process.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. /*
  2. * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
  3. * Copyright (C) 2008-2009 PetaLogix
  4. * Copyright (C) 2006 Atmark Techno, Inc.
  5. *
  6. * This file is subject to the terms and conditions of the GNU General Public
  7. * License. See the file "COPYING" in the main directory of this archive
  8. * for more details.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/sched.h>
  12. #include <linux/pm.h>
  13. #include <linux/tick.h>
  14. #include <linux/bitops.h>
  15. #include <linux/ptrace.h>
  16. #include <asm/pgalloc.h>
  17. #include <asm/uaccess.h> /* for USER_DS macros */
  18. #include <asm/cacheflush.h>
  19. void show_regs(struct pt_regs *regs)
  20. {
  21. printk(KERN_INFO " Registers dump: mode=%X\r\n", regs->pt_mode);
  22. printk(KERN_INFO " r1=%08lX, r2=%08lX, r3=%08lX, r4=%08lX\n",
  23. regs->r1, regs->r2, regs->r3, regs->r4);
  24. printk(KERN_INFO " r5=%08lX, r6=%08lX, r7=%08lX, r8=%08lX\n",
  25. regs->r5, regs->r6, regs->r7, regs->r8);
  26. printk(KERN_INFO " r9=%08lX, r10=%08lX, r11=%08lX, r12=%08lX\n",
  27. regs->r9, regs->r10, regs->r11, regs->r12);
  28. printk(KERN_INFO " r13=%08lX, r14=%08lX, r15=%08lX, r16=%08lX\n",
  29. regs->r13, regs->r14, regs->r15, regs->r16);
  30. printk(KERN_INFO " r17=%08lX, r18=%08lX, r19=%08lX, r20=%08lX\n",
  31. regs->r17, regs->r18, regs->r19, regs->r20);
  32. printk(KERN_INFO " r21=%08lX, r22=%08lX, r23=%08lX, r24=%08lX\n",
  33. regs->r21, regs->r22, regs->r23, regs->r24);
  34. printk(KERN_INFO " r25=%08lX, r26=%08lX, r27=%08lX, r28=%08lX\n",
  35. regs->r25, regs->r26, regs->r27, regs->r28);
  36. printk(KERN_INFO " r29=%08lX, r30=%08lX, r31=%08lX, rPC=%08lX\n",
  37. regs->r29, regs->r30, regs->r31, regs->pc);
  38. printk(KERN_INFO " msr=%08lX, ear=%08lX, esr=%08lX, fsr=%08lX\n",
  39. regs->msr, regs->ear, regs->esr, regs->fsr);
  40. }
  41. void (*pm_power_off)(void) = NULL;
  42. EXPORT_SYMBOL(pm_power_off);
  43. static int hlt_counter = 1;
  44. void disable_hlt(void)
  45. {
  46. hlt_counter++;
  47. }
  48. EXPORT_SYMBOL(disable_hlt);
  49. void enable_hlt(void)
  50. {
  51. hlt_counter--;
  52. }
  53. EXPORT_SYMBOL(enable_hlt);
  54. static int __init nohlt_setup(char *__unused)
  55. {
  56. hlt_counter = 1;
  57. return 1;
  58. }
  59. __setup("nohlt", nohlt_setup);
  60. static int __init hlt_setup(char *__unused)
  61. {
  62. hlt_counter = 0;
  63. return 1;
  64. }
  65. __setup("hlt", hlt_setup);
  66. void default_idle(void)
  67. {
  68. if (likely(hlt_counter)) {
  69. local_irq_disable();
  70. stop_critical_timings();
  71. cpu_relax();
  72. start_critical_timings();
  73. local_irq_enable();
  74. } else {
  75. clear_thread_flag(TIF_POLLING_NRFLAG);
  76. smp_mb__after_clear_bit();
  77. local_irq_disable();
  78. while (!need_resched())
  79. cpu_sleep();
  80. local_irq_enable();
  81. set_thread_flag(TIF_POLLING_NRFLAG);
  82. }
  83. }
  84. void cpu_idle(void)
  85. {
  86. set_thread_flag(TIF_POLLING_NRFLAG);
  87. /* endless idle loop with no priority at all */
  88. while (1) {
  89. if (!idle)
  90. idle = default_idle;
  91. tick_nohz_idle_enter();
  92. rcu_idle_enter();
  93. while (!need_resched())
  94. idle();
  95. rcu_idle_exit();
  96. tick_nohz_idle_exit();
  97. schedule_preempt_disabled();
  98. check_pgt_cache();
  99. }
  100. }
  101. void flush_thread(void)
  102. {
  103. }
  104. int copy_thread(unsigned long clone_flags, unsigned long usp,
  105. unsigned long arg, struct task_struct *p)
  106. {
  107. struct pt_regs *childregs = task_pt_regs(p);
  108. struct thread_info *ti = task_thread_info(p);
  109. if (unlikely(p->flags & PF_KTHREAD)) {
  110. /* if we're creating a new kernel thread then just zeroing all
  111. * the registers. That's OK for a brand new thread.*/
  112. memset(childregs, 0, sizeof(struct pt_regs));
  113. memset(&ti->cpu_context, 0, sizeof(struct cpu_context));
  114. ti->cpu_context.r1 = (unsigned long)childregs;
  115. ti->cpu_context.r20 = (unsigned long)usp; /* fn */
  116. ti->cpu_context.r19 = (unsigned long)arg;
  117. childregs->pt_mode = 1;
  118. local_save_flags(childregs->msr);
  119. #ifdef CONFIG_MMU
  120. ti->cpu_context.msr = childregs->msr & ~MSR_IE;
  121. #endif
  122. ti->cpu_context.r15 = (unsigned long)ret_from_kernel_thread - 8;
  123. return 0;
  124. }
  125. *childregs = *current_pt_regs();
  126. if (usp)
  127. childregs->r1 = usp;
  128. memset(&ti->cpu_context, 0, sizeof(struct cpu_context));
  129. ti->cpu_context.r1 = (unsigned long)childregs;
  130. #ifndef CONFIG_MMU
  131. ti->cpu_context.msr = (unsigned long)childregs->msr;
  132. #else
  133. childregs->msr |= MSR_UMS;
  134. /* we should consider the fact that childregs is a copy of the parent
  135. * regs which were saved immediately after entering the kernel state
  136. * before enabling VM. This MSR will be restored in switch_to and
  137. * RETURN() and we want to have the right machine state there
  138. * specifically this state must have INTs disabled before and enabled
  139. * after performing rtbd
  140. * compose the right MSR for RETURN(). It will work for switch_to also
  141. * excepting for VM and UMS
  142. * don't touch UMS , CARRY and cache bits
  143. * right now MSR is a copy of parent one */
  144. childregs->msr &= ~MSR_EIP;
  145. childregs->msr |= MSR_IE;
  146. childregs->msr &= ~MSR_VM;
  147. childregs->msr |= MSR_VMS;
  148. childregs->msr |= MSR_EE; /* exceptions will be enabled*/
  149. ti->cpu_context.msr = (childregs->msr|MSR_VM);
  150. ti->cpu_context.msr &= ~MSR_UMS; /* switch_to to kernel mode */
  151. ti->cpu_context.msr &= ~MSR_IE;
  152. #endif
  153. ti->cpu_context.r15 = (unsigned long)ret_from_fork - 8;
  154. /*
  155. * r21 is the thread reg, r10 is 6th arg to clone
  156. * which contains TLS area
  157. */
  158. if (clone_flags & CLONE_SETTLS)
  159. childregs->r21 = childregs->r10;
  160. return 0;
  161. }
  162. #ifndef CONFIG_MMU
  163. /*
  164. * Return saved PC of a blocked thread.
  165. */
  166. unsigned long thread_saved_pc(struct task_struct *tsk)
  167. {
  168. struct cpu_context *ctx =
  169. &(((struct thread_info *)(tsk->stack))->cpu_context);
  170. /* Check whether the thread is blocked in resume() */
  171. if (in_sched_functions(ctx->r15))
  172. return (unsigned long)ctx->r15;
  173. else
  174. return ctx->r14;
  175. }
  176. #endif
  177. unsigned long get_wchan(struct task_struct *p)
  178. {
  179. /* TBD (used by procfs) */
  180. return 0;
  181. }
  182. /* Set up a thread for executing a new program */
  183. void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long usp)
  184. {
  185. regs->pc = pc;
  186. regs->r1 = usp;
  187. regs->pt_mode = 0;
  188. #ifdef CONFIG_MMU
  189. regs->msr |= MSR_UMS;
  190. regs->msr &= ~MSR_VM;
  191. #endif
  192. }
  193. #ifdef CONFIG_MMU
  194. #include <linux/elfcore.h>
  195. /*
  196. * Set up a thread for executing a new program
  197. */
  198. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs)
  199. {
  200. return 0; /* MicroBlaze has no separate FPU registers */
  201. }
  202. #endif /* CONFIG_MMU */