i915_gem.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  41. bool write);
  42. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  43. uint64_t offset,
  44. uint64_t size);
  45. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  46. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  47. unsigned alignment,
  48. bool map_and_fenceable);
  49. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  50. struct drm_i915_fence_reg *reg);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev,
  52. struct drm_i915_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file);
  55. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  56. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  57. struct shrink_control *sc);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size -pinned;
  157. return 0;
  158. }
  159. static int
  160. i915_gem_create(struct drm_file *file,
  161. struct drm_device *dev,
  162. uint64_t size,
  163. uint32_t *handle_p)
  164. {
  165. struct drm_i915_gem_object *obj;
  166. int ret;
  167. u32 handle;
  168. size = roundup(size, PAGE_SIZE);
  169. /* Allocate the new object */
  170. obj = i915_gem_alloc_object(dev, size);
  171. if (obj == NULL)
  172. return -ENOMEM;
  173. ret = drm_gem_handle_create(file, &obj->base, &handle);
  174. if (ret) {
  175. drm_gem_object_release(&obj->base);
  176. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  177. kfree(obj);
  178. return ret;
  179. }
  180. /* drop reference from allocate - handle holds it now */
  181. drm_gem_object_unreference(&obj->base);
  182. trace_i915_gem_object_create(obj);
  183. *handle_p = handle;
  184. return 0;
  185. }
  186. int
  187. i915_gem_dumb_create(struct drm_file *file,
  188. struct drm_device *dev,
  189. struct drm_mode_create_dumb *args)
  190. {
  191. /* have to work out size/pitch and return them */
  192. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  193. args->size = args->pitch * args->height;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. int i915_gem_dumb_destroy(struct drm_file *file,
  198. struct drm_device *dev,
  199. uint32_t handle)
  200. {
  201. return drm_gem_handle_delete(file, handle);
  202. }
  203. /**
  204. * Creates a new mm object and returns a handle to it.
  205. */
  206. int
  207. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  208. struct drm_file *file)
  209. {
  210. struct drm_i915_gem_create *args = data;
  211. return i915_gem_create(file, dev,
  212. args->size, &args->handle);
  213. }
  214. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  215. {
  216. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  217. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  218. obj->tiling_mode != I915_TILING_NONE;
  219. }
  220. static inline void
  221. slow_shmem_copy(struct page *dst_page,
  222. int dst_offset,
  223. struct page *src_page,
  224. int src_offset,
  225. int length)
  226. {
  227. char *dst_vaddr, *src_vaddr;
  228. dst_vaddr = kmap(dst_page);
  229. src_vaddr = kmap(src_page);
  230. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  231. kunmap(src_page);
  232. kunmap(dst_page);
  233. }
  234. static inline void
  235. slow_shmem_bit17_copy(struct page *gpu_page,
  236. int gpu_offset,
  237. struct page *cpu_page,
  238. int cpu_offset,
  239. int length,
  240. int is_read)
  241. {
  242. char *gpu_vaddr, *cpu_vaddr;
  243. /* Use the unswizzled path if this page isn't affected. */
  244. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  245. if (is_read)
  246. return slow_shmem_copy(cpu_page, cpu_offset,
  247. gpu_page, gpu_offset, length);
  248. else
  249. return slow_shmem_copy(gpu_page, gpu_offset,
  250. cpu_page, cpu_offset, length);
  251. }
  252. gpu_vaddr = kmap(gpu_page);
  253. cpu_vaddr = kmap(cpu_page);
  254. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  255. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  256. */
  257. while (length > 0) {
  258. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  259. int this_length = min(cacheline_end - gpu_offset, length);
  260. int swizzled_gpu_offset = gpu_offset ^ 64;
  261. if (is_read) {
  262. memcpy(cpu_vaddr + cpu_offset,
  263. gpu_vaddr + swizzled_gpu_offset,
  264. this_length);
  265. } else {
  266. memcpy(gpu_vaddr + swizzled_gpu_offset,
  267. cpu_vaddr + cpu_offset,
  268. this_length);
  269. }
  270. cpu_offset += this_length;
  271. gpu_offset += this_length;
  272. length -= this_length;
  273. }
  274. kunmap(cpu_page);
  275. kunmap(gpu_page);
  276. }
  277. /**
  278. * This is the fast shmem pread path, which attempts to copy_from_user directly
  279. * from the backing pages of the object to the user's address space. On a
  280. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  281. */
  282. static int
  283. i915_gem_shmem_pread_fast(struct drm_device *dev,
  284. struct drm_i915_gem_object *obj,
  285. struct drm_i915_gem_pread *args,
  286. struct drm_file *file)
  287. {
  288. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  289. ssize_t remain;
  290. loff_t offset;
  291. char __user *user_data;
  292. int page_offset, page_length;
  293. user_data = (char __user *) (uintptr_t) args->data_ptr;
  294. remain = args->size;
  295. offset = args->offset;
  296. while (remain > 0) {
  297. struct page *page;
  298. char *vaddr;
  299. int ret;
  300. /* Operation in this page
  301. *
  302. * page_offset = offset within page
  303. * page_length = bytes to copy for this page
  304. */
  305. page_offset = offset_in_page(offset);
  306. page_length = remain;
  307. if ((page_offset + remain) > PAGE_SIZE)
  308. page_length = PAGE_SIZE - page_offset;
  309. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  310. if (IS_ERR(page))
  311. return PTR_ERR(page);
  312. vaddr = kmap_atomic(page);
  313. ret = __copy_to_user_inatomic(user_data,
  314. vaddr + page_offset,
  315. page_length);
  316. kunmap_atomic(vaddr);
  317. mark_page_accessed(page);
  318. page_cache_release(page);
  319. if (ret)
  320. return -EFAULT;
  321. remain -= page_length;
  322. user_data += page_length;
  323. offset += page_length;
  324. }
  325. return 0;
  326. }
  327. /**
  328. * This is the fallback shmem pread path, which allocates temporary storage
  329. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  330. * can copy out of the object's backing pages while holding the struct mutex
  331. * and not take page faults.
  332. */
  333. static int
  334. i915_gem_shmem_pread_slow(struct drm_device *dev,
  335. struct drm_i915_gem_object *obj,
  336. struct drm_i915_gem_pread *args,
  337. struct drm_file *file)
  338. {
  339. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  340. struct mm_struct *mm = current->mm;
  341. struct page **user_pages;
  342. ssize_t remain;
  343. loff_t offset, pinned_pages, i;
  344. loff_t first_data_page, last_data_page, num_pages;
  345. int shmem_page_offset;
  346. int data_page_index, data_page_offset;
  347. int page_length;
  348. int ret;
  349. uint64_t data_ptr = args->data_ptr;
  350. int do_bit17_swizzling;
  351. remain = args->size;
  352. /* Pin the user pages containing the data. We can't fault while
  353. * holding the struct mutex, yet we want to hold it while
  354. * dereferencing the user data.
  355. */
  356. first_data_page = data_ptr / PAGE_SIZE;
  357. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  358. num_pages = last_data_page - first_data_page + 1;
  359. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  360. if (user_pages == NULL)
  361. return -ENOMEM;
  362. mutex_unlock(&dev->struct_mutex);
  363. down_read(&mm->mmap_sem);
  364. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  365. num_pages, 1, 0, user_pages, NULL);
  366. up_read(&mm->mmap_sem);
  367. mutex_lock(&dev->struct_mutex);
  368. if (pinned_pages < num_pages) {
  369. ret = -EFAULT;
  370. goto out;
  371. }
  372. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  373. args->offset,
  374. args->size);
  375. if (ret)
  376. goto out;
  377. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  378. offset = args->offset;
  379. while (remain > 0) {
  380. struct page *page;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * data_page_index = page number in get_user_pages return
  385. * data_page_offset = offset with data_page_index page.
  386. * page_length = bytes to copy for this page
  387. */
  388. shmem_page_offset = offset_in_page(offset);
  389. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  390. data_page_offset = offset_in_page(data_ptr);
  391. page_length = remain;
  392. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  393. page_length = PAGE_SIZE - shmem_page_offset;
  394. if ((data_page_offset + page_length) > PAGE_SIZE)
  395. page_length = PAGE_SIZE - data_page_offset;
  396. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  397. if (IS_ERR(page)) {
  398. ret = PTR_ERR(page);
  399. goto out;
  400. }
  401. if (do_bit17_swizzling) {
  402. slow_shmem_bit17_copy(page,
  403. shmem_page_offset,
  404. user_pages[data_page_index],
  405. data_page_offset,
  406. page_length,
  407. 1);
  408. } else {
  409. slow_shmem_copy(user_pages[data_page_index],
  410. data_page_offset,
  411. page,
  412. shmem_page_offset,
  413. page_length);
  414. }
  415. mark_page_accessed(page);
  416. page_cache_release(page);
  417. remain -= page_length;
  418. data_ptr += page_length;
  419. offset += page_length;
  420. }
  421. out:
  422. for (i = 0; i < pinned_pages; i++) {
  423. SetPageDirty(user_pages[i]);
  424. mark_page_accessed(user_pages[i]);
  425. page_cache_release(user_pages[i]);
  426. }
  427. drm_free_large(user_pages);
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. (char __user *)(uintptr_t)args->data_ptr,
  446. args->size))
  447. return -EFAULT;
  448. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  449. args->size);
  450. if (ret)
  451. return -EFAULT;
  452. ret = i915_mutex_lock_interruptible(dev);
  453. if (ret)
  454. return ret;
  455. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  456. if (&obj->base == NULL) {
  457. ret = -ENOENT;
  458. goto unlock;
  459. }
  460. /* Bounds check source. */
  461. if (args->offset > obj->base.size ||
  462. args->size > obj->base.size - args->offset) {
  463. ret = -EINVAL;
  464. goto out;
  465. }
  466. trace_i915_gem_object_pread(obj, args->offset, args->size);
  467. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  468. args->offset,
  469. args->size);
  470. if (ret)
  471. goto out;
  472. ret = -EFAULT;
  473. if (!i915_gem_object_needs_bit17_swizzle(obj))
  474. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  475. if (ret == -EFAULT)
  476. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  477. out:
  478. drm_gem_object_unreference(&obj->base);
  479. unlock:
  480. mutex_unlock(&dev->struct_mutex);
  481. return ret;
  482. }
  483. /* This is the fast write path which cannot handle
  484. * page faults in the source data
  485. */
  486. static inline int
  487. fast_user_write(struct io_mapping *mapping,
  488. loff_t page_base, int page_offset,
  489. char __user *user_data,
  490. int length)
  491. {
  492. char *vaddr_atomic;
  493. unsigned long unwritten;
  494. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  495. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  496. user_data, length);
  497. io_mapping_unmap_atomic(vaddr_atomic);
  498. return unwritten;
  499. }
  500. /* Here's the write path which can sleep for
  501. * page faults
  502. */
  503. static inline void
  504. slow_kernel_write(struct io_mapping *mapping,
  505. loff_t gtt_base, int gtt_offset,
  506. struct page *user_page, int user_offset,
  507. int length)
  508. {
  509. char __iomem *dst_vaddr;
  510. char *src_vaddr;
  511. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  512. src_vaddr = kmap(user_page);
  513. memcpy_toio(dst_vaddr + gtt_offset,
  514. src_vaddr + user_offset,
  515. length);
  516. kunmap(user_page);
  517. io_mapping_unmap(dst_vaddr);
  518. }
  519. /**
  520. * This is the fast pwrite path, where we copy the data directly from the
  521. * user into the GTT, uncached.
  522. */
  523. static int
  524. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  525. struct drm_i915_gem_object *obj,
  526. struct drm_i915_gem_pwrite *args,
  527. struct drm_file *file)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. ssize_t remain;
  531. loff_t offset, page_base;
  532. char __user *user_data;
  533. int page_offset, page_length;
  534. user_data = (char __user *) (uintptr_t) args->data_ptr;
  535. remain = args->size;
  536. offset = obj->gtt_offset + args->offset;
  537. while (remain > 0) {
  538. /* Operation in this page
  539. *
  540. * page_base = page offset within aperture
  541. * page_offset = offset within page
  542. * page_length = bytes to copy for this page
  543. */
  544. page_base = offset & PAGE_MASK;
  545. page_offset = offset_in_page(offset);
  546. page_length = remain;
  547. if ((page_offset + remain) > PAGE_SIZE)
  548. page_length = PAGE_SIZE - page_offset;
  549. /* If we get a fault while copying data, then (presumably) our
  550. * source page isn't available. Return the error and we'll
  551. * retry in the slow path.
  552. */
  553. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  554. page_offset, user_data, page_length))
  555. return -EFAULT;
  556. remain -= page_length;
  557. user_data += page_length;
  558. offset += page_length;
  559. }
  560. return 0;
  561. }
  562. /**
  563. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  564. * the memory and maps it using kmap_atomic for copying.
  565. *
  566. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  567. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  568. */
  569. static int
  570. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  571. struct drm_i915_gem_object *obj,
  572. struct drm_i915_gem_pwrite *args,
  573. struct drm_file *file)
  574. {
  575. drm_i915_private_t *dev_priv = dev->dev_private;
  576. ssize_t remain;
  577. loff_t gtt_page_base, offset;
  578. loff_t first_data_page, last_data_page, num_pages;
  579. loff_t pinned_pages, i;
  580. struct page **user_pages;
  581. struct mm_struct *mm = current->mm;
  582. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  583. int ret;
  584. uint64_t data_ptr = args->data_ptr;
  585. remain = args->size;
  586. /* Pin the user pages containing the data. We can't fault while
  587. * holding the struct mutex, and all of the pwrite implementations
  588. * want to hold it while dereferencing the user data.
  589. */
  590. first_data_page = data_ptr / PAGE_SIZE;
  591. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  592. num_pages = last_data_page - first_data_page + 1;
  593. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  594. if (user_pages == NULL)
  595. return -ENOMEM;
  596. mutex_unlock(&dev->struct_mutex);
  597. down_read(&mm->mmap_sem);
  598. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  599. num_pages, 0, 0, user_pages, NULL);
  600. up_read(&mm->mmap_sem);
  601. mutex_lock(&dev->struct_mutex);
  602. if (pinned_pages < num_pages) {
  603. ret = -EFAULT;
  604. goto out_unpin_pages;
  605. }
  606. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  607. if (ret)
  608. goto out_unpin_pages;
  609. ret = i915_gem_object_put_fence(obj);
  610. if (ret)
  611. goto out_unpin_pages;
  612. offset = obj->gtt_offset + args->offset;
  613. while (remain > 0) {
  614. /* Operation in this page
  615. *
  616. * gtt_page_base = page offset within aperture
  617. * gtt_page_offset = offset within page in aperture
  618. * data_page_index = page number in get_user_pages return
  619. * data_page_offset = offset with data_page_index page.
  620. * page_length = bytes to copy for this page
  621. */
  622. gtt_page_base = offset & PAGE_MASK;
  623. gtt_page_offset = offset_in_page(offset);
  624. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  625. data_page_offset = offset_in_page(data_ptr);
  626. page_length = remain;
  627. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  628. page_length = PAGE_SIZE - gtt_page_offset;
  629. if ((data_page_offset + page_length) > PAGE_SIZE)
  630. page_length = PAGE_SIZE - data_page_offset;
  631. slow_kernel_write(dev_priv->mm.gtt_mapping,
  632. gtt_page_base, gtt_page_offset,
  633. user_pages[data_page_index],
  634. data_page_offset,
  635. page_length);
  636. remain -= page_length;
  637. offset += page_length;
  638. data_ptr += page_length;
  639. }
  640. out_unpin_pages:
  641. for (i = 0; i < pinned_pages; i++)
  642. page_cache_release(user_pages[i]);
  643. drm_free_large(user_pages);
  644. return ret;
  645. }
  646. /**
  647. * This is the fast shmem pwrite path, which attempts to directly
  648. * copy_from_user into the kmapped pages backing the object.
  649. */
  650. static int
  651. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  652. struct drm_i915_gem_object *obj,
  653. struct drm_i915_gem_pwrite *args,
  654. struct drm_file *file)
  655. {
  656. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  657. ssize_t remain;
  658. loff_t offset;
  659. char __user *user_data;
  660. int page_offset, page_length;
  661. user_data = (char __user *) (uintptr_t) args->data_ptr;
  662. remain = args->size;
  663. offset = args->offset;
  664. obj->dirty = 1;
  665. while (remain > 0) {
  666. struct page *page;
  667. char *vaddr;
  668. int ret;
  669. /* Operation in this page
  670. *
  671. * page_offset = offset within page
  672. * page_length = bytes to copy for this page
  673. */
  674. page_offset = offset_in_page(offset);
  675. page_length = remain;
  676. if ((page_offset + remain) > PAGE_SIZE)
  677. page_length = PAGE_SIZE - page_offset;
  678. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  679. if (IS_ERR(page))
  680. return PTR_ERR(page);
  681. vaddr = kmap_atomic(page, KM_USER0);
  682. ret = __copy_from_user_inatomic(vaddr + page_offset,
  683. user_data,
  684. page_length);
  685. kunmap_atomic(vaddr, KM_USER0);
  686. set_page_dirty(page);
  687. mark_page_accessed(page);
  688. page_cache_release(page);
  689. /* If we get a fault while copying data, then (presumably) our
  690. * source page isn't available. Return the error and we'll
  691. * retry in the slow path.
  692. */
  693. if (ret)
  694. return -EFAULT;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. return 0;
  700. }
  701. /**
  702. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  703. * the memory and maps it using kmap_atomic for copying.
  704. *
  705. * This avoids taking mmap_sem for faulting on the user's address while the
  706. * struct_mutex is held.
  707. */
  708. static int
  709. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  710. struct drm_i915_gem_object *obj,
  711. struct drm_i915_gem_pwrite *args,
  712. struct drm_file *file)
  713. {
  714. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  715. struct mm_struct *mm = current->mm;
  716. struct page **user_pages;
  717. ssize_t remain;
  718. loff_t offset, pinned_pages, i;
  719. loff_t first_data_page, last_data_page, num_pages;
  720. int shmem_page_offset;
  721. int data_page_index, data_page_offset;
  722. int page_length;
  723. int ret;
  724. uint64_t data_ptr = args->data_ptr;
  725. int do_bit17_swizzling;
  726. remain = args->size;
  727. /* Pin the user pages containing the data. We can't fault while
  728. * holding the struct mutex, and all of the pwrite implementations
  729. * want to hold it while dereferencing the user data.
  730. */
  731. first_data_page = data_ptr / PAGE_SIZE;
  732. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  733. num_pages = last_data_page - first_data_page + 1;
  734. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  735. if (user_pages == NULL)
  736. return -ENOMEM;
  737. mutex_unlock(&dev->struct_mutex);
  738. down_read(&mm->mmap_sem);
  739. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  740. num_pages, 0, 0, user_pages, NULL);
  741. up_read(&mm->mmap_sem);
  742. mutex_lock(&dev->struct_mutex);
  743. if (pinned_pages < num_pages) {
  744. ret = -EFAULT;
  745. goto out;
  746. }
  747. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  748. if (ret)
  749. goto out;
  750. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  751. offset = args->offset;
  752. obj->dirty = 1;
  753. while (remain > 0) {
  754. struct page *page;
  755. /* Operation in this page
  756. *
  757. * shmem_page_offset = offset within page in shmem file
  758. * data_page_index = page number in get_user_pages return
  759. * data_page_offset = offset with data_page_index page.
  760. * page_length = bytes to copy for this page
  761. */
  762. shmem_page_offset = offset_in_page(offset);
  763. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  764. data_page_offset = offset_in_page(data_ptr);
  765. page_length = remain;
  766. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  767. page_length = PAGE_SIZE - shmem_page_offset;
  768. if ((data_page_offset + page_length) > PAGE_SIZE)
  769. page_length = PAGE_SIZE - data_page_offset;
  770. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  771. if (IS_ERR(page)) {
  772. ret = PTR_ERR(page);
  773. goto out;
  774. }
  775. if (do_bit17_swizzling) {
  776. slow_shmem_bit17_copy(page,
  777. shmem_page_offset,
  778. user_pages[data_page_index],
  779. data_page_offset,
  780. page_length,
  781. 0);
  782. } else {
  783. slow_shmem_copy(page,
  784. shmem_page_offset,
  785. user_pages[data_page_index],
  786. data_page_offset,
  787. page_length);
  788. }
  789. set_page_dirty(page);
  790. mark_page_accessed(page);
  791. page_cache_release(page);
  792. remain -= page_length;
  793. data_ptr += page_length;
  794. offset += page_length;
  795. }
  796. out:
  797. for (i = 0; i < pinned_pages; i++)
  798. page_cache_release(user_pages[i]);
  799. drm_free_large(user_pages);
  800. return ret;
  801. }
  802. /**
  803. * Writes data to the object referenced by handle.
  804. *
  805. * On error, the contents of the buffer that were to be modified are undefined.
  806. */
  807. int
  808. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  809. struct drm_file *file)
  810. {
  811. struct drm_i915_gem_pwrite *args = data;
  812. struct drm_i915_gem_object *obj;
  813. int ret;
  814. if (args->size == 0)
  815. return 0;
  816. if (!access_ok(VERIFY_READ,
  817. (char __user *)(uintptr_t)args->data_ptr,
  818. args->size))
  819. return -EFAULT;
  820. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  821. args->size);
  822. if (ret)
  823. return -EFAULT;
  824. ret = i915_mutex_lock_interruptible(dev);
  825. if (ret)
  826. return ret;
  827. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  828. if (&obj->base == NULL) {
  829. ret = -ENOENT;
  830. goto unlock;
  831. }
  832. /* Bounds check destination. */
  833. if (args->offset > obj->base.size ||
  834. args->size > obj->base.size - args->offset) {
  835. ret = -EINVAL;
  836. goto out;
  837. }
  838. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  839. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  840. * it would end up going through the fenced access, and we'll get
  841. * different detiling behavior between reading and writing.
  842. * pread/pwrite currently are reading and writing from the CPU
  843. * perspective, requiring manual detiling by the client.
  844. */
  845. if (obj->phys_obj)
  846. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  847. else if (obj->gtt_space &&
  848. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  849. ret = i915_gem_object_pin(obj, 0, true);
  850. if (ret)
  851. goto out;
  852. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  853. if (ret)
  854. goto out_unpin;
  855. ret = i915_gem_object_put_fence(obj);
  856. if (ret)
  857. goto out_unpin;
  858. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  859. if (ret == -EFAULT)
  860. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  861. out_unpin:
  862. i915_gem_object_unpin(obj);
  863. } else {
  864. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  865. if (ret)
  866. goto out;
  867. ret = -EFAULT;
  868. if (!i915_gem_object_needs_bit17_swizzle(obj))
  869. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  870. if (ret == -EFAULT)
  871. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  872. }
  873. out:
  874. drm_gem_object_unreference(&obj->base);
  875. unlock:
  876. mutex_unlock(&dev->struct_mutex);
  877. return ret;
  878. }
  879. /**
  880. * Called when user space prepares to use an object with the CPU, either
  881. * through the mmap ioctl's mapping or a GTT mapping.
  882. */
  883. int
  884. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  885. struct drm_file *file)
  886. {
  887. struct drm_i915_gem_set_domain *args = data;
  888. struct drm_i915_gem_object *obj;
  889. uint32_t read_domains = args->read_domains;
  890. uint32_t write_domain = args->write_domain;
  891. int ret;
  892. if (!(dev->driver->driver_features & DRIVER_GEM))
  893. return -ENODEV;
  894. /* Only handle setting domains to types used by the CPU. */
  895. if (write_domain & I915_GEM_GPU_DOMAINS)
  896. return -EINVAL;
  897. if (read_domains & I915_GEM_GPU_DOMAINS)
  898. return -EINVAL;
  899. /* Having something in the write domain implies it's in the read
  900. * domain, and only that read domain. Enforce that in the request.
  901. */
  902. if (write_domain != 0 && read_domains != write_domain)
  903. return -EINVAL;
  904. ret = i915_mutex_lock_interruptible(dev);
  905. if (ret)
  906. return ret;
  907. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  908. if (&obj->base == NULL) {
  909. ret = -ENOENT;
  910. goto unlock;
  911. }
  912. if (read_domains & I915_GEM_DOMAIN_GTT) {
  913. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  914. /* Silently promote "you're not bound, there was nothing to do"
  915. * to success, since the client was just asking us to
  916. * make sure everything was done.
  917. */
  918. if (ret == -EINVAL)
  919. ret = 0;
  920. } else {
  921. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  922. }
  923. drm_gem_object_unreference(&obj->base);
  924. unlock:
  925. mutex_unlock(&dev->struct_mutex);
  926. return ret;
  927. }
  928. /**
  929. * Called when user space has done writes to this buffer
  930. */
  931. int
  932. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  933. struct drm_file *file)
  934. {
  935. struct drm_i915_gem_sw_finish *args = data;
  936. struct drm_i915_gem_object *obj;
  937. int ret = 0;
  938. if (!(dev->driver->driver_features & DRIVER_GEM))
  939. return -ENODEV;
  940. ret = i915_mutex_lock_interruptible(dev);
  941. if (ret)
  942. return ret;
  943. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  944. if (&obj->base == NULL) {
  945. ret = -ENOENT;
  946. goto unlock;
  947. }
  948. /* Pinned buffers may be scanout, so flush the cache */
  949. if (obj->pin_count)
  950. i915_gem_object_flush_cpu_write_domain(obj);
  951. drm_gem_object_unreference(&obj->base);
  952. unlock:
  953. mutex_unlock(&dev->struct_mutex);
  954. return ret;
  955. }
  956. /**
  957. * Maps the contents of an object, returning the address it is mapped
  958. * into.
  959. *
  960. * While the mapping holds a reference on the contents of the object, it doesn't
  961. * imply a ref on the object itself.
  962. */
  963. int
  964. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  965. struct drm_file *file)
  966. {
  967. struct drm_i915_private *dev_priv = dev->dev_private;
  968. struct drm_i915_gem_mmap *args = data;
  969. struct drm_gem_object *obj;
  970. unsigned long addr;
  971. if (!(dev->driver->driver_features & DRIVER_GEM))
  972. return -ENODEV;
  973. obj = drm_gem_object_lookup(dev, file, args->handle);
  974. if (obj == NULL)
  975. return -ENOENT;
  976. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  977. drm_gem_object_unreference_unlocked(obj);
  978. return -E2BIG;
  979. }
  980. down_write(&current->mm->mmap_sem);
  981. addr = do_mmap(obj->filp, 0, args->size,
  982. PROT_READ | PROT_WRITE, MAP_SHARED,
  983. args->offset);
  984. up_write(&current->mm->mmap_sem);
  985. drm_gem_object_unreference_unlocked(obj);
  986. if (IS_ERR((void *)addr))
  987. return addr;
  988. args->addr_ptr = (uint64_t) addr;
  989. return 0;
  990. }
  991. /**
  992. * i915_gem_fault - fault a page into the GTT
  993. * vma: VMA in question
  994. * vmf: fault info
  995. *
  996. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  997. * from userspace. The fault handler takes care of binding the object to
  998. * the GTT (if needed), allocating and programming a fence register (again,
  999. * only if needed based on whether the old reg is still valid or the object
  1000. * is tiled) and inserting a new PTE into the faulting process.
  1001. *
  1002. * Note that the faulting process may involve evicting existing objects
  1003. * from the GTT and/or fence registers to make room. So performance may
  1004. * suffer if the GTT working set is large or there are few fence registers
  1005. * left.
  1006. */
  1007. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1008. {
  1009. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1010. struct drm_device *dev = obj->base.dev;
  1011. drm_i915_private_t *dev_priv = dev->dev_private;
  1012. pgoff_t page_offset;
  1013. unsigned long pfn;
  1014. int ret = 0;
  1015. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1016. /* We don't use vmf->pgoff since that has the fake offset */
  1017. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1018. PAGE_SHIFT;
  1019. ret = i915_mutex_lock_interruptible(dev);
  1020. if (ret)
  1021. goto out;
  1022. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1023. /* Now bind it into the GTT if needed */
  1024. if (!obj->map_and_fenceable) {
  1025. ret = i915_gem_object_unbind(obj);
  1026. if (ret)
  1027. goto unlock;
  1028. }
  1029. if (!obj->gtt_space) {
  1030. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1031. if (ret)
  1032. goto unlock;
  1033. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1034. if (ret)
  1035. goto unlock;
  1036. }
  1037. if (obj->tiling_mode == I915_TILING_NONE)
  1038. ret = i915_gem_object_put_fence(obj);
  1039. else
  1040. ret = i915_gem_object_get_fence(obj, NULL);
  1041. if (ret)
  1042. goto unlock;
  1043. if (i915_gem_object_is_inactive(obj))
  1044. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1045. obj->fault_mappable = true;
  1046. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1047. page_offset;
  1048. /* Finally, remap it using the new GTT offset */
  1049. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1050. unlock:
  1051. mutex_unlock(&dev->struct_mutex);
  1052. out:
  1053. switch (ret) {
  1054. case -EIO:
  1055. case -EAGAIN:
  1056. /* Give the error handler a chance to run and move the
  1057. * objects off the GPU active list. Next time we service the
  1058. * fault, we should be able to transition the page into the
  1059. * GTT without touching the GPU (and so avoid further
  1060. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1061. * with coherency, just lost writes.
  1062. */
  1063. set_need_resched();
  1064. case 0:
  1065. case -ERESTARTSYS:
  1066. case -EINTR:
  1067. return VM_FAULT_NOPAGE;
  1068. case -ENOMEM:
  1069. return VM_FAULT_OOM;
  1070. default:
  1071. return VM_FAULT_SIGBUS;
  1072. }
  1073. }
  1074. /**
  1075. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1076. * @obj: obj in question
  1077. *
  1078. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1079. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1080. * up the object based on the offset and sets up the various memory mapping
  1081. * structures.
  1082. *
  1083. * This routine allocates and attaches a fake offset for @obj.
  1084. */
  1085. static int
  1086. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1087. {
  1088. struct drm_device *dev = obj->base.dev;
  1089. struct drm_gem_mm *mm = dev->mm_private;
  1090. struct drm_map_list *list;
  1091. struct drm_local_map *map;
  1092. int ret = 0;
  1093. /* Set the object up for mmap'ing */
  1094. list = &obj->base.map_list;
  1095. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1096. if (!list->map)
  1097. return -ENOMEM;
  1098. map = list->map;
  1099. map->type = _DRM_GEM;
  1100. map->size = obj->base.size;
  1101. map->handle = obj;
  1102. /* Get a DRM GEM mmap offset allocated... */
  1103. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1104. obj->base.size / PAGE_SIZE,
  1105. 0, 0);
  1106. if (!list->file_offset_node) {
  1107. DRM_ERROR("failed to allocate offset for bo %d\n",
  1108. obj->base.name);
  1109. ret = -ENOSPC;
  1110. goto out_free_list;
  1111. }
  1112. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1113. obj->base.size / PAGE_SIZE,
  1114. 0);
  1115. if (!list->file_offset_node) {
  1116. ret = -ENOMEM;
  1117. goto out_free_list;
  1118. }
  1119. list->hash.key = list->file_offset_node->start;
  1120. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1121. if (ret) {
  1122. DRM_ERROR("failed to add to map hash\n");
  1123. goto out_free_mm;
  1124. }
  1125. return 0;
  1126. out_free_mm:
  1127. drm_mm_put_block(list->file_offset_node);
  1128. out_free_list:
  1129. kfree(list->map);
  1130. list->map = NULL;
  1131. return ret;
  1132. }
  1133. /**
  1134. * i915_gem_release_mmap - remove physical page mappings
  1135. * @obj: obj in question
  1136. *
  1137. * Preserve the reservation of the mmapping with the DRM core code, but
  1138. * relinquish ownership of the pages back to the system.
  1139. *
  1140. * It is vital that we remove the page mapping if we have mapped a tiled
  1141. * object through the GTT and then lose the fence register due to
  1142. * resource pressure. Similarly if the object has been moved out of the
  1143. * aperture, than pages mapped into userspace must be revoked. Removing the
  1144. * mapping will then trigger a page fault on the next user access, allowing
  1145. * fixup by i915_gem_fault().
  1146. */
  1147. void
  1148. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1149. {
  1150. if (!obj->fault_mappable)
  1151. return;
  1152. if (obj->base.dev->dev_mapping)
  1153. unmap_mapping_range(obj->base.dev->dev_mapping,
  1154. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1155. obj->base.size, 1);
  1156. obj->fault_mappable = false;
  1157. }
  1158. static void
  1159. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1160. {
  1161. struct drm_device *dev = obj->base.dev;
  1162. struct drm_gem_mm *mm = dev->mm_private;
  1163. struct drm_map_list *list = &obj->base.map_list;
  1164. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1165. drm_mm_put_block(list->file_offset_node);
  1166. kfree(list->map);
  1167. list->map = NULL;
  1168. }
  1169. static uint32_t
  1170. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1171. {
  1172. struct drm_device *dev = obj->base.dev;
  1173. uint32_t size;
  1174. if (INTEL_INFO(dev)->gen >= 4 ||
  1175. obj->tiling_mode == I915_TILING_NONE)
  1176. return obj->base.size;
  1177. /* Previous chips need a power-of-two fence region when tiling */
  1178. if (INTEL_INFO(dev)->gen == 3)
  1179. size = 1024*1024;
  1180. else
  1181. size = 512*1024;
  1182. while (size < obj->base.size)
  1183. size <<= 1;
  1184. return size;
  1185. }
  1186. /**
  1187. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1188. * @obj: object to check
  1189. *
  1190. * Return the required GTT alignment for an object, taking into account
  1191. * potential fence register mapping.
  1192. */
  1193. static uint32_t
  1194. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1195. {
  1196. struct drm_device *dev = obj->base.dev;
  1197. /*
  1198. * Minimum alignment is 4k (GTT page size), but might be greater
  1199. * if a fence register is needed for the object.
  1200. */
  1201. if (INTEL_INFO(dev)->gen >= 4 ||
  1202. obj->tiling_mode == I915_TILING_NONE)
  1203. return 4096;
  1204. /*
  1205. * Previous chips need to be aligned to the size of the smallest
  1206. * fence register that can contain the object.
  1207. */
  1208. return i915_gem_get_gtt_size(obj);
  1209. }
  1210. /**
  1211. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1212. * unfenced object
  1213. * @obj: object to check
  1214. *
  1215. * Return the required GTT alignment for an object, only taking into account
  1216. * unfenced tiled surface requirements.
  1217. */
  1218. uint32_t
  1219. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1220. {
  1221. struct drm_device *dev = obj->base.dev;
  1222. int tile_height;
  1223. /*
  1224. * Minimum alignment is 4k (GTT page size) for sane hw.
  1225. */
  1226. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1227. obj->tiling_mode == I915_TILING_NONE)
  1228. return 4096;
  1229. /*
  1230. * Older chips need unfenced tiled buffers to be aligned to the left
  1231. * edge of an even tile row (where tile rows are counted as if the bo is
  1232. * placed in a fenced gtt region).
  1233. */
  1234. if (IS_GEN2(dev))
  1235. tile_height = 16;
  1236. else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1237. tile_height = 32;
  1238. else
  1239. tile_height = 8;
  1240. return tile_height * obj->stride * 2;
  1241. }
  1242. int
  1243. i915_gem_mmap_gtt(struct drm_file *file,
  1244. struct drm_device *dev,
  1245. uint32_t handle,
  1246. uint64_t *offset)
  1247. {
  1248. struct drm_i915_private *dev_priv = dev->dev_private;
  1249. struct drm_i915_gem_object *obj;
  1250. int ret;
  1251. if (!(dev->driver->driver_features & DRIVER_GEM))
  1252. return -ENODEV;
  1253. ret = i915_mutex_lock_interruptible(dev);
  1254. if (ret)
  1255. return ret;
  1256. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1257. if (&obj->base == NULL) {
  1258. ret = -ENOENT;
  1259. goto unlock;
  1260. }
  1261. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1262. ret = -E2BIG;
  1263. goto unlock;
  1264. }
  1265. if (obj->madv != I915_MADV_WILLNEED) {
  1266. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1267. ret = -EINVAL;
  1268. goto out;
  1269. }
  1270. if (!obj->base.map_list.map) {
  1271. ret = i915_gem_create_mmap_offset(obj);
  1272. if (ret)
  1273. goto out;
  1274. }
  1275. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1276. out:
  1277. drm_gem_object_unreference(&obj->base);
  1278. unlock:
  1279. mutex_unlock(&dev->struct_mutex);
  1280. return ret;
  1281. }
  1282. /**
  1283. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1284. * @dev: DRM device
  1285. * @data: GTT mapping ioctl data
  1286. * @file: GEM object info
  1287. *
  1288. * Simply returns the fake offset to userspace so it can mmap it.
  1289. * The mmap call will end up in drm_gem_mmap(), which will set things
  1290. * up so we can get faults in the handler above.
  1291. *
  1292. * The fault handler will take care of binding the object into the GTT
  1293. * (since it may have been evicted to make room for something), allocating
  1294. * a fence register, and mapping the appropriate aperture address into
  1295. * userspace.
  1296. */
  1297. int
  1298. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1299. struct drm_file *file)
  1300. {
  1301. struct drm_i915_gem_mmap_gtt *args = data;
  1302. if (!(dev->driver->driver_features & DRIVER_GEM))
  1303. return -ENODEV;
  1304. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1305. }
  1306. static int
  1307. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1308. gfp_t gfpmask)
  1309. {
  1310. int page_count, i;
  1311. struct address_space *mapping;
  1312. struct inode *inode;
  1313. struct page *page;
  1314. /* Get the list of pages out of our struct file. They'll be pinned
  1315. * at this point until we release them.
  1316. */
  1317. page_count = obj->base.size / PAGE_SIZE;
  1318. BUG_ON(obj->pages != NULL);
  1319. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1320. if (obj->pages == NULL)
  1321. return -ENOMEM;
  1322. inode = obj->base.filp->f_path.dentry->d_inode;
  1323. mapping = inode->i_mapping;
  1324. gfpmask |= mapping_gfp_mask(mapping);
  1325. for (i = 0; i < page_count; i++) {
  1326. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1327. if (IS_ERR(page))
  1328. goto err_pages;
  1329. obj->pages[i] = page;
  1330. }
  1331. if (obj->tiling_mode != I915_TILING_NONE)
  1332. i915_gem_object_do_bit_17_swizzle(obj);
  1333. return 0;
  1334. err_pages:
  1335. while (i--)
  1336. page_cache_release(obj->pages[i]);
  1337. drm_free_large(obj->pages);
  1338. obj->pages = NULL;
  1339. return PTR_ERR(page);
  1340. }
  1341. static void
  1342. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1343. {
  1344. int page_count = obj->base.size / PAGE_SIZE;
  1345. int i;
  1346. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1347. if (obj->tiling_mode != I915_TILING_NONE)
  1348. i915_gem_object_save_bit_17_swizzle(obj);
  1349. if (obj->madv == I915_MADV_DONTNEED)
  1350. obj->dirty = 0;
  1351. for (i = 0; i < page_count; i++) {
  1352. if (obj->dirty)
  1353. set_page_dirty(obj->pages[i]);
  1354. if (obj->madv == I915_MADV_WILLNEED)
  1355. mark_page_accessed(obj->pages[i]);
  1356. page_cache_release(obj->pages[i]);
  1357. }
  1358. obj->dirty = 0;
  1359. drm_free_large(obj->pages);
  1360. obj->pages = NULL;
  1361. }
  1362. void
  1363. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1364. struct intel_ring_buffer *ring,
  1365. u32 seqno)
  1366. {
  1367. struct drm_device *dev = obj->base.dev;
  1368. struct drm_i915_private *dev_priv = dev->dev_private;
  1369. BUG_ON(ring == NULL);
  1370. obj->ring = ring;
  1371. /* Add a reference if we're newly entering the active list. */
  1372. if (!obj->active) {
  1373. drm_gem_object_reference(&obj->base);
  1374. obj->active = 1;
  1375. }
  1376. /* Move from whatever list we were on to the tail of execution. */
  1377. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1378. list_move_tail(&obj->ring_list, &ring->active_list);
  1379. obj->last_rendering_seqno = seqno;
  1380. if (obj->fenced_gpu_access) {
  1381. struct drm_i915_fence_reg *reg;
  1382. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1383. obj->last_fenced_seqno = seqno;
  1384. obj->last_fenced_ring = ring;
  1385. reg = &dev_priv->fence_regs[obj->fence_reg];
  1386. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1387. }
  1388. }
  1389. static void
  1390. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1391. {
  1392. list_del_init(&obj->ring_list);
  1393. obj->last_rendering_seqno = 0;
  1394. }
  1395. static void
  1396. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1397. {
  1398. struct drm_device *dev = obj->base.dev;
  1399. drm_i915_private_t *dev_priv = dev->dev_private;
  1400. BUG_ON(!obj->active);
  1401. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1402. i915_gem_object_move_off_active(obj);
  1403. }
  1404. static void
  1405. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1406. {
  1407. struct drm_device *dev = obj->base.dev;
  1408. struct drm_i915_private *dev_priv = dev->dev_private;
  1409. if (obj->pin_count != 0)
  1410. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1411. else
  1412. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1413. BUG_ON(!list_empty(&obj->gpu_write_list));
  1414. BUG_ON(!obj->active);
  1415. obj->ring = NULL;
  1416. i915_gem_object_move_off_active(obj);
  1417. obj->fenced_gpu_access = false;
  1418. obj->active = 0;
  1419. obj->pending_gpu_write = false;
  1420. drm_gem_object_unreference(&obj->base);
  1421. WARN_ON(i915_verify_lists(dev));
  1422. }
  1423. /* Immediately discard the backing storage */
  1424. static void
  1425. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1426. {
  1427. struct inode *inode;
  1428. /* Our goal here is to return as much of the memory as
  1429. * is possible back to the system as we are called from OOM.
  1430. * To do this we must instruct the shmfs to drop all of its
  1431. * backing pages, *now*.
  1432. */
  1433. inode = obj->base.filp->f_path.dentry->d_inode;
  1434. shmem_truncate_range(inode, 0, (loff_t)-1);
  1435. obj->madv = __I915_MADV_PURGED;
  1436. }
  1437. static inline int
  1438. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1439. {
  1440. return obj->madv == I915_MADV_DONTNEED;
  1441. }
  1442. static void
  1443. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1444. uint32_t flush_domains)
  1445. {
  1446. struct drm_i915_gem_object *obj, *next;
  1447. list_for_each_entry_safe(obj, next,
  1448. &ring->gpu_write_list,
  1449. gpu_write_list) {
  1450. if (obj->base.write_domain & flush_domains) {
  1451. uint32_t old_write_domain = obj->base.write_domain;
  1452. obj->base.write_domain = 0;
  1453. list_del_init(&obj->gpu_write_list);
  1454. i915_gem_object_move_to_active(obj, ring,
  1455. i915_gem_next_request_seqno(ring));
  1456. trace_i915_gem_object_change_domain(obj,
  1457. obj->base.read_domains,
  1458. old_write_domain);
  1459. }
  1460. }
  1461. }
  1462. int
  1463. i915_add_request(struct intel_ring_buffer *ring,
  1464. struct drm_file *file,
  1465. struct drm_i915_gem_request *request)
  1466. {
  1467. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1468. uint32_t seqno;
  1469. int was_empty;
  1470. int ret;
  1471. BUG_ON(request == NULL);
  1472. ret = ring->add_request(ring, &seqno);
  1473. if (ret)
  1474. return ret;
  1475. trace_i915_gem_request_add(ring, seqno);
  1476. request->seqno = seqno;
  1477. request->ring = ring;
  1478. request->emitted_jiffies = jiffies;
  1479. was_empty = list_empty(&ring->request_list);
  1480. list_add_tail(&request->list, &ring->request_list);
  1481. if (file) {
  1482. struct drm_i915_file_private *file_priv = file->driver_priv;
  1483. spin_lock(&file_priv->mm.lock);
  1484. request->file_priv = file_priv;
  1485. list_add_tail(&request->client_list,
  1486. &file_priv->mm.request_list);
  1487. spin_unlock(&file_priv->mm.lock);
  1488. }
  1489. ring->outstanding_lazy_request = false;
  1490. if (!dev_priv->mm.suspended) {
  1491. mod_timer(&dev_priv->hangcheck_timer,
  1492. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1493. if (was_empty)
  1494. queue_delayed_work(dev_priv->wq,
  1495. &dev_priv->mm.retire_work, HZ);
  1496. }
  1497. return 0;
  1498. }
  1499. static inline void
  1500. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1501. {
  1502. struct drm_i915_file_private *file_priv = request->file_priv;
  1503. if (!file_priv)
  1504. return;
  1505. spin_lock(&file_priv->mm.lock);
  1506. if (request->file_priv) {
  1507. list_del(&request->client_list);
  1508. request->file_priv = NULL;
  1509. }
  1510. spin_unlock(&file_priv->mm.lock);
  1511. }
  1512. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1513. struct intel_ring_buffer *ring)
  1514. {
  1515. while (!list_empty(&ring->request_list)) {
  1516. struct drm_i915_gem_request *request;
  1517. request = list_first_entry(&ring->request_list,
  1518. struct drm_i915_gem_request,
  1519. list);
  1520. list_del(&request->list);
  1521. i915_gem_request_remove_from_client(request);
  1522. kfree(request);
  1523. }
  1524. while (!list_empty(&ring->active_list)) {
  1525. struct drm_i915_gem_object *obj;
  1526. obj = list_first_entry(&ring->active_list,
  1527. struct drm_i915_gem_object,
  1528. ring_list);
  1529. obj->base.write_domain = 0;
  1530. list_del_init(&obj->gpu_write_list);
  1531. i915_gem_object_move_to_inactive(obj);
  1532. }
  1533. }
  1534. static void i915_gem_reset_fences(struct drm_device *dev)
  1535. {
  1536. struct drm_i915_private *dev_priv = dev->dev_private;
  1537. int i;
  1538. for (i = 0; i < 16; i++) {
  1539. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1540. struct drm_i915_gem_object *obj = reg->obj;
  1541. if (!obj)
  1542. continue;
  1543. if (obj->tiling_mode)
  1544. i915_gem_release_mmap(obj);
  1545. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1546. reg->obj->fenced_gpu_access = false;
  1547. reg->obj->last_fenced_seqno = 0;
  1548. reg->obj->last_fenced_ring = NULL;
  1549. i915_gem_clear_fence_reg(dev, reg);
  1550. }
  1551. }
  1552. void i915_gem_reset(struct drm_device *dev)
  1553. {
  1554. struct drm_i915_private *dev_priv = dev->dev_private;
  1555. struct drm_i915_gem_object *obj;
  1556. int i;
  1557. for (i = 0; i < I915_NUM_RINGS; i++)
  1558. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1559. /* Remove anything from the flushing lists. The GPU cache is likely
  1560. * to be lost on reset along with the data, so simply move the
  1561. * lost bo to the inactive list.
  1562. */
  1563. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1564. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1565. struct drm_i915_gem_object,
  1566. mm_list);
  1567. obj->base.write_domain = 0;
  1568. list_del_init(&obj->gpu_write_list);
  1569. i915_gem_object_move_to_inactive(obj);
  1570. }
  1571. /* Move everything out of the GPU domains to ensure we do any
  1572. * necessary invalidation upon reuse.
  1573. */
  1574. list_for_each_entry(obj,
  1575. &dev_priv->mm.inactive_list,
  1576. mm_list)
  1577. {
  1578. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1579. }
  1580. /* The fence registers are invalidated so clear them out */
  1581. i915_gem_reset_fences(dev);
  1582. }
  1583. /**
  1584. * This function clears the request list as sequence numbers are passed.
  1585. */
  1586. static void
  1587. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1588. {
  1589. uint32_t seqno;
  1590. int i;
  1591. if (list_empty(&ring->request_list))
  1592. return;
  1593. WARN_ON(i915_verify_lists(ring->dev));
  1594. seqno = ring->get_seqno(ring);
  1595. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1596. if (seqno >= ring->sync_seqno[i])
  1597. ring->sync_seqno[i] = 0;
  1598. while (!list_empty(&ring->request_list)) {
  1599. struct drm_i915_gem_request *request;
  1600. request = list_first_entry(&ring->request_list,
  1601. struct drm_i915_gem_request,
  1602. list);
  1603. if (!i915_seqno_passed(seqno, request->seqno))
  1604. break;
  1605. trace_i915_gem_request_retire(ring, request->seqno);
  1606. list_del(&request->list);
  1607. i915_gem_request_remove_from_client(request);
  1608. kfree(request);
  1609. }
  1610. /* Move any buffers on the active list that are no longer referenced
  1611. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1612. */
  1613. while (!list_empty(&ring->active_list)) {
  1614. struct drm_i915_gem_object *obj;
  1615. obj= list_first_entry(&ring->active_list,
  1616. struct drm_i915_gem_object,
  1617. ring_list);
  1618. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1619. break;
  1620. if (obj->base.write_domain != 0)
  1621. i915_gem_object_move_to_flushing(obj);
  1622. else
  1623. i915_gem_object_move_to_inactive(obj);
  1624. }
  1625. if (unlikely(ring->trace_irq_seqno &&
  1626. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1627. ring->irq_put(ring);
  1628. ring->trace_irq_seqno = 0;
  1629. }
  1630. WARN_ON(i915_verify_lists(ring->dev));
  1631. }
  1632. void
  1633. i915_gem_retire_requests(struct drm_device *dev)
  1634. {
  1635. drm_i915_private_t *dev_priv = dev->dev_private;
  1636. int i;
  1637. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1638. struct drm_i915_gem_object *obj, *next;
  1639. /* We must be careful that during unbind() we do not
  1640. * accidentally infinitely recurse into retire requests.
  1641. * Currently:
  1642. * retire -> free -> unbind -> wait -> retire_ring
  1643. */
  1644. list_for_each_entry_safe(obj, next,
  1645. &dev_priv->mm.deferred_free_list,
  1646. mm_list)
  1647. i915_gem_free_object_tail(obj);
  1648. }
  1649. for (i = 0; i < I915_NUM_RINGS; i++)
  1650. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1651. }
  1652. static void
  1653. i915_gem_retire_work_handler(struct work_struct *work)
  1654. {
  1655. drm_i915_private_t *dev_priv;
  1656. struct drm_device *dev;
  1657. bool idle;
  1658. int i;
  1659. dev_priv = container_of(work, drm_i915_private_t,
  1660. mm.retire_work.work);
  1661. dev = dev_priv->dev;
  1662. /* Come back later if the device is busy... */
  1663. if (!mutex_trylock(&dev->struct_mutex)) {
  1664. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1665. return;
  1666. }
  1667. i915_gem_retire_requests(dev);
  1668. /* Send a periodic flush down the ring so we don't hold onto GEM
  1669. * objects indefinitely.
  1670. */
  1671. idle = true;
  1672. for (i = 0; i < I915_NUM_RINGS; i++) {
  1673. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1674. if (!list_empty(&ring->gpu_write_list)) {
  1675. struct drm_i915_gem_request *request;
  1676. int ret;
  1677. ret = i915_gem_flush_ring(ring,
  1678. 0, I915_GEM_GPU_DOMAINS);
  1679. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1680. if (ret || request == NULL ||
  1681. i915_add_request(ring, NULL, request))
  1682. kfree(request);
  1683. }
  1684. idle &= list_empty(&ring->request_list);
  1685. }
  1686. if (!dev_priv->mm.suspended && !idle)
  1687. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1688. mutex_unlock(&dev->struct_mutex);
  1689. }
  1690. /**
  1691. * Waits for a sequence number to be signaled, and cleans up the
  1692. * request and object lists appropriately for that event.
  1693. */
  1694. int
  1695. i915_wait_request(struct intel_ring_buffer *ring,
  1696. uint32_t seqno)
  1697. {
  1698. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1699. u32 ier;
  1700. int ret = 0;
  1701. BUG_ON(seqno == 0);
  1702. if (atomic_read(&dev_priv->mm.wedged)) {
  1703. struct completion *x = &dev_priv->error_completion;
  1704. bool recovery_complete;
  1705. unsigned long flags;
  1706. /* Give the error handler a chance to run. */
  1707. spin_lock_irqsave(&x->wait.lock, flags);
  1708. recovery_complete = x->done > 0;
  1709. spin_unlock_irqrestore(&x->wait.lock, flags);
  1710. return recovery_complete ? -EIO : -EAGAIN;
  1711. }
  1712. if (seqno == ring->outstanding_lazy_request) {
  1713. struct drm_i915_gem_request *request;
  1714. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1715. if (request == NULL)
  1716. return -ENOMEM;
  1717. ret = i915_add_request(ring, NULL, request);
  1718. if (ret) {
  1719. kfree(request);
  1720. return ret;
  1721. }
  1722. seqno = request->seqno;
  1723. }
  1724. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1725. if (HAS_PCH_SPLIT(ring->dev))
  1726. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1727. else
  1728. ier = I915_READ(IER);
  1729. if (!ier) {
  1730. DRM_ERROR("something (likely vbetool) disabled "
  1731. "interrupts, re-enabling\n");
  1732. ring->dev->driver->irq_preinstall(ring->dev);
  1733. ring->dev->driver->irq_postinstall(ring->dev);
  1734. }
  1735. trace_i915_gem_request_wait_begin(ring, seqno);
  1736. ring->waiting_seqno = seqno;
  1737. if (ring->irq_get(ring)) {
  1738. if (dev_priv->mm.interruptible)
  1739. ret = wait_event_interruptible(ring->irq_queue,
  1740. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1741. || atomic_read(&dev_priv->mm.wedged));
  1742. else
  1743. wait_event(ring->irq_queue,
  1744. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1745. || atomic_read(&dev_priv->mm.wedged));
  1746. ring->irq_put(ring);
  1747. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1748. seqno) ||
  1749. atomic_read(&dev_priv->mm.wedged), 3000))
  1750. ret = -EBUSY;
  1751. ring->waiting_seqno = 0;
  1752. trace_i915_gem_request_wait_end(ring, seqno);
  1753. }
  1754. if (atomic_read(&dev_priv->mm.wedged))
  1755. ret = -EAGAIN;
  1756. if (ret && ret != -ERESTARTSYS)
  1757. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1758. __func__, ret, seqno, ring->get_seqno(ring),
  1759. dev_priv->next_seqno);
  1760. /* Directly dispatch request retiring. While we have the work queue
  1761. * to handle this, the waiter on a request often wants an associated
  1762. * buffer to have made it to the inactive list, and we would need
  1763. * a separate wait queue to handle that.
  1764. */
  1765. if (ret == 0)
  1766. i915_gem_retire_requests_ring(ring);
  1767. return ret;
  1768. }
  1769. /**
  1770. * Ensures that all rendering to the object has completed and the object is
  1771. * safe to unbind from the GTT or access from the CPU.
  1772. */
  1773. int
  1774. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1775. {
  1776. int ret;
  1777. /* This function only exists to support waiting for existing rendering,
  1778. * not for emitting required flushes.
  1779. */
  1780. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1781. /* If there is rendering queued on the buffer being evicted, wait for
  1782. * it.
  1783. */
  1784. if (obj->active) {
  1785. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1786. if (ret)
  1787. return ret;
  1788. }
  1789. return 0;
  1790. }
  1791. /**
  1792. * Unbinds an object from the GTT aperture.
  1793. */
  1794. int
  1795. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1796. {
  1797. int ret = 0;
  1798. if (obj->gtt_space == NULL)
  1799. return 0;
  1800. if (obj->pin_count != 0) {
  1801. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1802. return -EINVAL;
  1803. }
  1804. /* blow away mappings if mapped through GTT */
  1805. i915_gem_release_mmap(obj);
  1806. /* Move the object to the CPU domain to ensure that
  1807. * any possible CPU writes while it's not in the GTT
  1808. * are flushed when we go to remap it. This will
  1809. * also ensure that all pending GPU writes are finished
  1810. * before we unbind.
  1811. */
  1812. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1813. if (ret == -ERESTARTSYS)
  1814. return ret;
  1815. /* Continue on if we fail due to EIO, the GPU is hung so we
  1816. * should be safe and we need to cleanup or else we might
  1817. * cause memory corruption through use-after-free.
  1818. */
  1819. if (ret) {
  1820. i915_gem_clflush_object(obj);
  1821. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1822. }
  1823. /* release the fence reg _after_ flushing */
  1824. ret = i915_gem_object_put_fence(obj);
  1825. if (ret == -ERESTARTSYS)
  1826. return ret;
  1827. trace_i915_gem_object_unbind(obj);
  1828. i915_gem_gtt_unbind_object(obj);
  1829. i915_gem_object_put_pages_gtt(obj);
  1830. list_del_init(&obj->gtt_list);
  1831. list_del_init(&obj->mm_list);
  1832. /* Avoid an unnecessary call to unbind on rebind. */
  1833. obj->map_and_fenceable = true;
  1834. drm_mm_put_block(obj->gtt_space);
  1835. obj->gtt_space = NULL;
  1836. obj->gtt_offset = 0;
  1837. if (i915_gem_object_is_purgeable(obj))
  1838. i915_gem_object_truncate(obj);
  1839. return ret;
  1840. }
  1841. int
  1842. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1843. uint32_t invalidate_domains,
  1844. uint32_t flush_domains)
  1845. {
  1846. int ret;
  1847. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1848. return 0;
  1849. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1850. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1851. if (ret)
  1852. return ret;
  1853. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1854. i915_gem_process_flushing_list(ring, flush_domains);
  1855. return 0;
  1856. }
  1857. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1858. {
  1859. int ret;
  1860. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1861. return 0;
  1862. if (!list_empty(&ring->gpu_write_list)) {
  1863. ret = i915_gem_flush_ring(ring,
  1864. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1865. if (ret)
  1866. return ret;
  1867. }
  1868. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1869. }
  1870. int
  1871. i915_gpu_idle(struct drm_device *dev)
  1872. {
  1873. drm_i915_private_t *dev_priv = dev->dev_private;
  1874. bool lists_empty;
  1875. int ret, i;
  1876. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1877. list_empty(&dev_priv->mm.active_list));
  1878. if (lists_empty)
  1879. return 0;
  1880. /* Flush everything onto the inactive list. */
  1881. for (i = 0; i < I915_NUM_RINGS; i++) {
  1882. ret = i915_ring_idle(&dev_priv->ring[i]);
  1883. if (ret)
  1884. return ret;
  1885. }
  1886. return 0;
  1887. }
  1888. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1889. struct intel_ring_buffer *pipelined)
  1890. {
  1891. struct drm_device *dev = obj->base.dev;
  1892. drm_i915_private_t *dev_priv = dev->dev_private;
  1893. u32 size = obj->gtt_space->size;
  1894. int regnum = obj->fence_reg;
  1895. uint64_t val;
  1896. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1897. 0xfffff000) << 32;
  1898. val |= obj->gtt_offset & 0xfffff000;
  1899. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1900. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1901. if (obj->tiling_mode == I915_TILING_Y)
  1902. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1903. val |= I965_FENCE_REG_VALID;
  1904. if (pipelined) {
  1905. int ret = intel_ring_begin(pipelined, 6);
  1906. if (ret)
  1907. return ret;
  1908. intel_ring_emit(pipelined, MI_NOOP);
  1909. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1910. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1911. intel_ring_emit(pipelined, (u32)val);
  1912. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1913. intel_ring_emit(pipelined, (u32)(val >> 32));
  1914. intel_ring_advance(pipelined);
  1915. } else
  1916. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1917. return 0;
  1918. }
  1919. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1920. struct intel_ring_buffer *pipelined)
  1921. {
  1922. struct drm_device *dev = obj->base.dev;
  1923. drm_i915_private_t *dev_priv = dev->dev_private;
  1924. u32 size = obj->gtt_space->size;
  1925. int regnum = obj->fence_reg;
  1926. uint64_t val;
  1927. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1928. 0xfffff000) << 32;
  1929. val |= obj->gtt_offset & 0xfffff000;
  1930. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1931. if (obj->tiling_mode == I915_TILING_Y)
  1932. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1933. val |= I965_FENCE_REG_VALID;
  1934. if (pipelined) {
  1935. int ret = intel_ring_begin(pipelined, 6);
  1936. if (ret)
  1937. return ret;
  1938. intel_ring_emit(pipelined, MI_NOOP);
  1939. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1940. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1941. intel_ring_emit(pipelined, (u32)val);
  1942. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1943. intel_ring_emit(pipelined, (u32)(val >> 32));
  1944. intel_ring_advance(pipelined);
  1945. } else
  1946. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1947. return 0;
  1948. }
  1949. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1950. struct intel_ring_buffer *pipelined)
  1951. {
  1952. struct drm_device *dev = obj->base.dev;
  1953. drm_i915_private_t *dev_priv = dev->dev_private;
  1954. u32 size = obj->gtt_space->size;
  1955. u32 fence_reg, val, pitch_val;
  1956. int tile_width;
  1957. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1958. (size & -size) != size ||
  1959. (obj->gtt_offset & (size - 1)),
  1960. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1961. obj->gtt_offset, obj->map_and_fenceable, size))
  1962. return -EINVAL;
  1963. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1964. tile_width = 128;
  1965. else
  1966. tile_width = 512;
  1967. /* Note: pitch better be a power of two tile widths */
  1968. pitch_val = obj->stride / tile_width;
  1969. pitch_val = ffs(pitch_val) - 1;
  1970. val = obj->gtt_offset;
  1971. if (obj->tiling_mode == I915_TILING_Y)
  1972. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1973. val |= I915_FENCE_SIZE_BITS(size);
  1974. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1975. val |= I830_FENCE_REG_VALID;
  1976. fence_reg = obj->fence_reg;
  1977. if (fence_reg < 8)
  1978. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1979. else
  1980. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1981. if (pipelined) {
  1982. int ret = intel_ring_begin(pipelined, 4);
  1983. if (ret)
  1984. return ret;
  1985. intel_ring_emit(pipelined, MI_NOOP);
  1986. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1987. intel_ring_emit(pipelined, fence_reg);
  1988. intel_ring_emit(pipelined, val);
  1989. intel_ring_advance(pipelined);
  1990. } else
  1991. I915_WRITE(fence_reg, val);
  1992. return 0;
  1993. }
  1994. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1995. struct intel_ring_buffer *pipelined)
  1996. {
  1997. struct drm_device *dev = obj->base.dev;
  1998. drm_i915_private_t *dev_priv = dev->dev_private;
  1999. u32 size = obj->gtt_space->size;
  2000. int regnum = obj->fence_reg;
  2001. uint32_t val;
  2002. uint32_t pitch_val;
  2003. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2004. (size & -size) != size ||
  2005. (obj->gtt_offset & (size - 1)),
  2006. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2007. obj->gtt_offset, size))
  2008. return -EINVAL;
  2009. pitch_val = obj->stride / 128;
  2010. pitch_val = ffs(pitch_val) - 1;
  2011. val = obj->gtt_offset;
  2012. if (obj->tiling_mode == I915_TILING_Y)
  2013. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2014. val |= I830_FENCE_SIZE_BITS(size);
  2015. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2016. val |= I830_FENCE_REG_VALID;
  2017. if (pipelined) {
  2018. int ret = intel_ring_begin(pipelined, 4);
  2019. if (ret)
  2020. return ret;
  2021. intel_ring_emit(pipelined, MI_NOOP);
  2022. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2023. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2024. intel_ring_emit(pipelined, val);
  2025. intel_ring_advance(pipelined);
  2026. } else
  2027. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2028. return 0;
  2029. }
  2030. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2031. {
  2032. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2033. }
  2034. static int
  2035. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2036. struct intel_ring_buffer *pipelined)
  2037. {
  2038. int ret;
  2039. if (obj->fenced_gpu_access) {
  2040. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2041. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  2042. 0, obj->base.write_domain);
  2043. if (ret)
  2044. return ret;
  2045. }
  2046. obj->fenced_gpu_access = false;
  2047. }
  2048. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2049. if (!ring_passed_seqno(obj->last_fenced_ring,
  2050. obj->last_fenced_seqno)) {
  2051. ret = i915_wait_request(obj->last_fenced_ring,
  2052. obj->last_fenced_seqno);
  2053. if (ret)
  2054. return ret;
  2055. }
  2056. obj->last_fenced_seqno = 0;
  2057. obj->last_fenced_ring = NULL;
  2058. }
  2059. /* Ensure that all CPU reads are completed before installing a fence
  2060. * and all writes before removing the fence.
  2061. */
  2062. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2063. mb();
  2064. return 0;
  2065. }
  2066. int
  2067. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2068. {
  2069. int ret;
  2070. if (obj->tiling_mode)
  2071. i915_gem_release_mmap(obj);
  2072. ret = i915_gem_object_flush_fence(obj, NULL);
  2073. if (ret)
  2074. return ret;
  2075. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2076. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2077. i915_gem_clear_fence_reg(obj->base.dev,
  2078. &dev_priv->fence_regs[obj->fence_reg]);
  2079. obj->fence_reg = I915_FENCE_REG_NONE;
  2080. }
  2081. return 0;
  2082. }
  2083. static struct drm_i915_fence_reg *
  2084. i915_find_fence_reg(struct drm_device *dev,
  2085. struct intel_ring_buffer *pipelined)
  2086. {
  2087. struct drm_i915_private *dev_priv = dev->dev_private;
  2088. struct drm_i915_fence_reg *reg, *first, *avail;
  2089. int i;
  2090. /* First try to find a free reg */
  2091. avail = NULL;
  2092. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2093. reg = &dev_priv->fence_regs[i];
  2094. if (!reg->obj)
  2095. return reg;
  2096. if (!reg->obj->pin_count)
  2097. avail = reg;
  2098. }
  2099. if (avail == NULL)
  2100. return NULL;
  2101. /* None available, try to steal one or wait for a user to finish */
  2102. avail = first = NULL;
  2103. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2104. if (reg->obj->pin_count)
  2105. continue;
  2106. if (first == NULL)
  2107. first = reg;
  2108. if (!pipelined ||
  2109. !reg->obj->last_fenced_ring ||
  2110. reg->obj->last_fenced_ring == pipelined) {
  2111. avail = reg;
  2112. break;
  2113. }
  2114. }
  2115. if (avail == NULL)
  2116. avail = first;
  2117. return avail;
  2118. }
  2119. /**
  2120. * i915_gem_object_get_fence - set up a fence reg for an object
  2121. * @obj: object to map through a fence reg
  2122. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2123. * @interruptible: must we wait uninterruptibly for the register to retire?
  2124. *
  2125. * When mapping objects through the GTT, userspace wants to be able to write
  2126. * to them without having to worry about swizzling if the object is tiled.
  2127. *
  2128. * This function walks the fence regs looking for a free one for @obj,
  2129. * stealing one if it can't find any.
  2130. *
  2131. * It then sets up the reg based on the object's properties: address, pitch
  2132. * and tiling format.
  2133. */
  2134. int
  2135. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2136. struct intel_ring_buffer *pipelined)
  2137. {
  2138. struct drm_device *dev = obj->base.dev;
  2139. struct drm_i915_private *dev_priv = dev->dev_private;
  2140. struct drm_i915_fence_reg *reg;
  2141. int ret;
  2142. /* XXX disable pipelining. There are bugs. Shocking. */
  2143. pipelined = NULL;
  2144. /* Just update our place in the LRU if our fence is getting reused. */
  2145. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2146. reg = &dev_priv->fence_regs[obj->fence_reg];
  2147. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2148. if (obj->tiling_changed) {
  2149. ret = i915_gem_object_flush_fence(obj, pipelined);
  2150. if (ret)
  2151. return ret;
  2152. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2153. pipelined = NULL;
  2154. if (pipelined) {
  2155. reg->setup_seqno =
  2156. i915_gem_next_request_seqno(pipelined);
  2157. obj->last_fenced_seqno = reg->setup_seqno;
  2158. obj->last_fenced_ring = pipelined;
  2159. }
  2160. goto update;
  2161. }
  2162. if (!pipelined) {
  2163. if (reg->setup_seqno) {
  2164. if (!ring_passed_seqno(obj->last_fenced_ring,
  2165. reg->setup_seqno)) {
  2166. ret = i915_wait_request(obj->last_fenced_ring,
  2167. reg->setup_seqno);
  2168. if (ret)
  2169. return ret;
  2170. }
  2171. reg->setup_seqno = 0;
  2172. }
  2173. } else if (obj->last_fenced_ring &&
  2174. obj->last_fenced_ring != pipelined) {
  2175. ret = i915_gem_object_flush_fence(obj, pipelined);
  2176. if (ret)
  2177. return ret;
  2178. }
  2179. return 0;
  2180. }
  2181. reg = i915_find_fence_reg(dev, pipelined);
  2182. if (reg == NULL)
  2183. return -ENOSPC;
  2184. ret = i915_gem_object_flush_fence(obj, pipelined);
  2185. if (ret)
  2186. return ret;
  2187. if (reg->obj) {
  2188. struct drm_i915_gem_object *old = reg->obj;
  2189. drm_gem_object_reference(&old->base);
  2190. if (old->tiling_mode)
  2191. i915_gem_release_mmap(old);
  2192. ret = i915_gem_object_flush_fence(old, pipelined);
  2193. if (ret) {
  2194. drm_gem_object_unreference(&old->base);
  2195. return ret;
  2196. }
  2197. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2198. pipelined = NULL;
  2199. old->fence_reg = I915_FENCE_REG_NONE;
  2200. old->last_fenced_ring = pipelined;
  2201. old->last_fenced_seqno =
  2202. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2203. drm_gem_object_unreference(&old->base);
  2204. } else if (obj->last_fenced_seqno == 0)
  2205. pipelined = NULL;
  2206. reg->obj = obj;
  2207. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2208. obj->fence_reg = reg - dev_priv->fence_regs;
  2209. obj->last_fenced_ring = pipelined;
  2210. reg->setup_seqno =
  2211. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2212. obj->last_fenced_seqno = reg->setup_seqno;
  2213. update:
  2214. obj->tiling_changed = false;
  2215. switch (INTEL_INFO(dev)->gen) {
  2216. case 7:
  2217. case 6:
  2218. ret = sandybridge_write_fence_reg(obj, pipelined);
  2219. break;
  2220. case 5:
  2221. case 4:
  2222. ret = i965_write_fence_reg(obj, pipelined);
  2223. break;
  2224. case 3:
  2225. ret = i915_write_fence_reg(obj, pipelined);
  2226. break;
  2227. case 2:
  2228. ret = i830_write_fence_reg(obj, pipelined);
  2229. break;
  2230. }
  2231. return ret;
  2232. }
  2233. /**
  2234. * i915_gem_clear_fence_reg - clear out fence register info
  2235. * @obj: object to clear
  2236. *
  2237. * Zeroes out the fence register itself and clears out the associated
  2238. * data structures in dev_priv and obj.
  2239. */
  2240. static void
  2241. i915_gem_clear_fence_reg(struct drm_device *dev,
  2242. struct drm_i915_fence_reg *reg)
  2243. {
  2244. drm_i915_private_t *dev_priv = dev->dev_private;
  2245. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2246. switch (INTEL_INFO(dev)->gen) {
  2247. case 7:
  2248. case 6:
  2249. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2250. break;
  2251. case 5:
  2252. case 4:
  2253. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2254. break;
  2255. case 3:
  2256. if (fence_reg >= 8)
  2257. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2258. else
  2259. case 2:
  2260. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2261. I915_WRITE(fence_reg, 0);
  2262. break;
  2263. }
  2264. list_del_init(&reg->lru_list);
  2265. reg->obj = NULL;
  2266. reg->setup_seqno = 0;
  2267. }
  2268. /**
  2269. * Finds free space in the GTT aperture and binds the object there.
  2270. */
  2271. static int
  2272. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2273. unsigned alignment,
  2274. bool map_and_fenceable)
  2275. {
  2276. struct drm_device *dev = obj->base.dev;
  2277. drm_i915_private_t *dev_priv = dev->dev_private;
  2278. struct drm_mm_node *free_space;
  2279. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2280. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2281. bool mappable, fenceable;
  2282. int ret;
  2283. if (obj->madv != I915_MADV_WILLNEED) {
  2284. DRM_ERROR("Attempting to bind a purgeable object\n");
  2285. return -EINVAL;
  2286. }
  2287. fence_size = i915_gem_get_gtt_size(obj);
  2288. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2289. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2290. if (alignment == 0)
  2291. alignment = map_and_fenceable ? fence_alignment :
  2292. unfenced_alignment;
  2293. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2294. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2295. return -EINVAL;
  2296. }
  2297. size = map_and_fenceable ? fence_size : obj->base.size;
  2298. /* If the object is bigger than the entire aperture, reject it early
  2299. * before evicting everything in a vain attempt to find space.
  2300. */
  2301. if (obj->base.size >
  2302. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2303. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2304. return -E2BIG;
  2305. }
  2306. search_free:
  2307. if (map_and_fenceable)
  2308. free_space =
  2309. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2310. size, alignment, 0,
  2311. dev_priv->mm.gtt_mappable_end,
  2312. 0);
  2313. else
  2314. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2315. size, alignment, 0);
  2316. if (free_space != NULL) {
  2317. if (map_and_fenceable)
  2318. obj->gtt_space =
  2319. drm_mm_get_block_range_generic(free_space,
  2320. size, alignment, 0,
  2321. dev_priv->mm.gtt_mappable_end,
  2322. 0);
  2323. else
  2324. obj->gtt_space =
  2325. drm_mm_get_block(free_space, size, alignment);
  2326. }
  2327. if (obj->gtt_space == NULL) {
  2328. /* If the gtt is empty and we're still having trouble
  2329. * fitting our object in, we're out of memory.
  2330. */
  2331. ret = i915_gem_evict_something(dev, size, alignment,
  2332. map_and_fenceable);
  2333. if (ret)
  2334. return ret;
  2335. goto search_free;
  2336. }
  2337. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2338. if (ret) {
  2339. drm_mm_put_block(obj->gtt_space);
  2340. obj->gtt_space = NULL;
  2341. if (ret == -ENOMEM) {
  2342. /* first try to reclaim some memory by clearing the GTT */
  2343. ret = i915_gem_evict_everything(dev, false);
  2344. if (ret) {
  2345. /* now try to shrink everyone else */
  2346. if (gfpmask) {
  2347. gfpmask = 0;
  2348. goto search_free;
  2349. }
  2350. return -ENOMEM;
  2351. }
  2352. goto search_free;
  2353. }
  2354. return ret;
  2355. }
  2356. ret = i915_gem_gtt_bind_object(obj);
  2357. if (ret) {
  2358. i915_gem_object_put_pages_gtt(obj);
  2359. drm_mm_put_block(obj->gtt_space);
  2360. obj->gtt_space = NULL;
  2361. if (i915_gem_evict_everything(dev, false))
  2362. return ret;
  2363. goto search_free;
  2364. }
  2365. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2366. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2367. /* Assert that the object is not currently in any GPU domain. As it
  2368. * wasn't in the GTT, there shouldn't be any way it could have been in
  2369. * a GPU cache
  2370. */
  2371. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2372. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2373. obj->gtt_offset = obj->gtt_space->start;
  2374. fenceable =
  2375. obj->gtt_space->size == fence_size &&
  2376. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2377. mappable =
  2378. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2379. obj->map_and_fenceable = mappable && fenceable;
  2380. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2381. return 0;
  2382. }
  2383. void
  2384. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2385. {
  2386. /* If we don't have a page list set up, then we're not pinned
  2387. * to GPU, and we can ignore the cache flush because it'll happen
  2388. * again at bind time.
  2389. */
  2390. if (obj->pages == NULL)
  2391. return;
  2392. /* If the GPU is snooping the contents of the CPU cache,
  2393. * we do not need to manually clear the CPU cache lines. However,
  2394. * the caches are only snooped when the render cache is
  2395. * flushed/invalidated. As we always have to emit invalidations
  2396. * and flushes when moving into and out of the RENDER domain, correct
  2397. * snooping behaviour occurs naturally as the result of our domain
  2398. * tracking.
  2399. */
  2400. if (obj->cache_level != I915_CACHE_NONE)
  2401. return;
  2402. trace_i915_gem_object_clflush(obj);
  2403. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2404. }
  2405. /** Flushes any GPU write domain for the object if it's dirty. */
  2406. static int
  2407. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2408. {
  2409. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2410. return 0;
  2411. /* Queue the GPU write cache flushing we need. */
  2412. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2413. }
  2414. /** Flushes the GTT write domain for the object if it's dirty. */
  2415. static void
  2416. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2417. {
  2418. uint32_t old_write_domain;
  2419. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2420. return;
  2421. /* No actual flushing is required for the GTT write domain. Writes
  2422. * to it immediately go to main memory as far as we know, so there's
  2423. * no chipset flush. It also doesn't land in render cache.
  2424. *
  2425. * However, we do have to enforce the order so that all writes through
  2426. * the GTT land before any writes to the device, such as updates to
  2427. * the GATT itself.
  2428. */
  2429. wmb();
  2430. old_write_domain = obj->base.write_domain;
  2431. obj->base.write_domain = 0;
  2432. trace_i915_gem_object_change_domain(obj,
  2433. obj->base.read_domains,
  2434. old_write_domain);
  2435. }
  2436. /** Flushes the CPU write domain for the object if it's dirty. */
  2437. static void
  2438. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2439. {
  2440. uint32_t old_write_domain;
  2441. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2442. return;
  2443. i915_gem_clflush_object(obj);
  2444. intel_gtt_chipset_flush();
  2445. old_write_domain = obj->base.write_domain;
  2446. obj->base.write_domain = 0;
  2447. trace_i915_gem_object_change_domain(obj,
  2448. obj->base.read_domains,
  2449. old_write_domain);
  2450. }
  2451. /**
  2452. * Moves a single object to the GTT read, and possibly write domain.
  2453. *
  2454. * This function returns when the move is complete, including waiting on
  2455. * flushes to occur.
  2456. */
  2457. int
  2458. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2459. {
  2460. uint32_t old_write_domain, old_read_domains;
  2461. int ret;
  2462. /* Not valid to be called on unbound objects. */
  2463. if (obj->gtt_space == NULL)
  2464. return -EINVAL;
  2465. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2466. return 0;
  2467. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2468. if (ret)
  2469. return ret;
  2470. if (obj->pending_gpu_write || write) {
  2471. ret = i915_gem_object_wait_rendering(obj);
  2472. if (ret)
  2473. return ret;
  2474. }
  2475. i915_gem_object_flush_cpu_write_domain(obj);
  2476. old_write_domain = obj->base.write_domain;
  2477. old_read_domains = obj->base.read_domains;
  2478. /* It should now be out of any other write domains, and we can update
  2479. * the domain values for our changes.
  2480. */
  2481. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2482. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2483. if (write) {
  2484. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2485. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2486. obj->dirty = 1;
  2487. }
  2488. trace_i915_gem_object_change_domain(obj,
  2489. old_read_domains,
  2490. old_write_domain);
  2491. return 0;
  2492. }
  2493. /*
  2494. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2495. * wait, as in modesetting process we're not supposed to be interrupted.
  2496. */
  2497. int
  2498. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2499. struct intel_ring_buffer *pipelined)
  2500. {
  2501. uint32_t old_read_domains;
  2502. int ret;
  2503. /* Not valid to be called on unbound objects. */
  2504. if (obj->gtt_space == NULL)
  2505. return -EINVAL;
  2506. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2507. if (ret)
  2508. return ret;
  2509. /* Currently, we are always called from an non-interruptible context. */
  2510. if (pipelined != obj->ring) {
  2511. ret = i915_gem_object_wait_rendering(obj);
  2512. if (ret)
  2513. return ret;
  2514. }
  2515. i915_gem_object_flush_cpu_write_domain(obj);
  2516. old_read_domains = obj->base.read_domains;
  2517. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2518. trace_i915_gem_object_change_domain(obj,
  2519. old_read_domains,
  2520. obj->base.write_domain);
  2521. return 0;
  2522. }
  2523. int
  2524. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
  2525. {
  2526. int ret;
  2527. if (!obj->active)
  2528. return 0;
  2529. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2530. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2531. if (ret)
  2532. return ret;
  2533. }
  2534. return i915_gem_object_wait_rendering(obj);
  2535. }
  2536. /**
  2537. * Moves a single object to the CPU read, and possibly write domain.
  2538. *
  2539. * This function returns when the move is complete, including waiting on
  2540. * flushes to occur.
  2541. */
  2542. static int
  2543. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2544. {
  2545. uint32_t old_write_domain, old_read_domains;
  2546. int ret;
  2547. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2548. return 0;
  2549. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2550. if (ret)
  2551. return ret;
  2552. ret = i915_gem_object_wait_rendering(obj);
  2553. if (ret)
  2554. return ret;
  2555. i915_gem_object_flush_gtt_write_domain(obj);
  2556. /* If we have a partially-valid cache of the object in the CPU,
  2557. * finish invalidating it and free the per-page flags.
  2558. */
  2559. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2560. old_write_domain = obj->base.write_domain;
  2561. old_read_domains = obj->base.read_domains;
  2562. /* Flush the CPU cache if it's still invalid. */
  2563. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2564. i915_gem_clflush_object(obj);
  2565. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2566. }
  2567. /* It should now be out of any other write domains, and we can update
  2568. * the domain values for our changes.
  2569. */
  2570. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2571. /* If we're writing through the CPU, then the GPU read domains will
  2572. * need to be invalidated at next use.
  2573. */
  2574. if (write) {
  2575. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2576. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2577. }
  2578. trace_i915_gem_object_change_domain(obj,
  2579. old_read_domains,
  2580. old_write_domain);
  2581. return 0;
  2582. }
  2583. /**
  2584. * Moves the object from a partially CPU read to a full one.
  2585. *
  2586. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2587. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2588. */
  2589. static void
  2590. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2591. {
  2592. if (!obj->page_cpu_valid)
  2593. return;
  2594. /* If we're partially in the CPU read domain, finish moving it in.
  2595. */
  2596. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2597. int i;
  2598. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2599. if (obj->page_cpu_valid[i])
  2600. continue;
  2601. drm_clflush_pages(obj->pages + i, 1);
  2602. }
  2603. }
  2604. /* Free the page_cpu_valid mappings which are now stale, whether
  2605. * or not we've got I915_GEM_DOMAIN_CPU.
  2606. */
  2607. kfree(obj->page_cpu_valid);
  2608. obj->page_cpu_valid = NULL;
  2609. }
  2610. /**
  2611. * Set the CPU read domain on a range of the object.
  2612. *
  2613. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2614. * not entirely valid. The page_cpu_valid member of the object flags which
  2615. * pages have been flushed, and will be respected by
  2616. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2617. * of the whole object.
  2618. *
  2619. * This function returns when the move is complete, including waiting on
  2620. * flushes to occur.
  2621. */
  2622. static int
  2623. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2624. uint64_t offset, uint64_t size)
  2625. {
  2626. uint32_t old_read_domains;
  2627. int i, ret;
  2628. if (offset == 0 && size == obj->base.size)
  2629. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2630. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2631. if (ret)
  2632. return ret;
  2633. ret = i915_gem_object_wait_rendering(obj);
  2634. if (ret)
  2635. return ret;
  2636. i915_gem_object_flush_gtt_write_domain(obj);
  2637. /* If we're already fully in the CPU read domain, we're done. */
  2638. if (obj->page_cpu_valid == NULL &&
  2639. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2640. return 0;
  2641. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2642. * newly adding I915_GEM_DOMAIN_CPU
  2643. */
  2644. if (obj->page_cpu_valid == NULL) {
  2645. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2646. GFP_KERNEL);
  2647. if (obj->page_cpu_valid == NULL)
  2648. return -ENOMEM;
  2649. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2650. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2651. /* Flush the cache on any pages that are still invalid from the CPU's
  2652. * perspective.
  2653. */
  2654. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2655. i++) {
  2656. if (obj->page_cpu_valid[i])
  2657. continue;
  2658. drm_clflush_pages(obj->pages + i, 1);
  2659. obj->page_cpu_valid[i] = 1;
  2660. }
  2661. /* It should now be out of any other write domains, and we can update
  2662. * the domain values for our changes.
  2663. */
  2664. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2665. old_read_domains = obj->base.read_domains;
  2666. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2667. trace_i915_gem_object_change_domain(obj,
  2668. old_read_domains,
  2669. obj->base.write_domain);
  2670. return 0;
  2671. }
  2672. /* Throttle our rendering by waiting until the ring has completed our requests
  2673. * emitted over 20 msec ago.
  2674. *
  2675. * Note that if we were to use the current jiffies each time around the loop,
  2676. * we wouldn't escape the function with any frames outstanding if the time to
  2677. * render a frame was over 20ms.
  2678. *
  2679. * This should get us reasonable parallelism between CPU and GPU but also
  2680. * relatively low latency when blocking on a particular request to finish.
  2681. */
  2682. static int
  2683. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2684. {
  2685. struct drm_i915_private *dev_priv = dev->dev_private;
  2686. struct drm_i915_file_private *file_priv = file->driver_priv;
  2687. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2688. struct drm_i915_gem_request *request;
  2689. struct intel_ring_buffer *ring = NULL;
  2690. u32 seqno = 0;
  2691. int ret;
  2692. if (atomic_read(&dev_priv->mm.wedged))
  2693. return -EIO;
  2694. spin_lock(&file_priv->mm.lock);
  2695. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2696. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2697. break;
  2698. ring = request->ring;
  2699. seqno = request->seqno;
  2700. }
  2701. spin_unlock(&file_priv->mm.lock);
  2702. if (seqno == 0)
  2703. return 0;
  2704. ret = 0;
  2705. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2706. /* And wait for the seqno passing without holding any locks and
  2707. * causing extra latency for others. This is safe as the irq
  2708. * generation is designed to be run atomically and so is
  2709. * lockless.
  2710. */
  2711. if (ring->irq_get(ring)) {
  2712. ret = wait_event_interruptible(ring->irq_queue,
  2713. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2714. || atomic_read(&dev_priv->mm.wedged));
  2715. ring->irq_put(ring);
  2716. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2717. ret = -EIO;
  2718. }
  2719. }
  2720. if (ret == 0)
  2721. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2722. return ret;
  2723. }
  2724. int
  2725. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2726. uint32_t alignment,
  2727. bool map_and_fenceable)
  2728. {
  2729. struct drm_device *dev = obj->base.dev;
  2730. struct drm_i915_private *dev_priv = dev->dev_private;
  2731. int ret;
  2732. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2733. WARN_ON(i915_verify_lists(dev));
  2734. if (obj->gtt_space != NULL) {
  2735. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2736. (map_and_fenceable && !obj->map_and_fenceable)) {
  2737. WARN(obj->pin_count,
  2738. "bo is already pinned with incorrect alignment:"
  2739. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2740. " obj->map_and_fenceable=%d\n",
  2741. obj->gtt_offset, alignment,
  2742. map_and_fenceable,
  2743. obj->map_and_fenceable);
  2744. ret = i915_gem_object_unbind(obj);
  2745. if (ret)
  2746. return ret;
  2747. }
  2748. }
  2749. if (obj->gtt_space == NULL) {
  2750. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2751. map_and_fenceable);
  2752. if (ret)
  2753. return ret;
  2754. }
  2755. if (obj->pin_count++ == 0) {
  2756. if (!obj->active)
  2757. list_move_tail(&obj->mm_list,
  2758. &dev_priv->mm.pinned_list);
  2759. }
  2760. obj->pin_mappable |= map_and_fenceable;
  2761. WARN_ON(i915_verify_lists(dev));
  2762. return 0;
  2763. }
  2764. void
  2765. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2766. {
  2767. struct drm_device *dev = obj->base.dev;
  2768. drm_i915_private_t *dev_priv = dev->dev_private;
  2769. WARN_ON(i915_verify_lists(dev));
  2770. BUG_ON(obj->pin_count == 0);
  2771. BUG_ON(obj->gtt_space == NULL);
  2772. if (--obj->pin_count == 0) {
  2773. if (!obj->active)
  2774. list_move_tail(&obj->mm_list,
  2775. &dev_priv->mm.inactive_list);
  2776. obj->pin_mappable = false;
  2777. }
  2778. WARN_ON(i915_verify_lists(dev));
  2779. }
  2780. int
  2781. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2782. struct drm_file *file)
  2783. {
  2784. struct drm_i915_gem_pin *args = data;
  2785. struct drm_i915_gem_object *obj;
  2786. int ret;
  2787. ret = i915_mutex_lock_interruptible(dev);
  2788. if (ret)
  2789. return ret;
  2790. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2791. if (&obj->base == NULL) {
  2792. ret = -ENOENT;
  2793. goto unlock;
  2794. }
  2795. if (obj->madv != I915_MADV_WILLNEED) {
  2796. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2797. ret = -EINVAL;
  2798. goto out;
  2799. }
  2800. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2801. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2802. args->handle);
  2803. ret = -EINVAL;
  2804. goto out;
  2805. }
  2806. obj->user_pin_count++;
  2807. obj->pin_filp = file;
  2808. if (obj->user_pin_count == 1) {
  2809. ret = i915_gem_object_pin(obj, args->alignment, true);
  2810. if (ret)
  2811. goto out;
  2812. }
  2813. /* XXX - flush the CPU caches for pinned objects
  2814. * as the X server doesn't manage domains yet
  2815. */
  2816. i915_gem_object_flush_cpu_write_domain(obj);
  2817. args->offset = obj->gtt_offset;
  2818. out:
  2819. drm_gem_object_unreference(&obj->base);
  2820. unlock:
  2821. mutex_unlock(&dev->struct_mutex);
  2822. return ret;
  2823. }
  2824. int
  2825. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2826. struct drm_file *file)
  2827. {
  2828. struct drm_i915_gem_pin *args = data;
  2829. struct drm_i915_gem_object *obj;
  2830. int ret;
  2831. ret = i915_mutex_lock_interruptible(dev);
  2832. if (ret)
  2833. return ret;
  2834. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2835. if (&obj->base == NULL) {
  2836. ret = -ENOENT;
  2837. goto unlock;
  2838. }
  2839. if (obj->pin_filp != file) {
  2840. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2841. args->handle);
  2842. ret = -EINVAL;
  2843. goto out;
  2844. }
  2845. obj->user_pin_count--;
  2846. if (obj->user_pin_count == 0) {
  2847. obj->pin_filp = NULL;
  2848. i915_gem_object_unpin(obj);
  2849. }
  2850. out:
  2851. drm_gem_object_unreference(&obj->base);
  2852. unlock:
  2853. mutex_unlock(&dev->struct_mutex);
  2854. return ret;
  2855. }
  2856. int
  2857. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2858. struct drm_file *file)
  2859. {
  2860. struct drm_i915_gem_busy *args = data;
  2861. struct drm_i915_gem_object *obj;
  2862. int ret;
  2863. ret = i915_mutex_lock_interruptible(dev);
  2864. if (ret)
  2865. return ret;
  2866. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2867. if (&obj->base == NULL) {
  2868. ret = -ENOENT;
  2869. goto unlock;
  2870. }
  2871. /* Count all active objects as busy, even if they are currently not used
  2872. * by the gpu. Users of this interface expect objects to eventually
  2873. * become non-busy without any further actions, therefore emit any
  2874. * necessary flushes here.
  2875. */
  2876. args->busy = obj->active;
  2877. if (args->busy) {
  2878. /* Unconditionally flush objects, even when the gpu still uses this
  2879. * object. Userspace calling this function indicates that it wants to
  2880. * use this buffer rather sooner than later, so issuing the required
  2881. * flush earlier is beneficial.
  2882. */
  2883. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2884. ret = i915_gem_flush_ring(obj->ring,
  2885. 0, obj->base.write_domain);
  2886. } else if (obj->ring->outstanding_lazy_request ==
  2887. obj->last_rendering_seqno) {
  2888. struct drm_i915_gem_request *request;
  2889. /* This ring is not being cleared by active usage,
  2890. * so emit a request to do so.
  2891. */
  2892. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2893. if (request)
  2894. ret = i915_add_request(obj->ring, NULL,request);
  2895. else
  2896. ret = -ENOMEM;
  2897. }
  2898. /* Update the active list for the hardware's current position.
  2899. * Otherwise this only updates on a delayed timer or when irqs
  2900. * are actually unmasked, and our working set ends up being
  2901. * larger than required.
  2902. */
  2903. i915_gem_retire_requests_ring(obj->ring);
  2904. args->busy = obj->active;
  2905. }
  2906. drm_gem_object_unreference(&obj->base);
  2907. unlock:
  2908. mutex_unlock(&dev->struct_mutex);
  2909. return ret;
  2910. }
  2911. int
  2912. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2913. struct drm_file *file_priv)
  2914. {
  2915. return i915_gem_ring_throttle(dev, file_priv);
  2916. }
  2917. int
  2918. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2919. struct drm_file *file_priv)
  2920. {
  2921. struct drm_i915_gem_madvise *args = data;
  2922. struct drm_i915_gem_object *obj;
  2923. int ret;
  2924. switch (args->madv) {
  2925. case I915_MADV_DONTNEED:
  2926. case I915_MADV_WILLNEED:
  2927. break;
  2928. default:
  2929. return -EINVAL;
  2930. }
  2931. ret = i915_mutex_lock_interruptible(dev);
  2932. if (ret)
  2933. return ret;
  2934. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2935. if (&obj->base == NULL) {
  2936. ret = -ENOENT;
  2937. goto unlock;
  2938. }
  2939. if (obj->pin_count) {
  2940. ret = -EINVAL;
  2941. goto out;
  2942. }
  2943. if (obj->madv != __I915_MADV_PURGED)
  2944. obj->madv = args->madv;
  2945. /* if the object is no longer bound, discard its backing storage */
  2946. if (i915_gem_object_is_purgeable(obj) &&
  2947. obj->gtt_space == NULL)
  2948. i915_gem_object_truncate(obj);
  2949. args->retained = obj->madv != __I915_MADV_PURGED;
  2950. out:
  2951. drm_gem_object_unreference(&obj->base);
  2952. unlock:
  2953. mutex_unlock(&dev->struct_mutex);
  2954. return ret;
  2955. }
  2956. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2957. size_t size)
  2958. {
  2959. struct drm_i915_private *dev_priv = dev->dev_private;
  2960. struct drm_i915_gem_object *obj;
  2961. struct address_space *mapping;
  2962. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2963. if (obj == NULL)
  2964. return NULL;
  2965. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2966. kfree(obj);
  2967. return NULL;
  2968. }
  2969. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2970. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2971. i915_gem_info_add_obj(dev_priv, size);
  2972. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2973. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2974. obj->cache_level = I915_CACHE_NONE;
  2975. obj->base.driver_private = NULL;
  2976. obj->fence_reg = I915_FENCE_REG_NONE;
  2977. INIT_LIST_HEAD(&obj->mm_list);
  2978. INIT_LIST_HEAD(&obj->gtt_list);
  2979. INIT_LIST_HEAD(&obj->ring_list);
  2980. INIT_LIST_HEAD(&obj->exec_list);
  2981. INIT_LIST_HEAD(&obj->gpu_write_list);
  2982. obj->madv = I915_MADV_WILLNEED;
  2983. /* Avoid an unnecessary call to unbind on the first bind. */
  2984. obj->map_and_fenceable = true;
  2985. return obj;
  2986. }
  2987. int i915_gem_init_object(struct drm_gem_object *obj)
  2988. {
  2989. BUG();
  2990. return 0;
  2991. }
  2992. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2993. {
  2994. struct drm_device *dev = obj->base.dev;
  2995. drm_i915_private_t *dev_priv = dev->dev_private;
  2996. int ret;
  2997. ret = i915_gem_object_unbind(obj);
  2998. if (ret == -ERESTARTSYS) {
  2999. list_move(&obj->mm_list,
  3000. &dev_priv->mm.deferred_free_list);
  3001. return;
  3002. }
  3003. trace_i915_gem_object_destroy(obj);
  3004. if (obj->base.map_list.map)
  3005. i915_gem_free_mmap_offset(obj);
  3006. drm_gem_object_release(&obj->base);
  3007. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3008. kfree(obj->page_cpu_valid);
  3009. kfree(obj->bit_17);
  3010. kfree(obj);
  3011. }
  3012. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3013. {
  3014. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3015. struct drm_device *dev = obj->base.dev;
  3016. while (obj->pin_count > 0)
  3017. i915_gem_object_unpin(obj);
  3018. if (obj->phys_obj)
  3019. i915_gem_detach_phys_object(dev, obj);
  3020. i915_gem_free_object_tail(obj);
  3021. }
  3022. int
  3023. i915_gem_idle(struct drm_device *dev)
  3024. {
  3025. drm_i915_private_t *dev_priv = dev->dev_private;
  3026. int ret;
  3027. mutex_lock(&dev->struct_mutex);
  3028. if (dev_priv->mm.suspended) {
  3029. mutex_unlock(&dev->struct_mutex);
  3030. return 0;
  3031. }
  3032. ret = i915_gpu_idle(dev);
  3033. if (ret) {
  3034. mutex_unlock(&dev->struct_mutex);
  3035. return ret;
  3036. }
  3037. /* Under UMS, be paranoid and evict. */
  3038. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3039. ret = i915_gem_evict_inactive(dev, false);
  3040. if (ret) {
  3041. mutex_unlock(&dev->struct_mutex);
  3042. return ret;
  3043. }
  3044. }
  3045. i915_gem_reset_fences(dev);
  3046. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3047. * We need to replace this with a semaphore, or something.
  3048. * And not confound mm.suspended!
  3049. */
  3050. dev_priv->mm.suspended = 1;
  3051. del_timer_sync(&dev_priv->hangcheck_timer);
  3052. i915_kernel_lost_context(dev);
  3053. i915_gem_cleanup_ringbuffer(dev);
  3054. mutex_unlock(&dev->struct_mutex);
  3055. /* Cancel the retire work handler, which should be idle now. */
  3056. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3057. return 0;
  3058. }
  3059. int
  3060. i915_gem_init_ringbuffer(struct drm_device *dev)
  3061. {
  3062. drm_i915_private_t *dev_priv = dev->dev_private;
  3063. int ret;
  3064. ret = intel_init_render_ring_buffer(dev);
  3065. if (ret)
  3066. return ret;
  3067. if (HAS_BSD(dev)) {
  3068. ret = intel_init_bsd_ring_buffer(dev);
  3069. if (ret)
  3070. goto cleanup_render_ring;
  3071. }
  3072. if (HAS_BLT(dev)) {
  3073. ret = intel_init_blt_ring_buffer(dev);
  3074. if (ret)
  3075. goto cleanup_bsd_ring;
  3076. }
  3077. dev_priv->next_seqno = 1;
  3078. return 0;
  3079. cleanup_bsd_ring:
  3080. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3081. cleanup_render_ring:
  3082. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3083. return ret;
  3084. }
  3085. void
  3086. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3087. {
  3088. drm_i915_private_t *dev_priv = dev->dev_private;
  3089. int i;
  3090. for (i = 0; i < I915_NUM_RINGS; i++)
  3091. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3092. }
  3093. int
  3094. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3095. struct drm_file *file_priv)
  3096. {
  3097. drm_i915_private_t *dev_priv = dev->dev_private;
  3098. int ret, i;
  3099. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3100. return 0;
  3101. if (atomic_read(&dev_priv->mm.wedged)) {
  3102. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3103. atomic_set(&dev_priv->mm.wedged, 0);
  3104. }
  3105. mutex_lock(&dev->struct_mutex);
  3106. dev_priv->mm.suspended = 0;
  3107. ret = i915_gem_init_ringbuffer(dev);
  3108. if (ret != 0) {
  3109. mutex_unlock(&dev->struct_mutex);
  3110. return ret;
  3111. }
  3112. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3113. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3114. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3115. for (i = 0; i < I915_NUM_RINGS; i++) {
  3116. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3117. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3118. }
  3119. mutex_unlock(&dev->struct_mutex);
  3120. ret = drm_irq_install(dev);
  3121. if (ret)
  3122. goto cleanup_ringbuffer;
  3123. return 0;
  3124. cleanup_ringbuffer:
  3125. mutex_lock(&dev->struct_mutex);
  3126. i915_gem_cleanup_ringbuffer(dev);
  3127. dev_priv->mm.suspended = 1;
  3128. mutex_unlock(&dev->struct_mutex);
  3129. return ret;
  3130. }
  3131. int
  3132. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3133. struct drm_file *file_priv)
  3134. {
  3135. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3136. return 0;
  3137. drm_irq_uninstall(dev);
  3138. return i915_gem_idle(dev);
  3139. }
  3140. void
  3141. i915_gem_lastclose(struct drm_device *dev)
  3142. {
  3143. int ret;
  3144. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3145. return;
  3146. ret = i915_gem_idle(dev);
  3147. if (ret)
  3148. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3149. }
  3150. static void
  3151. init_ring_lists(struct intel_ring_buffer *ring)
  3152. {
  3153. INIT_LIST_HEAD(&ring->active_list);
  3154. INIT_LIST_HEAD(&ring->request_list);
  3155. INIT_LIST_HEAD(&ring->gpu_write_list);
  3156. }
  3157. void
  3158. i915_gem_load(struct drm_device *dev)
  3159. {
  3160. int i;
  3161. drm_i915_private_t *dev_priv = dev->dev_private;
  3162. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3163. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3164. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3165. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3166. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3167. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3168. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3169. for (i = 0; i < I915_NUM_RINGS; i++)
  3170. init_ring_lists(&dev_priv->ring[i]);
  3171. for (i = 0; i < 16; i++)
  3172. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3173. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3174. i915_gem_retire_work_handler);
  3175. init_completion(&dev_priv->error_completion);
  3176. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3177. if (IS_GEN3(dev)) {
  3178. u32 tmp = I915_READ(MI_ARB_STATE);
  3179. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3180. /* arb state is a masked write, so set bit + bit in mask */
  3181. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3182. I915_WRITE(MI_ARB_STATE, tmp);
  3183. }
  3184. }
  3185. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3186. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3187. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3188. dev_priv->fence_reg_start = 3;
  3189. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3190. dev_priv->num_fence_regs = 16;
  3191. else
  3192. dev_priv->num_fence_regs = 8;
  3193. /* Initialize fence registers to zero */
  3194. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3195. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3196. }
  3197. i915_gem_detect_bit_6_swizzle(dev);
  3198. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3199. dev_priv->mm.interruptible = true;
  3200. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3201. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3202. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3203. }
  3204. /*
  3205. * Create a physically contiguous memory object for this object
  3206. * e.g. for cursor + overlay regs
  3207. */
  3208. static int i915_gem_init_phys_object(struct drm_device *dev,
  3209. int id, int size, int align)
  3210. {
  3211. drm_i915_private_t *dev_priv = dev->dev_private;
  3212. struct drm_i915_gem_phys_object *phys_obj;
  3213. int ret;
  3214. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3215. return 0;
  3216. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3217. if (!phys_obj)
  3218. return -ENOMEM;
  3219. phys_obj->id = id;
  3220. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3221. if (!phys_obj->handle) {
  3222. ret = -ENOMEM;
  3223. goto kfree_obj;
  3224. }
  3225. #ifdef CONFIG_X86
  3226. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3227. #endif
  3228. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3229. return 0;
  3230. kfree_obj:
  3231. kfree(phys_obj);
  3232. return ret;
  3233. }
  3234. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3235. {
  3236. drm_i915_private_t *dev_priv = dev->dev_private;
  3237. struct drm_i915_gem_phys_object *phys_obj;
  3238. if (!dev_priv->mm.phys_objs[id - 1])
  3239. return;
  3240. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3241. if (phys_obj->cur_obj) {
  3242. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3243. }
  3244. #ifdef CONFIG_X86
  3245. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3246. #endif
  3247. drm_pci_free(dev, phys_obj->handle);
  3248. kfree(phys_obj);
  3249. dev_priv->mm.phys_objs[id - 1] = NULL;
  3250. }
  3251. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3252. {
  3253. int i;
  3254. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3255. i915_gem_free_phys_object(dev, i);
  3256. }
  3257. void i915_gem_detach_phys_object(struct drm_device *dev,
  3258. struct drm_i915_gem_object *obj)
  3259. {
  3260. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3261. char *vaddr;
  3262. int i;
  3263. int page_count;
  3264. if (!obj->phys_obj)
  3265. return;
  3266. vaddr = obj->phys_obj->handle->vaddr;
  3267. page_count = obj->base.size / PAGE_SIZE;
  3268. for (i = 0; i < page_count; i++) {
  3269. struct page *page = shmem_read_mapping_page(mapping, i);
  3270. if (!IS_ERR(page)) {
  3271. char *dst = kmap_atomic(page);
  3272. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3273. kunmap_atomic(dst);
  3274. drm_clflush_pages(&page, 1);
  3275. set_page_dirty(page);
  3276. mark_page_accessed(page);
  3277. page_cache_release(page);
  3278. }
  3279. }
  3280. intel_gtt_chipset_flush();
  3281. obj->phys_obj->cur_obj = NULL;
  3282. obj->phys_obj = NULL;
  3283. }
  3284. int
  3285. i915_gem_attach_phys_object(struct drm_device *dev,
  3286. struct drm_i915_gem_object *obj,
  3287. int id,
  3288. int align)
  3289. {
  3290. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3291. drm_i915_private_t *dev_priv = dev->dev_private;
  3292. int ret = 0;
  3293. int page_count;
  3294. int i;
  3295. if (id > I915_MAX_PHYS_OBJECT)
  3296. return -EINVAL;
  3297. if (obj->phys_obj) {
  3298. if (obj->phys_obj->id == id)
  3299. return 0;
  3300. i915_gem_detach_phys_object(dev, obj);
  3301. }
  3302. /* create a new object */
  3303. if (!dev_priv->mm.phys_objs[id - 1]) {
  3304. ret = i915_gem_init_phys_object(dev, id,
  3305. obj->base.size, align);
  3306. if (ret) {
  3307. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3308. id, obj->base.size);
  3309. return ret;
  3310. }
  3311. }
  3312. /* bind to the object */
  3313. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3314. obj->phys_obj->cur_obj = obj;
  3315. page_count = obj->base.size / PAGE_SIZE;
  3316. for (i = 0; i < page_count; i++) {
  3317. struct page *page;
  3318. char *dst, *src;
  3319. page = shmem_read_mapping_page(mapping, i);
  3320. if (IS_ERR(page))
  3321. return PTR_ERR(page);
  3322. src = kmap_atomic(page);
  3323. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3324. memcpy(dst, src, PAGE_SIZE);
  3325. kunmap_atomic(src);
  3326. mark_page_accessed(page);
  3327. page_cache_release(page);
  3328. }
  3329. return 0;
  3330. }
  3331. static int
  3332. i915_gem_phys_pwrite(struct drm_device *dev,
  3333. struct drm_i915_gem_object *obj,
  3334. struct drm_i915_gem_pwrite *args,
  3335. struct drm_file *file_priv)
  3336. {
  3337. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3338. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3339. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3340. unsigned long unwritten;
  3341. /* The physical object once assigned is fixed for the lifetime
  3342. * of the obj, so we can safely drop the lock and continue
  3343. * to access vaddr.
  3344. */
  3345. mutex_unlock(&dev->struct_mutex);
  3346. unwritten = copy_from_user(vaddr, user_data, args->size);
  3347. mutex_lock(&dev->struct_mutex);
  3348. if (unwritten)
  3349. return -EFAULT;
  3350. }
  3351. intel_gtt_chipset_flush();
  3352. return 0;
  3353. }
  3354. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3355. {
  3356. struct drm_i915_file_private *file_priv = file->driver_priv;
  3357. /* Clean up our request list when the client is going away, so that
  3358. * later retire_requests won't dereference our soon-to-be-gone
  3359. * file_priv.
  3360. */
  3361. spin_lock(&file_priv->mm.lock);
  3362. while (!list_empty(&file_priv->mm.request_list)) {
  3363. struct drm_i915_gem_request *request;
  3364. request = list_first_entry(&file_priv->mm.request_list,
  3365. struct drm_i915_gem_request,
  3366. client_list);
  3367. list_del(&request->client_list);
  3368. request->file_priv = NULL;
  3369. }
  3370. spin_unlock(&file_priv->mm.lock);
  3371. }
  3372. static int
  3373. i915_gpu_is_active(struct drm_device *dev)
  3374. {
  3375. drm_i915_private_t *dev_priv = dev->dev_private;
  3376. int lists_empty;
  3377. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3378. list_empty(&dev_priv->mm.active_list);
  3379. return !lists_empty;
  3380. }
  3381. static int
  3382. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3383. {
  3384. struct drm_i915_private *dev_priv =
  3385. container_of(shrinker,
  3386. struct drm_i915_private,
  3387. mm.inactive_shrinker);
  3388. struct drm_device *dev = dev_priv->dev;
  3389. struct drm_i915_gem_object *obj, *next;
  3390. int nr_to_scan = sc->nr_to_scan;
  3391. int cnt;
  3392. if (!mutex_trylock(&dev->struct_mutex))
  3393. return 0;
  3394. /* "fast-path" to count number of available objects */
  3395. if (nr_to_scan == 0) {
  3396. cnt = 0;
  3397. list_for_each_entry(obj,
  3398. &dev_priv->mm.inactive_list,
  3399. mm_list)
  3400. cnt++;
  3401. mutex_unlock(&dev->struct_mutex);
  3402. return cnt / 100 * sysctl_vfs_cache_pressure;
  3403. }
  3404. rescan:
  3405. /* first scan for clean buffers */
  3406. i915_gem_retire_requests(dev);
  3407. list_for_each_entry_safe(obj, next,
  3408. &dev_priv->mm.inactive_list,
  3409. mm_list) {
  3410. if (i915_gem_object_is_purgeable(obj)) {
  3411. if (i915_gem_object_unbind(obj) == 0 &&
  3412. --nr_to_scan == 0)
  3413. break;
  3414. }
  3415. }
  3416. /* second pass, evict/count anything still on the inactive list */
  3417. cnt = 0;
  3418. list_for_each_entry_safe(obj, next,
  3419. &dev_priv->mm.inactive_list,
  3420. mm_list) {
  3421. if (nr_to_scan &&
  3422. i915_gem_object_unbind(obj) == 0)
  3423. nr_to_scan--;
  3424. else
  3425. cnt++;
  3426. }
  3427. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3428. /*
  3429. * We are desperate for pages, so as a last resort, wait
  3430. * for the GPU to finish and discard whatever we can.
  3431. * This has a dramatic impact to reduce the number of
  3432. * OOM-killer events whilst running the GPU aggressively.
  3433. */
  3434. if (i915_gpu_idle(dev) == 0)
  3435. goto rescan;
  3436. }
  3437. mutex_unlock(&dev->struct_mutex);
  3438. return cnt / 100 * sysctl_vfs_cache_pressure;
  3439. }