);
  1801. return sw_desc ? &sw_desc->async_tx : NULL;
  1802. }
  1803. /**
  1804. * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
  1805. */
  1806. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
  1807. struct dma_chan *chan, dma_addr_t dma_dest,
  1808. dma_addr_t *dma_src, u32 src_cnt, size_t len,
  1809. unsigned long flags)
  1810. {
  1811. struct ppc440spe_adma_chan *ppc440spe_chan;
  1812. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  1813. int slot_cnt, slots_per_op;
  1814. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1815. ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
  1816. dma_dest, dma_src, src_cnt));
  1817. if (unlikely(!len))
  1818. return NULL;
  1819. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  1820. dev_dbg(ppc440spe_chan->device->common.dev,
  1821. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  1822. ppc440spe_chan->device->id, __func__, src_cnt, len,
  1823. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  1824. spin_lock_bh(&ppc440spe_chan->lock);
  1825. slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  1826. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  1827. slots_per_op);
  1828. if (sw_desc) {
  1829. group_start = sw_desc->group_head;
  1830. ppc440spe_desc_init_xor(group_start, src_cnt, flags);
  1831. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  1832. while (src_cnt--)
  1833. ppc440spe_adma_memcpy_xor_set_src(group_start,
  1834. dma_src[src_cnt], src_cnt);
  1835. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  1836. sw_desc->unmap_len = len;
  1837. sw_desc->async_tx.flags = flags;
  1838. }
  1839. spin_unlock_bh(&ppc440spe_chan->lock);
  1840. return sw_desc ? &sw_desc->async_tx : NULL;
  1841. }
  1842. static inline void
  1843. ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
  1844. int src_cnt);
  1845. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
  1846. /**
  1847. * ppc440spe_adma_init_dma2rxor_slot -
  1848. */
  1849. static void ppc440spe_adma_init_dma2rxor_slot(
  1850. struct ppc440spe_adma_desc_slot *desc,
  1851. dma_addr_t *src, int src_cnt)
  1852. {
  1853. int i;
  1854. /* initialize CDB */
  1855. for (i = 0; i < src_cnt; i++) {
  1856. ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
  1857. desc->src_cnt, (u32)src[i]);
  1858. }
  1859. }
  1860. /**
  1861. * ppc440spe_dma01_prep_mult -
  1862. * for Q operation where destination is also the source
  1863. */
  1864. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
  1865. struct ppc440spe_adma_chan *ppc440spe_chan,
  1866. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  1867. const unsigned char *scf, size_t len, unsigned long flags)
  1868. {
  1869. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  1870. unsigned long op = 0;
  1871. int slot_cnt;
  1872. set_bit(PPC440SPE_DESC_WXOR, &op);
  1873. slot_cnt = 2;
  1874. spin_lock_bh(&ppc440spe_chan->lock);
  1875. /* use WXOR, each descriptor occupies one slot */
  1876. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  1877. if (sw_desc) {
  1878. struct ppc440spe_adma_chan *chan;
  1879. struct ppc440spe_adma_desc_slot *iter;
  1880. struct dma_cdb *hw_desc;
  1881. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  1882. set_bits(op, &sw_desc->flags);
  1883. sw_desc->src_cnt = src_cnt;
  1884. sw_desc->dst_cnt = dst_cnt;
  1885. /* First descriptor, zero data in the destination and copy it
  1886. * to q page using MULTICAST transfer.
  1887. */
  1888. iter = list_first_entry(&sw_desc->group_list,
  1889. struct ppc440spe_adma_desc_slot,
  1890. chain_node);
  1891. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1892. /* set 'next' pointer */
  1893. iter->hw_next = list_entry(iter->chain_node.next,
  1894. struct ppc440spe_adma_desc_slot,
  1895. chain_node);
  1896. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1897. hw_desc = iter->hw_desc;
  1898. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  1899. ppc440spe_desc_set_dest_addr(iter, chan,
  1900. DMA_CUED_XOR_BASE, dst[0], 0);
  1901. ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
  1902. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1903. src[0]);
  1904. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1905. iter->unmap_len = len;
  1906. /*
  1907. * Second descriptor, multiply data from the q page
  1908. * and store the result in real destination.
  1909. */
  1910. iter = list_first_entry(&iter->chain_node,
  1911. struct ppc440spe_adma_desc_slot,
  1912. chain_node);
  1913. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1914. iter->hw_next = NULL;
  1915. if (flags & DMA_PREP_INTERRUPT)
  1916. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  1917. else
  1918. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1919. hw_desc = iter->hw_desc;
  1920. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  1921. ppc440spe_desc_set_src_addr(iter, chan, 0,
  1922. DMA_CUED_XOR_HB, dst[1]);
  1923. ppc440spe_desc_set_dest_addr(iter, chan,
  1924. DMA_CUED_XOR_BASE, dst[0], 0);
  1925. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  1926. DMA_CDB_SG_DST1, scf[0]);
  1927. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1928. iter->unmap_len = len;
  1929. sw_desc->async_tx.flags = flags;
  1930. }
  1931. spin_unlock_bh(&ppc440spe_chan->lock);
  1932. return sw_desc;
  1933. }
  1934. /**
  1935. * ppc440spe_dma01_prep_sum_product -
  1936. * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
  1937. * the source.
  1938. */
  1939. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
  1940. struct ppc440spe_adma_chan *ppc440spe_chan,
  1941. dma_addr_t *dst, dma_addr_t *src, int src_cnt,
  1942. const unsigned char *scf, size_t len, unsigned long flags)
  1943. {
  1944. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  1945. unsigned long op = 0;
  1946. int slot_cnt;
  1947. set_bit(PPC440SPE_DESC_WXOR, &op);
  1948. slot_cnt = 3;
  1949. spin_lock_bh(&ppc440spe_chan->lock);
  1950. /* WXOR, each descriptor occupies one slot */
  1951. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  1952. if (sw_desc) {
  1953. struct ppc440spe_adma_chan *chan;
  1954. struct ppc440spe_adma_desc_slot *iter;
  1955. struct dma_cdb *hw_desc;
  1956. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  1957. set_bits(op, &sw_desc->flags);
  1958. sw_desc->src_cnt = src_cnt;
  1959. sw_desc->dst_cnt = 1;
  1960. /* 1st descriptor, src[1] data to q page and zero destination */
  1961. iter = list_first_entry(&sw_desc->group_list,
  1962. struct ppc440spe_adma_desc_slot,
  1963. chain_node);
  1964. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1965. iter->hw_next = list_entry(iter->chain_node.next,
  1966. struct ppc440spe_adma_desc_slot,
  1967. chain_node);
  1968. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1969. hw_desc = iter->hw_desc;
  1970. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  1971. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  1972. *dst, 0);
  1973. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  1974. ppc440spe_chan->qdest, 1);
  1975. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1976. src[1]);
  1977. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1978. iter->unmap_len = len;
  1979. /* 2nd descriptor, multiply src[1] data and store the
  1980. * result in destination */
  1981. iter = list_first_entry(&iter->chain_node,
  1982. struct ppc440spe_adma_desc_slot,
  1983. chain_node);
  1984. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1985. /* set 'next' pointer */
  1986. iter->hw_next = list_entry(iter->chain_node.next,
  1987. struct ppc440spe_adma_desc_slot,
  1988. chain_node);
  1989. if (flags & DMA_PREP_INTERRUPT)
  1990. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  1991. else
  1992. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1993. hw_desc = iter->hw_desc;
  1994. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  1995. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1996. ppc440spe_chan->qdest);
  1997. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  1998. *dst, 0);
  1999. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2000. DMA_CDB_SG_DST1, scf[1]);
  2001. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2002. iter->unmap_len = len;
  2003. /*
  2004. * 3rd descriptor, multiply src[0] data and xor it
  2005. * with destination
  2006. */
  2007. iter = list_first_entry(&iter->chain_node,
  2008. struct ppc440spe_adma_desc_slot,
  2009. chain_node);
  2010. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2011. iter->hw_next = NULL;
  2012. if (flags & DMA_PREP_INTERRUPT)
  2013. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2014. else
  2015. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2016. hw_desc = iter->hw_desc;
  2017. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2018. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2019. src[0]);
  2020. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2021. *dst, 0);
  2022. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2023. DMA_CDB_SG_DST1, scf[0]);
  2024. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2025. iter->unmap_len = len;
  2026. sw_desc->async_tx.flags = flags;
  2027. }
  2028. spin_unlock_bh(&ppc440spe_chan->lock);
  2029. return sw_desc;
  2030. }
  2031. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
  2032. struct ppc440spe_adma_chan *ppc440spe_chan,
  2033. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2034. const unsigned char *scf, size_t len, unsigned long flags)
  2035. {
  2036. int slot_cnt;
  2037. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2038. unsigned long op = 0;
  2039. unsigned char mult = 1;
  2040. pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2041. __func__, dst_cnt, src_cnt, len);
  2042. /* select operations WXOR/RXOR depending on the
  2043. * source addresses of operators and the number
  2044. * of destinations (RXOR support only Q-parity calculations)
  2045. */
  2046. set_bit(PPC440SPE_DESC_WXOR, &op);
  2047. if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
  2048. /* no active RXOR;
  2049. * do RXOR if:
  2050. * - there are more than 1 source,
  2051. * - len is aligned on 512-byte boundary,
  2052. * - source addresses fit to one of 4 possible regions.
  2053. */
  2054. if (src_cnt > 1 &&
  2055. !(len & MQ0_CF2H_RXOR_BS_MASK) &&
  2056. (src[0] + len) == src[1]) {
  2057. /* may do RXOR R1 R2 */
  2058. set_bit(PPC440SPE_DESC_RXOR, &op);
  2059. if (src_cnt != 2) {
  2060. /* may try to enhance region of RXOR */
  2061. if ((src[1] + len) == src[2]) {
  2062. /* do RXOR R1 R2 R3 */
  2063. set_bit(PPC440SPE_DESC_RXOR123,
  2064. &op);
  2065. } else if ((src[1] + len * 2) == src[2]) {
  2066. /* do RXOR R1 R2 R4 */
  2067. set_bit(PPC440SPE_DESC_RXOR124, &op);
  2068. } else if ((src[1] + len * 3) == src[2]) {
  2069. /* do RXOR R1 R2 R5 */
  2070. set_bit(PPC440SPE_DESC_RXOR125,
  2071. &op);
  2072. } else {
  2073. /* do RXOR R1 R2 */
  2074. set_bit(PPC440SPE_DESC_RXOR12,
  2075. &op);
  2076. }
  2077. } else {
  2078. /* do RXOR R1 R2 */
  2079. set_bit(PPC440SPE_DESC_RXOR12, &op);
  2080. }
  2081. }
  2082. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2083. /* can not do this operation with RXOR */
  2084. clear_bit(PPC440SPE_RXOR_RUN,
  2085. &ppc440spe_rxor_state);
  2086. } else {
  2087. /* can do; set block size right now */
  2088. ppc440spe_desc_set_rxor_block_size(len);
  2089. }
  2090. }
  2091. /* Number of necessary slots depends on operation type selected */
  2092. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2093. /* This is a WXOR only chain. Need descriptors for each
  2094. * source to GF-XOR them with WXOR, and need descriptors
  2095. * for each destination to zero them with WXOR
  2096. */
  2097. slot_cnt = src_cnt;
  2098. if (flags & DMA_PREP_ZERO_P) {
  2099. slot_cnt++;
  2100. set_bit(PPC440SPE_ZERO_P, &op);
  2101. }
  2102. if (flags & DMA_PREP_ZERO_Q) {
  2103. slot_cnt++;
  2104. set_bit(PPC440SPE_ZERO_Q, &op);
  2105. }
  2106. } else {
  2107. /* Need 1/2 descriptor for RXOR operation, and
  2108. * need (src_cnt - (2 or 3)) for WXOR of sources
  2109. * remained (if any)
  2110. */
  2111. slot_cnt = dst_cnt;
  2112. if (flags & DMA_PREP_ZERO_P)
  2113. set_bit(PPC440SPE_ZERO_P, &op);
  2114. if (flags & DMA_PREP_ZERO_Q)
  2115. set_bit(PPC440SPE_ZERO_Q, &op);
  2116. if (test_bit(PPC440SPE_DESC_RXOR12, &op))
  2117. slot_cnt += src_cnt - 2;
  2118. else
  2119. slot_cnt += src_cnt - 3;
  2120. /* Thus we have either RXOR only chain or
  2121. * mixed RXOR/WXOR
  2122. */
  2123. if (slot_cnt == dst_cnt)
  2124. /* RXOR only chain */
  2125. clear_bit(PPC440SPE_DESC_WXOR, &op);
  2126. }
  2127. spin_lock_bh(&ppc440spe_chan->lock);
  2128. /* for both RXOR/WXOR each descriptor occupies one slot */
  2129. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2130. if (sw_desc) {
  2131. ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
  2132. flags, op);
  2133. /* setup dst/src/mult */
  2134. pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
  2135. __func__, dst[0], dst[1]);
  2136. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2137. while (src_cnt--) {
  2138. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2139. src_cnt);
  2140. /* NOTE: "Multi = 0 is equivalent to = 1" as it
  2141. * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
  2142. * doesn't work for RXOR with DMA0/1! Instead, multi=0
  2143. * leads to zeroing source data after RXOR.
  2144. * So, for P case set-up mult=1 explicitly.
  2145. */
  2146. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2147. mult = scf[src_cnt];
  2148. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2149. mult, src_cnt, dst_cnt - 1);
  2150. }
  2151. /* Setup byte count foreach slot just allocated */
  2152. sw_desc->async_tx.flags = flags;
  2153. list_for_each_entry(iter, &sw_desc->group_list,
  2154. chain_node) {
  2155. ppc440spe_desc_set_byte_count(iter,
  2156. ppc440spe_chan, len);
  2157. iter->unmap_len = len;
  2158. }
  2159. }
  2160. spin_unlock_bh(&ppc440spe_chan->lock);
  2161. return sw_desc;
  2162. }
  2163. static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
  2164. struct ppc440spe_adma_chan *ppc440spe_chan,
  2165. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2166. const unsigned char *scf, size_t len, unsigned long flags)
  2167. {
  2168. int slot_cnt, descs_per_op;
  2169. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2170. unsigned long op = 0;
  2171. unsigned char mult = 1;
  2172. BUG_ON(!dst_cnt);
  2173. /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2174. __func__, dst_cnt, src_cnt, len);*/
  2175. spin_lock_bh(&ppc440spe_chan->lock);
  2176. descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
  2177. if (descs_per_op < 0) {
  2178. spin_unlock_bh(&ppc440spe_chan->lock);
  2179. return NULL;
  2180. }
  2181. /* depending on number of sources we have 1 or 2 RXOR chains */
  2182. slot_cnt = descs_per_op * dst_cnt;
  2183. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2184. if (sw_desc) {
  2185. op = slot_cnt;
  2186. sw_desc->async_tx.flags = flags;
  2187. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2188. ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
  2189. --op ? 0 : flags);
  2190. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2191. len);
  2192. iter->unmap_len = len;
  2193. ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
  2194. iter->rxor_cursor.len = len;
  2195. iter->descs_per_op = descs_per_op;
  2196. }
  2197. op = 0;
  2198. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2199. op++;
  2200. if (op % descs_per_op == 0)
  2201. ppc440spe_adma_init_dma2rxor_slot(iter, src,
  2202. src_cnt);
  2203. if (likely(!list_is_last(&iter->chain_node,
  2204. &sw_desc->group_list))) {
  2205. /* set 'next' pointer */
  2206. iter->hw_next =
  2207. list_entry(iter->chain_node.next,
  2208. struct ppc440spe_adma_desc_slot,
  2209. chain_node);
  2210. ppc440spe_xor_set_link(iter, iter->hw_next);
  2211. } else {
  2212. /* this is the last descriptor. */
  2213. iter->hw_next = NULL;
  2214. }
  2215. }
  2216. /* fixup head descriptor */
  2217. sw_desc->dst_cnt = dst_cnt;
  2218. if (flags & DMA_PREP_ZERO_P)
  2219. set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
  2220. if (flags & DMA_PREP_ZERO_Q)
  2221. set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
  2222. /* setup dst/src/mult */
  2223. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2224. while (src_cnt--) {
  2225. /* handle descriptors (if dst_cnt == 2) inside
  2226. * the ppc440spe_adma_pq_set_srcxxx() functions
  2227. */
  2228. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2229. src_cnt);
  2230. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2231. mult = scf[src_cnt];
  2232. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2233. mult, src_cnt, dst_cnt - 1);
  2234. }
  2235. }
  2236. spin_unlock_bh(&ppc440spe_chan->lock);
  2237. ppc440spe_desc_set_rxor_block_size(len);
  2238. return sw_desc;
  2239. }
  2240. /**
  2241. * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
  2242. */
  2243. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
  2244. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  2245. unsigned int src_cnt, const unsigned char *scf,
  2246. size_t len, unsigned long flags)
  2247. {
  2248. struct ppc440spe_adma_chan *ppc440spe_chan;
  2249. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2250. int dst_cnt = 0;
  2251. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2252. ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
  2253. dst, src, src_cnt));
  2254. BUG_ON(!len);
  2255. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  2256. BUG_ON(!src_cnt);
  2257. if (src_cnt == 1 && dst[1] == src[0]) {
  2258. dma_addr_t dest[2];
  2259. /* dst[1] is real destination (Q) */
  2260. dest[0] = dst[1];
  2261. /* this is the page to multicast source data to */
  2262. dest[1] = ppc440spe_chan->qdest;
  2263. sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
  2264. dest, 2, src, src_cnt, scf, len, flags);
  2265. return sw_desc ? &sw_desc->async_tx : NULL;
  2266. }
  2267. if (src_cnt == 2 && dst[1] == src[1]) {
  2268. sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
  2269. &dst[1], src, 2, scf, len, flags);
  2270. return sw_desc ? &sw_desc->async_tx : NULL;
  2271. }
  2272. if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
  2273. BUG_ON(!dst[0]);
  2274. dst_cnt++;
  2275. flags |= DMA_PREP_ZERO_P;
  2276. }
  2277. if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
  2278. BUG_ON(!dst[1]);
  2279. dst_cnt++;
  2280. flags |= DMA_PREP_ZERO_Q;
  2281. }
  2282. BUG_ON(!dst_cnt);
  2283. dev_dbg(ppc440spe_chan->device->common.dev,
  2284. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  2285. ppc440spe_chan->device->id, __func__, src_cnt, len,
  2286. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2287. switch (ppc440spe_chan->device->id) {
  2288. case PPC440SPE_DMA0_ID:
  2289. case PPC440SPE_DMA1_ID:
  2290. sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
  2291. dst, dst_cnt, src, src_cnt, scf,
  2292. len, flags);
  2293. break;
  2294. case PPC440SPE_XOR_ID:
  2295. sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
  2296. dst, dst_cnt, src, src_cnt, scf,
  2297. len, flags);
  2298. break;
  2299. }
  2300. return sw_desc ? &sw_desc->async_tx : NULL;
  2301. }
  2302. /**
  2303. * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
  2304. * a PQ_ZERO_SUM operation
  2305. */
  2306. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
  2307. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  2308. unsigned int src_cnt, const unsigned char *scf, size_t len,
  2309. enum sum_check_flags *pqres, unsigned long flags)
  2310. {
  2311. struct ppc440spe_adma_chan *ppc440spe_chan;
  2312. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  2313. dma_addr_t pdest, qdest;
  2314. int slot_cnt, slots_per_op, idst, dst_cnt;
  2315. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2316. if (flags & DMA_PREP_PQ_DISABLE_P)
  2317. pdest = 0;
  2318. else
  2319. pdest = pq[0];
  2320. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2321. qdest = 0;
  2322. else
  2323. qdest = pq[1];
  2324. ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
  2325. src, src_cnt, scf));
  2326. /* Always use WXOR for P/Q calculations (two destinations).
  2327. * Need 1 or 2 extra slots to verify results are zero.
  2328. */
  2329. idst = dst_cnt = (pdest && qdest) ? 2 : 1;
  2330. /* One additional slot per destination to clone P/Q
  2331. * before calculation (we have to preserve destinations).
  2332. */
  2333. slot_cnt = src_cnt + dst_cnt * 2;
  2334. slots_per_op = 1;
  2335. spin_lock_bh(&ppc440spe_chan->lock);
  2336. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2337. slots_per_op);
  2338. if (sw_desc) {
  2339. ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
  2340. /* Setup byte count for each slot just allocated */
  2341. sw_desc->async_tx.flags = flags;
  2342. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2343. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2344. len);
  2345. iter->unmap_len = len;
  2346. }
  2347. if (pdest) {
  2348. struct dma_cdb *hw_desc;
  2349. struct ppc440spe_adma_chan *chan;
  2350. iter = sw_desc->group_head;
  2351. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2352. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2353. iter->hw_next = list_entry(iter->chain_node.next,
  2354. struct ppc440spe_adma_desc_slot,
  2355. chain_node);
  2356. hw_desc = iter->hw_desc;
  2357. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2358. iter->src_cnt = 0;
  2359. iter->dst_cnt = 0;
  2360. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2361. ppc440spe_chan->pdest, 0);
  2362. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
  2363. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2364. len);
  2365. iter->unmap_len = 0;
  2366. /* override pdest to preserve original P */
  2367. pdest = ppc440spe_chan->pdest;
  2368. }
  2369. if (qdest) {
  2370. struct dma_cdb *hw_desc;
  2371. struct ppc440spe_adma_chan *chan;
  2372. iter = list_first_entry(&sw_desc->group_list,
  2373. struct ppc440spe_adma_desc_slot,
  2374. chain_node);
  2375. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2376. if (pdest) {
  2377. iter = list_entry(iter->chain_node.next,
  2378. struct ppc440spe_adma_desc_slot,
  2379. chain_node);
  2380. }
  2381. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2382. iter->hw_next = list_entry(iter->chain_node.next,
  2383. struct ppc440spe_adma_desc_slot,
  2384. chain_node);
  2385. hw_desc = iter->hw_desc;
  2386. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2387. iter->src_cnt = 0;
  2388. iter->dst_cnt = 0;
  2389. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2390. ppc440spe_chan->qdest, 0);
  2391. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
  2392. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2393. len);
  2394. iter->unmap_len = 0;
  2395. /* override qdest to preserve original Q */
  2396. qdest = ppc440spe_chan->qdest;
  2397. }
  2398. /* Setup destinations for P/Q ops */
  2399. ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
  2400. /* Setup zero QWORDs into DCHECK CDBs */
  2401. idst = dst_cnt;
  2402. list_for_each_entry_reverse(iter, &sw_desc->group_list,
  2403. chain_node) {
  2404. /*
  2405. * The last CDB corresponds to Q-parity check,
  2406. * the one before last CDB corresponds
  2407. * P-parity check
  2408. */
  2409. if (idst == DMA_DEST_MAX_NUM) {
  2410. if (idst == dst_cnt) {
  2411. set_bit(PPC440SPE_DESC_QCHECK,
  2412. &iter->flags);
  2413. } else {
  2414. set_bit(PPC440SPE_DESC_PCHECK,
  2415. &iter->flags);
  2416. }
  2417. } else {
  2418. if (qdest) {
  2419. set_bit(PPC440SPE_DESC_QCHECK,
  2420. &iter->flags);
  2421. } else {
  2422. set_bit(PPC440SPE_DESC_PCHECK,
  2423. &iter->flags);
  2424. }
  2425. }
  2426. iter->xor_check_result = pqres;
  2427. /*
  2428. * set it to zero, if check fail then result will
  2429. * be updated
  2430. */
  2431. *iter->xor_check_result = 0;
  2432. ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
  2433. ppc440spe_qword);
  2434. if (!(--dst_cnt))
  2435. break;
  2436. }
  2437. /* Setup sources and mults for P/Q ops */
  2438. list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
  2439. chain_node) {
  2440. struct ppc440spe_adma_chan *chan;
  2441. u32 mult_dst;
  2442. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2443. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2444. DMA_CUED_XOR_HB,
  2445. src[src_cnt - 1]);
  2446. if (qdest) {
  2447. mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
  2448. DMA_CDB_SG_DST1;
  2449. ppc440spe_desc_set_src_mult(iter, chan,
  2450. DMA_CUED_MULT1_OFF,
  2451. mult_dst,
  2452. scf[src_cnt - 1]);
  2453. }
  2454. if (!(--src_cnt))
  2455. break;
  2456. }
  2457. }
  2458. spin_unlock_bh(&ppc440spe_chan->lock);
  2459. return sw_desc ? &sw_desc->async_tx : NULL;
  2460. }
  2461. /**
  2462. * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
  2463. * XOR ZERO_SUM operation
  2464. */
  2465. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
  2466. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  2467. size_t len, enum sum_check_flags *result, unsigned long flags)
  2468. {
  2469. struct dma_async_tx_descriptor *tx;
  2470. dma_addr_t pq[2];
  2471. /* validate P, disable Q */
  2472. pq[0] = src[0];
  2473. pq[1] = 0;
  2474. flags |= DMA_PREP_PQ_DISABLE_Q;
  2475. tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
  2476. src_cnt - 1, 0, len,
  2477. result, flags);
  2478. return tx;
  2479. }
  2480. /**
  2481. * ppc440spe_adma_set_dest - set destination address into descriptor
  2482. */
  2483. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2484. dma_addr_t addr, int index)
  2485. {
  2486. struct ppc440spe_adma_chan *chan;
  2487. BUG_ON(index >= sw_desc->dst_cnt);
  2488. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2489. switch (chan->device->id) {
  2490. case PPC440SPE_DMA0_ID:
  2491. case PPC440SPE_DMA1_ID:
  2492. /* to do: support transfers lengths >
  2493. * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
  2494. */
  2495. ppc440spe_desc_set_dest_addr(sw_desc->group_head,
  2496. chan, 0, addr, index);
  2497. break;
  2498. case PPC440SPE_XOR_ID:
  2499. sw_desc = ppc440spe_get_group_entry(sw_desc, index);
  2500. ppc440spe_desc_set_dest_addr(sw_desc,
  2501. chan, 0, addr, index);
  2502. break;
  2503. }
  2504. }
  2505. static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
  2506. struct ppc440spe_adma_chan *chan, dma_addr_t addr)
  2507. {
  2508. /* To clear destinations update the descriptor
  2509. * (P or Q depending on index) as follows:
  2510. * addr is destination (0 corresponds to SG2):
  2511. */
  2512. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
  2513. /* ... and the addr is source: */
  2514. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
  2515. /* addr is always SG2 then the mult is always DST1 */
  2516. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2517. DMA_CDB_SG_DST1, 1);
  2518. }
  2519. /**
  2520. * ppc440spe_adma_pq_set_dest - set destination address into descriptor
  2521. * for the PQXOR operation
  2522. */
  2523. static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2524. dma_addr_t *addrs, unsigned long flags)
  2525. {
  2526. struct ppc440spe_adma_desc_slot *iter;
  2527. struct ppc440spe_adma_chan *chan;
  2528. dma_addr_t paddr, qaddr;
  2529. dma_addr_t addr = 0, ppath, qpath;
  2530. int index = 0, i;
  2531. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2532. if (flags & DMA_PREP_PQ_DISABLE_P)
  2533. paddr = 0;
  2534. else
  2535. paddr = addrs[0];
  2536. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2537. qaddr = 0;
  2538. else
  2539. qaddr = addrs[1];
  2540. if (!paddr || !qaddr)
  2541. addr = paddr ? paddr : qaddr;
  2542. switch (chan->device->id) {
  2543. case PPC440SPE_DMA0_ID:
  2544. case PPC440SPE_DMA1_ID:
  2545. /* walk through the WXOR source list and set P/Q-destinations
  2546. * for each slot:
  2547. */
  2548. if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  2549. /* This is WXOR-only chain; may have 1/2 zero descs */
  2550. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  2551. index++;
  2552. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  2553. index++;
  2554. iter = ppc440spe_get_group_entry(sw_desc, index);
  2555. if (addr) {
  2556. /* one destination */
  2557. list_for_each_entry_from(iter,
  2558. &sw_desc->group_list, chain_node)
  2559. ppc440spe_desc_set_dest_addr(iter, chan,
  2560. DMA_CUED_XOR_BASE, addr, 0);
  2561. } else {
  2562. /* two destinations */
  2563. list_for_each_entry_from(iter,
  2564. &sw_desc->group_list, chain_node) {
  2565. ppc440spe_desc_set_dest_addr(iter, chan,
  2566. DMA_CUED_XOR_BASE, paddr, 0);
  2567. ppc440spe_desc_set_dest_addr(iter, chan,
  2568. DMA_CUED_XOR_BASE, qaddr, 1);
  2569. }
  2570. }
  2571. if (index) {
  2572. /* To clear destinations update the descriptor
  2573. * (1st,2nd, or both depending on flags)
  2574. */
  2575. index = 0;
  2576. if (test_bit(PPC440SPE_ZERO_P,
  2577. &sw_desc->flags)) {
  2578. iter = ppc440spe_get_group_entry(
  2579. sw_desc, index++);
  2580. ppc440spe_adma_pq_zero_op(iter, chan,
  2581. paddr);
  2582. }
  2583. if (test_bit(PPC440SPE_ZERO_Q,
  2584. &sw_desc->flags)) {
  2585. iter = ppc440spe_get_group_entry(
  2586. sw_desc, index++);
  2587. ppc440spe_adma_pq_zero_op(iter, chan,
  2588. qaddr);
  2589. }
  2590. return;
  2591. }
  2592. } else {
  2593. /* This is RXOR-only or RXOR/WXOR mixed chain */
  2594. /* If we want to include destination into calculations,
  2595. * then make dest addresses cued with mult=1 (XOR).
  2596. */
  2597. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2598. DMA_CUED_XOR_HB :
  2599. DMA_CUED_XOR_BASE |
  2600. (1 << DMA_CUED_MULT1_OFF);
  2601. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2602. DMA_CUED_XOR_HB :
  2603. DMA_CUED_XOR_BASE |
  2604. (1 << DMA_CUED_MULT1_OFF);
  2605. /* Setup destination(s) in RXOR slot(s) */
  2606. iter = ppc440spe_get_group_entry(sw_desc, index++);
  2607. ppc440spe_desc_set_dest_addr(iter, chan,
  2608. paddr ? ppath : qpath,
  2609. paddr ? paddr : qaddr, 0);
  2610. if (!addr) {
  2611. /* two destinations */
  2612. iter = ppc440spe_get_group_entry(sw_desc,
  2613. index++);
  2614. ppc440spe_desc_set_dest_addr(iter, chan,
  2615. qpath, qaddr, 0);
  2616. }
  2617. if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
  2618. /* Setup destination(s) in remaining WXOR
  2619. * slots
  2620. */
  2621. iter = ppc440spe_get_group_entry(sw_desc,
  2622. index);
  2623. if (addr) {
  2624. /* one destination */
  2625. list_for_each_entry_from(iter,
  2626. &sw_desc->group_list,
  2627. chain_node)
  2628. ppc440spe_desc_set_dest_addr(
  2629. iter, chan,
  2630. DMA_CUED_XOR_BASE,
  2631. addr, 0);
  2632. } else {
  2633. /* two destinations */
  2634. list_for_each_entry_from(iter,
  2635. &sw_desc->group_list,
  2636. chain_node) {
  2637. ppc440spe_desc_set_dest_addr(
  2638. iter, chan,
  2639. DMA_CUED_XOR_BASE,
  2640. paddr, 0);
  2641. ppc440spe_desc_set_dest_addr(
  2642. iter, chan,
  2643. DMA_CUED_XOR_BASE,
  2644. qaddr, 1);
  2645. }
  2646. }
  2647. }
  2648. }
  2649. break;
  2650. case PPC440SPE_XOR_ID:
  2651. /* DMA2 descriptors have only 1 destination, so there are
  2652. * two chains - one for each dest.
  2653. * If we want to include destination into calculations,
  2654. * then make dest addresses cued with mult=1 (XOR).
  2655. */
  2656. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2657. DMA_CUED_XOR_HB :
  2658. DMA_CUED_XOR_BASE |
  2659. (1 << DMA_CUED_MULT1_OFF);
  2660. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2661. DMA_CUED_XOR_HB :
  2662. DMA_CUED_XOR_BASE |
  2663. (1 << DMA_CUED_MULT1_OFF);
  2664. iter = ppc440spe_get_group_entry(sw_desc, 0);
  2665. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2666. ppc440spe_desc_set_dest_addr(iter, chan,
  2667. paddr ? ppath : qpath,
  2668. paddr ? paddr : qaddr, 0);
  2669. iter = list_entry(iter->chain_node.next,
  2670. struct ppc440spe_adma_desc_slot,
  2671. chain_node);
  2672. }
  2673. if (!addr) {
  2674. /* Two destinations; setup Q here */
  2675. iter = ppc440spe_get_group_entry(sw_desc,
  2676. sw_desc->descs_per_op);
  2677. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2678. ppc440spe_desc_set_dest_addr(iter,
  2679. chan, qpath, qaddr, 0);
  2680. iter = list_entry(iter->chain_node.next,
  2681. struct ppc440spe_adma_desc_slot,
  2682. chain_node);
  2683. }
  2684. }
  2685. break;
  2686. }
  2687. }
  2688. /**
  2689. * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
  2690. * for the PQ_ZERO_SUM operation
  2691. */
  2692. static void ppc440spe_adma_pqzero_sum_set_dest(
  2693. struct ppc440spe_adma_desc_slot *sw_desc,
  2694. dma_addr_t paddr, dma_addr_t qaddr)
  2695. {
  2696. struct ppc440spe_adma_desc_slot *iter, *end;
  2697. struct ppc440spe_adma_chan *chan;
  2698. dma_addr_t addr = 0;
  2699. int idx;
  2700. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2701. /* walk through the WXOR source list and set P/Q-destinations
  2702. * for each slot
  2703. */
  2704. idx = (paddr && qaddr) ? 2 : 1;
  2705. /* set end */
  2706. list_for_each_entry_reverse(end, &sw_desc->group_list,
  2707. chain_node) {
  2708. if (!(--idx))
  2709. break;
  2710. }
  2711. /* set start */
  2712. idx = (paddr && qaddr) ? 2 : 1;
  2713. iter = ppc440spe_get_group_entry(sw_desc, idx);
  2714. if (paddr && qaddr) {
  2715. /* two destinations */
  2716. list_for_each_entry_from(iter, &sw_desc->group_list,
  2717. chain_node) {
  2718. if (unlikely(iter == end))
  2719. break;
  2720. ppc440spe_desc_set_dest_addr(iter, chan,
  2721. DMA_CUED_XOR_BASE, paddr, 0);
  2722. ppc440spe_desc_set_dest_addr(iter, chan,
  2723. DMA_CUED_XOR_BASE, qaddr, 1);
  2724. }
  2725. } else {
  2726. /* one destination */
  2727. addr = paddr ? paddr : qaddr;
  2728. list_for_each_entry_from(iter, &sw_desc->group_list,
  2729. chain_node) {
  2730. if (unlikely(iter == end))
  2731. break;
  2732. ppc440spe_desc_set_dest_addr(iter, chan,
  2733. DMA_CUED_XOR_BASE, addr, 0);
  2734. }
  2735. }
  2736. /* The remaining descriptors are DATACHECK. These have no need in
  2737. * destination. Actually, these destinations are used there
  2738. * as sources for check operation. So, set addr as source.
  2739. */
  2740. ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
  2741. if (!addr) {
  2742. end = list_entry(end->chain_node.next,
  2743. struct ppc440spe_adma_desc_slot, chain_node);
  2744. ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
  2745. }
  2746. }
  2747. /**
  2748. * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
  2749. */
  2750. static inline void ppc440spe_desc_set_xor_src_cnt(
  2751. struct ppc440spe_adma_desc_slot *desc,
  2752. int src_cnt)
  2753. {
  2754. struct xor_cb *hw_desc = desc->hw_desc;
  2755. hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
  2756. hw_desc->cbc |= src_cnt;
  2757. }
  2758. /**
  2759. * ppc440spe_adma_pq_set_src - set source address into descriptor
  2760. */
  2761. static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
  2762. dma_addr_t addr, int index)
  2763. {
  2764. struct ppc440spe_adma_chan *chan;
  2765. dma_addr_t haddr = 0;
  2766. struct ppc440spe_adma_desc_slot *iter = NULL;
  2767. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2768. switch (chan->device->id) {
  2769. case PPC440SPE_DMA0_ID:
  2770. case PPC440SPE_DMA1_ID:
  2771. /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
  2772. */
  2773. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  2774. /* RXOR-only or RXOR/WXOR operation */
  2775. int iskip = test_bit(PPC440SPE_DESC_RXOR12,
  2776. &sw_desc->flags) ? 2 : 3;
  2777. if (index == 0) {
  2778. /* 1st slot (RXOR) */
  2779. /* setup sources region (R1-2-3, R1-2-4,
  2780. * or R1-2-5)
  2781. */
  2782. if (test_bit(PPC440SPE_DESC_RXOR12,
  2783. &sw_desc->flags))
  2784. haddr = DMA_RXOR12 <<
  2785. DMA_CUED_REGION_OFF;
  2786. else if (test_bit(PPC440SPE_DESC_RXOR123,
  2787. &sw_desc->flags))
  2788. haddr = DMA_RXOR123 <<
  2789. DMA_CUED_REGION_OFF;
  2790. else if (test_bit(PPC440SPE_DESC_RXOR124,
  2791. &sw_desc->flags))
  2792. haddr = DMA_RXOR124 <<
  2793. DMA_CUED_REGION_OFF;
  2794. else if (test_bit(PPC440SPE_DESC_RXOR125,
  2795. &sw_desc->flags))
  2796. haddr = DMA_RXOR125 <<
  2797. DMA_CUED_REGION_OFF;
  2798. else
  2799. BUG();
  2800. haddr |= DMA_CUED_XOR_BASE;
  2801. iter = ppc440spe_get_group_entry(sw_desc, 0);
  2802. } else if (index < iskip) {
  2803. /* 1st slot (RXOR)
  2804. * shall actually set source address only once
  2805. * instead of first <iskip>
  2806. */
  2807. iter = NULL;
  2808. } else {
  2809. /* 2nd/3d and next slots (WXOR);
  2810. * skip first slot with RXOR
  2811. */
  2812. haddr = DMA_CUED_XOR_HB;
  2813. iter = ppc440spe_get_group_entry(sw_desc,
  2814. index - iskip + sw_desc->dst_cnt);
  2815. }
  2816. } else {
  2817. int znum = 0;
  2818. /* WXOR-only operation; skip first slots with
  2819. * zeroing destinations
  2820. */
  2821. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  2822. znum++;
  2823. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  2824. znum++;
  2825. haddr = DMA_CUED_XOR_HB;
  2826. iter = ppc440spe_get_group_entry(sw_desc,
  2827. index + znum);
  2828. }
  2829. if (likely(iter)) {
  2830. ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
  2831. if (!index &&
  2832. test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
  2833. sw_desc->dst_cnt == 2) {
  2834. /* if we have two destinations for RXOR, then
  2835. * setup source in the second descr too
  2836. */
  2837. iter = ppc440spe_get_group_entry(sw_desc, 1);
  2838. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2839. haddr, addr);
  2840. }
  2841. }
  2842. break;
  2843. case PPC440SPE_XOR_ID:
  2844. /* DMA2 may do Biskup */
  2845. iter = sw_desc->group_head;
  2846. if (iter->dst_cnt == 2) {
  2847. /* both P & Q calculations required; set P src here */
  2848. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  2849. /* this is for Q */
  2850. iter = ppc440spe_get_group_entry(sw_desc,
  2851. sw_desc->descs_per_op);
  2852. }
  2853. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  2854. break;
  2855. }
  2856. }
  2857. /**
  2858. * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
  2859. */
  2860. static void ppc440spe_adma_memcpy_xor_set_src(
  2861. struct ppc440spe_adma_desc_slot *sw_desc,
  2862. dma_addr_t addr, int index)
  2863. {
  2864. struct ppc440spe_adma_chan *chan;
  2865. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2866. sw_desc = sw_desc->group_head;
  2867. if (likely(sw_desc))
  2868. ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
  2869. }
  2870. /**
  2871. * ppc440spe_adma_dma2rxor_inc_addr -
  2872. */
  2873. static void ppc440spe_adma_dma2rxor_inc_addr(
  2874. struct ppc440spe_adma_desc_slot *desc,
  2875. struct ppc440spe_rxor *cursor, int index, int src_cnt)
  2876. {
  2877. cursor->addr_count++;
  2878. if (index == src_cnt - 1) {
  2879. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  2880. } else if (cursor->addr_count == XOR_MAX_OPS) {
  2881. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  2882. cursor->addr_count = 0;
  2883. cursor->desc_count++;
  2884. }
  2885. }
  2886. /**
  2887. * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
  2888. */
  2889. static int ppc440spe_adma_dma2rxor_prep_src(
  2890. struct ppc440spe_adma_desc_slot *hdesc,
  2891. struct ppc440spe_rxor *cursor, int index,
  2892. int src_cnt, u32 addr)
  2893. {
  2894. int rval = 0;
  2895. u32 sign;
  2896. struct ppc440spe_adma_desc_slot *desc = hdesc;
  2897. int i;
  2898. for (i = 0; i < cursor->desc_count; i++) {
  2899. desc = list_entry(hdesc->chain_node.next,
  2900. struct ppc440spe_adma_desc_slot,
  2901. chain_node);
  2902. }
  2903. switch (cursor->state) {
  2904. case 0:
  2905. if (addr == cursor->addrl + cursor->len) {
  2906. /* direct RXOR */
  2907. cursor->state = 1;
  2908. cursor->xor_count++;
  2909. if (index == src_cnt-1) {
  2910. ppc440spe_rxor_set_region(desc,
  2911. cursor->addr_count,
  2912. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2913. ppc440spe_adma_dma2rxor_inc_addr(
  2914. desc, cursor, index, src_cnt);
  2915. }
  2916. } else if (cursor->addrl == addr + cursor->len) {
  2917. /* reverse RXOR */
  2918. cursor->state = 1;
  2919. cursor->xor_count++;
  2920. set_bit(cursor->addr_count, &desc->reverse_flags[0]);
  2921. if (index == src_cnt-1) {
  2922. ppc440spe_rxor_set_region(desc,
  2923. cursor->addr_count,
  2924. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2925. ppc440spe_adma_dma2rxor_inc_addr(
  2926. desc, cursor, index, src_cnt);
  2927. }
  2928. } else {
  2929. printk(KERN_ERR "Cannot build "
  2930. "DMA2 RXOR command block.\n");
  2931. BUG();
  2932. }
  2933. break;
  2934. case 1:
  2935. sign = test_bit(cursor->addr_count,
  2936. desc->reverse_flags)
  2937. ? -1 : 1;
  2938. if (index == src_cnt-2 || (sign == -1
  2939. && addr != cursor->addrl - 2*cursor->len)) {
  2940. cursor->state = 0;
  2941. cursor->xor_count = 1;
  2942. cursor->addrl = addr;
  2943. ppc440spe_rxor_set_region(desc,
  2944. cursor->addr_count,
  2945. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2946. ppc440spe_adma_dma2rxor_inc_addr(
  2947. desc, cursor, index, src_cnt);
  2948. } else if (addr == cursor->addrl + 2*sign*cursor->len) {
  2949. cursor->state = 2;
  2950. cursor->xor_count = 0;
  2951. ppc440spe_rxor_set_region(desc,
  2952. cursor->addr_count,
  2953. DMA_RXOR123 << DMA_CUED_REGION_OFF);
  2954. if (index == src_cnt-1) {
  2955. ppc440spe_adma_dma2rxor_inc_addr(
  2956. desc, cursor, index, src_cnt);
  2957. }
  2958. } else if (addr == cursor->addrl + 3*cursor->len) {
  2959. cursor->state = 2;
  2960. cursor->xor_count = 0;
  2961. ppc440spe_rxor_set_region(desc,
  2962. cursor->addr_count,
  2963. DMA_RXOR124 << DMA_CUED_REGION_OFF);
  2964. if (index == src_cnt-1) {
  2965. ppc440spe_adma_dma2rxor_inc_addr(
  2966. desc, cursor, index, src_cnt);
  2967. }
  2968. } else if (addr == cursor->addrl + 4*cursor->len) {
  2969. cursor->state = 2;
  2970. cursor->xor_count = 0;
  2971. ppc440spe_rxor_set_region(desc,
  2972. cursor->addr_count,
  2973. DMA_RXOR125 << DMA_CUED_REGION_OFF);
  2974. if (index == src_cnt-1) {
  2975. ppc440spe_adma_dma2rxor_inc_addr(
  2976. desc, cursor, index, src_cnt);
  2977. }
  2978. } else {
  2979. cursor->state = 0;
  2980. cursor->xor_count = 1;
  2981. cursor->addrl = addr;
  2982. ppc440spe_rxor_set_region(desc,
  2983. cursor->addr_count,
  2984. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2985. ppc440spe_adma_dma2rxor_inc_addr(
  2986. desc, cursor, index, src_cnt);
  2987. }
  2988. break;
  2989. case 2:
  2990. cursor->state = 0;
  2991. cursor->addrl = addr;
  2992. cursor->xor_count++;
  2993. if (index) {
  2994. ppc440spe_adma_dma2rxor_inc_addr(
  2995. desc, cursor, index, src_cnt);
  2996. }
  2997. break;
  2998. }
  2999. return rval;
  3000. }
  3001. /**
  3002. * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
  3003. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3004. */
  3005. static void ppc440spe_adma_dma2rxor_set_src(
  3006. struct ppc440spe_adma_desc_slot *desc,
  3007. int index, dma_addr_t addr)
  3008. {
  3009. struct xor_cb *xcb = desc->hw_desc;
  3010. int k = 0, op = 0, lop = 0;
  3011. /* get the RXOR operand which corresponds to index addr */
  3012. while (op <= index) {
  3013. lop = op;
  3014. if (k == XOR_MAX_OPS) {
  3015. k = 0;
  3016. desc = list_entry(desc->chain_node.next,
  3017. struct ppc440spe_adma_desc_slot, chain_node);
  3018. xcb = desc->hw_desc;
  3019. }
  3020. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3021. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3022. op += 2;
  3023. else
  3024. op += 3;
  3025. }
  3026. BUG_ON(k < 1);
  3027. if (test_bit(k-1, desc->reverse_flags)) {
  3028. /* reverse operand order; put last op in RXOR group */
  3029. if (index == op - 1)
  3030. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3031. } else {
  3032. /* direct operand order; put first op in RXOR group */
  3033. if (index == lop)
  3034. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3035. }
  3036. }
  3037. /**
  3038. * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
  3039. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3040. */
  3041. static void ppc440spe_adma_dma2rxor_set_mult(
  3042. struct ppc440spe_adma_desc_slot *desc,
  3043. int index, u8 mult)
  3044. {
  3045. struct xor_cb *xcb = desc->hw_desc;
  3046. int k = 0, op = 0, lop = 0;
  3047. /* get the RXOR operand which corresponds to index mult */
  3048. while (op <= index) {
  3049. lop = op;
  3050. if (k == XOR_MAX_OPS) {
  3051. k = 0;
  3052. desc = list_entry(desc->chain_node.next,
  3053. struct ppc440spe_adma_desc_slot,
  3054. chain_node);
  3055. xcb = desc->hw_desc;
  3056. }
  3057. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3058. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3059. op += 2;
  3060. else
  3061. op += 3;
  3062. }
  3063. BUG_ON(k < 1);
  3064. if (test_bit(k-1, desc->reverse_flags)) {
  3065. /* reverse order */
  3066. ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
  3067. } else {
  3068. /* direct order */
  3069. ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
  3070. }
  3071. }
  3072. /**
  3073. * ppc440spe_init_rxor_cursor -
  3074. */
  3075. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
  3076. {
  3077. memset(cursor, 0, sizeof(struct ppc440spe_rxor));
  3078. cursor->state = 2;
  3079. }
  3080. /**
  3081. * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
  3082. * descriptor for the PQXOR operation
  3083. */
  3084. static void ppc440spe_adma_pq_set_src_mult(
  3085. struct ppc440spe_adma_desc_slot *sw_desc,
  3086. unsigned char mult, int index, int dst_pos)
  3087. {
  3088. struct ppc440spe_adma_chan *chan;
  3089. u32 mult_idx, mult_dst;
  3090. struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
  3091. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3092. switch (chan->device->id) {
  3093. case PPC440SPE_DMA0_ID:
  3094. case PPC440SPE_DMA1_ID:
  3095. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  3096. int region = test_bit(PPC440SPE_DESC_RXOR12,
  3097. &sw_desc->flags) ? 2 : 3;
  3098. if (index < region) {
  3099. /* RXOR multipliers */
  3100. iter = ppc440spe_get_group_entry(sw_desc,
  3101. sw_desc->dst_cnt - 1);
  3102. if (sw_desc->dst_cnt == 2)
  3103. iter1 = ppc440spe_get_group_entry(
  3104. sw_desc, 0);
  3105. mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
  3106. mult_dst = DMA_CDB_SG_SRC;
  3107. } else {
  3108. /* WXOR multiplier */
  3109. iter = ppc440spe_get_group_entry(sw_desc,
  3110. index - region +
  3111. sw_desc->dst_cnt);
  3112. mult_idx = DMA_CUED_MULT1_OFF;
  3113. mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
  3114. DMA_CDB_SG_DST1;
  3115. }
  3116. } else {
  3117. int znum = 0;
  3118. /* WXOR-only;
  3119. * skip first slots with destinations (if ZERO_DST has
  3120. * place)
  3121. */
  3122. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  3123. znum++;
  3124. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  3125. znum++;
  3126. iter = ppc440spe_get_group_entry(sw_desc, index + znum);
  3127. mult_idx = DMA_CUED_MULT1_OFF;
  3128. mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
  3129. }
  3130. if (likely(iter)) {
  3131. ppc440spe_desc_set_src_mult(iter, chan,
  3132. mult_idx, mult_dst, mult);
  3133. if (unlikely(iter1)) {
  3134. /* if we have two destinations for RXOR, then
  3135. * we've just set Q mult. Set-up P now.
  3136. */
  3137. ppc440spe_desc_set_src_mult(iter1, chan,
  3138. mult_idx, mult_dst, 1);
  3139. }
  3140. }
  3141. break;
  3142. case PPC440SPE_XOR_ID:
  3143. iter = sw_desc->group_head;
  3144. if (sw_desc->dst_cnt == 2) {
  3145. /* both P & Q calculations required; set P mult here */
  3146. ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
  3147. /* and then set Q mult */
  3148. iter = ppc440spe_get_group_entry(sw_desc,
  3149. sw_desc->descs_per_op);
  3150. }
  3151. ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
  3152. break;
  3153. }
  3154. }
  3155. /**
  3156. * ppc440spe_adma_free_chan_resources - free the resources allocated
  3157. */
  3158. static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
  3159. {
  3160. struct ppc440spe_adma_chan *ppc440spe_chan;
  3161. struct ppc440spe_adma_desc_slot *iter, *_iter;
  3162. int in_use_descs = 0;
  3163. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3164. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3165. spin_lock_bh(&ppc440spe_chan->lock);
  3166. list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
  3167. chain_node) {
  3168. in_use_descs++;
  3169. list_del(&iter->chain_node);
  3170. }
  3171. list_for_each_entry_safe_reverse(iter, _iter,
  3172. &ppc440spe_chan->all_slots, slot_node) {
  3173. list_del(&iter->slot_node);
  3174. kfree(iter);
  3175. ppc440spe_chan->slots_allocated--;
  3176. }
  3177. ppc440spe_chan->last_used = NULL;
  3178. dev_dbg(ppc440spe_chan->device->common.dev,
  3179. "ppc440spe adma%d %s slots_allocated %d\n",
  3180. ppc440spe_chan->device->id,
  3181. __func__, ppc440spe_chan->slots_allocated);
  3182. spin_unlock_bh(&ppc440spe_chan->lock);
  3183. /* one is ok since we left it on there on purpose */
  3184. if (in_use_descs > 1)
  3185. printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
  3186. in_use_descs - 1);
  3187. }
  3188. /**
  3189. * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
  3190. * @chan: ADMA channel handle
  3191. * @cookie: ADMA transaction identifier
  3192. * @txstate: a holder for the current state of the channel
  3193. */
  3194. static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
  3195. dma_cookie_t cookie, struct dma_tx_state *txstate)
  3196. {
  3197. struct ppc440spe_adma_chan *ppc440spe_chan;
  3198. enum dma_status ret;
  3199. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3200. ret = dma_cookie_status(chan, cookie, txstate);
  3201. if (ret == DMA_COMPLETE)
  3202. return ret;
  3203. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3204. return dma_cookie_status(chan, cookie, txstate);
  3205. }
  3206. /**
  3207. * ppc440spe_adma_eot_handler - end of transfer interrupt handler
  3208. */
  3209. static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
  3210. {
  3211. struct ppc440spe_adma_chan *chan = data;
  3212. dev_dbg(chan->device->common.dev,
  3213. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3214. tasklet_schedule(&chan->irq_tasklet);
  3215. ppc440spe_adma_device_clear_eot_status(chan);
  3216. return IRQ_HANDLED;
  3217. }
  3218. /**
  3219. * ppc440spe_adma_err_handler - DMA error interrupt handler;
  3220. * do the same things as a eot handler
  3221. */
  3222. static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
  3223. {
  3224. struct ppc440spe_adma_chan *chan = data;
  3225. dev_dbg(chan->device->common.dev,
  3226. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3227. tasklet_schedule(&chan->irq_tasklet);
  3228. ppc440spe_adma_device_clear_eot_status(chan);
  3229. return IRQ_HANDLED;
  3230. }
  3231. /**
  3232. * ppc440spe_test_callback - called when test operation has been done
  3233. */
  3234. static void ppc440spe_test_callback(void *unused)
  3235. {
  3236. complete(&ppc440spe_r6_test_comp);
  3237. }
  3238. /**
  3239. * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
  3240. */
  3241. static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
  3242. {
  3243. struct ppc440spe_adma_chan *ppc440spe_chan;
  3244. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3245. dev_dbg(ppc440spe_chan->device->common.dev,
  3246. "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
  3247. __func__, ppc440spe_chan->pending);
  3248. if (ppc440spe_chan->pending) {
  3249. ppc440spe_chan->pending = 0;
  3250. ppc440spe_chan_append(ppc440spe_chan);
  3251. }
  3252. }
  3253. /**
  3254. * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
  3255. * use FIFOs (as opposite to chains used in XOR) so this is a XOR
  3256. * specific operation)
  3257. */
  3258. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
  3259. {
  3260. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  3261. dma_cookie_t cookie;
  3262. int slot_cnt, slots_per_op;
  3263. dev_dbg(chan->device->common.dev,
  3264. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3265. spin_lock_bh(&chan->lock);
  3266. slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
  3267. sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
  3268. if (sw_desc) {
  3269. group_start = sw_desc->group_head;
  3270. list_splice_init(&sw_desc->group_list, &chan->chain);
  3271. async_tx_ack(&sw_desc->async_tx);
  3272. ppc440spe_desc_init_null_xor(group_start);
  3273. cookie = dma_cookie_assign(&sw_desc->async_tx);
  3274. /* initialize the completed cookie to be less than
  3275. * the most recently used cookie
  3276. */
  3277. chan->common.completed_cookie = cookie - 1;
  3278. /* channel should not be busy */
  3279. BUG_ON(ppc440spe_chan_is_busy(chan));
  3280. /* set the descriptor address */
  3281. ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
  3282. /* run the descriptor */
  3283. ppc440spe_chan_run(chan);
  3284. } else
  3285. printk(KERN_ERR "ppc440spe adma%d"
  3286. " failed to allocate null descriptor\n",
  3287. chan->device->id);
  3288. spin_unlock_bh(&chan->lock);
  3289. }
  3290. /**
  3291. * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
  3292. * For this we just perform one WXOR operation with the same source
  3293. * and destination addresses, the GF-multiplier is 1; so if RAID-6
  3294. * capabilities are enabled then we'll get src/dst filled with zero.
  3295. */
  3296. static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
  3297. {
  3298. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  3299. struct page *pg;
  3300. char *a;
  3301. dma_addr_t dma_addr, addrs[2];
  3302. unsigned long op = 0;
  3303. int rval = 0;
  3304. set_bit(PPC440SPE_DESC_WXOR, &op);
  3305. pg = alloc_page(GFP_KERNEL);
  3306. if (!pg)
  3307. return -ENOMEM;
  3308. spin_lock_bh(&chan->lock);
  3309. sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
  3310. if (sw_desc) {
  3311. /* 1 src, 1 dsr, int_ena, WXOR */
  3312. ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
  3313. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  3314. ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
  3315. iter->unmap_len = PAGE_SIZE;
  3316. }
  3317. } else {
  3318. rval = -EFAULT;
  3319. spin_unlock_bh(&chan->lock);
  3320. goto exit;
  3321. }
  3322. spin_unlock_bh(&chan->lock);
  3323. /* Fill the test page with ones */
  3324. memset(page_address(pg), 0xFF, PAGE_SIZE);
  3325. dma_addr = dma_map_page(chan->device->dev, pg, 0,
  3326. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3327. /* Setup addresses */
  3328. ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
  3329. ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
  3330. addrs[0] = dma_addr;
  3331. addrs[1] = 0;
  3332. ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
  3333. async_tx_ack(&sw_desc->async_tx);
  3334. sw_desc->async_tx.callback = ppc440spe_test_callback;
  3335. sw_desc->async_tx.callback_param = NULL;
  3336. init_completion(&ppc440spe_r6_test_comp);
  3337. ppc440spe_adma_tx_submit(&sw_desc->async_tx);
  3338. ppc440spe_adma_issue_pending(&chan->common);
  3339. wait_for_completion(&ppc440spe_r6_test_comp);
  3340. /* Now check if the test page is zeroed */
  3341. a = page_address(pg);
  3342. if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
  3343. /* page is zero - RAID-6 enabled */
  3344. rval = 0;
  3345. } else {
  3346. /* RAID-6 was not enabled */
  3347. rval = -EINVAL;
  3348. }
  3349. exit:
  3350. __free_page(pg);
  3351. return rval;
  3352. }
  3353. static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
  3354. {
  3355. switch (adev->id) {
  3356. case PPC440SPE_DMA0_ID:
  3357. case PPC440SPE_DMA1_ID:
  3358. dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
  3359. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3360. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3361. dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
  3362. dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
  3363. break;
  3364. case PPC440SPE_XOR_ID:
  3365. dma_cap_set(DMA_XOR, adev->common.cap_mask);
  3366. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3367. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3368. adev->common.cap_mask = adev->common.cap_mask;
  3369. break;
  3370. }
  3371. /* Set base routines */
  3372. adev->common.device_alloc_chan_resources =
  3373. ppc440spe_adma_alloc_chan_resources;
  3374. adev->common.device_free_chan_resources =
  3375. ppc440spe_adma_free_chan_resources;
  3376. adev->common.device_tx_status = ppc440spe_adma_tx_status;
  3377. adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
  3378. /* Set prep routines based on capability */
  3379. if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
  3380. adev->common.device_prep_dma_memcpy =
  3381. ppc440spe_adma_prep_dma_memcpy;
  3382. }
  3383. if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
  3384. adev->common.max_xor = XOR_MAX_OPS;
  3385. adev->common.device_prep_dma_xor =
  3386. ppc440spe_adma_prep_dma_xor;
  3387. }
  3388. if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
  3389. switch (adev->id) {
  3390. case PPC440SPE_DMA0_ID:
  3391. dma_set_maxpq(&adev->common,
  3392. DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3393. break;
  3394. case PPC440SPE_DMA1_ID:
  3395. dma_set_maxpq(&adev->common,
  3396. DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3397. break;
  3398. case PPC440SPE_XOR_ID:
  3399. adev->common.max_pq = XOR_MAX_OPS * 3;
  3400. break;
  3401. }
  3402. adev->common.device_prep_dma_pq =
  3403. ppc440spe_adma_prep_dma_pq;
  3404. }
  3405. if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
  3406. switch (adev->id) {
  3407. case PPC440SPE_DMA0_ID:
  3408. adev->common.max_pq = DMA0_FIFO_SIZE /
  3409. sizeof(struct dma_cdb);
  3410. break;
  3411. case PPC440SPE_DMA1_ID:
  3412. adev->common.max_pq = DMA1_FIFO_SIZE /
  3413. sizeof(struct dma_cdb);
  3414. break;
  3415. }
  3416. adev->common.device_prep_dma_pq_val =
  3417. ppc440spe_adma_prep_dma_pqzero_sum;
  3418. }
  3419. if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
  3420. switch (adev->id) {
  3421. case PPC440SPE_DMA0_ID:
  3422. adev->common.max_xor = DMA0_FIFO_SIZE /
  3423. sizeof(struct dma_cdb);
  3424. break;
  3425. case PPC440SPE_DMA1_ID:
  3426. adev->common.max_xor = DMA1_FIFO_SIZE /
  3427. sizeof(struct dma_cdb);
  3428. break;
  3429. }
  3430. adev->common.device_prep_dma_xor_val =
  3431. ppc440spe_adma_prep_dma_xor_zero_sum;
  3432. }
  3433. if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
  3434. adev->common.device_prep_dma_interrupt =
  3435. ppc440spe_adma_prep_dma_interrupt;
  3436. }
  3437. pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
  3438. "( %s%s%s%s%s%s%s)\n",
  3439. dev_name(adev->dev),
  3440. dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
  3441. dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
  3442. dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
  3443. dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
  3444. dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
  3445. dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
  3446. }
  3447. static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
  3448. struct ppc440spe_adma_chan *chan,
  3449. int *initcode)
  3450. {
  3451. struct platform_device *ofdev;
  3452. struct device_node *np;
  3453. int ret;
  3454. ofdev = container_of(adev->dev, struct platform_device, dev);
  3455. np = ofdev->dev.of_node;
  3456. if (adev->id != PPC440SPE_XOR_ID) {
  3457. adev->err_irq = irq_of_parse_and_map(np, 1);
  3458. if (adev->err_irq == NO_IRQ) {
  3459. dev_warn(adev->dev, "no err irq resource?\n");
  3460. *initcode = PPC_ADMA_INIT_IRQ2;
  3461. adev->err_irq = -ENXIO;
  3462. } else
  3463. atomic_inc(&ppc440spe_adma_err_irq_ref);
  3464. } else {
  3465. adev->err_irq = -ENXIO;
  3466. }
  3467. adev->irq = irq_of_parse_and_map(np, 0);
  3468. if (adev->irq == NO_IRQ) {
  3469. dev_err(adev->dev, "no irq resource\n");
  3470. *initcode = PPC_ADMA_INIT_IRQ1;
  3471. ret = -ENXIO;
  3472. goto err_irq_map;
  3473. }
  3474. dev_dbg(adev->dev, "irq %d, err irq %d\n",
  3475. adev->irq, adev->err_irq);
  3476. ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
  3477. 0, dev_driver_string(adev->dev), chan);
  3478. if (ret) {
  3479. dev_err(adev->dev, "can't request irq %d\n",
  3480. adev->irq);
  3481. *initcode = PPC_ADMA_INIT_IRQ1;
  3482. ret = -EIO;
  3483. goto err_req1;
  3484. }
  3485. /* only DMA engines have a separate error IRQ
  3486. * so it's Ok if err_irq < 0 in XOR engine case.
  3487. */
  3488. if (adev->err_irq > 0) {
  3489. /* both DMA engines share common error IRQ */
  3490. ret = request_irq(adev->err_irq,
  3491. ppc440spe_adma_err_handler,
  3492. IRQF_SHARED,
  3493. dev_driver_string(adev->dev),
  3494. chan);
  3495. if (ret) {
  3496. dev_err(adev->dev, "can't request irq %d\n",
  3497. adev->err_irq);
  3498. *initcode = PPC_ADMA_INIT_IRQ2;
  3499. ret = -EIO;
  3500. goto err_req2;
  3501. }
  3502. }
  3503. if (adev->id == PPC440SPE_XOR_ID) {
  3504. /* enable XOR engine interrupts */
  3505. iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3506. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
  3507. &adev->xor_reg->ier);
  3508. } else {
  3509. u32 mask, enable;
  3510. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  3511. if (!np) {
  3512. pr_err("%s: can't find I2O device tree node\n",
  3513. __func__);
  3514. ret = -ENODEV;
  3515. goto err_req2;
  3516. }
  3517. adev->i2o_reg = of_iomap(np, 0);
  3518. if (!adev->i2o_reg) {
  3519. pr_err("%s: failed to map I2O registers\n", __func__);
  3520. of_node_put(np);
  3521. ret = -EINVAL;
  3522. goto err_req2;
  3523. }
  3524. of_node_put(np);
  3525. /* Unmask 'CS FIFO Attention' interrupts and
  3526. * enable generating interrupts on errors
  3527. */
  3528. enable = (adev->id == PPC440SPE_DMA0_ID) ?
  3529. ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3530. ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3531. mask = ioread32(&adev->i2o_reg->iopim) & enable;
  3532. iowrite32(mask, &adev->i2o_reg->iopim);
  3533. }
  3534. return 0;
  3535. err_req2:
  3536. free_irq(adev->irq, chan);
  3537. err_req1:
  3538. irq_dispose_mapping(adev->irq);
  3539. err_irq_map:
  3540. if (adev->err_irq > 0) {
  3541. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
  3542. irq_dispose_mapping(adev->err_irq);
  3543. }
  3544. return ret;
  3545. }
  3546. static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
  3547. struct ppc440spe_adma_chan *chan)
  3548. {
  3549. u32 mask, disable;
  3550. if (adev->id == PPC440SPE_XOR_ID) {
  3551. /* disable XOR engine interrupts */
  3552. mask = ioread32be(&adev->xor_reg->ier);
  3553. mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3554. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
  3555. iowrite32be(mask, &adev->xor_reg->ier);
  3556. } else {
  3557. /* disable DMAx engine interrupts */
  3558. disable = (adev->id == PPC440SPE_DMA0_ID) ?
  3559. (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3560. (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3561. mask = ioread32(&adev->i2o_reg->iopim) | disable;
  3562. iowrite32(mask, &adev->i2o_reg->iopim);
  3563. }
  3564. free_irq(adev->irq, chan);
  3565. irq_dispose_mapping(adev->irq);
  3566. if (adev->err_irq > 0) {
  3567. free_irq(adev->err_irq, chan);
  3568. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
  3569. irq_dispose_mapping(adev->err_irq);
  3570. iounmap(adev->i2o_reg);
  3571. }
  3572. }
  3573. }
  3574. /**
  3575. * ppc440spe_adma_probe - probe the asynch device
  3576. */
  3577. static int ppc440spe_adma_probe(struct platform_device *ofdev)
  3578. {
  3579. struct device_node *np = ofdev->dev.of_node;
  3580. struct resource res;
  3581. struct ppc440spe_adma_device *adev;
  3582. struct ppc440spe_adma_chan *chan;
  3583. struct ppc_dma_chan_ref *ref, *_ref;
  3584. int ret = 0, initcode = PPC_ADMA_INIT_OK;
  3585. const u32 *idx;
  3586. int len;
  3587. void *regs;
  3588. u32 id, pool_size;
  3589. if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
  3590. id = PPC440SPE_XOR_ID;
  3591. /* As far as the XOR engine is concerned, it does not
  3592. * use FIFOs but uses linked list. So there is no dependency
  3593. * between pool size to allocate and the engine configuration.
  3594. */
  3595. pool_size = PAGE_SIZE << 1;
  3596. } else {
  3597. /* it is DMA0 or DMA1 */
  3598. idx = of_get_property(np, "cell-index", &len);
  3599. if (!idx || (len != sizeof(u32))) {
  3600. dev_err(&ofdev->dev, "Device node %s has missing "
  3601. "or invalid cell-index property\n",
  3602. np->full_name);
  3603. return -EINVAL;
  3604. }
  3605. id = *idx;
  3606. /* DMA0,1 engines use FIFO to maintain CDBs, so we
  3607. * should allocate the pool accordingly to size of this
  3608. * FIFO. Thus, the pool size depends on the FIFO depth:
  3609. * how much CDBs pointers the FIFO may contain then so
  3610. * much CDBs we should provide in the pool.
  3611. * That is
  3612. * CDB size = 32B;
  3613. * CDBs number = (DMA0_FIFO_SIZE >> 3);
  3614. * Pool size = CDBs number * CDB size =
  3615. * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
  3616. */
  3617. pool_size = (id == PPC440SPE_DMA0_ID) ?
  3618. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3619. pool_size <<= 2;
  3620. }
  3621. if (of_address_to_resource(np, 0, &res)) {
  3622. dev_err(&ofdev->dev, "failed to get memory resource\n");
  3623. initcode = PPC_ADMA_INIT_MEMRES;
  3624. ret = -ENODEV;
  3625. goto out;
  3626. }
  3627. if (!request_mem_region(res.start, resource_size(&res),
  3628. dev_driver_string(&ofdev->dev))) {
  3629. dev_err(&ofdev->dev, "failed to request memory region %pR\n",
  3630. &res);
  3631. initcode = PPC_ADMA_INIT_MEMREG;
  3632. ret = -EBUSY;
  3633. goto out;
  3634. }
  3635. /* create a device */
  3636. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  3637. if (!adev) {
  3638. dev_err(&ofdev->dev, "failed to allocate device\n");
  3639. initcode = PPC_ADMA_INIT_ALLOC;
  3640. ret = -ENOMEM;
  3641. goto err_adev_alloc;
  3642. }
  3643. adev->id = id;
  3644. adev->pool_size = pool_size;
  3645. /* allocate coherent memory for hardware descriptors */
  3646. adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
  3647. adev->pool_size, &adev->dma_desc_pool,
  3648. GFP_KERNEL);
  3649. if (adev->dma_desc_pool_virt == NULL) {
  3650. dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
  3651. "memory for hardware descriptors\n",
  3652. adev->pool_size);
  3653. initcode = PPC_ADMA_INIT_COHERENT;
  3654. ret = -ENOMEM;
  3655. goto err_dma_alloc;
  3656. }
  3657. dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
  3658. adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
  3659. regs = ioremap(res.start, resource_size(&res));
  3660. if (!regs) {
  3661. dev_err(&ofdev->dev, "failed to ioremap regs!\n");
  3662. goto err_regs_alloc;
  3663. }
  3664. if (adev->id == PPC440SPE_XOR_ID) {
  3665. adev->xor_reg = regs;
  3666. /* Reset XOR */
  3667. iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
  3668. iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
  3669. } else {
  3670. size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
  3671. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3672. adev->dma_reg = regs;
  3673. /* DMAx_FIFO_SIZE is defined in bytes,
  3674. * <fsiz> - is defined in number of CDB pointers (8byte).
  3675. * DMA FIFO Length = CSlength + CPlength, where
  3676. * CSlength = CPlength = (fsiz + 1) * 8.
  3677. */
  3678. iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
  3679. &adev->dma_reg->fsiz);
  3680. /* Configure DMA engine */
  3681. iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
  3682. &adev->dma_reg->cfg);
  3683. /* Clear Status */
  3684. iowrite32(~0, &adev->dma_reg->dsts);
  3685. }
  3686. adev->dev = &ofdev->dev;
  3687. adev->common.dev = &ofdev->dev;
  3688. INIT_LIST_HEAD(&adev->common.channels);
  3689. platform_set_drvdata(ofdev, adev);
  3690. /* create a channel */
  3691. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  3692. if (!chan) {
  3693. dev_err(&ofdev->dev, "can't allocate channel structure\n");
  3694. initcode = PPC_ADMA_INIT_CHANNEL;
  3695. ret = -ENOMEM;
  3696. goto err_chan_alloc;
  3697. }
  3698. spin_lock_init(&chan->lock);
  3699. INIT_LIST_HEAD(&chan->chain);
  3700. INIT_LIST_HEAD(&chan->all_slots);
  3701. chan->device = adev;
  3702. chan->common.device = &adev->common;
  3703. dma_cookie_init(&chan->common);
  3704. list_add_tail(&chan->common.device_node, &adev->common.channels);
  3705. tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
  3706. (unsigned long)chan);
  3707. /* allocate and map helper pages for async validation or
  3708. * async_mult/async_sum_product operations on DMA0/1.
  3709. */
  3710. if (adev->id != PPC440SPE_XOR_ID) {
  3711. chan->pdest_page = alloc_page(GFP_KERNEL);
  3712. chan->qdest_page = alloc_page(GFP_KERNEL);
  3713. if (!chan->pdest_page ||
  3714. !chan->qdest_page) {
  3715. if (chan->pdest_page)
  3716. __free_page(chan->pdest_page);
  3717. if (chan->qdest_page)
  3718. __free_page(chan->qdest_page);
  3719. ret = -ENOMEM;
  3720. goto err_page_alloc;
  3721. }
  3722. chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
  3723. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3724. chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
  3725. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3726. }
  3727. ref = kmalloc(sizeof(*ref), GFP_KERNEL);
  3728. if (ref) {
  3729. ref->chan = &chan->common;
  3730. INIT_LIST_HEAD(&ref->node);
  3731. list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
  3732. } else {
  3733. dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
  3734. ret = -ENOMEM;
  3735. goto err_ref_alloc;
  3736. }
  3737. ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
  3738. if (ret)
  3739. goto err_irq;
  3740. ppc440spe_adma_init_capabilities(adev);
  3741. ret = dma_async_device_register(&adev->common);
  3742. if (ret) {
  3743. initcode = PPC_ADMA_INIT_REGISTER;
  3744. dev_err(&ofdev->dev, "failed to register dma device\n");
  3745. goto err_dev_reg;
  3746. }
  3747. goto out;
  3748. err_dev_reg:
  3749. ppc440spe_adma_release_irqs(adev, chan);
  3750. err_irq:
  3751. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
  3752. if (chan == to_ppc440spe_adma_chan(ref->chan)) {
  3753. list_del(&ref->node);
  3754. kfree(ref);
  3755. }
  3756. }
  3757. err_ref_alloc:
  3758. if (adev->id != PPC440SPE_XOR_ID) {
  3759. dma_unmap_page(&ofdev->dev, chan->pdest,
  3760. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3761. dma_unmap_page(&ofdev->dev, chan->qdest,
  3762. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3763. __free_page(chan->pdest_page);
  3764. __free_page(chan->qdest_page);
  3765. }
  3766. err_page_alloc:
  3767. kfree(chan);
  3768. err_chan_alloc:
  3769. if (adev->id == PPC440SPE_XOR_ID)
  3770. iounmap(adev->xor_reg);
  3771. else
  3772. iounmap(adev->dma_reg);
  3773. err_regs_alloc:
  3774. dma_free_coherent(adev->dev, adev->pool_size,
  3775. adev->dma_desc_pool_virt,
  3776. adev->dma_desc_pool);
  3777. err_dma_alloc:
  3778. kfree(adev);
  3779. err_adev_alloc:
  3780. release_mem_region(res.start, resource_size(&res));
  3781. out:
  3782. if (id < PPC440SPE_ADMA_ENGINES_NUM)
  3783. ppc440spe_adma_devices[id] = initcode;
  3784. return ret;
  3785. }
  3786. /**
  3787. * ppc440spe_adma_remove - remove the asynch device
  3788. */
  3789. static int ppc440spe_adma_remove(struct platform_device *ofdev)
  3790. {
  3791. struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
  3792. struct device_node *np = ofdev->dev.of_node;
  3793. struct resource res;
  3794. struct dma_chan *chan, *_chan;
  3795. struct ppc_dma_chan_ref *ref, *_ref;
  3796. struct ppc440spe_adma_chan *ppc440spe_chan;
  3797. if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
  3798. ppc440spe_adma_devices[adev->id] = -1;
  3799. dma_async_device_unregister(&adev->common);
  3800. list_for_each_entry_safe(chan, _chan, &adev->common.channels,
  3801. device_node) {
  3802. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3803. ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
  3804. tasklet_kill(&ppc440spe_chan->irq_tasklet);
  3805. if (adev->id != PPC440SPE_XOR_ID) {
  3806. dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
  3807. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3808. dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
  3809. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3810. __free_page(ppc440spe_chan->pdest_page);
  3811. __free_page(ppc440spe_chan->qdest_page);
  3812. }
  3813. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
  3814. node) {
  3815. if (ppc440spe_chan ==
  3816. to_ppc440spe_adma_chan(ref->chan)) {
  3817. list_del(&ref->node);
  3818. kfree(ref);
  3819. }
  3820. }
  3821. list_del(&chan->device_node);
  3822. kfree(ppc440spe_chan);
  3823. }
  3824. dma_free_coherent(adev->dev, adev->pool_size,
  3825. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  3826. if (adev->id == PPC440SPE_XOR_ID)
  3827. iounmap(adev->xor_reg);
  3828. else
  3829. iounmap(adev->dma_reg);
  3830. of_address_to_resource(np, 0, &res);
  3831. release_mem_region(res.start, resource_size(&res));
  3832. kfree(adev);
  3833. return 0;
  3834. }
  3835. /*
  3836. * /sys driver interface to enable h/w RAID-6 capabilities
  3837. * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
  3838. * directory are "devices", "enable" and "poly".
  3839. * "devices" shows available engines.
  3840. * "enable" is used to enable RAID-6 capabilities or to check
  3841. * whether these has been activated.
  3842. * "poly" allows setting/checking used polynomial (for PPC440SPe only).
  3843. */
  3844. static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
  3845. {
  3846. ssize_t size = 0;
  3847. int i;
  3848. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
  3849. if (ppc440spe_adma_devices[i] == -1)
  3850. continue;
  3851. size += snprintf(buf + size, PAGE_SIZE - size,
  3852. "PPC440SP(E)-ADMA.%d: %s\n", i,
  3853. ppc_adma_errors[ppc440spe_adma_devices[i]]);
  3854. }
  3855. return size;
  3856. }
  3857. static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
  3858. {
  3859. return snprintf(buf, PAGE_SIZE,
  3860. "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
  3861. ppc440spe_r6_enabled ? "EN" : "DIS");
  3862. }
  3863. static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
  3864. const char *buf, size_t count)
  3865. {
  3866. unsigned long val;
  3867. if (!count || count > 11)
  3868. return -EINVAL;
  3869. if (!ppc440spe_r6_tchan)
  3870. return -EFAULT;
  3871. /* Write a key */
  3872. sscanf(buf, "%lx", &val);
  3873. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
  3874. isync();
  3875. /* Verify whether it really works now */
  3876. if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
  3877. pr_info("PPC440SP(e) RAID-6 has been activated "
  3878. "successfully\n");
  3879. ppc440spe_r6_enabled = 1;
  3880. } else {
  3881. pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
  3882. " Error key ?\n");
  3883. ppc440spe_r6_enabled = 0;
  3884. }
  3885. return count;
  3886. }
  3887. static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
  3888. {
  3889. ssize_t size = 0;
  3890. u32 reg;
  3891. #ifdef CONFIG_440SP
  3892. /* 440SP has fixed polynomial */
  3893. reg = 0x4d;
  3894. #else
  3895. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  3896. reg >>= MQ0_CFBHL_POLY;
  3897. reg &= 0xFF;
  3898. #endif
  3899. size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
  3900. "uses 0x1%02x polynomial.\n", reg);
  3901. return size;
  3902. }
  3903. static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
  3904. const char *buf, size_t count)
  3905. {
  3906. unsigned long reg, val;
  3907. #ifdef CONFIG_440SP
  3908. /* 440SP uses default 0x14D polynomial only */
  3909. return -EINVAL;
  3910. #endif
  3911. if (!count || count > 6)
  3912. return -EINVAL;
  3913. /* e.g., 0x14D or 0x11D */
  3914. sscanf(buf, "%lx", &val);
  3915. if (val & ~0x1FF)
  3916. return -EINVAL;
  3917. val &= 0xFF;
  3918. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  3919. reg &= ~(0xFF << MQ0_CFBHL_POLY);
  3920. reg |= val << MQ0_CFBHL_POLY;
  3921. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
  3922. return count;
  3923. }
  3924. static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
  3925. static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
  3926. store_ppc440spe_r6enable);
  3927. static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
  3928. store_ppc440spe_r6poly);
  3929. /*
  3930. * Common initialisation for RAID engines; allocate memory for
  3931. * DMAx FIFOs, perform configuration common for all DMA engines.
  3932. * Further DMA engine specific configuration is done at probe time.
  3933. */
  3934. static int ppc440spe_configure_raid_devices(void)
  3935. {
  3936. struct device_node *np;
  3937. struct resource i2o_res;
  3938. struct i2o_regs __iomem *i2o_reg;
  3939. dcr_host_t i2o_dcr_host;
  3940. unsigned int dcr_base, dcr_len;
  3941. int i, ret;
  3942. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  3943. if (!np) {
  3944. pr_err("%s: can't find I2O device tree node\n",
  3945. __func__);
  3946. return -ENODEV;
  3947. }
  3948. if (of_address_to_resource(np, 0, &i2o_res)) {
  3949. of_node_put(np);
  3950. return -EINVAL;
  3951. }
  3952. i2o_reg = of_iomap(np, 0);
  3953. if (!i2o_reg) {
  3954. pr_err("%s: failed to map I2O registers\n", __func__);
  3955. of_node_put(np);
  3956. return -EINVAL;
  3957. }
  3958. /* Get I2O DCRs base */
  3959. dcr_base = dcr_resource_start(np, 0);
  3960. dcr_len = dcr_resource_len(np, 0);
  3961. if (!dcr_base && !dcr_len) {
  3962. pr_err("%s: can't get DCR registers base/len!\n",
  3963. np->full_name);
  3964. of_node_put(np);
  3965. iounmap(i2o_reg);
  3966. return -ENODEV;
  3967. }
  3968. i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
  3969. if (!DCR_MAP_OK(i2o_dcr_host)) {
  3970. pr_err("%s: failed to map DCRs!\n", np->full_name);
  3971. of_node_put(np);
  3972. iounmap(i2o_reg);
  3973. return -ENODEV;
  3974. }
  3975. of_node_put(np);
  3976. /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
  3977. * the base address of FIFO memory space.
  3978. * Actually we need twice more physical memory than programmed in the
  3979. * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
  3980. */
  3981. ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
  3982. GFP_KERNEL);
  3983. if (!ppc440spe_dma_fifo_buf) {
  3984. pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
  3985. iounmap(i2o_reg);
  3986. dcr_unmap(i2o_dcr_host, dcr_len);
  3987. return -ENOMEM;
  3988. }
  3989. /*
  3990. * Configure h/w
  3991. */
  3992. /* Reset I2O/DMA */
  3993. mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
  3994. mtdcri(SDR0, DCRN_SDR0_SRST, 0);
  3995. /* Setup the base address of mmaped registers */
  3996. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
  3997. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
  3998. I2O_REG_ENABLE);
  3999. dcr_unmap(i2o_dcr_host, dcr_len);
  4000. /* Setup FIFO memory space base address */
  4001. iowrite32(0, &i2o_reg->ifbah);
  4002. iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
  4003. /* set zero FIFO size for I2O, so the whole
  4004. * ppc440spe_dma_fifo_buf is used by DMAs.
  4005. * DMAx_FIFOs will be configured while probe.
  4006. */
  4007. iowrite32(0, &i2o_reg->ifsiz);
  4008. iounmap(i2o_reg);
  4009. /* To prepare WXOR/RXOR functionality we need access to
  4010. * Memory Queue Module DCRs (finally it will be enabled
  4011. * via /sys interface of the ppc440spe ADMA driver).
  4012. */
  4013. np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
  4014. if (!np) {
  4015. pr_err("%s: can't find MQ device tree node\n",
  4016. __func__);
  4017. ret = -ENODEV;
  4018. goto out_free;
  4019. }
  4020. /* Get MQ DCRs base */
  4021. dcr_base = dcr_resource_start(np, 0);
  4022. dcr_len = dcr_resource_len(np, 0);
  4023. if (!dcr_base && !dcr_len) {
  4024. pr_err("%s: can't get DCR registers base/len!\n",
  4025. np->full_name);
  4026. ret = -ENODEV;
  4027. goto out_mq;
  4028. }
  4029. ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
  4030. if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
  4031. pr_err("%s: failed to map DCRs!\n", np->full_name);
  4032. ret = -ENODEV;
  4033. goto out_mq;
  4034. }
  4035. of_node_put(np);
  4036. ppc440spe_mq_dcr_len = dcr_len;
  4037. /* Set HB alias */
  4038. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
  4039. /* Set:
  4040. * - LL transaction passing limit to 1;
  4041. * - Memory controller cycle limit to 1;
  4042. * - Galois Polynomial to 0x14d (default)
  4043. */
  4044. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
  4045. (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
  4046. (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
  4047. atomic_set(&ppc440spe_adma_err_irq_ref, 0);
  4048. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
  4049. ppc440spe_adma_devices[i] = -1;
  4050. return 0;
  4051. out_mq:
  4052. of_node_put(np);
  4053. out_free:
  4054. kfree(ppc440spe_dma_fifo_buf);
  4055. return ret;
  4056. }
  4057. static const struct of_device_id ppc440spe_adma_of_match[] = {
  4058. { .compatible = "ibm,dma-440spe", },
  4059. { .compatible = "amcc,xor-accelerator", },
  4060. {},
  4061. };
  4062. MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
  4063. static struct platform_driver ppc440spe_adma_driver = {
  4064. .probe = ppc440spe_adma_probe,
  4065. .remove = ppc440spe_adma_remove,
  4066. .driver = {
  4067. .name = "PPC440SP(E)-ADMA",
  4068. .owner = THIS_MODULE,
  4069. .of_match_table = ppc440spe_adma_of_match,
  4070. },
  4071. };
  4072. static __init int ppc440spe_adma_init(void)
  4073. {
  4074. int ret;
  4075. ret = ppc440spe_configure_raid_devices();
  4076. if (ret)
  4077. return ret;
  4078. ret = platform_driver_register(&ppc440spe_adma_driver);
  4079. if (ret) {
  4080. pr_err("%s: failed to register platform driver\n",
  4081. __func__);
  4082. goto out_reg;
  4083. }
  4084. /* Initialization status */
  4085. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4086. &driver_attr_devices);
  4087. if (ret)
  4088. goto out_dev;
  4089. /* RAID-6 h/w enable entry */
  4090. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4091. &driver_attr_enable);
  4092. if (ret)
  4093. goto out_en;
  4094. /* GF polynomial to use */
  4095. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4096. &driver_attr_poly);
  4097. if (!ret)
  4098. return ret;
  4099. driver_remove_file(&ppc440spe_adma_driver.driver,
  4100. &driver_attr_enable);
  4101. out_en:
  4102. driver_remove_file(&ppc440spe_adma_driver.driver,
  4103. &driver_attr_devices);
  4104. out_dev:
  4105. /* User will not be able to enable h/w RAID-6 */
  4106. pr_err("%s: failed to create RAID-6 driver interface\n",
  4107. __func__);
  4108. platform_driver_unregister(&ppc440spe_adma_driver);
  4109. out_reg:
  4110. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4111. kfree(ppc440spe_dma_fifo_buf);
  4112. return ret;
  4113. }
  4114. static void __exit ppc440spe_adma_exit(void)
  4115. {
  4116. driver_remove_file(&ppc440spe_adma_driver.driver,
  4117. &driver_attr_poly);
  4118. driver_remove_file(&ppc440spe_adma_driver.driver,
  4119. &driver_attr_enable);
  4120. driver_remove_file(&ppc440spe_adma_driver.driver,
  4121. &driver_attr_devices);
  4122. platform_driver_unregister(&ppc440spe_adma_driver);
  4123. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4124. kfree(ppc440spe_dma_fifo_buf);
  4125. }
  4126. arch_initcall(ppc440spe_adma_init);
  4127. module_exit(ppc440spe_adma_exit);
  4128. MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
  4129. MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
  4130. MODULE_LICENSE("GPL");