qlge_main.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_wait_cfg(qdev, bit);
  194. if (status) {
  195. QPRINTK(qdev, IFUP, ERR,
  196. "Timed out waiting for CFG to come ready.\n");
  197. goto exit;
  198. }
  199. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  200. if (status)
  201. goto exit;
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  223. if (status)
  224. return status;
  225. switch (type) {
  226. case MAC_ADDR_TYPE_MULTI_MAC:
  227. case MAC_ADDR_TYPE_CAM_MAC:
  228. {
  229. status =
  230. ql_wait_reg_rdy(qdev,
  231. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  232. if (status)
  233. goto exit;
  234. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  235. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  236. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  237. status =
  238. ql_wait_reg_rdy(qdev,
  239. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  240. if (status)
  241. goto exit;
  242. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  243. status =
  244. ql_wait_reg_rdy(qdev,
  245. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  246. if (status)
  247. goto exit;
  248. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  249. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  250. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  251. status =
  252. ql_wait_reg_rdy(qdev,
  253. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  254. if (status)
  255. goto exit;
  256. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  257. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  258. status =
  259. ql_wait_reg_rdy(qdev,
  260. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  261. if (status)
  262. goto exit;
  263. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  264. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  265. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  266. status =
  267. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  268. MAC_ADDR_MR, 0);
  269. if (status)
  270. goto exit;
  271. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  272. }
  273. break;
  274. }
  275. case MAC_ADDR_TYPE_VLAN:
  276. case MAC_ADDR_TYPE_MULTI_FLTR:
  277. default:
  278. QPRINTK(qdev, IFUP, CRIT,
  279. "Address type %d not yet supported.\n", type);
  280. status = -EPERM;
  281. }
  282. exit:
  283. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  284. return status;
  285. }
  286. /* Set up a MAC, multicast or VLAN address for the
  287. * inbound frame matching.
  288. */
  289. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  290. u16 index)
  291. {
  292. u32 offset = 0;
  293. int status = 0;
  294. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  295. if (status)
  296. return status;
  297. switch (type) {
  298. case MAC_ADDR_TYPE_MULTI_MAC:
  299. case MAC_ADDR_TYPE_CAM_MAC:
  300. {
  301. u32 cam_output;
  302. u32 upper = (addr[0] << 8) | addr[1];
  303. u32 lower =
  304. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  305. (addr[5]);
  306. QPRINTK(qdev, IFUP, INFO,
  307. "Adding %s address %pM"
  308. " at index %d in the CAM.\n",
  309. ((type ==
  310. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  311. "UNICAST"), addr, index);
  312. status =
  313. ql_wait_reg_rdy(qdev,
  314. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  315. if (status)
  316. goto exit;
  317. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  318. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  319. type); /* type */
  320. ql_write32(qdev, MAC_ADDR_DATA, lower);
  321. status =
  322. ql_wait_reg_rdy(qdev,
  323. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  324. if (status)
  325. goto exit;
  326. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  327. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  328. type); /* type */
  329. ql_write32(qdev, MAC_ADDR_DATA, upper);
  330. status =
  331. ql_wait_reg_rdy(qdev,
  332. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  333. if (status)
  334. goto exit;
  335. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  336. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  337. type); /* type */
  338. /* This field should also include the queue id
  339. and possibly the function id. Right now we hardcode
  340. the route field to NIC core.
  341. */
  342. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  343. cam_output = (CAM_OUT_ROUTE_NIC |
  344. (qdev->
  345. func << CAM_OUT_FUNC_SHIFT) |
  346. (qdev->
  347. rss_ring_first_cq_id <<
  348. CAM_OUT_CQ_ID_SHIFT));
  349. if (qdev->vlgrp)
  350. cam_output |= CAM_OUT_RV;
  351. /* route to NIC core */
  352. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  353. }
  354. break;
  355. }
  356. case MAC_ADDR_TYPE_VLAN:
  357. {
  358. u32 enable_bit = *((u32 *) &addr[0]);
  359. /* For VLAN, the addr actually holds a bit that
  360. * either enables or disables the vlan id we are
  361. * addressing. It's either MAC_ADDR_E on or off.
  362. * That's bit-27 we're talking about.
  363. */
  364. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  365. (enable_bit ? "Adding" : "Removing"),
  366. index, (enable_bit ? "to" : "from"));
  367. status =
  368. ql_wait_reg_rdy(qdev,
  369. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  370. if (status)
  371. goto exit;
  372. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  373. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  374. type | /* type */
  375. enable_bit); /* enable/disable */
  376. break;
  377. }
  378. case MAC_ADDR_TYPE_MULTI_FLTR:
  379. default:
  380. QPRINTK(qdev, IFUP, CRIT,
  381. "Address type %d not yet supported.\n", type);
  382. status = -EPERM;
  383. }
  384. exit:
  385. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  386. return status;
  387. }
  388. /* Get a specific frame routing value from the CAM.
  389. * Used for debug and reg dump.
  390. */
  391. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  392. {
  393. int status = 0;
  394. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  395. if (status)
  396. goto exit;
  397. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  398. if (status)
  399. goto exit;
  400. ql_write32(qdev, RT_IDX,
  401. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  402. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  403. if (status)
  404. goto exit;
  405. *value = ql_read32(qdev, RT_DATA);
  406. exit:
  407. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  408. return status;
  409. }
  410. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  411. * to route different frame types to various inbound queues. We send broadcast/
  412. * multicast/error frames to the default queue for slow handling,
  413. * and CAM hit/RSS frames to the fast handling queues.
  414. */
  415. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  416. int enable)
  417. {
  418. int status;
  419. u32 value = 0;
  420. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  421. if (status)
  422. return status;
  423. QPRINTK(qdev, IFUP, DEBUG,
  424. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  425. (enable ? "Adding" : "Removing"),
  426. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  427. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  428. ((index ==
  429. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  430. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  431. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  432. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  433. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  434. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  435. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  436. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  437. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  438. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  439. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  440. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  441. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  442. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  443. (enable ? "to" : "from"));
  444. switch (mask) {
  445. case RT_IDX_CAM_HIT:
  446. {
  447. value = RT_IDX_DST_CAM_Q | /* dest */
  448. RT_IDX_TYPE_NICQ | /* type */
  449. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  450. break;
  451. }
  452. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  453. {
  454. value = RT_IDX_DST_DFLT_Q | /* dest */
  455. RT_IDX_TYPE_NICQ | /* type */
  456. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  457. break;
  458. }
  459. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  460. {
  461. value = RT_IDX_DST_DFLT_Q | /* dest */
  462. RT_IDX_TYPE_NICQ | /* type */
  463. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  464. break;
  465. }
  466. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  467. {
  468. value = RT_IDX_DST_DFLT_Q | /* dest */
  469. RT_IDX_TYPE_NICQ | /* type */
  470. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  471. break;
  472. }
  473. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  474. {
  475. value = RT_IDX_DST_CAM_Q | /* dest */
  476. RT_IDX_TYPE_NICQ | /* type */
  477. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  478. break;
  479. }
  480. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  481. {
  482. value = RT_IDX_DST_CAM_Q | /* dest */
  483. RT_IDX_TYPE_NICQ | /* type */
  484. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  485. break;
  486. }
  487. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  488. {
  489. value = RT_IDX_DST_RSS | /* dest */
  490. RT_IDX_TYPE_NICQ | /* type */
  491. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  492. break;
  493. }
  494. case 0: /* Clear the E-bit on an entry. */
  495. {
  496. value = RT_IDX_DST_DFLT_Q | /* dest */
  497. RT_IDX_TYPE_NICQ | /* type */
  498. (index << RT_IDX_IDX_SHIFT);/* index */
  499. break;
  500. }
  501. default:
  502. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  503. mask);
  504. status = -EPERM;
  505. goto exit;
  506. }
  507. if (value) {
  508. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  509. if (status)
  510. goto exit;
  511. value |= (enable ? RT_IDX_E : 0);
  512. ql_write32(qdev, RT_IDX, value);
  513. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  514. }
  515. exit:
  516. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  517. return status;
  518. }
  519. static void ql_enable_interrupts(struct ql_adapter *qdev)
  520. {
  521. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  522. }
  523. static void ql_disable_interrupts(struct ql_adapter *qdev)
  524. {
  525. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  526. }
  527. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  528. * Otherwise, we may have multiple outstanding workers and don't want to
  529. * enable until the last one finishes. In this case, the irq_cnt gets
  530. * incremented everytime we queue a worker and decremented everytime
  531. * a worker finishes. Once it hits zero we enable the interrupt.
  532. */
  533. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  534. {
  535. u32 var = 0;
  536. unsigned long hw_flags = 0;
  537. struct intr_context *ctx = qdev->intr_context + intr;
  538. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  539. /* Always enable if we're MSIX multi interrupts and
  540. * it's not the default (zeroeth) interrupt.
  541. */
  542. ql_write32(qdev, INTR_EN,
  543. ctx->intr_en_mask);
  544. var = ql_read32(qdev, STS);
  545. return var;
  546. }
  547. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  548. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  549. ql_write32(qdev, INTR_EN,
  550. ctx->intr_en_mask);
  551. var = ql_read32(qdev, STS);
  552. }
  553. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  554. return var;
  555. }
  556. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  557. {
  558. u32 var = 0;
  559. unsigned long hw_flags;
  560. struct intr_context *ctx;
  561. /* HW disables for us if we're MSIX multi interrupts and
  562. * it's not the default (zeroeth) interrupt.
  563. */
  564. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  565. return 0;
  566. ctx = qdev->intr_context + intr;
  567. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  568. if (!atomic_read(&ctx->irq_cnt)) {
  569. ql_write32(qdev, INTR_EN,
  570. ctx->intr_dis_mask);
  571. var = ql_read32(qdev, STS);
  572. }
  573. atomic_inc(&ctx->irq_cnt);
  574. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  575. return var;
  576. }
  577. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  578. {
  579. int i;
  580. for (i = 0; i < qdev->intr_count; i++) {
  581. /* The enable call does a atomic_dec_and_test
  582. * and enables only if the result is zero.
  583. * So we precharge it here.
  584. */
  585. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  586. i == 0))
  587. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  588. ql_enable_completion_interrupt(qdev, i);
  589. }
  590. }
  591. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  592. {
  593. int status = 0;
  594. /* wait for reg to come ready */
  595. status = ql_wait_reg_rdy(qdev,
  596. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  597. if (status)
  598. goto exit;
  599. /* set up for reg read */
  600. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  601. /* wait for reg to come ready */
  602. status = ql_wait_reg_rdy(qdev,
  603. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  604. if (status)
  605. goto exit;
  606. /* This data is stored on flash as an array of
  607. * __le32. Since ql_read32() returns cpu endian
  608. * we need to swap it back.
  609. */
  610. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  611. exit:
  612. return status;
  613. }
  614. static int ql_get_flash_params(struct ql_adapter *qdev)
  615. {
  616. int i;
  617. int status;
  618. __le32 *p = (__le32 *)&qdev->flash;
  619. u32 offset = 0;
  620. /* Second function's parameters follow the first
  621. * function's.
  622. */
  623. if (qdev->func)
  624. offset = sizeof(qdev->flash) / sizeof(u32);
  625. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  626. return -ETIMEDOUT;
  627. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  628. status = ql_read_flash_word(qdev, i+offset, p);
  629. if (status) {
  630. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  631. goto exit;
  632. }
  633. }
  634. exit:
  635. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  636. return status;
  637. }
  638. /* xgmac register are located behind the xgmac_addr and xgmac_data
  639. * register pair. Each read/write requires us to wait for the ready
  640. * bit before reading/writing the data.
  641. */
  642. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  643. {
  644. int status;
  645. /* wait for reg to come ready */
  646. status = ql_wait_reg_rdy(qdev,
  647. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  648. if (status)
  649. return status;
  650. /* write the data to the data reg */
  651. ql_write32(qdev, XGMAC_DATA, data);
  652. /* trigger the write */
  653. ql_write32(qdev, XGMAC_ADDR, reg);
  654. return status;
  655. }
  656. /* xgmac register are located behind the xgmac_addr and xgmac_data
  657. * register pair. Each read/write requires us to wait for the ready
  658. * bit before reading/writing the data.
  659. */
  660. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  661. {
  662. int status = 0;
  663. /* wait for reg to come ready */
  664. status = ql_wait_reg_rdy(qdev,
  665. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  666. if (status)
  667. goto exit;
  668. /* set up for reg read */
  669. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  670. /* wait for reg to come ready */
  671. status = ql_wait_reg_rdy(qdev,
  672. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  673. if (status)
  674. goto exit;
  675. /* get the data */
  676. *data = ql_read32(qdev, XGMAC_DATA);
  677. exit:
  678. return status;
  679. }
  680. /* This is used for reading the 64-bit statistics regs. */
  681. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  682. {
  683. int status = 0;
  684. u32 hi = 0;
  685. u32 lo = 0;
  686. status = ql_read_xgmac_reg(qdev, reg, &lo);
  687. if (status)
  688. goto exit;
  689. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  690. if (status)
  691. goto exit;
  692. *data = (u64) lo | ((u64) hi << 32);
  693. exit:
  694. return status;
  695. }
  696. /* Take the MAC Core out of reset.
  697. * Enable statistics counting.
  698. * Take the transmitter/receiver out of reset.
  699. * This functionality may be done in the MPI firmware at a
  700. * later date.
  701. */
  702. static int ql_port_initialize(struct ql_adapter *qdev)
  703. {
  704. int status = 0;
  705. u32 data;
  706. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  707. /* Another function has the semaphore, so
  708. * wait for the port init bit to come ready.
  709. */
  710. QPRINTK(qdev, LINK, INFO,
  711. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  712. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  713. if (status) {
  714. QPRINTK(qdev, LINK, CRIT,
  715. "Port initialize timed out.\n");
  716. }
  717. return status;
  718. }
  719. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  720. /* Set the core reset. */
  721. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  722. if (status)
  723. goto end;
  724. data |= GLOBAL_CFG_RESET;
  725. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  726. if (status)
  727. goto end;
  728. /* Clear the core reset and turn on jumbo for receiver. */
  729. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  730. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  731. data |= GLOBAL_CFG_TX_STAT_EN;
  732. data |= GLOBAL_CFG_RX_STAT_EN;
  733. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  734. if (status)
  735. goto end;
  736. /* Enable transmitter, and clear it's reset. */
  737. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  738. if (status)
  739. goto end;
  740. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  741. data |= TX_CFG_EN; /* Enable the transmitter. */
  742. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  743. if (status)
  744. goto end;
  745. /* Enable receiver and clear it's reset. */
  746. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  747. if (status)
  748. goto end;
  749. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  750. data |= RX_CFG_EN; /* Enable the receiver. */
  751. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  752. if (status)
  753. goto end;
  754. /* Turn on jumbo. */
  755. status =
  756. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  757. if (status)
  758. goto end;
  759. status =
  760. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  761. if (status)
  762. goto end;
  763. /* Signal to the world that the port is enabled. */
  764. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  765. end:
  766. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  767. return status;
  768. }
  769. /* Get the next large buffer. */
  770. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  771. {
  772. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  773. rx_ring->lbq_curr_idx++;
  774. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  775. rx_ring->lbq_curr_idx = 0;
  776. rx_ring->lbq_free_cnt++;
  777. return lbq_desc;
  778. }
  779. /* Get the next small buffer. */
  780. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  781. {
  782. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  783. rx_ring->sbq_curr_idx++;
  784. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  785. rx_ring->sbq_curr_idx = 0;
  786. rx_ring->sbq_free_cnt++;
  787. return sbq_desc;
  788. }
  789. /* Update an rx ring index. */
  790. static void ql_update_cq(struct rx_ring *rx_ring)
  791. {
  792. rx_ring->cnsmr_idx++;
  793. rx_ring->curr_entry++;
  794. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  795. rx_ring->cnsmr_idx = 0;
  796. rx_ring->curr_entry = rx_ring->cq_base;
  797. }
  798. }
  799. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  800. {
  801. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  802. }
  803. /* Process (refill) a large buffer queue. */
  804. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  805. {
  806. int clean_idx = rx_ring->lbq_clean_idx;
  807. struct bq_desc *lbq_desc;
  808. u64 map;
  809. int i;
  810. while (rx_ring->lbq_free_cnt > 16) {
  811. for (i = 0; i < 16; i++) {
  812. QPRINTK(qdev, RX_STATUS, DEBUG,
  813. "lbq: try cleaning clean_idx = %d.\n",
  814. clean_idx);
  815. lbq_desc = &rx_ring->lbq[clean_idx];
  816. if (lbq_desc->p.lbq_page == NULL) {
  817. QPRINTK(qdev, RX_STATUS, DEBUG,
  818. "lbq: getting new page for index %d.\n",
  819. lbq_desc->index);
  820. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  821. if (lbq_desc->p.lbq_page == NULL) {
  822. QPRINTK(qdev, RX_STATUS, ERR,
  823. "Couldn't get a page.\n");
  824. return;
  825. }
  826. map = pci_map_page(qdev->pdev,
  827. lbq_desc->p.lbq_page,
  828. 0, PAGE_SIZE,
  829. PCI_DMA_FROMDEVICE);
  830. if (pci_dma_mapping_error(qdev->pdev, map)) {
  831. put_page(lbq_desc->p.lbq_page);
  832. lbq_desc->p.lbq_page = NULL;
  833. QPRINTK(qdev, RX_STATUS, ERR,
  834. "PCI mapping failed.\n");
  835. return;
  836. }
  837. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  838. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  839. *lbq_desc->addr = cpu_to_le64(map);
  840. }
  841. clean_idx++;
  842. if (clean_idx == rx_ring->lbq_len)
  843. clean_idx = 0;
  844. }
  845. rx_ring->lbq_clean_idx = clean_idx;
  846. rx_ring->lbq_prod_idx += 16;
  847. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  848. rx_ring->lbq_prod_idx = 0;
  849. QPRINTK(qdev, RX_STATUS, DEBUG,
  850. "lbq: updating prod idx = %d.\n",
  851. rx_ring->lbq_prod_idx);
  852. ql_write_db_reg(rx_ring->lbq_prod_idx,
  853. rx_ring->lbq_prod_idx_db_reg);
  854. rx_ring->lbq_free_cnt -= 16;
  855. }
  856. }
  857. /* Process (refill) a small buffer queue. */
  858. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  859. {
  860. int clean_idx = rx_ring->sbq_clean_idx;
  861. struct bq_desc *sbq_desc;
  862. u64 map;
  863. int i;
  864. while (rx_ring->sbq_free_cnt > 16) {
  865. for (i = 0; i < 16; i++) {
  866. sbq_desc = &rx_ring->sbq[clean_idx];
  867. QPRINTK(qdev, RX_STATUS, DEBUG,
  868. "sbq: try cleaning clean_idx = %d.\n",
  869. clean_idx);
  870. if (sbq_desc->p.skb == NULL) {
  871. QPRINTK(qdev, RX_STATUS, DEBUG,
  872. "sbq: getting new skb for index %d.\n",
  873. sbq_desc->index);
  874. sbq_desc->p.skb =
  875. netdev_alloc_skb(qdev->ndev,
  876. rx_ring->sbq_buf_size);
  877. if (sbq_desc->p.skb == NULL) {
  878. QPRINTK(qdev, PROBE, ERR,
  879. "Couldn't get an skb.\n");
  880. rx_ring->sbq_clean_idx = clean_idx;
  881. return;
  882. }
  883. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  884. map = pci_map_single(qdev->pdev,
  885. sbq_desc->p.skb->data,
  886. rx_ring->sbq_buf_size /
  887. 2, PCI_DMA_FROMDEVICE);
  888. if (pci_dma_mapping_error(qdev->pdev, map)) {
  889. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  890. rx_ring->sbq_clean_idx = clean_idx;
  891. dev_kfree_skb_any(sbq_desc->p.skb);
  892. sbq_desc->p.skb = NULL;
  893. return;
  894. }
  895. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  896. pci_unmap_len_set(sbq_desc, maplen,
  897. rx_ring->sbq_buf_size / 2);
  898. *sbq_desc->addr = cpu_to_le64(map);
  899. }
  900. clean_idx++;
  901. if (clean_idx == rx_ring->sbq_len)
  902. clean_idx = 0;
  903. }
  904. rx_ring->sbq_clean_idx = clean_idx;
  905. rx_ring->sbq_prod_idx += 16;
  906. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  907. rx_ring->sbq_prod_idx = 0;
  908. QPRINTK(qdev, RX_STATUS, DEBUG,
  909. "sbq: updating prod idx = %d.\n",
  910. rx_ring->sbq_prod_idx);
  911. ql_write_db_reg(rx_ring->sbq_prod_idx,
  912. rx_ring->sbq_prod_idx_db_reg);
  913. rx_ring->sbq_free_cnt -= 16;
  914. }
  915. }
  916. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  917. struct rx_ring *rx_ring)
  918. {
  919. ql_update_sbq(qdev, rx_ring);
  920. ql_update_lbq(qdev, rx_ring);
  921. }
  922. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  923. * fails at some stage, or from the interrupt when a tx completes.
  924. */
  925. static void ql_unmap_send(struct ql_adapter *qdev,
  926. struct tx_ring_desc *tx_ring_desc, int mapped)
  927. {
  928. int i;
  929. for (i = 0; i < mapped; i++) {
  930. if (i == 0 || (i == 7 && mapped > 7)) {
  931. /*
  932. * Unmap the skb->data area, or the
  933. * external sglist (AKA the Outbound
  934. * Address List (OAL)).
  935. * If its the zeroeth element, then it's
  936. * the skb->data area. If it's the 7th
  937. * element and there is more than 6 frags,
  938. * then its an OAL.
  939. */
  940. if (i == 7) {
  941. QPRINTK(qdev, TX_DONE, DEBUG,
  942. "unmapping OAL area.\n");
  943. }
  944. pci_unmap_single(qdev->pdev,
  945. pci_unmap_addr(&tx_ring_desc->map[i],
  946. mapaddr),
  947. pci_unmap_len(&tx_ring_desc->map[i],
  948. maplen),
  949. PCI_DMA_TODEVICE);
  950. } else {
  951. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  952. i);
  953. pci_unmap_page(qdev->pdev,
  954. pci_unmap_addr(&tx_ring_desc->map[i],
  955. mapaddr),
  956. pci_unmap_len(&tx_ring_desc->map[i],
  957. maplen), PCI_DMA_TODEVICE);
  958. }
  959. }
  960. }
  961. /* Map the buffers for this transmit. This will return
  962. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  963. */
  964. static int ql_map_send(struct ql_adapter *qdev,
  965. struct ob_mac_iocb_req *mac_iocb_ptr,
  966. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  967. {
  968. int len = skb_headlen(skb);
  969. dma_addr_t map;
  970. int frag_idx, err, map_idx = 0;
  971. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  972. int frag_cnt = skb_shinfo(skb)->nr_frags;
  973. if (frag_cnt) {
  974. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  975. }
  976. /*
  977. * Map the skb buffer first.
  978. */
  979. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  980. err = pci_dma_mapping_error(qdev->pdev, map);
  981. if (err) {
  982. QPRINTK(qdev, TX_QUEUED, ERR,
  983. "PCI mapping failed with error: %d\n", err);
  984. return NETDEV_TX_BUSY;
  985. }
  986. tbd->len = cpu_to_le32(len);
  987. tbd->addr = cpu_to_le64(map);
  988. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  989. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  990. map_idx++;
  991. /*
  992. * This loop fills the remainder of the 8 address descriptors
  993. * in the IOCB. If there are more than 7 fragments, then the
  994. * eighth address desc will point to an external list (OAL).
  995. * When this happens, the remainder of the frags will be stored
  996. * in this list.
  997. */
  998. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  999. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1000. tbd++;
  1001. if (frag_idx == 6 && frag_cnt > 7) {
  1002. /* Let's tack on an sglist.
  1003. * Our control block will now
  1004. * look like this:
  1005. * iocb->seg[0] = skb->data
  1006. * iocb->seg[1] = frag[0]
  1007. * iocb->seg[2] = frag[1]
  1008. * iocb->seg[3] = frag[2]
  1009. * iocb->seg[4] = frag[3]
  1010. * iocb->seg[5] = frag[4]
  1011. * iocb->seg[6] = frag[5]
  1012. * iocb->seg[7] = ptr to OAL (external sglist)
  1013. * oal->seg[0] = frag[6]
  1014. * oal->seg[1] = frag[7]
  1015. * oal->seg[2] = frag[8]
  1016. * oal->seg[3] = frag[9]
  1017. * oal->seg[4] = frag[10]
  1018. * etc...
  1019. */
  1020. /* Tack on the OAL in the eighth segment of IOCB. */
  1021. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1022. sizeof(struct oal),
  1023. PCI_DMA_TODEVICE);
  1024. err = pci_dma_mapping_error(qdev->pdev, map);
  1025. if (err) {
  1026. QPRINTK(qdev, TX_QUEUED, ERR,
  1027. "PCI mapping outbound address list with error: %d\n",
  1028. err);
  1029. goto map_error;
  1030. }
  1031. tbd->addr = cpu_to_le64(map);
  1032. /*
  1033. * The length is the number of fragments
  1034. * that remain to be mapped times the length
  1035. * of our sglist (OAL).
  1036. */
  1037. tbd->len =
  1038. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1039. (frag_cnt - frag_idx)) | TX_DESC_C);
  1040. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1041. map);
  1042. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1043. sizeof(struct oal));
  1044. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1045. map_idx++;
  1046. }
  1047. map =
  1048. pci_map_page(qdev->pdev, frag->page,
  1049. frag->page_offset, frag->size,
  1050. PCI_DMA_TODEVICE);
  1051. err = pci_dma_mapping_error(qdev->pdev, map);
  1052. if (err) {
  1053. QPRINTK(qdev, TX_QUEUED, ERR,
  1054. "PCI mapping frags failed with error: %d.\n",
  1055. err);
  1056. goto map_error;
  1057. }
  1058. tbd->addr = cpu_to_le64(map);
  1059. tbd->len = cpu_to_le32(frag->size);
  1060. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1061. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1062. frag->size);
  1063. }
  1064. /* Save the number of segments we've mapped. */
  1065. tx_ring_desc->map_cnt = map_idx;
  1066. /* Terminate the last segment. */
  1067. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1068. return NETDEV_TX_OK;
  1069. map_error:
  1070. /*
  1071. * If the first frag mapping failed, then i will be zero.
  1072. * This causes the unmap of the skb->data area. Otherwise
  1073. * we pass in the number of frags that mapped successfully
  1074. * so they can be umapped.
  1075. */
  1076. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1077. return NETDEV_TX_BUSY;
  1078. }
  1079. static void ql_realign_skb(struct sk_buff *skb, int len)
  1080. {
  1081. void *temp_addr = skb->data;
  1082. /* Undo the skb_reserve(skb,32) we did before
  1083. * giving to hardware, and realign data on
  1084. * a 2-byte boundary.
  1085. */
  1086. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1087. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1088. skb_copy_to_linear_data(skb, temp_addr,
  1089. (unsigned int)len);
  1090. }
  1091. /*
  1092. * This function builds an skb for the given inbound
  1093. * completion. It will be rewritten for readability in the near
  1094. * future, but for not it works well.
  1095. */
  1096. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1097. struct rx_ring *rx_ring,
  1098. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1099. {
  1100. struct bq_desc *lbq_desc;
  1101. struct bq_desc *sbq_desc;
  1102. struct sk_buff *skb = NULL;
  1103. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1104. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1105. /*
  1106. * Handle the header buffer if present.
  1107. */
  1108. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1109. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1110. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1111. /*
  1112. * Headers fit nicely into a small buffer.
  1113. */
  1114. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1115. pci_unmap_single(qdev->pdev,
  1116. pci_unmap_addr(sbq_desc, mapaddr),
  1117. pci_unmap_len(sbq_desc, maplen),
  1118. PCI_DMA_FROMDEVICE);
  1119. skb = sbq_desc->p.skb;
  1120. ql_realign_skb(skb, hdr_len);
  1121. skb_put(skb, hdr_len);
  1122. sbq_desc->p.skb = NULL;
  1123. }
  1124. /*
  1125. * Handle the data buffer(s).
  1126. */
  1127. if (unlikely(!length)) { /* Is there data too? */
  1128. QPRINTK(qdev, RX_STATUS, DEBUG,
  1129. "No Data buffer in this packet.\n");
  1130. return skb;
  1131. }
  1132. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1133. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1134. QPRINTK(qdev, RX_STATUS, DEBUG,
  1135. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1136. /*
  1137. * Data is less than small buffer size so it's
  1138. * stuffed in a small buffer.
  1139. * For this case we append the data
  1140. * from the "data" small buffer to the "header" small
  1141. * buffer.
  1142. */
  1143. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1144. pci_dma_sync_single_for_cpu(qdev->pdev,
  1145. pci_unmap_addr
  1146. (sbq_desc, mapaddr),
  1147. pci_unmap_len
  1148. (sbq_desc, maplen),
  1149. PCI_DMA_FROMDEVICE);
  1150. memcpy(skb_put(skb, length),
  1151. sbq_desc->p.skb->data, length);
  1152. pci_dma_sync_single_for_device(qdev->pdev,
  1153. pci_unmap_addr
  1154. (sbq_desc,
  1155. mapaddr),
  1156. pci_unmap_len
  1157. (sbq_desc,
  1158. maplen),
  1159. PCI_DMA_FROMDEVICE);
  1160. } else {
  1161. QPRINTK(qdev, RX_STATUS, DEBUG,
  1162. "%d bytes in a single small buffer.\n", length);
  1163. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1164. skb = sbq_desc->p.skb;
  1165. ql_realign_skb(skb, length);
  1166. skb_put(skb, length);
  1167. pci_unmap_single(qdev->pdev,
  1168. pci_unmap_addr(sbq_desc,
  1169. mapaddr),
  1170. pci_unmap_len(sbq_desc,
  1171. maplen),
  1172. PCI_DMA_FROMDEVICE);
  1173. sbq_desc->p.skb = NULL;
  1174. }
  1175. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1176. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1177. QPRINTK(qdev, RX_STATUS, DEBUG,
  1178. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1179. /*
  1180. * The data is in a single large buffer. We
  1181. * chain it to the header buffer's skb and let
  1182. * it rip.
  1183. */
  1184. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1185. pci_unmap_page(qdev->pdev,
  1186. pci_unmap_addr(lbq_desc,
  1187. mapaddr),
  1188. pci_unmap_len(lbq_desc, maplen),
  1189. PCI_DMA_FROMDEVICE);
  1190. QPRINTK(qdev, RX_STATUS, DEBUG,
  1191. "Chaining page to skb.\n");
  1192. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1193. 0, length);
  1194. skb->len += length;
  1195. skb->data_len += length;
  1196. skb->truesize += length;
  1197. lbq_desc->p.lbq_page = NULL;
  1198. } else {
  1199. /*
  1200. * The headers and data are in a single large buffer. We
  1201. * copy it to a new skb and let it go. This can happen with
  1202. * jumbo mtu on a non-TCP/UDP frame.
  1203. */
  1204. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1205. skb = netdev_alloc_skb(qdev->ndev, length);
  1206. if (skb == NULL) {
  1207. QPRINTK(qdev, PROBE, DEBUG,
  1208. "No skb available, drop the packet.\n");
  1209. return NULL;
  1210. }
  1211. pci_unmap_page(qdev->pdev,
  1212. pci_unmap_addr(lbq_desc,
  1213. mapaddr),
  1214. pci_unmap_len(lbq_desc, maplen),
  1215. PCI_DMA_FROMDEVICE);
  1216. skb_reserve(skb, NET_IP_ALIGN);
  1217. QPRINTK(qdev, RX_STATUS, DEBUG,
  1218. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1219. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1220. 0, length);
  1221. skb->len += length;
  1222. skb->data_len += length;
  1223. skb->truesize += length;
  1224. length -= length;
  1225. lbq_desc->p.lbq_page = NULL;
  1226. __pskb_pull_tail(skb,
  1227. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1228. VLAN_ETH_HLEN : ETH_HLEN);
  1229. }
  1230. } else {
  1231. /*
  1232. * The data is in a chain of large buffers
  1233. * pointed to by a small buffer. We loop
  1234. * thru and chain them to the our small header
  1235. * buffer's skb.
  1236. * frags: There are 18 max frags and our small
  1237. * buffer will hold 32 of them. The thing is,
  1238. * we'll use 3 max for our 9000 byte jumbo
  1239. * frames. If the MTU goes up we could
  1240. * eventually be in trouble.
  1241. */
  1242. int size, offset, i = 0;
  1243. __le64 *bq, bq_array[8];
  1244. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1245. pci_unmap_single(qdev->pdev,
  1246. pci_unmap_addr(sbq_desc, mapaddr),
  1247. pci_unmap_len(sbq_desc, maplen),
  1248. PCI_DMA_FROMDEVICE);
  1249. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1250. /*
  1251. * This is an non TCP/UDP IP frame, so
  1252. * the headers aren't split into a small
  1253. * buffer. We have to use the small buffer
  1254. * that contains our sg list as our skb to
  1255. * send upstairs. Copy the sg list here to
  1256. * a local buffer and use it to find the
  1257. * pages to chain.
  1258. */
  1259. QPRINTK(qdev, RX_STATUS, DEBUG,
  1260. "%d bytes of headers & data in chain of large.\n", length);
  1261. skb = sbq_desc->p.skb;
  1262. bq = &bq_array[0];
  1263. memcpy(bq, skb->data, sizeof(bq_array));
  1264. sbq_desc->p.skb = NULL;
  1265. skb_reserve(skb, NET_IP_ALIGN);
  1266. } else {
  1267. QPRINTK(qdev, RX_STATUS, DEBUG,
  1268. "Headers in small, %d bytes of data in chain of large.\n", length);
  1269. bq = (__le64 *)sbq_desc->p.skb->data;
  1270. }
  1271. while (length > 0) {
  1272. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1273. pci_unmap_page(qdev->pdev,
  1274. pci_unmap_addr(lbq_desc,
  1275. mapaddr),
  1276. pci_unmap_len(lbq_desc,
  1277. maplen),
  1278. PCI_DMA_FROMDEVICE);
  1279. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1280. offset = 0;
  1281. QPRINTK(qdev, RX_STATUS, DEBUG,
  1282. "Adding page %d to skb for %d bytes.\n",
  1283. i, size);
  1284. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1285. offset, size);
  1286. skb->len += size;
  1287. skb->data_len += size;
  1288. skb->truesize += size;
  1289. length -= size;
  1290. lbq_desc->p.lbq_page = NULL;
  1291. bq++;
  1292. i++;
  1293. }
  1294. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1295. VLAN_ETH_HLEN : ETH_HLEN);
  1296. }
  1297. return skb;
  1298. }
  1299. /* Process an inbound completion from an rx ring. */
  1300. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1301. struct rx_ring *rx_ring,
  1302. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1303. {
  1304. struct net_device *ndev = qdev->ndev;
  1305. struct sk_buff *skb = NULL;
  1306. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1307. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1308. if (unlikely(!skb)) {
  1309. QPRINTK(qdev, RX_STATUS, DEBUG,
  1310. "No skb available, drop packet.\n");
  1311. return;
  1312. }
  1313. prefetch(skb->data);
  1314. skb->dev = ndev;
  1315. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1316. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1317. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1318. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1319. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1320. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1321. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1322. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1323. }
  1324. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1325. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1326. }
  1327. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1328. QPRINTK(qdev, RX_STATUS, ERR,
  1329. "Bad checksum for this %s packet.\n",
  1330. ((ib_mac_rsp->
  1331. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1332. skb->ip_summed = CHECKSUM_NONE;
  1333. } else if (qdev->rx_csum &&
  1334. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1335. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1336. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1337. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1338. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1339. }
  1340. qdev->stats.rx_packets++;
  1341. qdev->stats.rx_bytes += skb->len;
  1342. skb->protocol = eth_type_trans(skb, ndev);
  1343. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1344. QPRINTK(qdev, RX_STATUS, DEBUG,
  1345. "Passing a VLAN packet upstream.\n");
  1346. vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
  1347. le16_to_cpu(ib_mac_rsp->vlan_id));
  1348. } else {
  1349. QPRINTK(qdev, RX_STATUS, DEBUG,
  1350. "Passing a normal packet upstream.\n");
  1351. netif_receive_skb(skb);
  1352. }
  1353. }
  1354. /* Process an outbound completion from an rx ring. */
  1355. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1356. struct ob_mac_iocb_rsp *mac_rsp)
  1357. {
  1358. struct tx_ring *tx_ring;
  1359. struct tx_ring_desc *tx_ring_desc;
  1360. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1361. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1362. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1363. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1364. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1365. qdev->stats.tx_packets++;
  1366. dev_kfree_skb(tx_ring_desc->skb);
  1367. tx_ring_desc->skb = NULL;
  1368. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1369. OB_MAC_IOCB_RSP_S |
  1370. OB_MAC_IOCB_RSP_L |
  1371. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1372. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1373. QPRINTK(qdev, TX_DONE, WARNING,
  1374. "Total descriptor length did not match transfer length.\n");
  1375. }
  1376. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1377. QPRINTK(qdev, TX_DONE, WARNING,
  1378. "Frame too short to be legal, not sent.\n");
  1379. }
  1380. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1381. QPRINTK(qdev, TX_DONE, WARNING,
  1382. "Frame too long, but sent anyway.\n");
  1383. }
  1384. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1385. QPRINTK(qdev, TX_DONE, WARNING,
  1386. "PCI backplane error. Frame not sent.\n");
  1387. }
  1388. }
  1389. atomic_inc(&tx_ring->tx_count);
  1390. }
  1391. /* Fire up a handler to reset the MPI processor. */
  1392. void ql_queue_fw_error(struct ql_adapter *qdev)
  1393. {
  1394. netif_stop_queue(qdev->ndev);
  1395. netif_carrier_off(qdev->ndev);
  1396. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1397. }
  1398. void ql_queue_asic_error(struct ql_adapter *qdev)
  1399. {
  1400. netif_stop_queue(qdev->ndev);
  1401. netif_carrier_off(qdev->ndev);
  1402. ql_disable_interrupts(qdev);
  1403. /* Clear adapter up bit to signal the recovery
  1404. * process that it shouldn't kill the reset worker
  1405. * thread
  1406. */
  1407. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1408. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1409. }
  1410. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1411. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1412. {
  1413. switch (ib_ae_rsp->event) {
  1414. case MGMT_ERR_EVENT:
  1415. QPRINTK(qdev, RX_ERR, ERR,
  1416. "Management Processor Fatal Error.\n");
  1417. ql_queue_fw_error(qdev);
  1418. return;
  1419. case CAM_LOOKUP_ERR_EVENT:
  1420. QPRINTK(qdev, LINK, ERR,
  1421. "Multiple CAM hits lookup occurred.\n");
  1422. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1423. ql_queue_asic_error(qdev);
  1424. return;
  1425. case SOFT_ECC_ERROR_EVENT:
  1426. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1427. ql_queue_asic_error(qdev);
  1428. break;
  1429. case PCI_ERR_ANON_BUF_RD:
  1430. QPRINTK(qdev, RX_ERR, ERR,
  1431. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1432. ib_ae_rsp->q_id);
  1433. ql_queue_asic_error(qdev);
  1434. break;
  1435. default:
  1436. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1437. ib_ae_rsp->event);
  1438. ql_queue_asic_error(qdev);
  1439. break;
  1440. }
  1441. }
  1442. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1443. {
  1444. struct ql_adapter *qdev = rx_ring->qdev;
  1445. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1446. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1447. int count = 0;
  1448. /* While there are entries in the completion queue. */
  1449. while (prod != rx_ring->cnsmr_idx) {
  1450. QPRINTK(qdev, RX_STATUS, DEBUG,
  1451. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1452. prod, rx_ring->cnsmr_idx);
  1453. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1454. rmb();
  1455. switch (net_rsp->opcode) {
  1456. case OPCODE_OB_MAC_TSO_IOCB:
  1457. case OPCODE_OB_MAC_IOCB:
  1458. ql_process_mac_tx_intr(qdev, net_rsp);
  1459. break;
  1460. default:
  1461. QPRINTK(qdev, RX_STATUS, DEBUG,
  1462. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1463. net_rsp->opcode);
  1464. }
  1465. count++;
  1466. ql_update_cq(rx_ring);
  1467. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1468. }
  1469. ql_write_cq_idx(rx_ring);
  1470. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1471. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1472. if (atomic_read(&tx_ring->queue_stopped) &&
  1473. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1474. /*
  1475. * The queue got stopped because the tx_ring was full.
  1476. * Wake it up, because it's now at least 25% empty.
  1477. */
  1478. netif_wake_queue(qdev->ndev);
  1479. }
  1480. return count;
  1481. }
  1482. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1483. {
  1484. struct ql_adapter *qdev = rx_ring->qdev;
  1485. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1486. struct ql_net_rsp_iocb *net_rsp;
  1487. int count = 0;
  1488. /* While there are entries in the completion queue. */
  1489. while (prod != rx_ring->cnsmr_idx) {
  1490. QPRINTK(qdev, RX_STATUS, DEBUG,
  1491. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1492. prod, rx_ring->cnsmr_idx);
  1493. net_rsp = rx_ring->curr_entry;
  1494. rmb();
  1495. switch (net_rsp->opcode) {
  1496. case OPCODE_IB_MAC_IOCB:
  1497. ql_process_mac_rx_intr(qdev, rx_ring,
  1498. (struct ib_mac_iocb_rsp *)
  1499. net_rsp);
  1500. break;
  1501. case OPCODE_IB_AE_IOCB:
  1502. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1503. net_rsp);
  1504. break;
  1505. default:
  1506. {
  1507. QPRINTK(qdev, RX_STATUS, DEBUG,
  1508. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1509. net_rsp->opcode);
  1510. }
  1511. }
  1512. count++;
  1513. ql_update_cq(rx_ring);
  1514. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1515. if (count == budget)
  1516. break;
  1517. }
  1518. ql_update_buffer_queues(qdev, rx_ring);
  1519. ql_write_cq_idx(rx_ring);
  1520. return count;
  1521. }
  1522. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1523. {
  1524. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1525. struct ql_adapter *qdev = rx_ring->qdev;
  1526. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1527. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1528. rx_ring->cq_id);
  1529. if (work_done < budget) {
  1530. __netif_rx_complete(napi);
  1531. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1532. }
  1533. return work_done;
  1534. }
  1535. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1536. {
  1537. struct ql_adapter *qdev = netdev_priv(ndev);
  1538. qdev->vlgrp = grp;
  1539. if (grp) {
  1540. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1541. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1542. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1543. } else {
  1544. QPRINTK(qdev, IFUP, DEBUG,
  1545. "Turning off VLAN in NIC_RCV_CFG.\n");
  1546. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1547. }
  1548. }
  1549. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1550. {
  1551. struct ql_adapter *qdev = netdev_priv(ndev);
  1552. u32 enable_bit = MAC_ADDR_E;
  1553. spin_lock(&qdev->hw_lock);
  1554. if (ql_set_mac_addr_reg
  1555. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1556. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1557. }
  1558. spin_unlock(&qdev->hw_lock);
  1559. }
  1560. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1561. {
  1562. struct ql_adapter *qdev = netdev_priv(ndev);
  1563. u32 enable_bit = 0;
  1564. spin_lock(&qdev->hw_lock);
  1565. if (ql_set_mac_addr_reg
  1566. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1567. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1568. }
  1569. spin_unlock(&qdev->hw_lock);
  1570. }
  1571. /* Worker thread to process a given rx_ring that is dedicated
  1572. * to outbound completions.
  1573. */
  1574. static void ql_tx_clean(struct work_struct *work)
  1575. {
  1576. struct rx_ring *rx_ring =
  1577. container_of(work, struct rx_ring, rx_work.work);
  1578. ql_clean_outbound_rx_ring(rx_ring);
  1579. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1580. }
  1581. /* Worker thread to process a given rx_ring that is dedicated
  1582. * to inbound completions.
  1583. */
  1584. static void ql_rx_clean(struct work_struct *work)
  1585. {
  1586. struct rx_ring *rx_ring =
  1587. container_of(work, struct rx_ring, rx_work.work);
  1588. ql_clean_inbound_rx_ring(rx_ring, 64);
  1589. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1590. }
  1591. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1592. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1593. {
  1594. struct rx_ring *rx_ring = dev_id;
  1595. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1596. &rx_ring->rx_work, 0);
  1597. return IRQ_HANDLED;
  1598. }
  1599. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1600. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1601. {
  1602. struct rx_ring *rx_ring = dev_id;
  1603. netif_rx_schedule(&rx_ring->napi);
  1604. return IRQ_HANDLED;
  1605. }
  1606. /* This handles a fatal error, MPI activity, and the default
  1607. * rx_ring in an MSI-X multiple vector environment.
  1608. * In MSI/Legacy environment it also process the rest of
  1609. * the rx_rings.
  1610. */
  1611. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1612. {
  1613. struct rx_ring *rx_ring = dev_id;
  1614. struct ql_adapter *qdev = rx_ring->qdev;
  1615. struct intr_context *intr_context = &qdev->intr_context[0];
  1616. u32 var;
  1617. int i;
  1618. int work_done = 0;
  1619. spin_lock(&qdev->hw_lock);
  1620. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1621. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1622. spin_unlock(&qdev->hw_lock);
  1623. return IRQ_NONE;
  1624. }
  1625. spin_unlock(&qdev->hw_lock);
  1626. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1627. /*
  1628. * Check for fatal error.
  1629. */
  1630. if (var & STS_FE) {
  1631. ql_queue_asic_error(qdev);
  1632. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1633. var = ql_read32(qdev, ERR_STS);
  1634. QPRINTK(qdev, INTR, ERR,
  1635. "Resetting chip. Error Status Register = 0x%x\n", var);
  1636. return IRQ_HANDLED;
  1637. }
  1638. /*
  1639. * Check MPI processor activity.
  1640. */
  1641. if (var & STS_PI) {
  1642. /*
  1643. * We've got an async event or mailbox completion.
  1644. * Handle it and clear the source of the interrupt.
  1645. */
  1646. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1647. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1648. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1649. &qdev->mpi_work, 0);
  1650. work_done++;
  1651. }
  1652. /*
  1653. * Check the default queue and wake handler if active.
  1654. */
  1655. rx_ring = &qdev->rx_ring[0];
  1656. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1657. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1658. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1659. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1660. &rx_ring->rx_work, 0);
  1661. work_done++;
  1662. }
  1663. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1664. /*
  1665. * Start the DPC for each active queue.
  1666. */
  1667. for (i = 1; i < qdev->rx_ring_count; i++) {
  1668. rx_ring = &qdev->rx_ring[i];
  1669. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1670. rx_ring->cnsmr_idx) {
  1671. QPRINTK(qdev, INTR, INFO,
  1672. "Waking handler for rx_ring[%d].\n", i);
  1673. ql_disable_completion_interrupt(qdev,
  1674. intr_context->
  1675. intr);
  1676. if (i < qdev->rss_ring_first_cq_id)
  1677. queue_delayed_work_on(rx_ring->cpu,
  1678. qdev->q_workqueue,
  1679. &rx_ring->rx_work,
  1680. 0);
  1681. else
  1682. netif_rx_schedule(&rx_ring->napi);
  1683. work_done++;
  1684. }
  1685. }
  1686. }
  1687. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1688. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1689. }
  1690. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1691. {
  1692. if (skb_is_gso(skb)) {
  1693. int err;
  1694. if (skb_header_cloned(skb)) {
  1695. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1696. if (err)
  1697. return err;
  1698. }
  1699. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1700. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1701. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1702. mac_iocb_ptr->total_hdrs_len =
  1703. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1704. mac_iocb_ptr->net_trans_offset =
  1705. cpu_to_le16(skb_network_offset(skb) |
  1706. skb_transport_offset(skb)
  1707. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1708. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1709. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1710. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1711. struct iphdr *iph = ip_hdr(skb);
  1712. iph->check = 0;
  1713. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1714. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1715. iph->daddr, 0,
  1716. IPPROTO_TCP,
  1717. 0);
  1718. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1719. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1720. tcp_hdr(skb)->check =
  1721. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1722. &ipv6_hdr(skb)->daddr,
  1723. 0, IPPROTO_TCP, 0);
  1724. }
  1725. return 1;
  1726. }
  1727. return 0;
  1728. }
  1729. static void ql_hw_csum_setup(struct sk_buff *skb,
  1730. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1731. {
  1732. int len;
  1733. struct iphdr *iph = ip_hdr(skb);
  1734. __sum16 *check;
  1735. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1736. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1737. mac_iocb_ptr->net_trans_offset =
  1738. cpu_to_le16(skb_network_offset(skb) |
  1739. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1740. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1741. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1742. if (likely(iph->protocol == IPPROTO_TCP)) {
  1743. check = &(tcp_hdr(skb)->check);
  1744. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1745. mac_iocb_ptr->total_hdrs_len =
  1746. cpu_to_le16(skb_transport_offset(skb) +
  1747. (tcp_hdr(skb)->doff << 2));
  1748. } else {
  1749. check = &(udp_hdr(skb)->check);
  1750. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1751. mac_iocb_ptr->total_hdrs_len =
  1752. cpu_to_le16(skb_transport_offset(skb) +
  1753. sizeof(struct udphdr));
  1754. }
  1755. *check = ~csum_tcpudp_magic(iph->saddr,
  1756. iph->daddr, len, iph->protocol, 0);
  1757. }
  1758. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1759. {
  1760. struct tx_ring_desc *tx_ring_desc;
  1761. struct ob_mac_iocb_req *mac_iocb_ptr;
  1762. struct ql_adapter *qdev = netdev_priv(ndev);
  1763. int tso;
  1764. struct tx_ring *tx_ring;
  1765. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1766. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1767. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1768. QPRINTK(qdev, TX_QUEUED, INFO,
  1769. "%s: shutting down tx queue %d du to lack of resources.\n",
  1770. __func__, tx_ring_idx);
  1771. netif_stop_queue(ndev);
  1772. atomic_inc(&tx_ring->queue_stopped);
  1773. return NETDEV_TX_BUSY;
  1774. }
  1775. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1776. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1777. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1778. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1779. mac_iocb_ptr->tid = tx_ring_desc->index;
  1780. /* We use the upper 32-bits to store the tx queue for this IO.
  1781. * When we get the completion we can use it to establish the context.
  1782. */
  1783. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1784. tx_ring_desc->skb = skb;
  1785. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1786. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1787. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1788. vlan_tx_tag_get(skb));
  1789. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1790. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1791. }
  1792. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1793. if (tso < 0) {
  1794. dev_kfree_skb_any(skb);
  1795. return NETDEV_TX_OK;
  1796. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1797. ql_hw_csum_setup(skb,
  1798. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1799. }
  1800. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1801. NETDEV_TX_OK) {
  1802. QPRINTK(qdev, TX_QUEUED, ERR,
  1803. "Could not map the segments.\n");
  1804. return NETDEV_TX_BUSY;
  1805. }
  1806. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1807. tx_ring->prod_idx++;
  1808. if (tx_ring->prod_idx == tx_ring->wq_len)
  1809. tx_ring->prod_idx = 0;
  1810. wmb();
  1811. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1812. ndev->trans_start = jiffies;
  1813. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1814. tx_ring->prod_idx, skb->len);
  1815. atomic_dec(&tx_ring->tx_count);
  1816. return NETDEV_TX_OK;
  1817. }
  1818. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1819. {
  1820. if (qdev->rx_ring_shadow_reg_area) {
  1821. pci_free_consistent(qdev->pdev,
  1822. PAGE_SIZE,
  1823. qdev->rx_ring_shadow_reg_area,
  1824. qdev->rx_ring_shadow_reg_dma);
  1825. qdev->rx_ring_shadow_reg_area = NULL;
  1826. }
  1827. if (qdev->tx_ring_shadow_reg_area) {
  1828. pci_free_consistent(qdev->pdev,
  1829. PAGE_SIZE,
  1830. qdev->tx_ring_shadow_reg_area,
  1831. qdev->tx_ring_shadow_reg_dma);
  1832. qdev->tx_ring_shadow_reg_area = NULL;
  1833. }
  1834. }
  1835. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1836. {
  1837. qdev->rx_ring_shadow_reg_area =
  1838. pci_alloc_consistent(qdev->pdev,
  1839. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1840. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1841. QPRINTK(qdev, IFUP, ERR,
  1842. "Allocation of RX shadow space failed.\n");
  1843. return -ENOMEM;
  1844. }
  1845. qdev->tx_ring_shadow_reg_area =
  1846. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1847. &qdev->tx_ring_shadow_reg_dma);
  1848. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1849. QPRINTK(qdev, IFUP, ERR,
  1850. "Allocation of TX shadow space failed.\n");
  1851. goto err_wqp_sh_area;
  1852. }
  1853. return 0;
  1854. err_wqp_sh_area:
  1855. pci_free_consistent(qdev->pdev,
  1856. PAGE_SIZE,
  1857. qdev->rx_ring_shadow_reg_area,
  1858. qdev->rx_ring_shadow_reg_dma);
  1859. return -ENOMEM;
  1860. }
  1861. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1862. {
  1863. struct tx_ring_desc *tx_ring_desc;
  1864. int i;
  1865. struct ob_mac_iocb_req *mac_iocb_ptr;
  1866. mac_iocb_ptr = tx_ring->wq_base;
  1867. tx_ring_desc = tx_ring->q;
  1868. for (i = 0; i < tx_ring->wq_len; i++) {
  1869. tx_ring_desc->index = i;
  1870. tx_ring_desc->skb = NULL;
  1871. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1872. mac_iocb_ptr++;
  1873. tx_ring_desc++;
  1874. }
  1875. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1876. atomic_set(&tx_ring->queue_stopped, 0);
  1877. }
  1878. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1879. struct tx_ring *tx_ring)
  1880. {
  1881. if (tx_ring->wq_base) {
  1882. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1883. tx_ring->wq_base, tx_ring->wq_base_dma);
  1884. tx_ring->wq_base = NULL;
  1885. }
  1886. kfree(tx_ring->q);
  1887. tx_ring->q = NULL;
  1888. }
  1889. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1890. struct tx_ring *tx_ring)
  1891. {
  1892. tx_ring->wq_base =
  1893. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1894. &tx_ring->wq_base_dma);
  1895. if ((tx_ring->wq_base == NULL)
  1896. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1897. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1898. return -ENOMEM;
  1899. }
  1900. tx_ring->q =
  1901. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1902. if (tx_ring->q == NULL)
  1903. goto err;
  1904. return 0;
  1905. err:
  1906. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1907. tx_ring->wq_base, tx_ring->wq_base_dma);
  1908. return -ENOMEM;
  1909. }
  1910. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1911. {
  1912. int i;
  1913. struct bq_desc *lbq_desc;
  1914. for (i = 0; i < rx_ring->lbq_len; i++) {
  1915. lbq_desc = &rx_ring->lbq[i];
  1916. if (lbq_desc->p.lbq_page) {
  1917. pci_unmap_page(qdev->pdev,
  1918. pci_unmap_addr(lbq_desc, mapaddr),
  1919. pci_unmap_len(lbq_desc, maplen),
  1920. PCI_DMA_FROMDEVICE);
  1921. put_page(lbq_desc->p.lbq_page);
  1922. lbq_desc->p.lbq_page = NULL;
  1923. }
  1924. }
  1925. }
  1926. /*
  1927. * Allocate and map a page for each element of the lbq.
  1928. */
  1929. static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
  1930. struct rx_ring *rx_ring)
  1931. {
  1932. int i;
  1933. struct bq_desc *lbq_desc;
  1934. u64 map;
  1935. __le64 *bq = rx_ring->lbq_base;
  1936. for (i = 0; i < rx_ring->lbq_len; i++) {
  1937. lbq_desc = &rx_ring->lbq[i];
  1938. memset(lbq_desc, 0, sizeof(lbq_desc));
  1939. lbq_desc->addr = bq;
  1940. lbq_desc->index = i;
  1941. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  1942. if (unlikely(!lbq_desc->p.lbq_page)) {
  1943. QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
  1944. goto mem_error;
  1945. } else {
  1946. map = pci_map_page(qdev->pdev,
  1947. lbq_desc->p.lbq_page,
  1948. 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1949. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1950. QPRINTK(qdev, IFUP, ERR,
  1951. "PCI mapping failed.\n");
  1952. goto mem_error;
  1953. }
  1954. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1955. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1956. *lbq_desc->addr = cpu_to_le64(map);
  1957. }
  1958. bq++;
  1959. }
  1960. return 0;
  1961. mem_error:
  1962. ql_free_lbq_buffers(qdev, rx_ring);
  1963. return -ENOMEM;
  1964. }
  1965. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1966. {
  1967. int i;
  1968. struct bq_desc *sbq_desc;
  1969. for (i = 0; i < rx_ring->sbq_len; i++) {
  1970. sbq_desc = &rx_ring->sbq[i];
  1971. if (sbq_desc == NULL) {
  1972. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1973. return;
  1974. }
  1975. if (sbq_desc->p.skb) {
  1976. pci_unmap_single(qdev->pdev,
  1977. pci_unmap_addr(sbq_desc, mapaddr),
  1978. pci_unmap_len(sbq_desc, maplen),
  1979. PCI_DMA_FROMDEVICE);
  1980. dev_kfree_skb(sbq_desc->p.skb);
  1981. sbq_desc->p.skb = NULL;
  1982. }
  1983. }
  1984. }
  1985. /* Allocate and map an skb for each element of the sbq. */
  1986. static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
  1987. struct rx_ring *rx_ring)
  1988. {
  1989. int i;
  1990. struct bq_desc *sbq_desc;
  1991. struct sk_buff *skb;
  1992. u64 map;
  1993. __le64 *bq = rx_ring->sbq_base;
  1994. for (i = 0; i < rx_ring->sbq_len; i++) {
  1995. sbq_desc = &rx_ring->sbq[i];
  1996. memset(sbq_desc, 0, sizeof(sbq_desc));
  1997. sbq_desc->index = i;
  1998. sbq_desc->addr = bq;
  1999. skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
  2000. if (unlikely(!skb)) {
  2001. /* Better luck next round */
  2002. QPRINTK(qdev, IFUP, ERR,
  2003. "small buff alloc failed for %d bytes at index %d.\n",
  2004. rx_ring->sbq_buf_size, i);
  2005. goto mem_err;
  2006. }
  2007. skb_reserve(skb, QLGE_SB_PAD);
  2008. sbq_desc->p.skb = skb;
  2009. /*
  2010. * Map only half the buffer. Because the
  2011. * other half may get some data copied to it
  2012. * when the completion arrives.
  2013. */
  2014. map = pci_map_single(qdev->pdev,
  2015. skb->data,
  2016. rx_ring->sbq_buf_size / 2,
  2017. PCI_DMA_FROMDEVICE);
  2018. if (pci_dma_mapping_error(qdev->pdev, map)) {
  2019. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  2020. goto mem_err;
  2021. }
  2022. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  2023. pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
  2024. *sbq_desc->addr = cpu_to_le64(map);
  2025. bq++;
  2026. }
  2027. return 0;
  2028. mem_err:
  2029. ql_free_sbq_buffers(qdev, rx_ring);
  2030. return -ENOMEM;
  2031. }
  2032. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2033. struct rx_ring *rx_ring)
  2034. {
  2035. if (rx_ring->sbq_len)
  2036. ql_free_sbq_buffers(qdev, rx_ring);
  2037. if (rx_ring->lbq_len)
  2038. ql_free_lbq_buffers(qdev, rx_ring);
  2039. /* Free the small buffer queue. */
  2040. if (rx_ring->sbq_base) {
  2041. pci_free_consistent(qdev->pdev,
  2042. rx_ring->sbq_size,
  2043. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2044. rx_ring->sbq_base = NULL;
  2045. }
  2046. /* Free the small buffer queue control blocks. */
  2047. kfree(rx_ring->sbq);
  2048. rx_ring->sbq = NULL;
  2049. /* Free the large buffer queue. */
  2050. if (rx_ring->lbq_base) {
  2051. pci_free_consistent(qdev->pdev,
  2052. rx_ring->lbq_size,
  2053. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2054. rx_ring->lbq_base = NULL;
  2055. }
  2056. /* Free the large buffer queue control blocks. */
  2057. kfree(rx_ring->lbq);
  2058. rx_ring->lbq = NULL;
  2059. /* Free the rx queue. */
  2060. if (rx_ring->cq_base) {
  2061. pci_free_consistent(qdev->pdev,
  2062. rx_ring->cq_size,
  2063. rx_ring->cq_base, rx_ring->cq_base_dma);
  2064. rx_ring->cq_base = NULL;
  2065. }
  2066. }
  2067. /* Allocate queues and buffers for this completions queue based
  2068. * on the values in the parameter structure. */
  2069. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2070. struct rx_ring *rx_ring)
  2071. {
  2072. /*
  2073. * Allocate the completion queue for this rx_ring.
  2074. */
  2075. rx_ring->cq_base =
  2076. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2077. &rx_ring->cq_base_dma);
  2078. if (rx_ring->cq_base == NULL) {
  2079. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2080. return -ENOMEM;
  2081. }
  2082. if (rx_ring->sbq_len) {
  2083. /*
  2084. * Allocate small buffer queue.
  2085. */
  2086. rx_ring->sbq_base =
  2087. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2088. &rx_ring->sbq_base_dma);
  2089. if (rx_ring->sbq_base == NULL) {
  2090. QPRINTK(qdev, IFUP, ERR,
  2091. "Small buffer queue allocation failed.\n");
  2092. goto err_mem;
  2093. }
  2094. /*
  2095. * Allocate small buffer queue control blocks.
  2096. */
  2097. rx_ring->sbq =
  2098. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2099. GFP_KERNEL);
  2100. if (rx_ring->sbq == NULL) {
  2101. QPRINTK(qdev, IFUP, ERR,
  2102. "Small buffer queue control block allocation failed.\n");
  2103. goto err_mem;
  2104. }
  2105. if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
  2106. QPRINTK(qdev, IFUP, ERR,
  2107. "Small buffer allocation failed.\n");
  2108. goto err_mem;
  2109. }
  2110. }
  2111. if (rx_ring->lbq_len) {
  2112. /*
  2113. * Allocate large buffer queue.
  2114. */
  2115. rx_ring->lbq_base =
  2116. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2117. &rx_ring->lbq_base_dma);
  2118. if (rx_ring->lbq_base == NULL) {
  2119. QPRINTK(qdev, IFUP, ERR,
  2120. "Large buffer queue allocation failed.\n");
  2121. goto err_mem;
  2122. }
  2123. /*
  2124. * Allocate large buffer queue control blocks.
  2125. */
  2126. rx_ring->lbq =
  2127. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2128. GFP_KERNEL);
  2129. if (rx_ring->lbq == NULL) {
  2130. QPRINTK(qdev, IFUP, ERR,
  2131. "Large buffer queue control block allocation failed.\n");
  2132. goto err_mem;
  2133. }
  2134. /*
  2135. * Allocate the buffers.
  2136. */
  2137. if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
  2138. QPRINTK(qdev, IFUP, ERR,
  2139. "Large buffer allocation failed.\n");
  2140. goto err_mem;
  2141. }
  2142. }
  2143. return 0;
  2144. err_mem:
  2145. ql_free_rx_resources(qdev, rx_ring);
  2146. return -ENOMEM;
  2147. }
  2148. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2149. {
  2150. struct tx_ring *tx_ring;
  2151. struct tx_ring_desc *tx_ring_desc;
  2152. int i, j;
  2153. /*
  2154. * Loop through all queues and free
  2155. * any resources.
  2156. */
  2157. for (j = 0; j < qdev->tx_ring_count; j++) {
  2158. tx_ring = &qdev->tx_ring[j];
  2159. for (i = 0; i < tx_ring->wq_len; i++) {
  2160. tx_ring_desc = &tx_ring->q[i];
  2161. if (tx_ring_desc && tx_ring_desc->skb) {
  2162. QPRINTK(qdev, IFDOWN, ERR,
  2163. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2164. tx_ring_desc->skb, j,
  2165. tx_ring_desc->index);
  2166. ql_unmap_send(qdev, tx_ring_desc,
  2167. tx_ring_desc->map_cnt);
  2168. dev_kfree_skb(tx_ring_desc->skb);
  2169. tx_ring_desc->skb = NULL;
  2170. }
  2171. }
  2172. }
  2173. }
  2174. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2175. {
  2176. int i;
  2177. for (i = 0; i < qdev->tx_ring_count; i++)
  2178. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2179. for (i = 0; i < qdev->rx_ring_count; i++)
  2180. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2181. ql_free_shadow_space(qdev);
  2182. }
  2183. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2184. {
  2185. int i;
  2186. /* Allocate space for our shadow registers and such. */
  2187. if (ql_alloc_shadow_space(qdev))
  2188. return -ENOMEM;
  2189. for (i = 0; i < qdev->rx_ring_count; i++) {
  2190. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2191. QPRINTK(qdev, IFUP, ERR,
  2192. "RX resource allocation failed.\n");
  2193. goto err_mem;
  2194. }
  2195. }
  2196. /* Allocate tx queue resources */
  2197. for (i = 0; i < qdev->tx_ring_count; i++) {
  2198. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2199. QPRINTK(qdev, IFUP, ERR,
  2200. "TX resource allocation failed.\n");
  2201. goto err_mem;
  2202. }
  2203. }
  2204. return 0;
  2205. err_mem:
  2206. ql_free_mem_resources(qdev);
  2207. return -ENOMEM;
  2208. }
  2209. /* Set up the rx ring control block and pass it to the chip.
  2210. * The control block is defined as
  2211. * "Completion Queue Initialization Control Block", or cqicb.
  2212. */
  2213. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2214. {
  2215. struct cqicb *cqicb = &rx_ring->cqicb;
  2216. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2217. (rx_ring->cq_id * sizeof(u64) * 4);
  2218. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2219. (rx_ring->cq_id * sizeof(u64) * 4);
  2220. void __iomem *doorbell_area =
  2221. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2222. int err = 0;
  2223. u16 bq_len;
  2224. /* Set up the shadow registers for this ring. */
  2225. rx_ring->prod_idx_sh_reg = shadow_reg;
  2226. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2227. shadow_reg += sizeof(u64);
  2228. shadow_reg_dma += sizeof(u64);
  2229. rx_ring->lbq_base_indirect = shadow_reg;
  2230. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2231. shadow_reg += sizeof(u64);
  2232. shadow_reg_dma += sizeof(u64);
  2233. rx_ring->sbq_base_indirect = shadow_reg;
  2234. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2235. /* PCI doorbell mem area + 0x00 for consumer index register */
  2236. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2237. rx_ring->cnsmr_idx = 0;
  2238. rx_ring->curr_entry = rx_ring->cq_base;
  2239. /* PCI doorbell mem area + 0x04 for valid register */
  2240. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2241. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2242. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2243. /* PCI doorbell mem area + 0x1c */
  2244. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2245. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2246. cqicb->msix_vect = rx_ring->irq;
  2247. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2248. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2249. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2250. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2251. /*
  2252. * Set up the control block load flags.
  2253. */
  2254. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2255. FLAGS_LV | /* Load MSI-X vector */
  2256. FLAGS_LI; /* Load irq delay values */
  2257. if (rx_ring->lbq_len) {
  2258. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2259. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2260. cqicb->lbq_addr =
  2261. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2262. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2263. (u16) rx_ring->lbq_buf_size;
  2264. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2265. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2266. (u16) rx_ring->lbq_len;
  2267. cqicb->lbq_len = cpu_to_le16(bq_len);
  2268. rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
  2269. rx_ring->lbq_curr_idx = 0;
  2270. rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
  2271. rx_ring->lbq_free_cnt = 16;
  2272. }
  2273. if (rx_ring->sbq_len) {
  2274. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2275. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2276. cqicb->sbq_addr =
  2277. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2278. cqicb->sbq_buf_size =
  2279. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2280. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2281. (u16) rx_ring->sbq_len;
  2282. cqicb->sbq_len = cpu_to_le16(bq_len);
  2283. rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
  2284. rx_ring->sbq_curr_idx = 0;
  2285. rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
  2286. rx_ring->sbq_free_cnt = 16;
  2287. }
  2288. switch (rx_ring->type) {
  2289. case TX_Q:
  2290. /* If there's only one interrupt, then we use
  2291. * worker threads to process the outbound
  2292. * completion handling rx_rings. We do this so
  2293. * they can be run on multiple CPUs. There is
  2294. * room to play with this more where we would only
  2295. * run in a worker if there are more than x number
  2296. * of outbound completions on the queue and more
  2297. * than one queue active. Some threshold that
  2298. * would indicate a benefit in spite of the cost
  2299. * of a context switch.
  2300. * If there's more than one interrupt, then the
  2301. * outbound completions are processed in the ISR.
  2302. */
  2303. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2304. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2305. else {
  2306. /* With all debug warnings on we see a WARN_ON message
  2307. * when we free the skb in the interrupt context.
  2308. */
  2309. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2310. }
  2311. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2312. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2313. break;
  2314. case DEFAULT_Q:
  2315. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2316. cqicb->irq_delay = 0;
  2317. cqicb->pkt_delay = 0;
  2318. break;
  2319. case RX_Q:
  2320. /* Inbound completion handling rx_rings run in
  2321. * separate NAPI contexts.
  2322. */
  2323. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2324. 64);
  2325. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2326. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2327. break;
  2328. default:
  2329. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2330. rx_ring->type);
  2331. }
  2332. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2333. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2334. CFG_LCQ, rx_ring->cq_id);
  2335. if (err) {
  2336. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2337. return err;
  2338. }
  2339. QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
  2340. /*
  2341. * Advance the producer index for the buffer queues.
  2342. */
  2343. wmb();
  2344. if (rx_ring->lbq_len)
  2345. ql_write_db_reg(rx_ring->lbq_prod_idx,
  2346. rx_ring->lbq_prod_idx_db_reg);
  2347. if (rx_ring->sbq_len)
  2348. ql_write_db_reg(rx_ring->sbq_prod_idx,
  2349. rx_ring->sbq_prod_idx_db_reg);
  2350. return err;
  2351. }
  2352. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2353. {
  2354. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2355. void __iomem *doorbell_area =
  2356. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2357. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2358. (tx_ring->wq_id * sizeof(u64));
  2359. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2360. (tx_ring->wq_id * sizeof(u64));
  2361. int err = 0;
  2362. /*
  2363. * Assign doorbell registers for this tx_ring.
  2364. */
  2365. /* TX PCI doorbell mem area for tx producer index */
  2366. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2367. tx_ring->prod_idx = 0;
  2368. /* TX PCI doorbell mem area + 0x04 */
  2369. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2370. /*
  2371. * Assign shadow registers for this tx_ring.
  2372. */
  2373. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2374. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2375. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2376. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2377. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2378. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2379. wqicb->rid = 0;
  2380. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2381. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2382. ql_init_tx_ring(qdev, tx_ring);
  2383. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2384. (u16) tx_ring->wq_id);
  2385. if (err) {
  2386. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2387. return err;
  2388. }
  2389. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2390. return err;
  2391. }
  2392. static void ql_disable_msix(struct ql_adapter *qdev)
  2393. {
  2394. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2395. pci_disable_msix(qdev->pdev);
  2396. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2397. kfree(qdev->msi_x_entry);
  2398. qdev->msi_x_entry = NULL;
  2399. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2400. pci_disable_msi(qdev->pdev);
  2401. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2402. }
  2403. }
  2404. static void ql_enable_msix(struct ql_adapter *qdev)
  2405. {
  2406. int i;
  2407. qdev->intr_count = 1;
  2408. /* Get the MSIX vectors. */
  2409. if (irq_type == MSIX_IRQ) {
  2410. /* Try to alloc space for the msix struct,
  2411. * if it fails then go to MSI/legacy.
  2412. */
  2413. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2414. sizeof(struct msix_entry),
  2415. GFP_KERNEL);
  2416. if (!qdev->msi_x_entry) {
  2417. irq_type = MSI_IRQ;
  2418. goto msi;
  2419. }
  2420. for (i = 0; i < qdev->rx_ring_count; i++)
  2421. qdev->msi_x_entry[i].entry = i;
  2422. if (!pci_enable_msix
  2423. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2424. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2425. qdev->intr_count = qdev->rx_ring_count;
  2426. QPRINTK(qdev, IFUP, INFO,
  2427. "MSI-X Enabled, got %d vectors.\n",
  2428. qdev->intr_count);
  2429. return;
  2430. } else {
  2431. kfree(qdev->msi_x_entry);
  2432. qdev->msi_x_entry = NULL;
  2433. QPRINTK(qdev, IFUP, WARNING,
  2434. "MSI-X Enable failed, trying MSI.\n");
  2435. irq_type = MSI_IRQ;
  2436. }
  2437. }
  2438. msi:
  2439. if (irq_type == MSI_IRQ) {
  2440. if (!pci_enable_msi(qdev->pdev)) {
  2441. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2442. QPRINTK(qdev, IFUP, INFO,
  2443. "Running with MSI interrupts.\n");
  2444. return;
  2445. }
  2446. }
  2447. irq_type = LEG_IRQ;
  2448. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2449. }
  2450. /*
  2451. * Here we build the intr_context structures based on
  2452. * our rx_ring count and intr vector count.
  2453. * The intr_context structure is used to hook each vector
  2454. * to possibly different handlers.
  2455. */
  2456. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2457. {
  2458. int i = 0;
  2459. struct intr_context *intr_context = &qdev->intr_context[0];
  2460. ql_enable_msix(qdev);
  2461. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2462. /* Each rx_ring has it's
  2463. * own intr_context since we have separate
  2464. * vectors for each queue.
  2465. * This only true when MSI-X is enabled.
  2466. */
  2467. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2468. qdev->rx_ring[i].irq = i;
  2469. intr_context->intr = i;
  2470. intr_context->qdev = qdev;
  2471. /*
  2472. * We set up each vectors enable/disable/read bits so
  2473. * there's no bit/mask calculations in the critical path.
  2474. */
  2475. intr_context->intr_en_mask =
  2476. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2477. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2478. | i;
  2479. intr_context->intr_dis_mask =
  2480. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2481. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2482. INTR_EN_IHD | i;
  2483. intr_context->intr_read_mask =
  2484. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2485. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2486. i;
  2487. if (i == 0) {
  2488. /*
  2489. * Default queue handles bcast/mcast plus
  2490. * async events. Needs buffers.
  2491. */
  2492. intr_context->handler = qlge_isr;
  2493. sprintf(intr_context->name, "%s-default-queue",
  2494. qdev->ndev->name);
  2495. } else if (i < qdev->rss_ring_first_cq_id) {
  2496. /*
  2497. * Outbound queue is for outbound completions only.
  2498. */
  2499. intr_context->handler = qlge_msix_tx_isr;
  2500. sprintf(intr_context->name, "%s-tx-%d",
  2501. qdev->ndev->name, i);
  2502. } else {
  2503. /*
  2504. * Inbound queues handle unicast frames only.
  2505. */
  2506. intr_context->handler = qlge_msix_rx_isr;
  2507. sprintf(intr_context->name, "%s-rx-%d",
  2508. qdev->ndev->name, i);
  2509. }
  2510. }
  2511. } else {
  2512. /*
  2513. * All rx_rings use the same intr_context since
  2514. * there is only one vector.
  2515. */
  2516. intr_context->intr = 0;
  2517. intr_context->qdev = qdev;
  2518. /*
  2519. * We set up each vectors enable/disable/read bits so
  2520. * there's no bit/mask calculations in the critical path.
  2521. */
  2522. intr_context->intr_en_mask =
  2523. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2524. intr_context->intr_dis_mask =
  2525. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2526. INTR_EN_TYPE_DISABLE;
  2527. intr_context->intr_read_mask =
  2528. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2529. /*
  2530. * Single interrupt means one handler for all rings.
  2531. */
  2532. intr_context->handler = qlge_isr;
  2533. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2534. for (i = 0; i < qdev->rx_ring_count; i++)
  2535. qdev->rx_ring[i].irq = 0;
  2536. }
  2537. }
  2538. static void ql_free_irq(struct ql_adapter *qdev)
  2539. {
  2540. int i;
  2541. struct intr_context *intr_context = &qdev->intr_context[0];
  2542. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2543. if (intr_context->hooked) {
  2544. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2545. free_irq(qdev->msi_x_entry[i].vector,
  2546. &qdev->rx_ring[i]);
  2547. QPRINTK(qdev, IFDOWN, ERR,
  2548. "freeing msix interrupt %d.\n", i);
  2549. } else {
  2550. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2551. QPRINTK(qdev, IFDOWN, ERR,
  2552. "freeing msi interrupt %d.\n", i);
  2553. }
  2554. }
  2555. }
  2556. ql_disable_msix(qdev);
  2557. }
  2558. static int ql_request_irq(struct ql_adapter *qdev)
  2559. {
  2560. int i;
  2561. int status = 0;
  2562. struct pci_dev *pdev = qdev->pdev;
  2563. struct intr_context *intr_context = &qdev->intr_context[0];
  2564. ql_resolve_queues_to_irqs(qdev);
  2565. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2566. atomic_set(&intr_context->irq_cnt, 0);
  2567. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2568. status = request_irq(qdev->msi_x_entry[i].vector,
  2569. intr_context->handler,
  2570. 0,
  2571. intr_context->name,
  2572. &qdev->rx_ring[i]);
  2573. if (status) {
  2574. QPRINTK(qdev, IFUP, ERR,
  2575. "Failed request for MSIX interrupt %d.\n",
  2576. i);
  2577. goto err_irq;
  2578. } else {
  2579. QPRINTK(qdev, IFUP, INFO,
  2580. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2581. i,
  2582. qdev->rx_ring[i].type ==
  2583. DEFAULT_Q ? "DEFAULT_Q" : "",
  2584. qdev->rx_ring[i].type ==
  2585. TX_Q ? "TX_Q" : "",
  2586. qdev->rx_ring[i].type ==
  2587. RX_Q ? "RX_Q" : "", intr_context->name);
  2588. }
  2589. } else {
  2590. QPRINTK(qdev, IFUP, DEBUG,
  2591. "trying msi or legacy interrupts.\n");
  2592. QPRINTK(qdev, IFUP, DEBUG,
  2593. "%s: irq = %d.\n", __func__, pdev->irq);
  2594. QPRINTK(qdev, IFUP, DEBUG,
  2595. "%s: context->name = %s.\n", __func__,
  2596. intr_context->name);
  2597. QPRINTK(qdev, IFUP, DEBUG,
  2598. "%s: dev_id = 0x%p.\n", __func__,
  2599. &qdev->rx_ring[0]);
  2600. status =
  2601. request_irq(pdev->irq, qlge_isr,
  2602. test_bit(QL_MSI_ENABLED,
  2603. &qdev->
  2604. flags) ? 0 : IRQF_SHARED,
  2605. intr_context->name, &qdev->rx_ring[0]);
  2606. if (status)
  2607. goto err_irq;
  2608. QPRINTK(qdev, IFUP, ERR,
  2609. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2610. i,
  2611. qdev->rx_ring[0].type ==
  2612. DEFAULT_Q ? "DEFAULT_Q" : "",
  2613. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2614. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2615. intr_context->name);
  2616. }
  2617. intr_context->hooked = 1;
  2618. }
  2619. return status;
  2620. err_irq:
  2621. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2622. ql_free_irq(qdev);
  2623. return status;
  2624. }
  2625. static int ql_start_rss(struct ql_adapter *qdev)
  2626. {
  2627. struct ricb *ricb = &qdev->ricb;
  2628. int status = 0;
  2629. int i;
  2630. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2631. memset((void *)ricb, 0, sizeof(ricb));
  2632. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2633. ricb->flags =
  2634. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2635. RSS_RT6);
  2636. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2637. /*
  2638. * Fill out the Indirection Table.
  2639. */
  2640. for (i = 0; i < 256; i++)
  2641. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2642. /*
  2643. * Random values for the IPv6 and IPv4 Hash Keys.
  2644. */
  2645. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2646. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2647. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2648. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2649. if (status) {
  2650. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2651. return status;
  2652. }
  2653. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2654. return status;
  2655. }
  2656. /* Initialize the frame-to-queue routing. */
  2657. static int ql_route_initialize(struct ql_adapter *qdev)
  2658. {
  2659. int status = 0;
  2660. int i;
  2661. /* Clear all the entries in the routing table. */
  2662. for (i = 0; i < 16; i++) {
  2663. status = ql_set_routing_reg(qdev, i, 0, 0);
  2664. if (status) {
  2665. QPRINTK(qdev, IFUP, ERR,
  2666. "Failed to init routing register for CAM packets.\n");
  2667. return status;
  2668. }
  2669. }
  2670. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2671. if (status) {
  2672. QPRINTK(qdev, IFUP, ERR,
  2673. "Failed to init routing register for error packets.\n");
  2674. return status;
  2675. }
  2676. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2677. if (status) {
  2678. QPRINTK(qdev, IFUP, ERR,
  2679. "Failed to init routing register for broadcast packets.\n");
  2680. return status;
  2681. }
  2682. /* If we have more than one inbound queue, then turn on RSS in the
  2683. * routing block.
  2684. */
  2685. if (qdev->rss_ring_count > 1) {
  2686. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2687. RT_IDX_RSS_MATCH, 1);
  2688. if (status) {
  2689. QPRINTK(qdev, IFUP, ERR,
  2690. "Failed to init routing register for MATCH RSS packets.\n");
  2691. return status;
  2692. }
  2693. }
  2694. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2695. RT_IDX_CAM_HIT, 1);
  2696. if (status) {
  2697. QPRINTK(qdev, IFUP, ERR,
  2698. "Failed to init routing register for CAM packets.\n");
  2699. return status;
  2700. }
  2701. return status;
  2702. }
  2703. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2704. {
  2705. u32 value, mask;
  2706. int i;
  2707. int status = 0;
  2708. /*
  2709. * Set up the System register to halt on errors.
  2710. */
  2711. value = SYS_EFE | SYS_FAE;
  2712. mask = value << 16;
  2713. ql_write32(qdev, SYS, mask | value);
  2714. /* Set the default queue. */
  2715. value = NIC_RCV_CFG_DFQ;
  2716. mask = NIC_RCV_CFG_DFQ_MASK;
  2717. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2718. /* Set the MPI interrupt to enabled. */
  2719. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2720. /* Enable the function, set pagesize, enable error checking. */
  2721. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2722. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2723. /* Set/clear header splitting. */
  2724. mask = FSC_VM_PAGESIZE_MASK |
  2725. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2726. ql_write32(qdev, FSC, mask | value);
  2727. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2728. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2729. /* Start up the rx queues. */
  2730. for (i = 0; i < qdev->rx_ring_count; i++) {
  2731. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2732. if (status) {
  2733. QPRINTK(qdev, IFUP, ERR,
  2734. "Failed to start rx ring[%d].\n", i);
  2735. return status;
  2736. }
  2737. }
  2738. /* If there is more than one inbound completion queue
  2739. * then download a RICB to configure RSS.
  2740. */
  2741. if (qdev->rss_ring_count > 1) {
  2742. status = ql_start_rss(qdev);
  2743. if (status) {
  2744. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2745. return status;
  2746. }
  2747. }
  2748. /* Start up the tx queues. */
  2749. for (i = 0; i < qdev->tx_ring_count; i++) {
  2750. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2751. if (status) {
  2752. QPRINTK(qdev, IFUP, ERR,
  2753. "Failed to start tx ring[%d].\n", i);
  2754. return status;
  2755. }
  2756. }
  2757. status = ql_port_initialize(qdev);
  2758. if (status) {
  2759. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2760. return status;
  2761. }
  2762. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2763. MAC_ADDR_TYPE_CAM_MAC, qdev->func);
  2764. if (status) {
  2765. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2766. return status;
  2767. }
  2768. status = ql_route_initialize(qdev);
  2769. if (status) {
  2770. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2771. return status;
  2772. }
  2773. /* Start NAPI for the RSS queues. */
  2774. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2775. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2776. i);
  2777. napi_enable(&qdev->rx_ring[i].napi);
  2778. }
  2779. return status;
  2780. }
  2781. /* Issue soft reset to chip. */
  2782. static int ql_adapter_reset(struct ql_adapter *qdev)
  2783. {
  2784. u32 value;
  2785. int max_wait_time;
  2786. int status = 0;
  2787. int resetCnt = 0;
  2788. #define MAX_RESET_CNT 1
  2789. issueReset:
  2790. resetCnt++;
  2791. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2792. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2793. /* Wait for reset to complete. */
  2794. max_wait_time = 3;
  2795. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2796. max_wait_time);
  2797. do {
  2798. value = ql_read32(qdev, RST_FO);
  2799. if ((value & RST_FO_FR) == 0)
  2800. break;
  2801. ssleep(1);
  2802. } while ((--max_wait_time));
  2803. if (value & RST_FO_FR) {
  2804. QPRINTK(qdev, IFDOWN, ERR,
  2805. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2806. if (resetCnt < MAX_RESET_CNT)
  2807. goto issueReset;
  2808. }
  2809. if (max_wait_time == 0) {
  2810. status = -ETIMEDOUT;
  2811. QPRINTK(qdev, IFDOWN, ERR,
  2812. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2813. }
  2814. return status;
  2815. }
  2816. static void ql_display_dev_info(struct net_device *ndev)
  2817. {
  2818. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2819. QPRINTK(qdev, PROBE, INFO,
  2820. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2821. "XG Roll = %d, XG Rev = %d.\n",
  2822. qdev->func,
  2823. qdev->chip_rev_id & 0x0000000f,
  2824. qdev->chip_rev_id >> 4 & 0x0000000f,
  2825. qdev->chip_rev_id >> 8 & 0x0000000f,
  2826. qdev->chip_rev_id >> 12 & 0x0000000f);
  2827. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2828. }
  2829. static int ql_adapter_down(struct ql_adapter *qdev)
  2830. {
  2831. struct net_device *ndev = qdev->ndev;
  2832. int i, status = 0;
  2833. struct rx_ring *rx_ring;
  2834. netif_stop_queue(ndev);
  2835. netif_carrier_off(ndev);
  2836. /* Don't kill the reset worker thread if we
  2837. * are in the process of recovery.
  2838. */
  2839. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  2840. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2841. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2842. cancel_delayed_work_sync(&qdev->mpi_work);
  2843. /* The default queue at index 0 is always processed in
  2844. * a workqueue.
  2845. */
  2846. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2847. /* The rest of the rx_rings are processed in
  2848. * a workqueue only if it's a single interrupt
  2849. * environment (MSI/Legacy).
  2850. */
  2851. for (i = 1; i < qdev->rx_ring_count; i++) {
  2852. rx_ring = &qdev->rx_ring[i];
  2853. /* Only the RSS rings use NAPI on multi irq
  2854. * environment. Outbound completion processing
  2855. * is done in interrupt context.
  2856. */
  2857. if (i >= qdev->rss_ring_first_cq_id) {
  2858. napi_disable(&rx_ring->napi);
  2859. } else {
  2860. cancel_delayed_work_sync(&rx_ring->rx_work);
  2861. }
  2862. }
  2863. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2864. ql_disable_interrupts(qdev);
  2865. ql_tx_ring_clean(qdev);
  2866. spin_lock(&qdev->hw_lock);
  2867. status = ql_adapter_reset(qdev);
  2868. if (status)
  2869. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2870. qdev->func);
  2871. spin_unlock(&qdev->hw_lock);
  2872. return status;
  2873. }
  2874. static int ql_adapter_up(struct ql_adapter *qdev)
  2875. {
  2876. int err = 0;
  2877. spin_lock(&qdev->hw_lock);
  2878. err = ql_adapter_initialize(qdev);
  2879. if (err) {
  2880. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2881. spin_unlock(&qdev->hw_lock);
  2882. goto err_init;
  2883. }
  2884. spin_unlock(&qdev->hw_lock);
  2885. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2886. ql_enable_interrupts(qdev);
  2887. ql_enable_all_completion_interrupts(qdev);
  2888. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2889. netif_carrier_on(qdev->ndev);
  2890. netif_start_queue(qdev->ndev);
  2891. }
  2892. return 0;
  2893. err_init:
  2894. ql_adapter_reset(qdev);
  2895. return err;
  2896. }
  2897. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2898. {
  2899. int status;
  2900. status = ql_adapter_down(qdev);
  2901. if (status)
  2902. goto error;
  2903. status = ql_adapter_up(qdev);
  2904. if (status)
  2905. goto error;
  2906. return status;
  2907. error:
  2908. QPRINTK(qdev, IFUP, ALERT,
  2909. "Driver up/down cycle failed, closing device\n");
  2910. rtnl_lock();
  2911. dev_close(qdev->ndev);
  2912. rtnl_unlock();
  2913. return status;
  2914. }
  2915. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2916. {
  2917. ql_free_mem_resources(qdev);
  2918. ql_free_irq(qdev);
  2919. }
  2920. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2921. {
  2922. int status = 0;
  2923. if (ql_alloc_mem_resources(qdev)) {
  2924. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2925. return -ENOMEM;
  2926. }
  2927. status = ql_request_irq(qdev);
  2928. if (status)
  2929. goto err_irq;
  2930. return status;
  2931. err_irq:
  2932. ql_free_mem_resources(qdev);
  2933. return status;
  2934. }
  2935. static int qlge_close(struct net_device *ndev)
  2936. {
  2937. struct ql_adapter *qdev = netdev_priv(ndev);
  2938. /*
  2939. * Wait for device to recover from a reset.
  2940. * (Rarely happens, but possible.)
  2941. */
  2942. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2943. msleep(1);
  2944. ql_adapter_down(qdev);
  2945. ql_release_adapter_resources(qdev);
  2946. return 0;
  2947. }
  2948. static int ql_configure_rings(struct ql_adapter *qdev)
  2949. {
  2950. int i;
  2951. struct rx_ring *rx_ring;
  2952. struct tx_ring *tx_ring;
  2953. int cpu_cnt = num_online_cpus();
  2954. /*
  2955. * For each processor present we allocate one
  2956. * rx_ring for outbound completions, and one
  2957. * rx_ring for inbound completions. Plus there is
  2958. * always the one default queue. For the CPU
  2959. * counts we end up with the following rx_rings:
  2960. * rx_ring count =
  2961. * one default queue +
  2962. * (CPU count * outbound completion rx_ring) +
  2963. * (CPU count * inbound (RSS) completion rx_ring)
  2964. * To keep it simple we limit the total number of
  2965. * queues to < 32, so we truncate CPU to 8.
  2966. * This limitation can be removed when requested.
  2967. */
  2968. if (cpu_cnt > MAX_CPUS)
  2969. cpu_cnt = MAX_CPUS;
  2970. /*
  2971. * rx_ring[0] is always the default queue.
  2972. */
  2973. /* Allocate outbound completion ring for each CPU. */
  2974. qdev->tx_ring_count = cpu_cnt;
  2975. /* Allocate inbound completion (RSS) ring for each CPU. */
  2976. qdev->rss_ring_count = cpu_cnt;
  2977. /* cq_id for the first inbound ring handler. */
  2978. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  2979. /*
  2980. * qdev->rx_ring_count:
  2981. * Total number of rx_rings. This includes the one
  2982. * default queue, a number of outbound completion
  2983. * handler rx_rings, and the number of inbound
  2984. * completion handler rx_rings.
  2985. */
  2986. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  2987. for (i = 0; i < qdev->tx_ring_count; i++) {
  2988. tx_ring = &qdev->tx_ring[i];
  2989. memset((void *)tx_ring, 0, sizeof(tx_ring));
  2990. tx_ring->qdev = qdev;
  2991. tx_ring->wq_id = i;
  2992. tx_ring->wq_len = qdev->tx_ring_size;
  2993. tx_ring->wq_size =
  2994. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  2995. /*
  2996. * The completion queue ID for the tx rings start
  2997. * immediately after the default Q ID, which is zero.
  2998. */
  2999. tx_ring->cq_id = i + 1;
  3000. }
  3001. for (i = 0; i < qdev->rx_ring_count; i++) {
  3002. rx_ring = &qdev->rx_ring[i];
  3003. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3004. rx_ring->qdev = qdev;
  3005. rx_ring->cq_id = i;
  3006. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3007. if (i == 0) { /* Default queue at index 0. */
  3008. /*
  3009. * Default queue handles bcast/mcast plus
  3010. * async events. Needs buffers.
  3011. */
  3012. rx_ring->cq_len = qdev->rx_ring_size;
  3013. rx_ring->cq_size =
  3014. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3015. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3016. rx_ring->lbq_size =
  3017. rx_ring->lbq_len * sizeof(__le64);
  3018. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3019. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3020. rx_ring->sbq_size =
  3021. rx_ring->sbq_len * sizeof(__le64);
  3022. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3023. rx_ring->type = DEFAULT_Q;
  3024. } else if (i < qdev->rss_ring_first_cq_id) {
  3025. /*
  3026. * Outbound queue handles outbound completions only.
  3027. */
  3028. /* outbound cq is same size as tx_ring it services. */
  3029. rx_ring->cq_len = qdev->tx_ring_size;
  3030. rx_ring->cq_size =
  3031. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3032. rx_ring->lbq_len = 0;
  3033. rx_ring->lbq_size = 0;
  3034. rx_ring->lbq_buf_size = 0;
  3035. rx_ring->sbq_len = 0;
  3036. rx_ring->sbq_size = 0;
  3037. rx_ring->sbq_buf_size = 0;
  3038. rx_ring->type = TX_Q;
  3039. } else { /* Inbound completions (RSS) queues */
  3040. /*
  3041. * Inbound queues handle unicast frames only.
  3042. */
  3043. rx_ring->cq_len = qdev->rx_ring_size;
  3044. rx_ring->cq_size =
  3045. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3046. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3047. rx_ring->lbq_size =
  3048. rx_ring->lbq_len * sizeof(__le64);
  3049. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3050. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3051. rx_ring->sbq_size =
  3052. rx_ring->sbq_len * sizeof(__le64);
  3053. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3054. rx_ring->type = RX_Q;
  3055. }
  3056. }
  3057. return 0;
  3058. }
  3059. static int qlge_open(struct net_device *ndev)
  3060. {
  3061. int err = 0;
  3062. struct ql_adapter *qdev = netdev_priv(ndev);
  3063. err = ql_configure_rings(qdev);
  3064. if (err)
  3065. return err;
  3066. err = ql_get_adapter_resources(qdev);
  3067. if (err)
  3068. goto error_up;
  3069. err = ql_adapter_up(qdev);
  3070. if (err)
  3071. goto error_up;
  3072. return err;
  3073. error_up:
  3074. ql_release_adapter_resources(qdev);
  3075. return err;
  3076. }
  3077. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3078. {
  3079. struct ql_adapter *qdev = netdev_priv(ndev);
  3080. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3081. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3082. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3083. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3084. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3085. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3086. return 0;
  3087. } else
  3088. return -EINVAL;
  3089. ndev->mtu = new_mtu;
  3090. return 0;
  3091. }
  3092. static struct net_device_stats *qlge_get_stats(struct net_device
  3093. *ndev)
  3094. {
  3095. struct ql_adapter *qdev = netdev_priv(ndev);
  3096. return &qdev->stats;
  3097. }
  3098. static void qlge_set_multicast_list(struct net_device *ndev)
  3099. {
  3100. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3101. struct dev_mc_list *mc_ptr;
  3102. int i;
  3103. spin_lock(&qdev->hw_lock);
  3104. /*
  3105. * Set or clear promiscuous mode if a
  3106. * transition is taking place.
  3107. */
  3108. if (ndev->flags & IFF_PROMISC) {
  3109. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3110. if (ql_set_routing_reg
  3111. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3112. QPRINTK(qdev, HW, ERR,
  3113. "Failed to set promiscous mode.\n");
  3114. } else {
  3115. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3116. }
  3117. }
  3118. } else {
  3119. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3120. if (ql_set_routing_reg
  3121. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3122. QPRINTK(qdev, HW, ERR,
  3123. "Failed to clear promiscous mode.\n");
  3124. } else {
  3125. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3126. }
  3127. }
  3128. }
  3129. /*
  3130. * Set or clear all multicast mode if a
  3131. * transition is taking place.
  3132. */
  3133. if ((ndev->flags & IFF_ALLMULTI) ||
  3134. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3135. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3136. if (ql_set_routing_reg
  3137. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3138. QPRINTK(qdev, HW, ERR,
  3139. "Failed to set all-multi mode.\n");
  3140. } else {
  3141. set_bit(QL_ALLMULTI, &qdev->flags);
  3142. }
  3143. }
  3144. } else {
  3145. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3146. if (ql_set_routing_reg
  3147. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3148. QPRINTK(qdev, HW, ERR,
  3149. "Failed to clear all-multi mode.\n");
  3150. } else {
  3151. clear_bit(QL_ALLMULTI, &qdev->flags);
  3152. }
  3153. }
  3154. }
  3155. if (ndev->mc_count) {
  3156. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3157. i++, mc_ptr = mc_ptr->next)
  3158. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3159. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3160. QPRINTK(qdev, HW, ERR,
  3161. "Failed to loadmulticast address.\n");
  3162. goto exit;
  3163. }
  3164. if (ql_set_routing_reg
  3165. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3166. QPRINTK(qdev, HW, ERR,
  3167. "Failed to set multicast match mode.\n");
  3168. } else {
  3169. set_bit(QL_ALLMULTI, &qdev->flags);
  3170. }
  3171. }
  3172. exit:
  3173. spin_unlock(&qdev->hw_lock);
  3174. }
  3175. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3176. {
  3177. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3178. struct sockaddr *addr = p;
  3179. int ret = 0;
  3180. if (netif_running(ndev))
  3181. return -EBUSY;
  3182. if (!is_valid_ether_addr(addr->sa_data))
  3183. return -EADDRNOTAVAIL;
  3184. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3185. spin_lock(&qdev->hw_lock);
  3186. if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3187. MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
  3188. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3189. ret = -1;
  3190. }
  3191. spin_unlock(&qdev->hw_lock);
  3192. return ret;
  3193. }
  3194. static void qlge_tx_timeout(struct net_device *ndev)
  3195. {
  3196. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3197. ql_queue_asic_error(qdev);
  3198. }
  3199. static void ql_asic_reset_work(struct work_struct *work)
  3200. {
  3201. struct ql_adapter *qdev =
  3202. container_of(work, struct ql_adapter, asic_reset_work.work);
  3203. ql_cycle_adapter(qdev);
  3204. }
  3205. static void ql_get_board_info(struct ql_adapter *qdev)
  3206. {
  3207. qdev->func =
  3208. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3209. if (qdev->func) {
  3210. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3211. qdev->port_link_up = STS_PL1;
  3212. qdev->port_init = STS_PI1;
  3213. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3214. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3215. } else {
  3216. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3217. qdev->port_link_up = STS_PL0;
  3218. qdev->port_init = STS_PI0;
  3219. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3220. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3221. }
  3222. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3223. }
  3224. static void ql_release_all(struct pci_dev *pdev)
  3225. {
  3226. struct net_device *ndev = pci_get_drvdata(pdev);
  3227. struct ql_adapter *qdev = netdev_priv(ndev);
  3228. if (qdev->workqueue) {
  3229. destroy_workqueue(qdev->workqueue);
  3230. qdev->workqueue = NULL;
  3231. }
  3232. if (qdev->q_workqueue) {
  3233. destroy_workqueue(qdev->q_workqueue);
  3234. qdev->q_workqueue = NULL;
  3235. }
  3236. if (qdev->reg_base)
  3237. iounmap(qdev->reg_base);
  3238. if (qdev->doorbell_area)
  3239. iounmap(qdev->doorbell_area);
  3240. pci_release_regions(pdev);
  3241. pci_set_drvdata(pdev, NULL);
  3242. }
  3243. static int __devinit ql_init_device(struct pci_dev *pdev,
  3244. struct net_device *ndev, int cards_found)
  3245. {
  3246. struct ql_adapter *qdev = netdev_priv(ndev);
  3247. int pos, err = 0;
  3248. u16 val16;
  3249. memset((void *)qdev, 0, sizeof(qdev));
  3250. err = pci_enable_device(pdev);
  3251. if (err) {
  3252. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3253. return err;
  3254. }
  3255. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3256. if (pos <= 0) {
  3257. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3258. "aborting.\n");
  3259. goto err_out;
  3260. } else {
  3261. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3262. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3263. val16 |= (PCI_EXP_DEVCTL_CERE |
  3264. PCI_EXP_DEVCTL_NFERE |
  3265. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3266. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3267. }
  3268. err = pci_request_regions(pdev, DRV_NAME);
  3269. if (err) {
  3270. dev_err(&pdev->dev, "PCI region request failed.\n");
  3271. goto err_out;
  3272. }
  3273. pci_set_master(pdev);
  3274. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3275. set_bit(QL_DMA64, &qdev->flags);
  3276. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3277. } else {
  3278. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3279. if (!err)
  3280. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3281. }
  3282. if (err) {
  3283. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3284. goto err_out;
  3285. }
  3286. pci_set_drvdata(pdev, ndev);
  3287. qdev->reg_base =
  3288. ioremap_nocache(pci_resource_start(pdev, 1),
  3289. pci_resource_len(pdev, 1));
  3290. if (!qdev->reg_base) {
  3291. dev_err(&pdev->dev, "Register mapping failed.\n");
  3292. err = -ENOMEM;
  3293. goto err_out;
  3294. }
  3295. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3296. qdev->doorbell_area =
  3297. ioremap_nocache(pci_resource_start(pdev, 3),
  3298. pci_resource_len(pdev, 3));
  3299. if (!qdev->doorbell_area) {
  3300. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3301. err = -ENOMEM;
  3302. goto err_out;
  3303. }
  3304. ql_get_board_info(qdev);
  3305. qdev->ndev = ndev;
  3306. qdev->pdev = pdev;
  3307. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3308. spin_lock_init(&qdev->hw_lock);
  3309. spin_lock_init(&qdev->stats_lock);
  3310. /* make sure the EEPROM is good */
  3311. err = ql_get_flash_params(qdev);
  3312. if (err) {
  3313. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3314. goto err_out;
  3315. }
  3316. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3317. goto err_out;
  3318. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3319. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3320. /* Set up the default ring sizes. */
  3321. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3322. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3323. /* Set up the coalescing parameters. */
  3324. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3325. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3326. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3327. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3328. /*
  3329. * Set up the operating parameters.
  3330. */
  3331. qdev->rx_csum = 1;
  3332. qdev->q_workqueue = create_workqueue(ndev->name);
  3333. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3334. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3335. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3336. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3337. if (!cards_found) {
  3338. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3339. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3340. DRV_NAME, DRV_VERSION);
  3341. }
  3342. return 0;
  3343. err_out:
  3344. ql_release_all(pdev);
  3345. pci_disable_device(pdev);
  3346. return err;
  3347. }
  3348. static const struct net_device_ops qlge_netdev_ops = {
  3349. .ndo_open = qlge_open,
  3350. .ndo_stop = qlge_close,
  3351. .ndo_start_xmit = qlge_send,
  3352. .ndo_change_mtu = qlge_change_mtu,
  3353. .ndo_get_stats = qlge_get_stats,
  3354. .ndo_set_multicast_list = qlge_set_multicast_list,
  3355. .ndo_set_mac_address = qlge_set_mac_address,
  3356. .ndo_validate_addr = eth_validate_addr,
  3357. .ndo_tx_timeout = qlge_tx_timeout,
  3358. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3359. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3360. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3361. };
  3362. static int __devinit qlge_probe(struct pci_dev *pdev,
  3363. const struct pci_device_id *pci_entry)
  3364. {
  3365. struct net_device *ndev = NULL;
  3366. struct ql_adapter *qdev = NULL;
  3367. static int cards_found = 0;
  3368. int err = 0;
  3369. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3370. if (!ndev)
  3371. return -ENOMEM;
  3372. err = ql_init_device(pdev, ndev, cards_found);
  3373. if (err < 0) {
  3374. free_netdev(ndev);
  3375. return err;
  3376. }
  3377. qdev = netdev_priv(ndev);
  3378. SET_NETDEV_DEV(ndev, &pdev->dev);
  3379. ndev->features = (0
  3380. | NETIF_F_IP_CSUM
  3381. | NETIF_F_SG
  3382. | NETIF_F_TSO
  3383. | NETIF_F_TSO6
  3384. | NETIF_F_TSO_ECN
  3385. | NETIF_F_HW_VLAN_TX
  3386. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3387. if (test_bit(QL_DMA64, &qdev->flags))
  3388. ndev->features |= NETIF_F_HIGHDMA;
  3389. /*
  3390. * Set up net_device structure.
  3391. */
  3392. ndev->tx_queue_len = qdev->tx_ring_size;
  3393. ndev->irq = pdev->irq;
  3394. ndev->netdev_ops = &qlge_netdev_ops;
  3395. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3396. ndev->watchdog_timeo = 10 * HZ;
  3397. err = register_netdev(ndev);
  3398. if (err) {
  3399. dev_err(&pdev->dev, "net device registration failed.\n");
  3400. ql_release_all(pdev);
  3401. pci_disable_device(pdev);
  3402. return err;
  3403. }
  3404. netif_carrier_off(ndev);
  3405. netif_stop_queue(ndev);
  3406. ql_display_dev_info(ndev);
  3407. cards_found++;
  3408. return 0;
  3409. }
  3410. static void __devexit qlge_remove(struct pci_dev *pdev)
  3411. {
  3412. struct net_device *ndev = pci_get_drvdata(pdev);
  3413. unregister_netdev(ndev);
  3414. ql_release_all(pdev);
  3415. pci_disable_device(pdev);
  3416. free_netdev(ndev);
  3417. }
  3418. /*
  3419. * This callback is called by the PCI subsystem whenever
  3420. * a PCI bus error is detected.
  3421. */
  3422. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3423. enum pci_channel_state state)
  3424. {
  3425. struct net_device *ndev = pci_get_drvdata(pdev);
  3426. struct ql_adapter *qdev = netdev_priv(ndev);
  3427. if (netif_running(ndev))
  3428. ql_adapter_down(qdev);
  3429. pci_disable_device(pdev);
  3430. /* Request a slot reset. */
  3431. return PCI_ERS_RESULT_NEED_RESET;
  3432. }
  3433. /*
  3434. * This callback is called after the PCI buss has been reset.
  3435. * Basically, this tries to restart the card from scratch.
  3436. * This is a shortened version of the device probe/discovery code,
  3437. * it resembles the first-half of the () routine.
  3438. */
  3439. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3440. {
  3441. struct net_device *ndev = pci_get_drvdata(pdev);
  3442. struct ql_adapter *qdev = netdev_priv(ndev);
  3443. if (pci_enable_device(pdev)) {
  3444. QPRINTK(qdev, IFUP, ERR,
  3445. "Cannot re-enable PCI device after reset.\n");
  3446. return PCI_ERS_RESULT_DISCONNECT;
  3447. }
  3448. pci_set_master(pdev);
  3449. netif_carrier_off(ndev);
  3450. netif_stop_queue(ndev);
  3451. ql_adapter_reset(qdev);
  3452. /* Make sure the EEPROM is good */
  3453. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3454. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3455. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3456. return PCI_ERS_RESULT_DISCONNECT;
  3457. }
  3458. return PCI_ERS_RESULT_RECOVERED;
  3459. }
  3460. static void qlge_io_resume(struct pci_dev *pdev)
  3461. {
  3462. struct net_device *ndev = pci_get_drvdata(pdev);
  3463. struct ql_adapter *qdev = netdev_priv(ndev);
  3464. pci_set_master(pdev);
  3465. if (netif_running(ndev)) {
  3466. if (ql_adapter_up(qdev)) {
  3467. QPRINTK(qdev, IFUP, ERR,
  3468. "Device initialization failed after reset.\n");
  3469. return;
  3470. }
  3471. }
  3472. netif_device_attach(ndev);
  3473. }
  3474. static struct pci_error_handlers qlge_err_handler = {
  3475. .error_detected = qlge_io_error_detected,
  3476. .slot_reset = qlge_io_slot_reset,
  3477. .resume = qlge_io_resume,
  3478. };
  3479. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3480. {
  3481. struct net_device *ndev = pci_get_drvdata(pdev);
  3482. struct ql_adapter *qdev = netdev_priv(ndev);
  3483. int err, i;
  3484. netif_device_detach(ndev);
  3485. if (netif_running(ndev)) {
  3486. err = ql_adapter_down(qdev);
  3487. if (!err)
  3488. return err;
  3489. }
  3490. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3491. netif_napi_del(&qdev->rx_ring[i].napi);
  3492. err = pci_save_state(pdev);
  3493. if (err)
  3494. return err;
  3495. pci_disable_device(pdev);
  3496. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3497. return 0;
  3498. }
  3499. #ifdef CONFIG_PM
  3500. static int qlge_resume(struct pci_dev *pdev)
  3501. {
  3502. struct net_device *ndev = pci_get_drvdata(pdev);
  3503. struct ql_adapter *qdev = netdev_priv(ndev);
  3504. int err;
  3505. pci_set_power_state(pdev, PCI_D0);
  3506. pci_restore_state(pdev);
  3507. err = pci_enable_device(pdev);
  3508. if (err) {
  3509. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3510. return err;
  3511. }
  3512. pci_set_master(pdev);
  3513. pci_enable_wake(pdev, PCI_D3hot, 0);
  3514. pci_enable_wake(pdev, PCI_D3cold, 0);
  3515. if (netif_running(ndev)) {
  3516. err = ql_adapter_up(qdev);
  3517. if (err)
  3518. return err;
  3519. }
  3520. netif_device_attach(ndev);
  3521. return 0;
  3522. }
  3523. #endif /* CONFIG_PM */
  3524. static void qlge_shutdown(struct pci_dev *pdev)
  3525. {
  3526. qlge_suspend(pdev, PMSG_SUSPEND);
  3527. }
  3528. static struct pci_driver qlge_driver = {
  3529. .name = DRV_NAME,
  3530. .id_table = qlge_pci_tbl,
  3531. .probe = qlge_probe,
  3532. .remove = __devexit_p(qlge_remove),
  3533. #ifdef CONFIG_PM
  3534. .suspend = qlge_suspend,
  3535. .resume = qlge_resume,
  3536. #endif
  3537. .shutdown = qlge_shutdown,
  3538. .err_handler = &qlge_err_handler
  3539. };
  3540. static int __init qlge_init_module(void)
  3541. {
  3542. return pci_register_driver(&qlge_driver);
  3543. }
  3544. static void __exit qlge_exit(void)
  3545. {
  3546. pci_unregister_driver(&qlge_driver);
  3547. }
  3548. module_init(qlge_init_module);
  3549. module_exit(qlge_exit);