kvm_main.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef CONFIG_X86
  47. #include <asm/msidef.h>
  48. #endif
  49. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  50. #include "coalesced_mmio.h"
  51. #endif
  52. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  53. #include <linux/pci.h>
  54. #include <linux/interrupt.h>
  55. #include "irq.h"
  56. #endif
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. static int msi2intx = 1;
  60. module_param(msi2intx, bool, 0);
  61. DEFINE_SPINLOCK(kvm_lock);
  62. LIST_HEAD(vm_list);
  63. static cpumask_var_t cpus_hardware_enabled;
  64. struct kmem_cache *kvm_vcpu_cache;
  65. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  66. static __read_mostly struct preempt_ops kvm_preempt_ops;
  67. struct dentry *kvm_debugfs_dir;
  68. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  69. unsigned long arg);
  70. static bool kvm_rebooting;
  71. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  72. #ifdef CONFIG_X86
  73. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
  74. {
  75. int vcpu_id;
  76. struct kvm_vcpu *vcpu;
  77. struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
  78. int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
  79. >> MSI_ADDR_DEST_ID_SHIFT;
  80. int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
  81. >> MSI_DATA_VECTOR_SHIFT;
  82. int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
  83. (unsigned long *)&dev->guest_msi.address_lo);
  84. int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
  85. (unsigned long *)&dev->guest_msi.data);
  86. int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
  87. (unsigned long *)&dev->guest_msi.data);
  88. u32 deliver_bitmask;
  89. BUG_ON(!ioapic);
  90. deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
  91. dest_id, dest_mode);
  92. /* IOAPIC delivery mode value is the same as MSI here */
  93. switch (delivery_mode) {
  94. case IOAPIC_LOWEST_PRIORITY:
  95. vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
  96. deliver_bitmask);
  97. if (vcpu != NULL)
  98. kvm_apic_set_irq(vcpu, vector, trig_mode);
  99. else
  100. printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
  101. break;
  102. case IOAPIC_FIXED:
  103. for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
  104. if (!(deliver_bitmask & (1 << vcpu_id)))
  105. continue;
  106. deliver_bitmask &= ~(1 << vcpu_id);
  107. vcpu = ioapic->kvm->vcpus[vcpu_id];
  108. if (vcpu)
  109. kvm_apic_set_irq(vcpu, vector, trig_mode);
  110. }
  111. break;
  112. default:
  113. printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
  114. }
  115. }
  116. #else
  117. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
  118. #endif
  119. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  120. int assigned_dev_id)
  121. {
  122. struct list_head *ptr;
  123. struct kvm_assigned_dev_kernel *match;
  124. list_for_each(ptr, head) {
  125. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  126. if (match->assigned_dev_id == assigned_dev_id)
  127. return match;
  128. }
  129. return NULL;
  130. }
  131. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  132. {
  133. struct kvm_assigned_dev_kernel *assigned_dev;
  134. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  135. interrupt_work);
  136. /* This is taken to safely inject irq inside the guest. When
  137. * the interrupt injection (or the ioapic code) uses a
  138. * finer-grained lock, update this
  139. */
  140. mutex_lock(&assigned_dev->kvm->lock);
  141. if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
  142. kvm_set_irq(assigned_dev->kvm,
  143. assigned_dev->irq_source_id,
  144. assigned_dev->guest_irq, 1);
  145. else if (assigned_dev->irq_requested_type &
  146. KVM_ASSIGNED_DEV_GUEST_MSI) {
  147. assigned_device_msi_dispatch(assigned_dev);
  148. enable_irq(assigned_dev->host_irq);
  149. assigned_dev->host_irq_disabled = false;
  150. }
  151. mutex_unlock(&assigned_dev->kvm->lock);
  152. kvm_put_kvm(assigned_dev->kvm);
  153. }
  154. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  155. {
  156. struct kvm_assigned_dev_kernel *assigned_dev =
  157. (struct kvm_assigned_dev_kernel *) dev_id;
  158. kvm_get_kvm(assigned_dev->kvm);
  159. schedule_work(&assigned_dev->interrupt_work);
  160. disable_irq_nosync(irq);
  161. assigned_dev->host_irq_disabled = true;
  162. return IRQ_HANDLED;
  163. }
  164. /* Ack the irq line for an assigned device */
  165. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  166. {
  167. struct kvm_assigned_dev_kernel *dev;
  168. if (kian->gsi == -1)
  169. return;
  170. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  171. ack_notifier);
  172. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  173. /* The guest irq may be shared so this ack may be
  174. * from another device.
  175. */
  176. if (dev->host_irq_disabled) {
  177. enable_irq(dev->host_irq);
  178. dev->host_irq_disabled = false;
  179. }
  180. }
  181. static void kvm_free_assigned_irq(struct kvm *kvm,
  182. struct kvm_assigned_dev_kernel *assigned_dev)
  183. {
  184. if (!irqchip_in_kernel(kvm))
  185. return;
  186. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  187. if (assigned_dev->irq_source_id != -1)
  188. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  189. assigned_dev->irq_source_id = -1;
  190. if (!assigned_dev->irq_requested_type)
  191. return;
  192. if (cancel_work_sync(&assigned_dev->interrupt_work))
  193. /* We had pending work. That means we will have to take
  194. * care of kvm_put_kvm.
  195. */
  196. kvm_put_kvm(kvm);
  197. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  198. if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
  199. pci_disable_msi(assigned_dev->dev);
  200. assigned_dev->irq_requested_type = 0;
  201. }
  202. static void kvm_free_assigned_device(struct kvm *kvm,
  203. struct kvm_assigned_dev_kernel
  204. *assigned_dev)
  205. {
  206. kvm_free_assigned_irq(kvm, assigned_dev);
  207. pci_reset_function(assigned_dev->dev);
  208. pci_release_regions(assigned_dev->dev);
  209. pci_disable_device(assigned_dev->dev);
  210. pci_dev_put(assigned_dev->dev);
  211. list_del(&assigned_dev->list);
  212. kfree(assigned_dev);
  213. }
  214. void kvm_free_all_assigned_devices(struct kvm *kvm)
  215. {
  216. struct list_head *ptr, *ptr2;
  217. struct kvm_assigned_dev_kernel *assigned_dev;
  218. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  219. assigned_dev = list_entry(ptr,
  220. struct kvm_assigned_dev_kernel,
  221. list);
  222. kvm_free_assigned_device(kvm, assigned_dev);
  223. }
  224. }
  225. static int assigned_device_update_intx(struct kvm *kvm,
  226. struct kvm_assigned_dev_kernel *adev,
  227. struct kvm_assigned_irq *airq)
  228. {
  229. adev->guest_irq = airq->guest_irq;
  230. adev->ack_notifier.gsi = airq->guest_irq;
  231. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
  232. return 0;
  233. if (irqchip_in_kernel(kvm)) {
  234. if (!msi2intx &&
  235. adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) {
  236. free_irq(adev->host_irq, (void *)kvm);
  237. pci_disable_msi(adev->dev);
  238. }
  239. if (!capable(CAP_SYS_RAWIO))
  240. return -EPERM;
  241. if (airq->host_irq)
  242. adev->host_irq = airq->host_irq;
  243. else
  244. adev->host_irq = adev->dev->irq;
  245. /* Even though this is PCI, we don't want to use shared
  246. * interrupts. Sharing host devices with guest-assigned devices
  247. * on the same interrupt line is not a happy situation: there
  248. * are going to be long delays in accepting, acking, etc.
  249. */
  250. if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
  251. 0, "kvm_assigned_intx_device", (void *)adev))
  252. return -EIO;
  253. }
  254. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
  255. KVM_ASSIGNED_DEV_HOST_INTX;
  256. return 0;
  257. }
  258. #ifdef CONFIG_X86
  259. static int assigned_device_update_msi(struct kvm *kvm,
  260. struct kvm_assigned_dev_kernel *adev,
  261. struct kvm_assigned_irq *airq)
  262. {
  263. int r;
  264. if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
  265. /* x86 don't care upper address of guest msi message addr */
  266. adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
  267. adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
  268. adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
  269. adev->guest_msi.data = airq->guest_msi.data;
  270. adev->ack_notifier.gsi = -1;
  271. } else if (msi2intx) {
  272. adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
  273. adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
  274. adev->guest_irq = airq->guest_irq;
  275. adev->ack_notifier.gsi = airq->guest_irq;
  276. }
  277. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
  278. return 0;
  279. if (irqchip_in_kernel(kvm)) {
  280. if (!msi2intx) {
  281. if (adev->irq_requested_type &
  282. KVM_ASSIGNED_DEV_HOST_INTX)
  283. free_irq(adev->host_irq, (void *)adev);
  284. r = pci_enable_msi(adev->dev);
  285. if (r)
  286. return r;
  287. }
  288. adev->host_irq = adev->dev->irq;
  289. if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
  290. "kvm_assigned_msi_device", (void *)adev))
  291. return -EIO;
  292. }
  293. if (!msi2intx)
  294. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
  295. adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
  296. return 0;
  297. }
  298. #endif
  299. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  300. struct kvm_assigned_irq
  301. *assigned_irq)
  302. {
  303. int r = 0;
  304. struct kvm_assigned_dev_kernel *match;
  305. mutex_lock(&kvm->lock);
  306. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  307. assigned_irq->assigned_dev_id);
  308. if (!match) {
  309. mutex_unlock(&kvm->lock);
  310. return -EINVAL;
  311. }
  312. if (!match->irq_requested_type) {
  313. INIT_WORK(&match->interrupt_work,
  314. kvm_assigned_dev_interrupt_work_handler);
  315. if (irqchip_in_kernel(kvm)) {
  316. /* Register ack nofitier */
  317. match->ack_notifier.gsi = -1;
  318. match->ack_notifier.irq_acked =
  319. kvm_assigned_dev_ack_irq;
  320. kvm_register_irq_ack_notifier(kvm,
  321. &match->ack_notifier);
  322. /* Request IRQ source ID */
  323. r = kvm_request_irq_source_id(kvm);
  324. if (r < 0)
  325. goto out_release;
  326. else
  327. match->irq_source_id = r;
  328. #ifdef CONFIG_X86
  329. /* Determine host device irq type, we can know the
  330. * result from dev->msi_enabled */
  331. if (msi2intx)
  332. pci_enable_msi(match->dev);
  333. #endif
  334. }
  335. }
  336. if ((!msi2intx &&
  337. (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
  338. (msi2intx && match->dev->msi_enabled)) {
  339. #ifdef CONFIG_X86
  340. r = assigned_device_update_msi(kvm, match, assigned_irq);
  341. if (r) {
  342. printk(KERN_WARNING "kvm: failed to enable "
  343. "MSI device!\n");
  344. goto out_release;
  345. }
  346. #else
  347. r = -ENOTTY;
  348. #endif
  349. } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
  350. /* Host device IRQ 0 means don't support INTx */
  351. if (!msi2intx) {
  352. printk(KERN_WARNING
  353. "kvm: wait device to enable MSI!\n");
  354. r = 0;
  355. } else {
  356. printk(KERN_WARNING
  357. "kvm: failed to enable MSI device!\n");
  358. r = -ENOTTY;
  359. goto out_release;
  360. }
  361. } else {
  362. /* Non-sharing INTx mode */
  363. r = assigned_device_update_intx(kvm, match, assigned_irq);
  364. if (r) {
  365. printk(KERN_WARNING "kvm: failed to enable "
  366. "INTx device!\n");
  367. goto out_release;
  368. }
  369. }
  370. mutex_unlock(&kvm->lock);
  371. return r;
  372. out_release:
  373. mutex_unlock(&kvm->lock);
  374. kvm_free_assigned_device(kvm, match);
  375. return r;
  376. }
  377. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  378. struct kvm_assigned_pci_dev *assigned_dev)
  379. {
  380. int r = 0;
  381. struct kvm_assigned_dev_kernel *match;
  382. struct pci_dev *dev;
  383. mutex_lock(&kvm->lock);
  384. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  385. assigned_dev->assigned_dev_id);
  386. if (match) {
  387. /* device already assigned */
  388. r = -EINVAL;
  389. goto out;
  390. }
  391. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  392. if (match == NULL) {
  393. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  394. __func__);
  395. r = -ENOMEM;
  396. goto out;
  397. }
  398. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  399. assigned_dev->devfn);
  400. if (!dev) {
  401. printk(KERN_INFO "%s: host device not found\n", __func__);
  402. r = -EINVAL;
  403. goto out_free;
  404. }
  405. if (pci_enable_device(dev)) {
  406. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  407. r = -EBUSY;
  408. goto out_put;
  409. }
  410. r = pci_request_regions(dev, "kvm_assigned_device");
  411. if (r) {
  412. printk(KERN_INFO "%s: Could not get access to device regions\n",
  413. __func__);
  414. goto out_disable;
  415. }
  416. pci_reset_function(dev);
  417. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  418. match->host_busnr = assigned_dev->busnr;
  419. match->host_devfn = assigned_dev->devfn;
  420. match->dev = dev;
  421. match->irq_source_id = -1;
  422. match->kvm = kvm;
  423. list_add(&match->list, &kvm->arch.assigned_dev_head);
  424. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  425. r = kvm_iommu_map_guest(kvm, match);
  426. if (r)
  427. goto out_list_del;
  428. }
  429. out:
  430. mutex_unlock(&kvm->lock);
  431. return r;
  432. out_list_del:
  433. list_del(&match->list);
  434. pci_release_regions(dev);
  435. out_disable:
  436. pci_disable_device(dev);
  437. out_put:
  438. pci_dev_put(dev);
  439. out_free:
  440. kfree(match);
  441. mutex_unlock(&kvm->lock);
  442. return r;
  443. }
  444. #endif
  445. static inline int valid_vcpu(int n)
  446. {
  447. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  448. }
  449. inline int kvm_is_mmio_pfn(pfn_t pfn)
  450. {
  451. if (pfn_valid(pfn))
  452. return PageReserved(pfn_to_page(pfn));
  453. return true;
  454. }
  455. /*
  456. * Switches to specified vcpu, until a matching vcpu_put()
  457. */
  458. void vcpu_load(struct kvm_vcpu *vcpu)
  459. {
  460. int cpu;
  461. mutex_lock(&vcpu->mutex);
  462. cpu = get_cpu();
  463. preempt_notifier_register(&vcpu->preempt_notifier);
  464. kvm_arch_vcpu_load(vcpu, cpu);
  465. put_cpu();
  466. }
  467. void vcpu_put(struct kvm_vcpu *vcpu)
  468. {
  469. preempt_disable();
  470. kvm_arch_vcpu_put(vcpu);
  471. preempt_notifier_unregister(&vcpu->preempt_notifier);
  472. preempt_enable();
  473. mutex_unlock(&vcpu->mutex);
  474. }
  475. static void ack_flush(void *_completed)
  476. {
  477. }
  478. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  479. {
  480. int i, cpu, me;
  481. cpumask_var_t cpus;
  482. bool called = true;
  483. struct kvm_vcpu *vcpu;
  484. if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
  485. cpumask_clear(cpus);
  486. me = get_cpu();
  487. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  488. vcpu = kvm->vcpus[i];
  489. if (!vcpu)
  490. continue;
  491. if (test_and_set_bit(req, &vcpu->requests))
  492. continue;
  493. cpu = vcpu->cpu;
  494. if (cpus != NULL && cpu != -1 && cpu != me)
  495. cpumask_set_cpu(cpu, cpus);
  496. }
  497. if (unlikely(cpus == NULL))
  498. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  499. else if (!cpumask_empty(cpus))
  500. smp_call_function_many(cpus, ack_flush, NULL, 1);
  501. else
  502. called = false;
  503. put_cpu();
  504. free_cpumask_var(cpus);
  505. return called;
  506. }
  507. void kvm_flush_remote_tlbs(struct kvm *kvm)
  508. {
  509. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  510. ++kvm->stat.remote_tlb_flush;
  511. }
  512. void kvm_reload_remote_mmus(struct kvm *kvm)
  513. {
  514. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  515. }
  516. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  517. {
  518. struct page *page;
  519. int r;
  520. mutex_init(&vcpu->mutex);
  521. vcpu->cpu = -1;
  522. vcpu->kvm = kvm;
  523. vcpu->vcpu_id = id;
  524. init_waitqueue_head(&vcpu->wq);
  525. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  526. if (!page) {
  527. r = -ENOMEM;
  528. goto fail;
  529. }
  530. vcpu->run = page_address(page);
  531. r = kvm_arch_vcpu_init(vcpu);
  532. if (r < 0)
  533. goto fail_free_run;
  534. return 0;
  535. fail_free_run:
  536. free_page((unsigned long)vcpu->run);
  537. fail:
  538. return r;
  539. }
  540. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  541. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  542. {
  543. kvm_arch_vcpu_uninit(vcpu);
  544. free_page((unsigned long)vcpu->run);
  545. }
  546. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  547. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  548. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  549. {
  550. return container_of(mn, struct kvm, mmu_notifier);
  551. }
  552. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  553. struct mm_struct *mm,
  554. unsigned long address)
  555. {
  556. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  557. int need_tlb_flush;
  558. /*
  559. * When ->invalidate_page runs, the linux pte has been zapped
  560. * already but the page is still allocated until
  561. * ->invalidate_page returns. So if we increase the sequence
  562. * here the kvm page fault will notice if the spte can't be
  563. * established because the page is going to be freed. If
  564. * instead the kvm page fault establishes the spte before
  565. * ->invalidate_page runs, kvm_unmap_hva will release it
  566. * before returning.
  567. *
  568. * The sequence increase only need to be seen at spin_unlock
  569. * time, and not at spin_lock time.
  570. *
  571. * Increasing the sequence after the spin_unlock would be
  572. * unsafe because the kvm page fault could then establish the
  573. * pte after kvm_unmap_hva returned, without noticing the page
  574. * is going to be freed.
  575. */
  576. spin_lock(&kvm->mmu_lock);
  577. kvm->mmu_notifier_seq++;
  578. need_tlb_flush = kvm_unmap_hva(kvm, address);
  579. spin_unlock(&kvm->mmu_lock);
  580. /* we've to flush the tlb before the pages can be freed */
  581. if (need_tlb_flush)
  582. kvm_flush_remote_tlbs(kvm);
  583. }
  584. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  585. struct mm_struct *mm,
  586. unsigned long start,
  587. unsigned long end)
  588. {
  589. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  590. int need_tlb_flush = 0;
  591. spin_lock(&kvm->mmu_lock);
  592. /*
  593. * The count increase must become visible at unlock time as no
  594. * spte can be established without taking the mmu_lock and
  595. * count is also read inside the mmu_lock critical section.
  596. */
  597. kvm->mmu_notifier_count++;
  598. for (; start < end; start += PAGE_SIZE)
  599. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  600. spin_unlock(&kvm->mmu_lock);
  601. /* we've to flush the tlb before the pages can be freed */
  602. if (need_tlb_flush)
  603. kvm_flush_remote_tlbs(kvm);
  604. }
  605. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  606. struct mm_struct *mm,
  607. unsigned long start,
  608. unsigned long end)
  609. {
  610. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  611. spin_lock(&kvm->mmu_lock);
  612. /*
  613. * This sequence increase will notify the kvm page fault that
  614. * the page that is going to be mapped in the spte could have
  615. * been freed.
  616. */
  617. kvm->mmu_notifier_seq++;
  618. /*
  619. * The above sequence increase must be visible before the
  620. * below count decrease but both values are read by the kvm
  621. * page fault under mmu_lock spinlock so we don't need to add
  622. * a smb_wmb() here in between the two.
  623. */
  624. kvm->mmu_notifier_count--;
  625. spin_unlock(&kvm->mmu_lock);
  626. BUG_ON(kvm->mmu_notifier_count < 0);
  627. }
  628. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  629. struct mm_struct *mm,
  630. unsigned long address)
  631. {
  632. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  633. int young;
  634. spin_lock(&kvm->mmu_lock);
  635. young = kvm_age_hva(kvm, address);
  636. spin_unlock(&kvm->mmu_lock);
  637. if (young)
  638. kvm_flush_remote_tlbs(kvm);
  639. return young;
  640. }
  641. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  642. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  643. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  644. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  645. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  646. };
  647. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  648. static struct kvm *kvm_create_vm(void)
  649. {
  650. struct kvm *kvm = kvm_arch_create_vm();
  651. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  652. struct page *page;
  653. #endif
  654. if (IS_ERR(kvm))
  655. goto out;
  656. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  657. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  658. if (!page) {
  659. kfree(kvm);
  660. return ERR_PTR(-ENOMEM);
  661. }
  662. kvm->coalesced_mmio_ring =
  663. (struct kvm_coalesced_mmio_ring *)page_address(page);
  664. #endif
  665. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  666. {
  667. int err;
  668. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  669. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  670. if (err) {
  671. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  672. put_page(page);
  673. #endif
  674. kfree(kvm);
  675. return ERR_PTR(err);
  676. }
  677. }
  678. #endif
  679. kvm->mm = current->mm;
  680. atomic_inc(&kvm->mm->mm_count);
  681. spin_lock_init(&kvm->mmu_lock);
  682. kvm_io_bus_init(&kvm->pio_bus);
  683. mutex_init(&kvm->lock);
  684. kvm_io_bus_init(&kvm->mmio_bus);
  685. init_rwsem(&kvm->slots_lock);
  686. atomic_set(&kvm->users_count, 1);
  687. spin_lock(&kvm_lock);
  688. list_add(&kvm->vm_list, &vm_list);
  689. spin_unlock(&kvm_lock);
  690. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  691. kvm_coalesced_mmio_init(kvm);
  692. #endif
  693. out:
  694. return kvm;
  695. }
  696. /*
  697. * Free any memory in @free but not in @dont.
  698. */
  699. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  700. struct kvm_memory_slot *dont)
  701. {
  702. if (!dont || free->rmap != dont->rmap)
  703. vfree(free->rmap);
  704. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  705. vfree(free->dirty_bitmap);
  706. if (!dont || free->lpage_info != dont->lpage_info)
  707. vfree(free->lpage_info);
  708. free->npages = 0;
  709. free->dirty_bitmap = NULL;
  710. free->rmap = NULL;
  711. free->lpage_info = NULL;
  712. }
  713. void kvm_free_physmem(struct kvm *kvm)
  714. {
  715. int i;
  716. for (i = 0; i < kvm->nmemslots; ++i)
  717. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  718. }
  719. static void kvm_destroy_vm(struct kvm *kvm)
  720. {
  721. struct mm_struct *mm = kvm->mm;
  722. spin_lock(&kvm_lock);
  723. list_del(&kvm->vm_list);
  724. spin_unlock(&kvm_lock);
  725. kvm_io_bus_destroy(&kvm->pio_bus);
  726. kvm_io_bus_destroy(&kvm->mmio_bus);
  727. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  728. if (kvm->coalesced_mmio_ring != NULL)
  729. free_page((unsigned long)kvm->coalesced_mmio_ring);
  730. #endif
  731. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  732. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  733. #endif
  734. kvm_arch_destroy_vm(kvm);
  735. mmdrop(mm);
  736. }
  737. void kvm_get_kvm(struct kvm *kvm)
  738. {
  739. atomic_inc(&kvm->users_count);
  740. }
  741. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  742. void kvm_put_kvm(struct kvm *kvm)
  743. {
  744. if (atomic_dec_and_test(&kvm->users_count))
  745. kvm_destroy_vm(kvm);
  746. }
  747. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  748. static int kvm_vm_release(struct inode *inode, struct file *filp)
  749. {
  750. struct kvm *kvm = filp->private_data;
  751. kvm_put_kvm(kvm);
  752. return 0;
  753. }
  754. /*
  755. * Allocate some memory and give it an address in the guest physical address
  756. * space.
  757. *
  758. * Discontiguous memory is allowed, mostly for framebuffers.
  759. *
  760. * Must be called holding mmap_sem for write.
  761. */
  762. int __kvm_set_memory_region(struct kvm *kvm,
  763. struct kvm_userspace_memory_region *mem,
  764. int user_alloc)
  765. {
  766. int r;
  767. gfn_t base_gfn;
  768. unsigned long npages;
  769. unsigned long i;
  770. struct kvm_memory_slot *memslot;
  771. struct kvm_memory_slot old, new;
  772. r = -EINVAL;
  773. /* General sanity checks */
  774. if (mem->memory_size & (PAGE_SIZE - 1))
  775. goto out;
  776. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  777. goto out;
  778. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  779. goto out;
  780. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  781. goto out;
  782. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  783. goto out;
  784. memslot = &kvm->memslots[mem->slot];
  785. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  786. npages = mem->memory_size >> PAGE_SHIFT;
  787. if (!npages)
  788. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  789. new = old = *memslot;
  790. new.base_gfn = base_gfn;
  791. new.npages = npages;
  792. new.flags = mem->flags;
  793. /* Disallow changing a memory slot's size. */
  794. r = -EINVAL;
  795. if (npages && old.npages && npages != old.npages)
  796. goto out_free;
  797. /* Check for overlaps */
  798. r = -EEXIST;
  799. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  800. struct kvm_memory_slot *s = &kvm->memslots[i];
  801. if (s == memslot)
  802. continue;
  803. if (!((base_gfn + npages <= s->base_gfn) ||
  804. (base_gfn >= s->base_gfn + s->npages)))
  805. goto out_free;
  806. }
  807. /* Free page dirty bitmap if unneeded */
  808. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  809. new.dirty_bitmap = NULL;
  810. r = -ENOMEM;
  811. /* Allocate if a slot is being created */
  812. #ifndef CONFIG_S390
  813. if (npages && !new.rmap) {
  814. new.rmap = vmalloc(npages * sizeof(struct page *));
  815. if (!new.rmap)
  816. goto out_free;
  817. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  818. new.user_alloc = user_alloc;
  819. /*
  820. * hva_to_rmmap() serialzies with the mmu_lock and to be
  821. * safe it has to ignore memslots with !user_alloc &&
  822. * !userspace_addr.
  823. */
  824. if (user_alloc)
  825. new.userspace_addr = mem->userspace_addr;
  826. else
  827. new.userspace_addr = 0;
  828. }
  829. if (npages && !new.lpage_info) {
  830. int largepages = npages / KVM_PAGES_PER_HPAGE;
  831. if (npages % KVM_PAGES_PER_HPAGE)
  832. largepages++;
  833. if (base_gfn % KVM_PAGES_PER_HPAGE)
  834. largepages++;
  835. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  836. if (!new.lpage_info)
  837. goto out_free;
  838. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  839. if (base_gfn % KVM_PAGES_PER_HPAGE)
  840. new.lpage_info[0].write_count = 1;
  841. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  842. new.lpage_info[largepages-1].write_count = 1;
  843. }
  844. /* Allocate page dirty bitmap if needed */
  845. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  846. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  847. new.dirty_bitmap = vmalloc(dirty_bytes);
  848. if (!new.dirty_bitmap)
  849. goto out_free;
  850. memset(new.dirty_bitmap, 0, dirty_bytes);
  851. }
  852. #endif /* not defined CONFIG_S390 */
  853. if (!npages)
  854. kvm_arch_flush_shadow(kvm);
  855. spin_lock(&kvm->mmu_lock);
  856. if (mem->slot >= kvm->nmemslots)
  857. kvm->nmemslots = mem->slot + 1;
  858. *memslot = new;
  859. spin_unlock(&kvm->mmu_lock);
  860. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  861. if (r) {
  862. spin_lock(&kvm->mmu_lock);
  863. *memslot = old;
  864. spin_unlock(&kvm->mmu_lock);
  865. goto out_free;
  866. }
  867. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  868. /* Slot deletion case: we have to update the current slot */
  869. if (!npages)
  870. *memslot = old;
  871. #ifdef CONFIG_DMAR
  872. /* map the pages in iommu page table */
  873. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  874. if (r)
  875. goto out;
  876. #endif
  877. return 0;
  878. out_free:
  879. kvm_free_physmem_slot(&new, &old);
  880. out:
  881. return r;
  882. }
  883. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  884. int kvm_set_memory_region(struct kvm *kvm,
  885. struct kvm_userspace_memory_region *mem,
  886. int user_alloc)
  887. {
  888. int r;
  889. down_write(&kvm->slots_lock);
  890. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  891. up_write(&kvm->slots_lock);
  892. return r;
  893. }
  894. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  895. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  896. struct
  897. kvm_userspace_memory_region *mem,
  898. int user_alloc)
  899. {
  900. if (mem->slot >= KVM_MEMORY_SLOTS)
  901. return -EINVAL;
  902. return kvm_set_memory_region(kvm, mem, user_alloc);
  903. }
  904. int kvm_get_dirty_log(struct kvm *kvm,
  905. struct kvm_dirty_log *log, int *is_dirty)
  906. {
  907. struct kvm_memory_slot *memslot;
  908. int r, i;
  909. int n;
  910. unsigned long any = 0;
  911. r = -EINVAL;
  912. if (log->slot >= KVM_MEMORY_SLOTS)
  913. goto out;
  914. memslot = &kvm->memslots[log->slot];
  915. r = -ENOENT;
  916. if (!memslot->dirty_bitmap)
  917. goto out;
  918. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  919. for (i = 0; !any && i < n/sizeof(long); ++i)
  920. any = memslot->dirty_bitmap[i];
  921. r = -EFAULT;
  922. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  923. goto out;
  924. if (any)
  925. *is_dirty = 1;
  926. r = 0;
  927. out:
  928. return r;
  929. }
  930. int is_error_page(struct page *page)
  931. {
  932. return page == bad_page;
  933. }
  934. EXPORT_SYMBOL_GPL(is_error_page);
  935. int is_error_pfn(pfn_t pfn)
  936. {
  937. return pfn == bad_pfn;
  938. }
  939. EXPORT_SYMBOL_GPL(is_error_pfn);
  940. static inline unsigned long bad_hva(void)
  941. {
  942. return PAGE_OFFSET;
  943. }
  944. int kvm_is_error_hva(unsigned long addr)
  945. {
  946. return addr == bad_hva();
  947. }
  948. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  949. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  950. {
  951. int i;
  952. for (i = 0; i < kvm->nmemslots; ++i) {
  953. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  954. if (gfn >= memslot->base_gfn
  955. && gfn < memslot->base_gfn + memslot->npages)
  956. return memslot;
  957. }
  958. return NULL;
  959. }
  960. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  961. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  962. {
  963. gfn = unalias_gfn(kvm, gfn);
  964. return gfn_to_memslot_unaliased(kvm, gfn);
  965. }
  966. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  967. {
  968. int i;
  969. gfn = unalias_gfn(kvm, gfn);
  970. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  971. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  972. if (gfn >= memslot->base_gfn
  973. && gfn < memslot->base_gfn + memslot->npages)
  974. return 1;
  975. }
  976. return 0;
  977. }
  978. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  979. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  980. {
  981. struct kvm_memory_slot *slot;
  982. gfn = unalias_gfn(kvm, gfn);
  983. slot = gfn_to_memslot_unaliased(kvm, gfn);
  984. if (!slot)
  985. return bad_hva();
  986. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  987. }
  988. EXPORT_SYMBOL_GPL(gfn_to_hva);
  989. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  990. {
  991. struct page *page[1];
  992. unsigned long addr;
  993. int npages;
  994. pfn_t pfn;
  995. might_sleep();
  996. addr = gfn_to_hva(kvm, gfn);
  997. if (kvm_is_error_hva(addr)) {
  998. get_page(bad_page);
  999. return page_to_pfn(bad_page);
  1000. }
  1001. npages = get_user_pages_fast(addr, 1, 1, page);
  1002. if (unlikely(npages != 1)) {
  1003. struct vm_area_struct *vma;
  1004. down_read(&current->mm->mmap_sem);
  1005. vma = find_vma(current->mm, addr);
  1006. if (vma == NULL || addr < vma->vm_start ||
  1007. !(vma->vm_flags & VM_PFNMAP)) {
  1008. up_read(&current->mm->mmap_sem);
  1009. get_page(bad_page);
  1010. return page_to_pfn(bad_page);
  1011. }
  1012. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1013. up_read(&current->mm->mmap_sem);
  1014. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1015. } else
  1016. pfn = page_to_pfn(page[0]);
  1017. return pfn;
  1018. }
  1019. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1020. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1021. {
  1022. pfn_t pfn;
  1023. pfn = gfn_to_pfn(kvm, gfn);
  1024. if (!kvm_is_mmio_pfn(pfn))
  1025. return pfn_to_page(pfn);
  1026. WARN_ON(kvm_is_mmio_pfn(pfn));
  1027. get_page(bad_page);
  1028. return bad_page;
  1029. }
  1030. EXPORT_SYMBOL_GPL(gfn_to_page);
  1031. void kvm_release_page_clean(struct page *page)
  1032. {
  1033. kvm_release_pfn_clean(page_to_pfn(page));
  1034. }
  1035. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1036. void kvm_release_pfn_clean(pfn_t pfn)
  1037. {
  1038. if (!kvm_is_mmio_pfn(pfn))
  1039. put_page(pfn_to_page(pfn));
  1040. }
  1041. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1042. void kvm_release_page_dirty(struct page *page)
  1043. {
  1044. kvm_release_pfn_dirty(page_to_pfn(page));
  1045. }
  1046. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1047. void kvm_release_pfn_dirty(pfn_t pfn)
  1048. {
  1049. kvm_set_pfn_dirty(pfn);
  1050. kvm_release_pfn_clean(pfn);
  1051. }
  1052. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1053. void kvm_set_page_dirty(struct page *page)
  1054. {
  1055. kvm_set_pfn_dirty(page_to_pfn(page));
  1056. }
  1057. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1058. void kvm_set_pfn_dirty(pfn_t pfn)
  1059. {
  1060. if (!kvm_is_mmio_pfn(pfn)) {
  1061. struct page *page = pfn_to_page(pfn);
  1062. if (!PageReserved(page))
  1063. SetPageDirty(page);
  1064. }
  1065. }
  1066. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1067. void kvm_set_pfn_accessed(pfn_t pfn)
  1068. {
  1069. if (!kvm_is_mmio_pfn(pfn))
  1070. mark_page_accessed(pfn_to_page(pfn));
  1071. }
  1072. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1073. void kvm_get_pfn(pfn_t pfn)
  1074. {
  1075. if (!kvm_is_mmio_pfn(pfn))
  1076. get_page(pfn_to_page(pfn));
  1077. }
  1078. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1079. static int next_segment(unsigned long len, int offset)
  1080. {
  1081. if (len > PAGE_SIZE - offset)
  1082. return PAGE_SIZE - offset;
  1083. else
  1084. return len;
  1085. }
  1086. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1087. int len)
  1088. {
  1089. int r;
  1090. unsigned long addr;
  1091. addr = gfn_to_hva(kvm, gfn);
  1092. if (kvm_is_error_hva(addr))
  1093. return -EFAULT;
  1094. r = copy_from_user(data, (void __user *)addr + offset, len);
  1095. if (r)
  1096. return -EFAULT;
  1097. return 0;
  1098. }
  1099. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1100. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1101. {
  1102. gfn_t gfn = gpa >> PAGE_SHIFT;
  1103. int seg;
  1104. int offset = offset_in_page(gpa);
  1105. int ret;
  1106. while ((seg = next_segment(len, offset)) != 0) {
  1107. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1108. if (ret < 0)
  1109. return ret;
  1110. offset = 0;
  1111. len -= seg;
  1112. data += seg;
  1113. ++gfn;
  1114. }
  1115. return 0;
  1116. }
  1117. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1118. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1119. unsigned long len)
  1120. {
  1121. int r;
  1122. unsigned long addr;
  1123. gfn_t gfn = gpa >> PAGE_SHIFT;
  1124. int offset = offset_in_page(gpa);
  1125. addr = gfn_to_hva(kvm, gfn);
  1126. if (kvm_is_error_hva(addr))
  1127. return -EFAULT;
  1128. pagefault_disable();
  1129. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1130. pagefault_enable();
  1131. if (r)
  1132. return -EFAULT;
  1133. return 0;
  1134. }
  1135. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1136. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1137. int offset, int len)
  1138. {
  1139. int r;
  1140. unsigned long addr;
  1141. addr = gfn_to_hva(kvm, gfn);
  1142. if (kvm_is_error_hva(addr))
  1143. return -EFAULT;
  1144. r = copy_to_user((void __user *)addr + offset, data, len);
  1145. if (r)
  1146. return -EFAULT;
  1147. mark_page_dirty(kvm, gfn);
  1148. return 0;
  1149. }
  1150. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1151. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1152. unsigned long len)
  1153. {
  1154. gfn_t gfn = gpa >> PAGE_SHIFT;
  1155. int seg;
  1156. int offset = offset_in_page(gpa);
  1157. int ret;
  1158. while ((seg = next_segment(len, offset)) != 0) {
  1159. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1160. if (ret < 0)
  1161. return ret;
  1162. offset = 0;
  1163. len -= seg;
  1164. data += seg;
  1165. ++gfn;
  1166. }
  1167. return 0;
  1168. }
  1169. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1170. {
  1171. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1172. }
  1173. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1174. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1175. {
  1176. gfn_t gfn = gpa >> PAGE_SHIFT;
  1177. int seg;
  1178. int offset = offset_in_page(gpa);
  1179. int ret;
  1180. while ((seg = next_segment(len, offset)) != 0) {
  1181. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1182. if (ret < 0)
  1183. return ret;
  1184. offset = 0;
  1185. len -= seg;
  1186. ++gfn;
  1187. }
  1188. return 0;
  1189. }
  1190. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1191. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1192. {
  1193. struct kvm_memory_slot *memslot;
  1194. gfn = unalias_gfn(kvm, gfn);
  1195. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1196. if (memslot && memslot->dirty_bitmap) {
  1197. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1198. /* avoid RMW */
  1199. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1200. set_bit(rel_gfn, memslot->dirty_bitmap);
  1201. }
  1202. }
  1203. /*
  1204. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1205. */
  1206. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1207. {
  1208. DEFINE_WAIT(wait);
  1209. for (;;) {
  1210. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1211. if (kvm_cpu_has_interrupt(vcpu) ||
  1212. kvm_cpu_has_pending_timer(vcpu) ||
  1213. kvm_arch_vcpu_runnable(vcpu)) {
  1214. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1215. break;
  1216. }
  1217. if (signal_pending(current))
  1218. break;
  1219. vcpu_put(vcpu);
  1220. schedule();
  1221. vcpu_load(vcpu);
  1222. }
  1223. finish_wait(&vcpu->wq, &wait);
  1224. }
  1225. void kvm_resched(struct kvm_vcpu *vcpu)
  1226. {
  1227. if (!need_resched())
  1228. return;
  1229. cond_resched();
  1230. }
  1231. EXPORT_SYMBOL_GPL(kvm_resched);
  1232. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1233. {
  1234. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1235. struct page *page;
  1236. if (vmf->pgoff == 0)
  1237. page = virt_to_page(vcpu->run);
  1238. #ifdef CONFIG_X86
  1239. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1240. page = virt_to_page(vcpu->arch.pio_data);
  1241. #endif
  1242. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1243. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1244. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1245. #endif
  1246. else
  1247. return VM_FAULT_SIGBUS;
  1248. get_page(page);
  1249. vmf->page = page;
  1250. return 0;
  1251. }
  1252. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1253. .fault = kvm_vcpu_fault,
  1254. };
  1255. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1256. {
  1257. vma->vm_ops = &kvm_vcpu_vm_ops;
  1258. return 0;
  1259. }
  1260. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1261. {
  1262. struct kvm_vcpu *vcpu = filp->private_data;
  1263. kvm_put_kvm(vcpu->kvm);
  1264. return 0;
  1265. }
  1266. static struct file_operations kvm_vcpu_fops = {
  1267. .release = kvm_vcpu_release,
  1268. .unlocked_ioctl = kvm_vcpu_ioctl,
  1269. .compat_ioctl = kvm_vcpu_ioctl,
  1270. .mmap = kvm_vcpu_mmap,
  1271. };
  1272. /*
  1273. * Allocates an inode for the vcpu.
  1274. */
  1275. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1276. {
  1277. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1278. if (fd < 0)
  1279. kvm_put_kvm(vcpu->kvm);
  1280. return fd;
  1281. }
  1282. /*
  1283. * Creates some virtual cpus. Good luck creating more than one.
  1284. */
  1285. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1286. {
  1287. int r;
  1288. struct kvm_vcpu *vcpu;
  1289. if (!valid_vcpu(n))
  1290. return -EINVAL;
  1291. vcpu = kvm_arch_vcpu_create(kvm, n);
  1292. if (IS_ERR(vcpu))
  1293. return PTR_ERR(vcpu);
  1294. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1295. r = kvm_arch_vcpu_setup(vcpu);
  1296. if (r)
  1297. return r;
  1298. mutex_lock(&kvm->lock);
  1299. if (kvm->vcpus[n]) {
  1300. r = -EEXIST;
  1301. goto vcpu_destroy;
  1302. }
  1303. kvm->vcpus[n] = vcpu;
  1304. mutex_unlock(&kvm->lock);
  1305. /* Now it's all set up, let userspace reach it */
  1306. kvm_get_kvm(kvm);
  1307. r = create_vcpu_fd(vcpu);
  1308. if (r < 0)
  1309. goto unlink;
  1310. return r;
  1311. unlink:
  1312. mutex_lock(&kvm->lock);
  1313. kvm->vcpus[n] = NULL;
  1314. vcpu_destroy:
  1315. mutex_unlock(&kvm->lock);
  1316. kvm_arch_vcpu_destroy(vcpu);
  1317. return r;
  1318. }
  1319. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1320. {
  1321. if (sigset) {
  1322. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1323. vcpu->sigset_active = 1;
  1324. vcpu->sigset = *sigset;
  1325. } else
  1326. vcpu->sigset_active = 0;
  1327. return 0;
  1328. }
  1329. static long kvm_vcpu_ioctl(struct file *filp,
  1330. unsigned int ioctl, unsigned long arg)
  1331. {
  1332. struct kvm_vcpu *vcpu = filp->private_data;
  1333. void __user *argp = (void __user *)arg;
  1334. int r;
  1335. struct kvm_fpu *fpu = NULL;
  1336. struct kvm_sregs *kvm_sregs = NULL;
  1337. if (vcpu->kvm->mm != current->mm)
  1338. return -EIO;
  1339. switch (ioctl) {
  1340. case KVM_RUN:
  1341. r = -EINVAL;
  1342. if (arg)
  1343. goto out;
  1344. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1345. break;
  1346. case KVM_GET_REGS: {
  1347. struct kvm_regs *kvm_regs;
  1348. r = -ENOMEM;
  1349. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1350. if (!kvm_regs)
  1351. goto out;
  1352. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1353. if (r)
  1354. goto out_free1;
  1355. r = -EFAULT;
  1356. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1357. goto out_free1;
  1358. r = 0;
  1359. out_free1:
  1360. kfree(kvm_regs);
  1361. break;
  1362. }
  1363. case KVM_SET_REGS: {
  1364. struct kvm_regs *kvm_regs;
  1365. r = -ENOMEM;
  1366. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1367. if (!kvm_regs)
  1368. goto out;
  1369. r = -EFAULT;
  1370. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1371. goto out_free2;
  1372. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1373. if (r)
  1374. goto out_free2;
  1375. r = 0;
  1376. out_free2:
  1377. kfree(kvm_regs);
  1378. break;
  1379. }
  1380. case KVM_GET_SREGS: {
  1381. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1382. r = -ENOMEM;
  1383. if (!kvm_sregs)
  1384. goto out;
  1385. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1386. if (r)
  1387. goto out;
  1388. r = -EFAULT;
  1389. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1390. goto out;
  1391. r = 0;
  1392. break;
  1393. }
  1394. case KVM_SET_SREGS: {
  1395. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1396. r = -ENOMEM;
  1397. if (!kvm_sregs)
  1398. goto out;
  1399. r = -EFAULT;
  1400. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1401. goto out;
  1402. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1403. if (r)
  1404. goto out;
  1405. r = 0;
  1406. break;
  1407. }
  1408. case KVM_GET_MP_STATE: {
  1409. struct kvm_mp_state mp_state;
  1410. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1411. if (r)
  1412. goto out;
  1413. r = -EFAULT;
  1414. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1415. goto out;
  1416. r = 0;
  1417. break;
  1418. }
  1419. case KVM_SET_MP_STATE: {
  1420. struct kvm_mp_state mp_state;
  1421. r = -EFAULT;
  1422. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1423. goto out;
  1424. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1425. if (r)
  1426. goto out;
  1427. r = 0;
  1428. break;
  1429. }
  1430. case KVM_TRANSLATE: {
  1431. struct kvm_translation tr;
  1432. r = -EFAULT;
  1433. if (copy_from_user(&tr, argp, sizeof tr))
  1434. goto out;
  1435. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1436. if (r)
  1437. goto out;
  1438. r = -EFAULT;
  1439. if (copy_to_user(argp, &tr, sizeof tr))
  1440. goto out;
  1441. r = 0;
  1442. break;
  1443. }
  1444. case KVM_DEBUG_GUEST: {
  1445. struct kvm_debug_guest dbg;
  1446. r = -EFAULT;
  1447. if (copy_from_user(&dbg, argp, sizeof dbg))
  1448. goto out;
  1449. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1450. if (r)
  1451. goto out;
  1452. r = 0;
  1453. break;
  1454. }
  1455. case KVM_SET_SIGNAL_MASK: {
  1456. struct kvm_signal_mask __user *sigmask_arg = argp;
  1457. struct kvm_signal_mask kvm_sigmask;
  1458. sigset_t sigset, *p;
  1459. p = NULL;
  1460. if (argp) {
  1461. r = -EFAULT;
  1462. if (copy_from_user(&kvm_sigmask, argp,
  1463. sizeof kvm_sigmask))
  1464. goto out;
  1465. r = -EINVAL;
  1466. if (kvm_sigmask.len != sizeof sigset)
  1467. goto out;
  1468. r = -EFAULT;
  1469. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1470. sizeof sigset))
  1471. goto out;
  1472. p = &sigset;
  1473. }
  1474. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1475. break;
  1476. }
  1477. case KVM_GET_FPU: {
  1478. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1479. r = -ENOMEM;
  1480. if (!fpu)
  1481. goto out;
  1482. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1483. if (r)
  1484. goto out;
  1485. r = -EFAULT;
  1486. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1487. goto out;
  1488. r = 0;
  1489. break;
  1490. }
  1491. case KVM_SET_FPU: {
  1492. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1493. r = -ENOMEM;
  1494. if (!fpu)
  1495. goto out;
  1496. r = -EFAULT;
  1497. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1498. goto out;
  1499. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1500. if (r)
  1501. goto out;
  1502. r = 0;
  1503. break;
  1504. }
  1505. default:
  1506. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1507. }
  1508. out:
  1509. kfree(fpu);
  1510. kfree(kvm_sregs);
  1511. return r;
  1512. }
  1513. static long kvm_vm_ioctl(struct file *filp,
  1514. unsigned int ioctl, unsigned long arg)
  1515. {
  1516. struct kvm *kvm = filp->private_data;
  1517. void __user *argp = (void __user *)arg;
  1518. int r;
  1519. if (kvm->mm != current->mm)
  1520. return -EIO;
  1521. switch (ioctl) {
  1522. case KVM_CREATE_VCPU:
  1523. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1524. if (r < 0)
  1525. goto out;
  1526. break;
  1527. case KVM_SET_USER_MEMORY_REGION: {
  1528. struct kvm_userspace_memory_region kvm_userspace_mem;
  1529. r = -EFAULT;
  1530. if (copy_from_user(&kvm_userspace_mem, argp,
  1531. sizeof kvm_userspace_mem))
  1532. goto out;
  1533. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1534. if (r)
  1535. goto out;
  1536. break;
  1537. }
  1538. case KVM_GET_DIRTY_LOG: {
  1539. struct kvm_dirty_log log;
  1540. r = -EFAULT;
  1541. if (copy_from_user(&log, argp, sizeof log))
  1542. goto out;
  1543. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1544. if (r)
  1545. goto out;
  1546. break;
  1547. }
  1548. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1549. case KVM_REGISTER_COALESCED_MMIO: {
  1550. struct kvm_coalesced_mmio_zone zone;
  1551. r = -EFAULT;
  1552. if (copy_from_user(&zone, argp, sizeof zone))
  1553. goto out;
  1554. r = -ENXIO;
  1555. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1556. if (r)
  1557. goto out;
  1558. r = 0;
  1559. break;
  1560. }
  1561. case KVM_UNREGISTER_COALESCED_MMIO: {
  1562. struct kvm_coalesced_mmio_zone zone;
  1563. r = -EFAULT;
  1564. if (copy_from_user(&zone, argp, sizeof zone))
  1565. goto out;
  1566. r = -ENXIO;
  1567. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1568. if (r)
  1569. goto out;
  1570. r = 0;
  1571. break;
  1572. }
  1573. #endif
  1574. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1575. case KVM_ASSIGN_PCI_DEVICE: {
  1576. struct kvm_assigned_pci_dev assigned_dev;
  1577. r = -EFAULT;
  1578. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1579. goto out;
  1580. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1581. if (r)
  1582. goto out;
  1583. break;
  1584. }
  1585. case KVM_ASSIGN_IRQ: {
  1586. struct kvm_assigned_irq assigned_irq;
  1587. r = -EFAULT;
  1588. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1589. goto out;
  1590. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1591. if (r)
  1592. goto out;
  1593. break;
  1594. }
  1595. #endif
  1596. default:
  1597. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1598. }
  1599. out:
  1600. return r;
  1601. }
  1602. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1603. {
  1604. struct page *page[1];
  1605. unsigned long addr;
  1606. int npages;
  1607. gfn_t gfn = vmf->pgoff;
  1608. struct kvm *kvm = vma->vm_file->private_data;
  1609. addr = gfn_to_hva(kvm, gfn);
  1610. if (kvm_is_error_hva(addr))
  1611. return VM_FAULT_SIGBUS;
  1612. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1613. NULL);
  1614. if (unlikely(npages != 1))
  1615. return VM_FAULT_SIGBUS;
  1616. vmf->page = page[0];
  1617. return 0;
  1618. }
  1619. static struct vm_operations_struct kvm_vm_vm_ops = {
  1620. .fault = kvm_vm_fault,
  1621. };
  1622. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1623. {
  1624. vma->vm_ops = &kvm_vm_vm_ops;
  1625. return 0;
  1626. }
  1627. static struct file_operations kvm_vm_fops = {
  1628. .release = kvm_vm_release,
  1629. .unlocked_ioctl = kvm_vm_ioctl,
  1630. .compat_ioctl = kvm_vm_ioctl,
  1631. .mmap = kvm_vm_mmap,
  1632. };
  1633. static int kvm_dev_ioctl_create_vm(void)
  1634. {
  1635. int fd;
  1636. struct kvm *kvm;
  1637. kvm = kvm_create_vm();
  1638. if (IS_ERR(kvm))
  1639. return PTR_ERR(kvm);
  1640. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1641. if (fd < 0)
  1642. kvm_put_kvm(kvm);
  1643. return fd;
  1644. }
  1645. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1646. {
  1647. switch (arg) {
  1648. case KVM_CAP_USER_MEMORY:
  1649. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1650. return 1;
  1651. default:
  1652. break;
  1653. }
  1654. return kvm_dev_ioctl_check_extension(arg);
  1655. }
  1656. static long kvm_dev_ioctl(struct file *filp,
  1657. unsigned int ioctl, unsigned long arg)
  1658. {
  1659. long r = -EINVAL;
  1660. switch (ioctl) {
  1661. case KVM_GET_API_VERSION:
  1662. r = -EINVAL;
  1663. if (arg)
  1664. goto out;
  1665. r = KVM_API_VERSION;
  1666. break;
  1667. case KVM_CREATE_VM:
  1668. r = -EINVAL;
  1669. if (arg)
  1670. goto out;
  1671. r = kvm_dev_ioctl_create_vm();
  1672. break;
  1673. case KVM_CHECK_EXTENSION:
  1674. r = kvm_dev_ioctl_check_extension_generic(arg);
  1675. break;
  1676. case KVM_GET_VCPU_MMAP_SIZE:
  1677. r = -EINVAL;
  1678. if (arg)
  1679. goto out;
  1680. r = PAGE_SIZE; /* struct kvm_run */
  1681. #ifdef CONFIG_X86
  1682. r += PAGE_SIZE; /* pio data page */
  1683. #endif
  1684. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1685. r += PAGE_SIZE; /* coalesced mmio ring page */
  1686. #endif
  1687. break;
  1688. case KVM_TRACE_ENABLE:
  1689. case KVM_TRACE_PAUSE:
  1690. case KVM_TRACE_DISABLE:
  1691. r = kvm_trace_ioctl(ioctl, arg);
  1692. break;
  1693. default:
  1694. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1695. }
  1696. out:
  1697. return r;
  1698. }
  1699. static struct file_operations kvm_chardev_ops = {
  1700. .unlocked_ioctl = kvm_dev_ioctl,
  1701. .compat_ioctl = kvm_dev_ioctl,
  1702. };
  1703. static struct miscdevice kvm_dev = {
  1704. KVM_MINOR,
  1705. "kvm",
  1706. &kvm_chardev_ops,
  1707. };
  1708. static void hardware_enable(void *junk)
  1709. {
  1710. int cpu = raw_smp_processor_id();
  1711. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1712. return;
  1713. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1714. kvm_arch_hardware_enable(NULL);
  1715. }
  1716. static void hardware_disable(void *junk)
  1717. {
  1718. int cpu = raw_smp_processor_id();
  1719. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1720. return;
  1721. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1722. kvm_arch_hardware_disable(NULL);
  1723. }
  1724. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1725. void *v)
  1726. {
  1727. int cpu = (long)v;
  1728. val &= ~CPU_TASKS_FROZEN;
  1729. switch (val) {
  1730. case CPU_DYING:
  1731. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1732. cpu);
  1733. hardware_disable(NULL);
  1734. break;
  1735. case CPU_UP_CANCELED:
  1736. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1737. cpu);
  1738. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1739. break;
  1740. case CPU_ONLINE:
  1741. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1742. cpu);
  1743. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1744. break;
  1745. }
  1746. return NOTIFY_OK;
  1747. }
  1748. asmlinkage void kvm_handle_fault_on_reboot(void)
  1749. {
  1750. if (kvm_rebooting)
  1751. /* spin while reset goes on */
  1752. while (true)
  1753. ;
  1754. /* Fault while not rebooting. We want the trace. */
  1755. BUG();
  1756. }
  1757. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1758. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1759. void *v)
  1760. {
  1761. if (val == SYS_RESTART) {
  1762. /*
  1763. * Some (well, at least mine) BIOSes hang on reboot if
  1764. * in vmx root mode.
  1765. */
  1766. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1767. kvm_rebooting = true;
  1768. on_each_cpu(hardware_disable, NULL, 1);
  1769. }
  1770. return NOTIFY_OK;
  1771. }
  1772. static struct notifier_block kvm_reboot_notifier = {
  1773. .notifier_call = kvm_reboot,
  1774. .priority = 0,
  1775. };
  1776. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1777. {
  1778. memset(bus, 0, sizeof(*bus));
  1779. }
  1780. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1781. {
  1782. int i;
  1783. for (i = 0; i < bus->dev_count; i++) {
  1784. struct kvm_io_device *pos = bus->devs[i];
  1785. kvm_iodevice_destructor(pos);
  1786. }
  1787. }
  1788. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1789. gpa_t addr, int len, int is_write)
  1790. {
  1791. int i;
  1792. for (i = 0; i < bus->dev_count; i++) {
  1793. struct kvm_io_device *pos = bus->devs[i];
  1794. if (pos->in_range(pos, addr, len, is_write))
  1795. return pos;
  1796. }
  1797. return NULL;
  1798. }
  1799. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1800. {
  1801. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1802. bus->devs[bus->dev_count++] = dev;
  1803. }
  1804. static struct notifier_block kvm_cpu_notifier = {
  1805. .notifier_call = kvm_cpu_hotplug,
  1806. .priority = 20, /* must be > scheduler priority */
  1807. };
  1808. static int vm_stat_get(void *_offset, u64 *val)
  1809. {
  1810. unsigned offset = (long)_offset;
  1811. struct kvm *kvm;
  1812. *val = 0;
  1813. spin_lock(&kvm_lock);
  1814. list_for_each_entry(kvm, &vm_list, vm_list)
  1815. *val += *(u32 *)((void *)kvm + offset);
  1816. spin_unlock(&kvm_lock);
  1817. return 0;
  1818. }
  1819. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1820. static int vcpu_stat_get(void *_offset, u64 *val)
  1821. {
  1822. unsigned offset = (long)_offset;
  1823. struct kvm *kvm;
  1824. struct kvm_vcpu *vcpu;
  1825. int i;
  1826. *val = 0;
  1827. spin_lock(&kvm_lock);
  1828. list_for_each_entry(kvm, &vm_list, vm_list)
  1829. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1830. vcpu = kvm->vcpus[i];
  1831. if (vcpu)
  1832. *val += *(u32 *)((void *)vcpu + offset);
  1833. }
  1834. spin_unlock(&kvm_lock);
  1835. return 0;
  1836. }
  1837. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1838. static struct file_operations *stat_fops[] = {
  1839. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1840. [KVM_STAT_VM] = &vm_stat_fops,
  1841. };
  1842. static void kvm_init_debug(void)
  1843. {
  1844. struct kvm_stats_debugfs_item *p;
  1845. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1846. for (p = debugfs_entries; p->name; ++p)
  1847. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1848. (void *)(long)p->offset,
  1849. stat_fops[p->kind]);
  1850. }
  1851. static void kvm_exit_debug(void)
  1852. {
  1853. struct kvm_stats_debugfs_item *p;
  1854. for (p = debugfs_entries; p->name; ++p)
  1855. debugfs_remove(p->dentry);
  1856. debugfs_remove(kvm_debugfs_dir);
  1857. }
  1858. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1859. {
  1860. hardware_disable(NULL);
  1861. return 0;
  1862. }
  1863. static int kvm_resume(struct sys_device *dev)
  1864. {
  1865. hardware_enable(NULL);
  1866. return 0;
  1867. }
  1868. static struct sysdev_class kvm_sysdev_class = {
  1869. .name = "kvm",
  1870. .suspend = kvm_suspend,
  1871. .resume = kvm_resume,
  1872. };
  1873. static struct sys_device kvm_sysdev = {
  1874. .id = 0,
  1875. .cls = &kvm_sysdev_class,
  1876. };
  1877. struct page *bad_page;
  1878. pfn_t bad_pfn;
  1879. static inline
  1880. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1881. {
  1882. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1883. }
  1884. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1885. {
  1886. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1887. kvm_arch_vcpu_load(vcpu, cpu);
  1888. }
  1889. static void kvm_sched_out(struct preempt_notifier *pn,
  1890. struct task_struct *next)
  1891. {
  1892. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1893. kvm_arch_vcpu_put(vcpu);
  1894. }
  1895. int kvm_init(void *opaque, unsigned int vcpu_size,
  1896. struct module *module)
  1897. {
  1898. int r;
  1899. int cpu;
  1900. kvm_init_debug();
  1901. r = kvm_arch_init(opaque);
  1902. if (r)
  1903. goto out_fail;
  1904. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1905. if (bad_page == NULL) {
  1906. r = -ENOMEM;
  1907. goto out;
  1908. }
  1909. bad_pfn = page_to_pfn(bad_page);
  1910. if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  1911. r = -ENOMEM;
  1912. goto out_free_0;
  1913. }
  1914. r = kvm_arch_hardware_setup();
  1915. if (r < 0)
  1916. goto out_free_0a;
  1917. for_each_online_cpu(cpu) {
  1918. smp_call_function_single(cpu,
  1919. kvm_arch_check_processor_compat,
  1920. &r, 1);
  1921. if (r < 0)
  1922. goto out_free_1;
  1923. }
  1924. on_each_cpu(hardware_enable, NULL, 1);
  1925. r = register_cpu_notifier(&kvm_cpu_notifier);
  1926. if (r)
  1927. goto out_free_2;
  1928. register_reboot_notifier(&kvm_reboot_notifier);
  1929. r = sysdev_class_register(&kvm_sysdev_class);
  1930. if (r)
  1931. goto out_free_3;
  1932. r = sysdev_register(&kvm_sysdev);
  1933. if (r)
  1934. goto out_free_4;
  1935. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1936. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1937. __alignof__(struct kvm_vcpu),
  1938. 0, NULL);
  1939. if (!kvm_vcpu_cache) {
  1940. r = -ENOMEM;
  1941. goto out_free_5;
  1942. }
  1943. kvm_chardev_ops.owner = module;
  1944. kvm_vm_fops.owner = module;
  1945. kvm_vcpu_fops.owner = module;
  1946. r = misc_register(&kvm_dev);
  1947. if (r) {
  1948. printk(KERN_ERR "kvm: misc device register failed\n");
  1949. goto out_free;
  1950. }
  1951. kvm_preempt_ops.sched_in = kvm_sched_in;
  1952. kvm_preempt_ops.sched_out = kvm_sched_out;
  1953. #ifndef CONFIG_X86
  1954. msi2intx = 0;
  1955. #endif
  1956. return 0;
  1957. out_free:
  1958. kmem_cache_destroy(kvm_vcpu_cache);
  1959. out_free_5:
  1960. sysdev_unregister(&kvm_sysdev);
  1961. out_free_4:
  1962. sysdev_class_unregister(&kvm_sysdev_class);
  1963. out_free_3:
  1964. unregister_reboot_notifier(&kvm_reboot_notifier);
  1965. unregister_cpu_notifier(&kvm_cpu_notifier);
  1966. out_free_2:
  1967. on_each_cpu(hardware_disable, NULL, 1);
  1968. out_free_1:
  1969. kvm_arch_hardware_unsetup();
  1970. out_free_0a:
  1971. free_cpumask_var(cpus_hardware_enabled);
  1972. out_free_0:
  1973. __free_page(bad_page);
  1974. out:
  1975. kvm_arch_exit();
  1976. kvm_exit_debug();
  1977. out_fail:
  1978. return r;
  1979. }
  1980. EXPORT_SYMBOL_GPL(kvm_init);
  1981. void kvm_exit(void)
  1982. {
  1983. kvm_trace_cleanup();
  1984. misc_deregister(&kvm_dev);
  1985. kmem_cache_destroy(kvm_vcpu_cache);
  1986. sysdev_unregister(&kvm_sysdev);
  1987. sysdev_class_unregister(&kvm_sysdev_class);
  1988. unregister_reboot_notifier(&kvm_reboot_notifier);
  1989. unregister_cpu_notifier(&kvm_cpu_notifier);
  1990. on_each_cpu(hardware_disable, NULL, 1);
  1991. kvm_arch_hardware_unsetup();
  1992. kvm_arch_exit();
  1993. kvm_exit_debug();
  1994. free_cpumask_var(cpus_hardware_enabled);
  1995. __free_page(bad_page);
  1996. }
  1997. EXPORT_SYMBOL_GPL(kvm_exit);