svcsock.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068
  1. /*
  2. * linux/net/sunrpc/svcsock.c
  3. *
  4. * These are the RPC server socket internals.
  5. *
  6. * The server scheduling algorithm does not always distribute the load
  7. * evenly when servicing a single client. May need to modify the
  8. * svc_xprt_enqueue procedure...
  9. *
  10. * TCP support is largely untested and may be a little slow. The problem
  11. * is that we currently do two separate recvfrom's, one for the 4-byte
  12. * record length, and the second for the actual record. This could possibly
  13. * be improved by always reading a minimum size of around 100 bytes and
  14. * tucking any superfluous bytes away in a temporary store. Still, that
  15. * leaves write requests out in the rain. An alternative may be to peek at
  16. * the first skb in the queue, and if it matches the next TCP sequence
  17. * number, to extract the record marker. Yuck.
  18. *
  19. * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/errno.h>
  24. #include <linux/fcntl.h>
  25. #include <linux/net.h>
  26. #include <linux/in.h>
  27. #include <linux/inet.h>
  28. #include <linux/udp.h>
  29. #include <linux/tcp.h>
  30. #include <linux/unistd.h>
  31. #include <linux/slab.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/skbuff.h>
  34. #include <linux/file.h>
  35. #include <linux/freezer.h>
  36. #include <net/sock.h>
  37. #include <net/checksum.h>
  38. #include <net/ip.h>
  39. #include <net/ipv6.h>
  40. #include <net/tcp_states.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/ioctls.h>
  43. #include <linux/sunrpc/types.h>
  44. #include <linux/sunrpc/clnt.h>
  45. #include <linux/sunrpc/xdr.h>
  46. #include <linux/sunrpc/svcsock.h>
  47. #include <linux/sunrpc/stats.h>
  48. /* SMP locking strategy:
  49. *
  50. * svc_pool->sp_lock protects most of the fields of that pool.
  51. * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  52. * when both need to be taken (rare), svc_serv->sv_lock is first.
  53. * BKL protects svc_serv->sv_nrthread.
  54. * svc_sock->sk_lock protects the svc_sock->sk_deferred list
  55. * and the ->sk_info_authunix cache.
  56. * svc_sock->sk_xprt.xpt_flags.XPT_BUSY prevents a svc_sock being
  57. * enqueued multiply.
  58. *
  59. * Some flags can be set to certain values at any time
  60. * providing that certain rules are followed:
  61. *
  62. * XPT_CONN, XPT_DATA, can be set or cleared at any time.
  63. * after a set, svc_xprt_enqueue must be called.
  64. * after a clear, the socket must be read/accepted
  65. * if this succeeds, it must be set again.
  66. * XPT_CLOSE can set at any time. It is never cleared.
  67. * xpt_ref contains a bias of '1' until XPT_DEAD is set.
  68. * so when xprt_ref hits zero, we know the transport is dead
  69. * and no-one is using it.
  70. * XPT_DEAD can only be set while XPT_BUSY is held which ensures
  71. * no other thread will be using the socket or will try to
  72. * set XPT_DEAD.
  73. *
  74. */
  75. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  76. static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
  77. int *errp, int flags);
  78. static void svc_delete_xprt(struct svc_xprt *xprt);
  79. static void svc_udp_data_ready(struct sock *, int);
  80. static int svc_udp_recvfrom(struct svc_rqst *);
  81. static int svc_udp_sendto(struct svc_rqst *);
  82. static void svc_close_xprt(struct svc_xprt *xprt);
  83. static void svc_sock_detach(struct svc_xprt *);
  84. static void svc_sock_free(struct svc_xprt *);
  85. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
  86. static int svc_deferred_recv(struct svc_rqst *rqstp);
  87. static struct cache_deferred_req *svc_defer(struct cache_req *req);
  88. static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
  89. struct sockaddr *, int, int);
  90. /* apparently the "standard" is that clients close
  91. * idle connections after 5 minutes, servers after
  92. * 6 minutes
  93. * http://www.connectathon.org/talks96/nfstcp.pdf
  94. */
  95. static int svc_conn_age_period = 6*60;
  96. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  97. static struct lock_class_key svc_key[2];
  98. static struct lock_class_key svc_slock_key[2];
  99. static inline void svc_reclassify_socket(struct socket *sock)
  100. {
  101. struct sock *sk = sock->sk;
  102. BUG_ON(sock_owned_by_user(sk));
  103. switch (sk->sk_family) {
  104. case AF_INET:
  105. sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
  106. &svc_slock_key[0],
  107. "sk_xprt.xpt_lock-AF_INET-NFSD",
  108. &svc_key[0]);
  109. break;
  110. case AF_INET6:
  111. sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
  112. &svc_slock_key[1],
  113. "sk_xprt.xpt_lock-AF_INET6-NFSD",
  114. &svc_key[1]);
  115. break;
  116. default:
  117. BUG();
  118. }
  119. }
  120. #else
  121. static inline void svc_reclassify_socket(struct socket *sock)
  122. {
  123. }
  124. #endif
  125. static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
  126. {
  127. switch (addr->sa_family) {
  128. case AF_INET:
  129. snprintf(buf, len, "%u.%u.%u.%u, port=%u",
  130. NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
  131. ntohs(((struct sockaddr_in *) addr)->sin_port));
  132. break;
  133. case AF_INET6:
  134. snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
  135. NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
  136. ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
  137. break;
  138. default:
  139. snprintf(buf, len, "unknown address type: %d", addr->sa_family);
  140. break;
  141. }
  142. return buf;
  143. }
  144. /**
  145. * svc_print_addr - Format rq_addr field for printing
  146. * @rqstp: svc_rqst struct containing address to print
  147. * @buf: target buffer for formatted address
  148. * @len: length of target buffer
  149. *
  150. */
  151. char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
  152. {
  153. return __svc_print_addr(svc_addr(rqstp), buf, len);
  154. }
  155. EXPORT_SYMBOL_GPL(svc_print_addr);
  156. /*
  157. * Queue up an idle server thread. Must have pool->sp_lock held.
  158. * Note: this is really a stack rather than a queue, so that we only
  159. * use as many different threads as we need, and the rest don't pollute
  160. * the cache.
  161. */
  162. static inline void
  163. svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
  164. {
  165. list_add(&rqstp->rq_list, &pool->sp_threads);
  166. }
  167. /*
  168. * Dequeue an nfsd thread. Must have pool->sp_lock held.
  169. */
  170. static inline void
  171. svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
  172. {
  173. list_del(&rqstp->rq_list);
  174. }
  175. /*
  176. * Release an skbuff after use
  177. */
  178. static void svc_release_skb(struct svc_rqst *rqstp)
  179. {
  180. struct sk_buff *skb = rqstp->rq_xprt_ctxt;
  181. struct svc_deferred_req *dr = rqstp->rq_deferred;
  182. if (skb) {
  183. rqstp->rq_xprt_ctxt = NULL;
  184. dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
  185. skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
  186. }
  187. if (dr) {
  188. rqstp->rq_deferred = NULL;
  189. kfree(dr);
  190. }
  191. }
  192. /*
  193. * Queue up a socket with data pending. If there are idle nfsd
  194. * processes, wake 'em up.
  195. *
  196. */
  197. void svc_xprt_enqueue(struct svc_xprt *xprt)
  198. {
  199. struct svc_serv *serv = xprt->xpt_server;
  200. struct svc_pool *pool;
  201. struct svc_rqst *rqstp;
  202. int cpu;
  203. if (!(xprt->xpt_flags &
  204. ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
  205. return;
  206. if (test_bit(XPT_DEAD, &xprt->xpt_flags))
  207. return;
  208. cpu = get_cpu();
  209. pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
  210. put_cpu();
  211. spin_lock_bh(&pool->sp_lock);
  212. if (!list_empty(&pool->sp_threads) &&
  213. !list_empty(&pool->sp_sockets))
  214. printk(KERN_ERR
  215. "svc_xprt_enqueue: "
  216. "threads and transports both waiting??\n");
  217. if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
  218. /* Don't enqueue dead sockets */
  219. dprintk("svc: transport %p is dead, not enqueued\n", xprt);
  220. goto out_unlock;
  221. }
  222. /* Mark socket as busy. It will remain in this state until the
  223. * server has processed all pending data and put the socket back
  224. * on the idle list. We update XPT_BUSY atomically because
  225. * it also guards against trying to enqueue the svc_sock twice.
  226. */
  227. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
  228. /* Don't enqueue socket while already enqueued */
  229. dprintk("svc: transport %p busy, not enqueued\n", xprt);
  230. goto out_unlock;
  231. }
  232. BUG_ON(xprt->xpt_pool != NULL);
  233. xprt->xpt_pool = pool;
  234. /* Handle pending connection */
  235. if (test_bit(XPT_CONN, &xprt->xpt_flags))
  236. goto process;
  237. /* Handle close in-progress */
  238. if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
  239. goto process;
  240. /* Check if we have space to reply to a request */
  241. if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
  242. /* Don't enqueue while not enough space for reply */
  243. dprintk("svc: no write space, transport %p not enqueued\n",
  244. xprt);
  245. xprt->xpt_pool = NULL;
  246. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  247. goto out_unlock;
  248. }
  249. process:
  250. if (!list_empty(&pool->sp_threads)) {
  251. rqstp = list_entry(pool->sp_threads.next,
  252. struct svc_rqst,
  253. rq_list);
  254. dprintk("svc: transport %p served by daemon %p\n",
  255. xprt, rqstp);
  256. svc_thread_dequeue(pool, rqstp);
  257. if (rqstp->rq_xprt)
  258. printk(KERN_ERR
  259. "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
  260. rqstp, rqstp->rq_xprt);
  261. rqstp->rq_xprt = xprt;
  262. svc_xprt_get(xprt);
  263. rqstp->rq_reserved = serv->sv_max_mesg;
  264. atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
  265. BUG_ON(xprt->xpt_pool != pool);
  266. wake_up(&rqstp->rq_wait);
  267. } else {
  268. dprintk("svc: transport %p put into queue\n", xprt);
  269. list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
  270. BUG_ON(xprt->xpt_pool != pool);
  271. }
  272. out_unlock:
  273. spin_unlock_bh(&pool->sp_lock);
  274. }
  275. EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
  276. /*
  277. * Dequeue the first socket. Must be called with the pool->sp_lock held.
  278. */
  279. static inline struct svc_sock *
  280. svc_sock_dequeue(struct svc_pool *pool)
  281. {
  282. struct svc_sock *svsk;
  283. if (list_empty(&pool->sp_sockets))
  284. return NULL;
  285. svsk = list_entry(pool->sp_sockets.next,
  286. struct svc_sock, sk_xprt.xpt_ready);
  287. list_del_init(&svsk->sk_xprt.xpt_ready);
  288. dprintk("svc: socket %p dequeued, inuse=%d\n",
  289. svsk->sk_sk, atomic_read(&svsk->sk_xprt.xpt_ref.refcount));
  290. return svsk;
  291. }
  292. /*
  293. * svc_xprt_received conditionally queues the transport for processing
  294. * by another thread. The caller must hold the XPT_BUSY bit and must
  295. * not thereafter touch transport data.
  296. *
  297. * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
  298. * insufficient) data.
  299. */
  300. void svc_xprt_received(struct svc_xprt *xprt)
  301. {
  302. BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
  303. xprt->xpt_pool = NULL;
  304. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  305. svc_xprt_enqueue(xprt);
  306. }
  307. EXPORT_SYMBOL_GPL(svc_xprt_received);
  308. /**
  309. * svc_reserve - change the space reserved for the reply to a request.
  310. * @rqstp: The request in question
  311. * @space: new max space to reserve
  312. *
  313. * Each request reserves some space on the output queue of the socket
  314. * to make sure the reply fits. This function reduces that reserved
  315. * space to be the amount of space used already, plus @space.
  316. *
  317. */
  318. void svc_reserve(struct svc_rqst *rqstp, int space)
  319. {
  320. space += rqstp->rq_res.head[0].iov_len;
  321. if (space < rqstp->rq_reserved) {
  322. struct svc_xprt *xprt = rqstp->rq_xprt;
  323. atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
  324. rqstp->rq_reserved = space;
  325. svc_xprt_enqueue(xprt);
  326. }
  327. }
  328. static void
  329. svc_sock_release(struct svc_rqst *rqstp)
  330. {
  331. struct svc_sock *svsk = rqstp->rq_sock;
  332. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  333. svc_free_res_pages(rqstp);
  334. rqstp->rq_res.page_len = 0;
  335. rqstp->rq_res.page_base = 0;
  336. /* Reset response buffer and release
  337. * the reservation.
  338. * But first, check that enough space was reserved
  339. * for the reply, otherwise we have a bug!
  340. */
  341. if ((rqstp->rq_res.len) > rqstp->rq_reserved)
  342. printk(KERN_ERR "RPC request reserved %d but used %d\n",
  343. rqstp->rq_reserved,
  344. rqstp->rq_res.len);
  345. rqstp->rq_res.head[0].iov_len = 0;
  346. svc_reserve(rqstp, 0);
  347. rqstp->rq_sock = NULL;
  348. svc_xprt_put(&svsk->sk_xprt);
  349. }
  350. /*
  351. * External function to wake up a server waiting for data
  352. * This really only makes sense for services like lockd
  353. * which have exactly one thread anyway.
  354. */
  355. void
  356. svc_wake_up(struct svc_serv *serv)
  357. {
  358. struct svc_rqst *rqstp;
  359. unsigned int i;
  360. struct svc_pool *pool;
  361. for (i = 0; i < serv->sv_nrpools; i++) {
  362. pool = &serv->sv_pools[i];
  363. spin_lock_bh(&pool->sp_lock);
  364. if (!list_empty(&pool->sp_threads)) {
  365. rqstp = list_entry(pool->sp_threads.next,
  366. struct svc_rqst,
  367. rq_list);
  368. dprintk("svc: daemon %p woken up.\n", rqstp);
  369. /*
  370. svc_thread_dequeue(pool, rqstp);
  371. rqstp->rq_sock = NULL;
  372. */
  373. wake_up(&rqstp->rq_wait);
  374. }
  375. spin_unlock_bh(&pool->sp_lock);
  376. }
  377. }
  378. union svc_pktinfo_u {
  379. struct in_pktinfo pkti;
  380. struct in6_pktinfo pkti6;
  381. };
  382. #define SVC_PKTINFO_SPACE \
  383. CMSG_SPACE(sizeof(union svc_pktinfo_u))
  384. static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
  385. {
  386. switch (rqstp->rq_sock->sk_sk->sk_family) {
  387. case AF_INET: {
  388. struct in_pktinfo *pki = CMSG_DATA(cmh);
  389. cmh->cmsg_level = SOL_IP;
  390. cmh->cmsg_type = IP_PKTINFO;
  391. pki->ipi_ifindex = 0;
  392. pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
  393. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  394. }
  395. break;
  396. case AF_INET6: {
  397. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  398. cmh->cmsg_level = SOL_IPV6;
  399. cmh->cmsg_type = IPV6_PKTINFO;
  400. pki->ipi6_ifindex = 0;
  401. ipv6_addr_copy(&pki->ipi6_addr,
  402. &rqstp->rq_daddr.addr6);
  403. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  404. }
  405. break;
  406. }
  407. return;
  408. }
  409. /*
  410. * Generic sendto routine
  411. */
  412. static int
  413. svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
  414. {
  415. struct svc_sock *svsk = rqstp->rq_sock;
  416. struct socket *sock = svsk->sk_sock;
  417. int slen;
  418. union {
  419. struct cmsghdr hdr;
  420. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  421. } buffer;
  422. struct cmsghdr *cmh = &buffer.hdr;
  423. int len = 0;
  424. int result;
  425. int size;
  426. struct page **ppage = xdr->pages;
  427. size_t base = xdr->page_base;
  428. unsigned int pglen = xdr->page_len;
  429. unsigned int flags = MSG_MORE;
  430. char buf[RPC_MAX_ADDRBUFLEN];
  431. slen = xdr->len;
  432. if (rqstp->rq_prot == IPPROTO_UDP) {
  433. struct msghdr msg = {
  434. .msg_name = &rqstp->rq_addr,
  435. .msg_namelen = rqstp->rq_addrlen,
  436. .msg_control = cmh,
  437. .msg_controllen = sizeof(buffer),
  438. .msg_flags = MSG_MORE,
  439. };
  440. svc_set_cmsg_data(rqstp, cmh);
  441. if (sock_sendmsg(sock, &msg, 0) < 0)
  442. goto out;
  443. }
  444. /* send head */
  445. if (slen == xdr->head[0].iov_len)
  446. flags = 0;
  447. len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
  448. xdr->head[0].iov_len, flags);
  449. if (len != xdr->head[0].iov_len)
  450. goto out;
  451. slen -= xdr->head[0].iov_len;
  452. if (slen == 0)
  453. goto out;
  454. /* send page data */
  455. size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
  456. while (pglen > 0) {
  457. if (slen == size)
  458. flags = 0;
  459. result = kernel_sendpage(sock, *ppage, base, size, flags);
  460. if (result > 0)
  461. len += result;
  462. if (result != size)
  463. goto out;
  464. slen -= size;
  465. pglen -= size;
  466. size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
  467. base = 0;
  468. ppage++;
  469. }
  470. /* send tail */
  471. if (xdr->tail[0].iov_len) {
  472. result = kernel_sendpage(sock, rqstp->rq_respages[0],
  473. ((unsigned long)xdr->tail[0].iov_base)
  474. & (PAGE_SIZE-1),
  475. xdr->tail[0].iov_len, 0);
  476. if (result > 0)
  477. len += result;
  478. }
  479. out:
  480. dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
  481. rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
  482. xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
  483. return len;
  484. }
  485. /*
  486. * Report socket names for nfsdfs
  487. */
  488. static int one_sock_name(char *buf, struct svc_sock *svsk)
  489. {
  490. int len;
  491. switch(svsk->sk_sk->sk_family) {
  492. case AF_INET:
  493. len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
  494. svsk->sk_sk->sk_protocol==IPPROTO_UDP?
  495. "udp" : "tcp",
  496. NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
  497. inet_sk(svsk->sk_sk)->num);
  498. break;
  499. default:
  500. len = sprintf(buf, "*unknown-%d*\n",
  501. svsk->sk_sk->sk_family);
  502. }
  503. return len;
  504. }
  505. int
  506. svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
  507. {
  508. struct svc_sock *svsk, *closesk = NULL;
  509. int len = 0;
  510. if (!serv)
  511. return 0;
  512. spin_lock_bh(&serv->sv_lock);
  513. list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
  514. int onelen = one_sock_name(buf+len, svsk);
  515. if (toclose && strcmp(toclose, buf+len) == 0)
  516. closesk = svsk;
  517. else
  518. len += onelen;
  519. }
  520. spin_unlock_bh(&serv->sv_lock);
  521. if (closesk)
  522. /* Should unregister with portmap, but you cannot
  523. * unregister just one protocol...
  524. */
  525. svc_close_xprt(&closesk->sk_xprt);
  526. else if (toclose)
  527. return -ENOENT;
  528. return len;
  529. }
  530. EXPORT_SYMBOL(svc_sock_names);
  531. /*
  532. * Check input queue length
  533. */
  534. static int
  535. svc_recv_available(struct svc_sock *svsk)
  536. {
  537. struct socket *sock = svsk->sk_sock;
  538. int avail, err;
  539. err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
  540. return (err >= 0)? avail : err;
  541. }
  542. /*
  543. * Generic recvfrom routine.
  544. */
  545. static int
  546. svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
  547. {
  548. struct svc_sock *svsk = rqstp->rq_sock;
  549. struct msghdr msg = {
  550. .msg_flags = MSG_DONTWAIT,
  551. };
  552. struct sockaddr *sin;
  553. int len;
  554. len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
  555. msg.msg_flags);
  556. /* sock_recvmsg doesn't fill in the name/namelen, so we must..
  557. */
  558. memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
  559. rqstp->rq_addrlen = svsk->sk_remotelen;
  560. /* Destination address in request is needed for binding the
  561. * source address in RPC callbacks later.
  562. */
  563. sin = (struct sockaddr *)&svsk->sk_local;
  564. switch (sin->sa_family) {
  565. case AF_INET:
  566. rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
  567. break;
  568. case AF_INET6:
  569. rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
  570. break;
  571. }
  572. dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
  573. svsk, iov[0].iov_base, iov[0].iov_len, len);
  574. return len;
  575. }
  576. /*
  577. * Set socket snd and rcv buffer lengths
  578. */
  579. static inline void
  580. svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
  581. {
  582. #if 0
  583. mm_segment_t oldfs;
  584. oldfs = get_fs(); set_fs(KERNEL_DS);
  585. sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
  586. (char*)&snd, sizeof(snd));
  587. sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
  588. (char*)&rcv, sizeof(rcv));
  589. #else
  590. /* sock_setsockopt limits use to sysctl_?mem_max,
  591. * which isn't acceptable. Until that is made conditional
  592. * on not having CAP_SYS_RESOURCE or similar, we go direct...
  593. * DaveM said I could!
  594. */
  595. lock_sock(sock->sk);
  596. sock->sk->sk_sndbuf = snd * 2;
  597. sock->sk->sk_rcvbuf = rcv * 2;
  598. sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
  599. release_sock(sock->sk);
  600. #endif
  601. }
  602. /*
  603. * INET callback when data has been received on the socket.
  604. */
  605. static void
  606. svc_udp_data_ready(struct sock *sk, int count)
  607. {
  608. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  609. if (svsk) {
  610. dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
  611. svsk, sk, count,
  612. test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  613. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  614. svc_xprt_enqueue(&svsk->sk_xprt);
  615. }
  616. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  617. wake_up_interruptible(sk->sk_sleep);
  618. }
  619. /*
  620. * INET callback when space is newly available on the socket.
  621. */
  622. static void
  623. svc_write_space(struct sock *sk)
  624. {
  625. struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
  626. if (svsk) {
  627. dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
  628. svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  629. svc_xprt_enqueue(&svsk->sk_xprt);
  630. }
  631. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
  632. dprintk("RPC svc_write_space: someone sleeping on %p\n",
  633. svsk);
  634. wake_up_interruptible(sk->sk_sleep);
  635. }
  636. }
  637. static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
  638. struct cmsghdr *cmh)
  639. {
  640. switch (rqstp->rq_sock->sk_sk->sk_family) {
  641. case AF_INET: {
  642. struct in_pktinfo *pki = CMSG_DATA(cmh);
  643. rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
  644. break;
  645. }
  646. case AF_INET6: {
  647. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  648. ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
  649. break;
  650. }
  651. }
  652. }
  653. /*
  654. * Receive a datagram from a UDP socket.
  655. */
  656. static int
  657. svc_udp_recvfrom(struct svc_rqst *rqstp)
  658. {
  659. struct svc_sock *svsk = rqstp->rq_sock;
  660. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  661. struct sk_buff *skb;
  662. union {
  663. struct cmsghdr hdr;
  664. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  665. } buffer;
  666. struct cmsghdr *cmh = &buffer.hdr;
  667. int err, len;
  668. struct msghdr msg = {
  669. .msg_name = svc_addr(rqstp),
  670. .msg_control = cmh,
  671. .msg_controllen = sizeof(buffer),
  672. .msg_flags = MSG_DONTWAIT,
  673. };
  674. if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
  675. /* udp sockets need large rcvbuf as all pending
  676. * requests are still in that buffer. sndbuf must
  677. * also be large enough that there is enough space
  678. * for one reply per thread. We count all threads
  679. * rather than threads in a particular pool, which
  680. * provides an upper bound on the number of threads
  681. * which will access the socket.
  682. */
  683. svc_sock_setbufsize(svsk->sk_sock,
  684. (serv->sv_nrthreads+3) * serv->sv_max_mesg,
  685. (serv->sv_nrthreads+3) * serv->sv_max_mesg);
  686. if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
  687. svc_xprt_received(&svsk->sk_xprt);
  688. return svc_deferred_recv(rqstp);
  689. }
  690. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  691. skb = NULL;
  692. err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
  693. 0, 0, MSG_PEEK | MSG_DONTWAIT);
  694. if (err >= 0)
  695. skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
  696. if (skb == NULL) {
  697. if (err != -EAGAIN) {
  698. /* possibly an icmp error */
  699. dprintk("svc: recvfrom returned error %d\n", -err);
  700. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  701. }
  702. svc_xprt_received(&svsk->sk_xprt);
  703. return -EAGAIN;
  704. }
  705. rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
  706. if (skb->tstamp.tv64 == 0) {
  707. skb->tstamp = ktime_get_real();
  708. /* Don't enable netstamp, sunrpc doesn't
  709. need that much accuracy */
  710. }
  711. svsk->sk_sk->sk_stamp = skb->tstamp;
  712. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
  713. /*
  714. * Maybe more packets - kick another thread ASAP.
  715. */
  716. svc_xprt_received(&svsk->sk_xprt);
  717. len = skb->len - sizeof(struct udphdr);
  718. rqstp->rq_arg.len = len;
  719. rqstp->rq_prot = IPPROTO_UDP;
  720. if (cmh->cmsg_level != IPPROTO_IP ||
  721. cmh->cmsg_type != IP_PKTINFO) {
  722. if (net_ratelimit())
  723. printk("rpcsvc: received unknown control message:"
  724. "%d/%d\n",
  725. cmh->cmsg_level, cmh->cmsg_type);
  726. skb_free_datagram(svsk->sk_sk, skb);
  727. return 0;
  728. }
  729. svc_udp_get_dest_address(rqstp, cmh);
  730. if (skb_is_nonlinear(skb)) {
  731. /* we have to copy */
  732. local_bh_disable();
  733. if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
  734. local_bh_enable();
  735. /* checksum error */
  736. skb_free_datagram(svsk->sk_sk, skb);
  737. return 0;
  738. }
  739. local_bh_enable();
  740. skb_free_datagram(svsk->sk_sk, skb);
  741. } else {
  742. /* we can use it in-place */
  743. rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
  744. rqstp->rq_arg.head[0].iov_len = len;
  745. if (skb_checksum_complete(skb)) {
  746. skb_free_datagram(svsk->sk_sk, skb);
  747. return 0;
  748. }
  749. rqstp->rq_xprt_ctxt = skb;
  750. }
  751. rqstp->rq_arg.page_base = 0;
  752. if (len <= rqstp->rq_arg.head[0].iov_len) {
  753. rqstp->rq_arg.head[0].iov_len = len;
  754. rqstp->rq_arg.page_len = 0;
  755. rqstp->rq_respages = rqstp->rq_pages+1;
  756. } else {
  757. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  758. rqstp->rq_respages = rqstp->rq_pages + 1 +
  759. DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
  760. }
  761. if (serv->sv_stats)
  762. serv->sv_stats->netudpcnt++;
  763. return len;
  764. }
  765. static int
  766. svc_udp_sendto(struct svc_rqst *rqstp)
  767. {
  768. int error;
  769. error = svc_sendto(rqstp, &rqstp->rq_res);
  770. if (error == -ECONNREFUSED)
  771. /* ICMP error on earlier request. */
  772. error = svc_sendto(rqstp, &rqstp->rq_res);
  773. return error;
  774. }
  775. static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
  776. {
  777. }
  778. static int svc_udp_has_wspace(struct svc_xprt *xprt)
  779. {
  780. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  781. struct svc_serv *serv = xprt->xpt_server;
  782. unsigned long required;
  783. /*
  784. * Set the SOCK_NOSPACE flag before checking the available
  785. * sock space.
  786. */
  787. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  788. required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
  789. if (required*2 > sock_wspace(svsk->sk_sk))
  790. return 0;
  791. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  792. return 1;
  793. }
  794. static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
  795. {
  796. BUG();
  797. return NULL;
  798. }
  799. static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
  800. struct sockaddr *sa, int salen,
  801. int flags)
  802. {
  803. return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
  804. }
  805. static struct svc_xprt_ops svc_udp_ops = {
  806. .xpo_create = svc_udp_create,
  807. .xpo_recvfrom = svc_udp_recvfrom,
  808. .xpo_sendto = svc_udp_sendto,
  809. .xpo_release_rqst = svc_release_skb,
  810. .xpo_detach = svc_sock_detach,
  811. .xpo_free = svc_sock_free,
  812. .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
  813. .xpo_has_wspace = svc_udp_has_wspace,
  814. .xpo_accept = svc_udp_accept,
  815. };
  816. static struct svc_xprt_class svc_udp_class = {
  817. .xcl_name = "udp",
  818. .xcl_owner = THIS_MODULE,
  819. .xcl_ops = &svc_udp_ops,
  820. .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
  821. };
  822. static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
  823. {
  824. int one = 1;
  825. mm_segment_t oldfs;
  826. svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
  827. clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
  828. svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
  829. svsk->sk_sk->sk_write_space = svc_write_space;
  830. /* initialise setting must have enough space to
  831. * receive and respond to one request.
  832. * svc_udp_recvfrom will re-adjust if necessary
  833. */
  834. svc_sock_setbufsize(svsk->sk_sock,
  835. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
  836. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
  837. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* might have come in before data_ready set up */
  838. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  839. oldfs = get_fs();
  840. set_fs(KERNEL_DS);
  841. /* make sure we get destination address info */
  842. svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
  843. (char __user *)&one, sizeof(one));
  844. set_fs(oldfs);
  845. }
  846. /*
  847. * A data_ready event on a listening socket means there's a connection
  848. * pending. Do not use state_change as a substitute for it.
  849. */
  850. static void
  851. svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
  852. {
  853. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  854. dprintk("svc: socket %p TCP (listen) state change %d\n",
  855. sk, sk->sk_state);
  856. /*
  857. * This callback may called twice when a new connection
  858. * is established as a child socket inherits everything
  859. * from a parent LISTEN socket.
  860. * 1) data_ready method of the parent socket will be called
  861. * when one of child sockets become ESTABLISHED.
  862. * 2) data_ready method of the child socket may be called
  863. * when it receives data before the socket is accepted.
  864. * In case of 2, we should ignore it silently.
  865. */
  866. if (sk->sk_state == TCP_LISTEN) {
  867. if (svsk) {
  868. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  869. svc_xprt_enqueue(&svsk->sk_xprt);
  870. } else
  871. printk("svc: socket %p: no user data\n", sk);
  872. }
  873. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  874. wake_up_interruptible_all(sk->sk_sleep);
  875. }
  876. /*
  877. * A state change on a connected socket means it's dying or dead.
  878. */
  879. static void
  880. svc_tcp_state_change(struct sock *sk)
  881. {
  882. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  883. dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
  884. sk, sk->sk_state, sk->sk_user_data);
  885. if (!svsk)
  886. printk("svc: socket %p: no user data\n", sk);
  887. else {
  888. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  889. svc_xprt_enqueue(&svsk->sk_xprt);
  890. }
  891. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  892. wake_up_interruptible_all(sk->sk_sleep);
  893. }
  894. static void
  895. svc_tcp_data_ready(struct sock *sk, int count)
  896. {
  897. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  898. dprintk("svc: socket %p TCP data ready (svsk %p)\n",
  899. sk, sk->sk_user_data);
  900. if (svsk) {
  901. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  902. svc_xprt_enqueue(&svsk->sk_xprt);
  903. }
  904. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  905. wake_up_interruptible(sk->sk_sleep);
  906. }
  907. static inline int svc_port_is_privileged(struct sockaddr *sin)
  908. {
  909. switch (sin->sa_family) {
  910. case AF_INET:
  911. return ntohs(((struct sockaddr_in *)sin)->sin_port)
  912. < PROT_SOCK;
  913. case AF_INET6:
  914. return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
  915. < PROT_SOCK;
  916. default:
  917. return 0;
  918. }
  919. }
  920. /*
  921. * Accept a TCP connection
  922. */
  923. static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
  924. {
  925. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  926. struct sockaddr_storage addr;
  927. struct sockaddr *sin = (struct sockaddr *) &addr;
  928. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  929. struct socket *sock = svsk->sk_sock;
  930. struct socket *newsock;
  931. struct svc_sock *newsvsk;
  932. int err, slen;
  933. char buf[RPC_MAX_ADDRBUFLEN];
  934. dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
  935. if (!sock)
  936. return NULL;
  937. clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  938. err = kernel_accept(sock, &newsock, O_NONBLOCK);
  939. if (err < 0) {
  940. if (err == -ENOMEM)
  941. printk(KERN_WARNING "%s: no more sockets!\n",
  942. serv->sv_name);
  943. else if (err != -EAGAIN && net_ratelimit())
  944. printk(KERN_WARNING "%s: accept failed (err %d)!\n",
  945. serv->sv_name, -err);
  946. return NULL;
  947. }
  948. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  949. err = kernel_getpeername(newsock, sin, &slen);
  950. if (err < 0) {
  951. if (net_ratelimit())
  952. printk(KERN_WARNING "%s: peername failed (err %d)!\n",
  953. serv->sv_name, -err);
  954. goto failed; /* aborted connection or whatever */
  955. }
  956. /* Ideally, we would want to reject connections from unauthorized
  957. * hosts here, but when we get encryption, the IP of the host won't
  958. * tell us anything. For now just warn about unpriv connections.
  959. */
  960. if (!svc_port_is_privileged(sin)) {
  961. dprintk(KERN_WARNING
  962. "%s: connect from unprivileged port: %s\n",
  963. serv->sv_name,
  964. __svc_print_addr(sin, buf, sizeof(buf)));
  965. }
  966. dprintk("%s: connect from %s\n", serv->sv_name,
  967. __svc_print_addr(sin, buf, sizeof(buf)));
  968. /* make sure that a write doesn't block forever when
  969. * low on memory
  970. */
  971. newsock->sk->sk_sndtimeo = HZ*30;
  972. if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
  973. (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
  974. goto failed;
  975. memcpy(&newsvsk->sk_remote, sin, slen);
  976. newsvsk->sk_remotelen = slen;
  977. err = kernel_getsockname(newsock, sin, &slen);
  978. if (unlikely(err < 0)) {
  979. dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
  980. slen = offsetof(struct sockaddr, sa_data);
  981. }
  982. memcpy(&newsvsk->sk_local, sin, slen);
  983. if (serv->sv_stats)
  984. serv->sv_stats->nettcpconn++;
  985. return &newsvsk->sk_xprt;
  986. failed:
  987. sock_release(newsock);
  988. return NULL;
  989. }
  990. /*
  991. * Receive data from a TCP socket.
  992. */
  993. static int
  994. svc_tcp_recvfrom(struct svc_rqst *rqstp)
  995. {
  996. struct svc_sock *svsk = rqstp->rq_sock;
  997. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  998. int len;
  999. struct kvec *vec;
  1000. int pnum, vlen;
  1001. dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
  1002. svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
  1003. test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
  1004. test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
  1005. if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
  1006. svc_xprt_received(&svsk->sk_xprt);
  1007. return svc_deferred_recv(rqstp);
  1008. }
  1009. if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
  1010. /* sndbuf needs to have room for one request
  1011. * per thread, otherwise we can stall even when the
  1012. * network isn't a bottleneck.
  1013. *
  1014. * We count all threads rather than threads in a
  1015. * particular pool, which provides an upper bound
  1016. * on the number of threads which will access the socket.
  1017. *
  1018. * rcvbuf just needs to be able to hold a few requests.
  1019. * Normally they will be removed from the queue
  1020. * as soon a a complete request arrives.
  1021. */
  1022. svc_sock_setbufsize(svsk->sk_sock,
  1023. (serv->sv_nrthreads+3) * serv->sv_max_mesg,
  1024. 3 * serv->sv_max_mesg);
  1025. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1026. /* Receive data. If we haven't got the record length yet, get
  1027. * the next four bytes. Otherwise try to gobble up as much as
  1028. * possible up to the complete record length.
  1029. */
  1030. if (svsk->sk_tcplen < 4) {
  1031. unsigned long want = 4 - svsk->sk_tcplen;
  1032. struct kvec iov;
  1033. iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
  1034. iov.iov_len = want;
  1035. if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
  1036. goto error;
  1037. svsk->sk_tcplen += len;
  1038. if (len < want) {
  1039. dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
  1040. len, want);
  1041. svc_xprt_received(&svsk->sk_xprt);
  1042. return -EAGAIN; /* record header not complete */
  1043. }
  1044. svsk->sk_reclen = ntohl(svsk->sk_reclen);
  1045. if (!(svsk->sk_reclen & 0x80000000)) {
  1046. /* FIXME: technically, a record can be fragmented,
  1047. * and non-terminal fragments will not have the top
  1048. * bit set in the fragment length header.
  1049. * But apparently no known nfs clients send fragmented
  1050. * records. */
  1051. if (net_ratelimit())
  1052. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
  1053. " (non-terminal)\n",
  1054. (unsigned long) svsk->sk_reclen);
  1055. goto err_delete;
  1056. }
  1057. svsk->sk_reclen &= 0x7fffffff;
  1058. dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
  1059. if (svsk->sk_reclen > serv->sv_max_mesg) {
  1060. if (net_ratelimit())
  1061. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
  1062. " (large)\n",
  1063. (unsigned long) svsk->sk_reclen);
  1064. goto err_delete;
  1065. }
  1066. }
  1067. /* Check whether enough data is available */
  1068. len = svc_recv_available(svsk);
  1069. if (len < 0)
  1070. goto error;
  1071. if (len < svsk->sk_reclen) {
  1072. dprintk("svc: incomplete TCP record (%d of %d)\n",
  1073. len, svsk->sk_reclen);
  1074. svc_xprt_received(&svsk->sk_xprt);
  1075. return -EAGAIN; /* record not complete */
  1076. }
  1077. len = svsk->sk_reclen;
  1078. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1079. vec = rqstp->rq_vec;
  1080. vec[0] = rqstp->rq_arg.head[0];
  1081. vlen = PAGE_SIZE;
  1082. pnum = 1;
  1083. while (vlen < len) {
  1084. vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
  1085. vec[pnum].iov_len = PAGE_SIZE;
  1086. pnum++;
  1087. vlen += PAGE_SIZE;
  1088. }
  1089. rqstp->rq_respages = &rqstp->rq_pages[pnum];
  1090. /* Now receive data */
  1091. len = svc_recvfrom(rqstp, vec, pnum, len);
  1092. if (len < 0)
  1093. goto error;
  1094. dprintk("svc: TCP complete record (%d bytes)\n", len);
  1095. rqstp->rq_arg.len = len;
  1096. rqstp->rq_arg.page_base = 0;
  1097. if (len <= rqstp->rq_arg.head[0].iov_len) {
  1098. rqstp->rq_arg.head[0].iov_len = len;
  1099. rqstp->rq_arg.page_len = 0;
  1100. } else {
  1101. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  1102. }
  1103. rqstp->rq_xprt_ctxt = NULL;
  1104. rqstp->rq_prot = IPPROTO_TCP;
  1105. /* Reset TCP read info */
  1106. svsk->sk_reclen = 0;
  1107. svsk->sk_tcplen = 0;
  1108. svc_xprt_received(&svsk->sk_xprt);
  1109. if (serv->sv_stats)
  1110. serv->sv_stats->nettcpcnt++;
  1111. return len;
  1112. err_delete:
  1113. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1114. return -EAGAIN;
  1115. error:
  1116. if (len == -EAGAIN) {
  1117. dprintk("RPC: TCP recvfrom got EAGAIN\n");
  1118. svc_xprt_received(&svsk->sk_xprt);
  1119. } else {
  1120. printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
  1121. svsk->sk_xprt.xpt_server->sv_name, -len);
  1122. goto err_delete;
  1123. }
  1124. return len;
  1125. }
  1126. /*
  1127. * Send out data on TCP socket.
  1128. */
  1129. static int
  1130. svc_tcp_sendto(struct svc_rqst *rqstp)
  1131. {
  1132. struct xdr_buf *xbufp = &rqstp->rq_res;
  1133. int sent;
  1134. __be32 reclen;
  1135. /* Set up the first element of the reply kvec.
  1136. * Any other kvecs that may be in use have been taken
  1137. * care of by the server implementation itself.
  1138. */
  1139. reclen = htonl(0x80000000|((xbufp->len ) - 4));
  1140. memcpy(xbufp->head[0].iov_base, &reclen, 4);
  1141. if (test_bit(XPT_DEAD, &rqstp->rq_sock->sk_xprt.xpt_flags))
  1142. return -ENOTCONN;
  1143. sent = svc_sendto(rqstp, &rqstp->rq_res);
  1144. if (sent != xbufp->len) {
  1145. printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
  1146. rqstp->rq_sock->sk_xprt.xpt_server->sv_name,
  1147. (sent<0)?"got error":"sent only",
  1148. sent, xbufp->len);
  1149. set_bit(XPT_CLOSE, &rqstp->rq_sock->sk_xprt.xpt_flags);
  1150. svc_xprt_enqueue(rqstp->rq_xprt);
  1151. sent = -EAGAIN;
  1152. }
  1153. return sent;
  1154. }
  1155. /*
  1156. * Setup response header. TCP has a 4B record length field.
  1157. */
  1158. static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
  1159. {
  1160. struct kvec *resv = &rqstp->rq_res.head[0];
  1161. /* tcp needs a space for the record length... */
  1162. svc_putnl(resv, 0);
  1163. }
  1164. static int svc_tcp_has_wspace(struct svc_xprt *xprt)
  1165. {
  1166. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1167. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  1168. int required;
  1169. int wspace;
  1170. /*
  1171. * Set the SOCK_NOSPACE flag before checking the available
  1172. * sock space.
  1173. */
  1174. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  1175. required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
  1176. wspace = sk_stream_wspace(svsk->sk_sk);
  1177. if (wspace < sk_stream_min_wspace(svsk->sk_sk))
  1178. return 0;
  1179. if (required * 2 > wspace)
  1180. return 0;
  1181. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  1182. return 1;
  1183. }
  1184. static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
  1185. struct sockaddr *sa, int salen,
  1186. int flags)
  1187. {
  1188. return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
  1189. }
  1190. static struct svc_xprt_ops svc_tcp_ops = {
  1191. .xpo_create = svc_tcp_create,
  1192. .xpo_recvfrom = svc_tcp_recvfrom,
  1193. .xpo_sendto = svc_tcp_sendto,
  1194. .xpo_release_rqst = svc_release_skb,
  1195. .xpo_detach = svc_sock_detach,
  1196. .xpo_free = svc_sock_free,
  1197. .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
  1198. .xpo_has_wspace = svc_tcp_has_wspace,
  1199. .xpo_accept = svc_tcp_accept,
  1200. };
  1201. static struct svc_xprt_class svc_tcp_class = {
  1202. .xcl_name = "tcp",
  1203. .xcl_owner = THIS_MODULE,
  1204. .xcl_ops = &svc_tcp_ops,
  1205. .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
  1206. };
  1207. void svc_init_xprt_sock(void)
  1208. {
  1209. svc_reg_xprt_class(&svc_tcp_class);
  1210. svc_reg_xprt_class(&svc_udp_class);
  1211. }
  1212. void svc_cleanup_xprt_sock(void)
  1213. {
  1214. svc_unreg_xprt_class(&svc_tcp_class);
  1215. svc_unreg_xprt_class(&svc_udp_class);
  1216. }
  1217. static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
  1218. {
  1219. struct sock *sk = svsk->sk_sk;
  1220. struct tcp_sock *tp = tcp_sk(sk);
  1221. svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
  1222. set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
  1223. if (sk->sk_state == TCP_LISTEN) {
  1224. dprintk("setting up TCP socket for listening\n");
  1225. set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
  1226. sk->sk_data_ready = svc_tcp_listen_data_ready;
  1227. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  1228. } else {
  1229. dprintk("setting up TCP socket for reading\n");
  1230. sk->sk_state_change = svc_tcp_state_change;
  1231. sk->sk_data_ready = svc_tcp_data_ready;
  1232. sk->sk_write_space = svc_write_space;
  1233. svsk->sk_reclen = 0;
  1234. svsk->sk_tcplen = 0;
  1235. tp->nonagle = 1; /* disable Nagle's algorithm */
  1236. /* initialise setting must have enough space to
  1237. * receive and respond to one request.
  1238. * svc_tcp_recvfrom will re-adjust if necessary
  1239. */
  1240. svc_sock_setbufsize(svsk->sk_sock,
  1241. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
  1242. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
  1243. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1244. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1245. if (sk->sk_state != TCP_ESTABLISHED)
  1246. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1247. }
  1248. }
  1249. void
  1250. svc_sock_update_bufs(struct svc_serv *serv)
  1251. {
  1252. /*
  1253. * The number of server threads has changed. Update
  1254. * rcvbuf and sndbuf accordingly on all sockets
  1255. */
  1256. struct list_head *le;
  1257. spin_lock_bh(&serv->sv_lock);
  1258. list_for_each(le, &serv->sv_permsocks) {
  1259. struct svc_sock *svsk =
  1260. list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1261. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1262. }
  1263. list_for_each(le, &serv->sv_tempsocks) {
  1264. struct svc_sock *svsk =
  1265. list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1266. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1267. }
  1268. spin_unlock_bh(&serv->sv_lock);
  1269. }
  1270. /*
  1271. * Make sure that we don't have too many active connections. If we
  1272. * have, something must be dropped.
  1273. *
  1274. * There's no point in trying to do random drop here for DoS
  1275. * prevention. The NFS clients does 1 reconnect in 15 seconds. An
  1276. * attacker can easily beat that.
  1277. *
  1278. * The only somewhat efficient mechanism would be if drop old
  1279. * connections from the same IP first. But right now we don't even
  1280. * record the client IP in svc_sock.
  1281. */
  1282. static void svc_check_conn_limits(struct svc_serv *serv)
  1283. {
  1284. if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
  1285. struct svc_sock *svsk = NULL;
  1286. spin_lock_bh(&serv->sv_lock);
  1287. if (!list_empty(&serv->sv_tempsocks)) {
  1288. if (net_ratelimit()) {
  1289. /* Try to help the admin */
  1290. printk(KERN_NOTICE "%s: too many open TCP "
  1291. "sockets, consider increasing the "
  1292. "number of nfsd threads\n",
  1293. serv->sv_name);
  1294. }
  1295. /*
  1296. * Always select the oldest socket. It's not fair,
  1297. * but so is life
  1298. */
  1299. svsk = list_entry(serv->sv_tempsocks.prev,
  1300. struct svc_sock,
  1301. sk_xprt.xpt_list);
  1302. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1303. svc_xprt_get(&svsk->sk_xprt);
  1304. }
  1305. spin_unlock_bh(&serv->sv_lock);
  1306. if (svsk) {
  1307. svc_xprt_enqueue(&svsk->sk_xprt);
  1308. svc_xprt_put(&svsk->sk_xprt);
  1309. }
  1310. }
  1311. }
  1312. /*
  1313. * Receive the next request on any socket. This code is carefully
  1314. * organised not to touch any cachelines in the shared svc_serv
  1315. * structure, only cachelines in the local svc_pool.
  1316. */
  1317. int
  1318. svc_recv(struct svc_rqst *rqstp, long timeout)
  1319. {
  1320. struct svc_sock *svsk = NULL;
  1321. struct svc_serv *serv = rqstp->rq_server;
  1322. struct svc_pool *pool = rqstp->rq_pool;
  1323. int len, i;
  1324. int pages;
  1325. struct xdr_buf *arg;
  1326. DECLARE_WAITQUEUE(wait, current);
  1327. dprintk("svc: server %p waiting for data (to = %ld)\n",
  1328. rqstp, timeout);
  1329. if (rqstp->rq_sock)
  1330. printk(KERN_ERR
  1331. "svc_recv: service %p, socket not NULL!\n",
  1332. rqstp);
  1333. if (waitqueue_active(&rqstp->rq_wait))
  1334. printk(KERN_ERR
  1335. "svc_recv: service %p, wait queue active!\n",
  1336. rqstp);
  1337. /* now allocate needed pages. If we get a failure, sleep briefly */
  1338. pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
  1339. for (i=0; i < pages ; i++)
  1340. while (rqstp->rq_pages[i] == NULL) {
  1341. struct page *p = alloc_page(GFP_KERNEL);
  1342. if (!p)
  1343. schedule_timeout_uninterruptible(msecs_to_jiffies(500));
  1344. rqstp->rq_pages[i] = p;
  1345. }
  1346. rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
  1347. BUG_ON(pages >= RPCSVC_MAXPAGES);
  1348. /* Make arg->head point to first page and arg->pages point to rest */
  1349. arg = &rqstp->rq_arg;
  1350. arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
  1351. arg->head[0].iov_len = PAGE_SIZE;
  1352. arg->pages = rqstp->rq_pages + 1;
  1353. arg->page_base = 0;
  1354. /* save at least one page for response */
  1355. arg->page_len = (pages-2)*PAGE_SIZE;
  1356. arg->len = (pages-1)*PAGE_SIZE;
  1357. arg->tail[0].iov_len = 0;
  1358. try_to_freeze();
  1359. cond_resched();
  1360. if (signalled())
  1361. return -EINTR;
  1362. spin_lock_bh(&pool->sp_lock);
  1363. if ((svsk = svc_sock_dequeue(pool)) != NULL) {
  1364. rqstp->rq_sock = svsk;
  1365. svc_xprt_get(&svsk->sk_xprt);
  1366. rqstp->rq_reserved = serv->sv_max_mesg;
  1367. atomic_add(rqstp->rq_reserved, &svsk->sk_xprt.xpt_reserved);
  1368. } else {
  1369. /* No data pending. Go to sleep */
  1370. svc_thread_enqueue(pool, rqstp);
  1371. /*
  1372. * We have to be able to interrupt this wait
  1373. * to bring down the daemons ...
  1374. */
  1375. set_current_state(TASK_INTERRUPTIBLE);
  1376. add_wait_queue(&rqstp->rq_wait, &wait);
  1377. spin_unlock_bh(&pool->sp_lock);
  1378. schedule_timeout(timeout);
  1379. try_to_freeze();
  1380. spin_lock_bh(&pool->sp_lock);
  1381. remove_wait_queue(&rqstp->rq_wait, &wait);
  1382. if (!(svsk = rqstp->rq_sock)) {
  1383. svc_thread_dequeue(pool, rqstp);
  1384. spin_unlock_bh(&pool->sp_lock);
  1385. dprintk("svc: server %p, no data yet\n", rqstp);
  1386. return signalled()? -EINTR : -EAGAIN;
  1387. }
  1388. }
  1389. spin_unlock_bh(&pool->sp_lock);
  1390. len = 0;
  1391. if (test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)) {
  1392. dprintk("svc_recv: found XPT_CLOSE\n");
  1393. svc_delete_xprt(&svsk->sk_xprt);
  1394. } else if (test_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags)) {
  1395. struct svc_xprt *newxpt;
  1396. newxpt = svsk->sk_xprt.xpt_ops->xpo_accept(&svsk->sk_xprt);
  1397. if (newxpt) {
  1398. /*
  1399. * We know this module_get will succeed because the
  1400. * listener holds a reference too
  1401. */
  1402. __module_get(newxpt->xpt_class->xcl_owner);
  1403. svc_check_conn_limits(svsk->sk_xprt.xpt_server);
  1404. svc_xprt_received(newxpt);
  1405. }
  1406. svc_xprt_received(&svsk->sk_xprt);
  1407. } else {
  1408. dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
  1409. rqstp, pool->sp_id, svsk,
  1410. atomic_read(&svsk->sk_xprt.xpt_ref.refcount));
  1411. len = svsk->sk_xprt.xpt_ops->xpo_recvfrom(rqstp);
  1412. dprintk("svc: got len=%d\n", len);
  1413. }
  1414. /* No data, incomplete (TCP) read, or accept() */
  1415. if (len == 0 || len == -EAGAIN) {
  1416. rqstp->rq_res.len = 0;
  1417. svc_sock_release(rqstp);
  1418. return -EAGAIN;
  1419. }
  1420. clear_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags);
  1421. rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
  1422. rqstp->rq_chandle.defer = svc_defer;
  1423. if (serv->sv_stats)
  1424. serv->sv_stats->netcnt++;
  1425. return len;
  1426. }
  1427. /*
  1428. * Drop request
  1429. */
  1430. void
  1431. svc_drop(struct svc_rqst *rqstp)
  1432. {
  1433. dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
  1434. svc_sock_release(rqstp);
  1435. }
  1436. /*
  1437. * Return reply to client.
  1438. */
  1439. int
  1440. svc_send(struct svc_rqst *rqstp)
  1441. {
  1442. struct svc_xprt *xprt;
  1443. int len;
  1444. struct xdr_buf *xb;
  1445. xprt = rqstp->rq_xprt;
  1446. if (!xprt)
  1447. return -EFAULT;
  1448. /* release the receive skb before sending the reply */
  1449. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  1450. /* calculate over-all length */
  1451. xb = & rqstp->rq_res;
  1452. xb->len = xb->head[0].iov_len +
  1453. xb->page_len +
  1454. xb->tail[0].iov_len;
  1455. /* Grab mutex to serialize outgoing data. */
  1456. mutex_lock(&xprt->xpt_mutex);
  1457. if (test_bit(XPT_DEAD, &xprt->xpt_flags))
  1458. len = -ENOTCONN;
  1459. else
  1460. len = xprt->xpt_ops->xpo_sendto(rqstp);
  1461. mutex_unlock(&xprt->xpt_mutex);
  1462. svc_sock_release(rqstp);
  1463. if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
  1464. return 0;
  1465. return len;
  1466. }
  1467. /*
  1468. * Timer function to close old temporary sockets, using
  1469. * a mark-and-sweep algorithm.
  1470. */
  1471. static void
  1472. svc_age_temp_sockets(unsigned long closure)
  1473. {
  1474. struct svc_serv *serv = (struct svc_serv *)closure;
  1475. struct svc_sock *svsk;
  1476. struct list_head *le, *next;
  1477. LIST_HEAD(to_be_aged);
  1478. dprintk("svc_age_temp_sockets\n");
  1479. if (!spin_trylock_bh(&serv->sv_lock)) {
  1480. /* busy, try again 1 sec later */
  1481. dprintk("svc_age_temp_sockets: busy\n");
  1482. mod_timer(&serv->sv_temptimer, jiffies + HZ);
  1483. return;
  1484. }
  1485. list_for_each_safe(le, next, &serv->sv_tempsocks) {
  1486. svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1487. if (!test_and_set_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags))
  1488. continue;
  1489. if (atomic_read(&svsk->sk_xprt.xpt_ref.refcount) > 1
  1490. || test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags))
  1491. continue;
  1492. svc_xprt_get(&svsk->sk_xprt);
  1493. list_move(le, &to_be_aged);
  1494. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1495. set_bit(XPT_DETACHED, &svsk->sk_xprt.xpt_flags);
  1496. }
  1497. spin_unlock_bh(&serv->sv_lock);
  1498. while (!list_empty(&to_be_aged)) {
  1499. le = to_be_aged.next;
  1500. /* fiddling the sk_xprt.xpt_list node is safe 'cos we're XPT_DETACHED */
  1501. list_del_init(le);
  1502. svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1503. dprintk("queuing svsk %p for closing\n", svsk);
  1504. /* a thread will dequeue and close it soon */
  1505. svc_xprt_enqueue(&svsk->sk_xprt);
  1506. svc_xprt_put(&svsk->sk_xprt);
  1507. }
  1508. mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
  1509. }
  1510. /*
  1511. * Initialize socket for RPC use and create svc_sock struct
  1512. * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
  1513. */
  1514. static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
  1515. struct socket *sock,
  1516. int *errp, int flags)
  1517. {
  1518. struct svc_sock *svsk;
  1519. struct sock *inet;
  1520. int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
  1521. int is_temporary = flags & SVC_SOCK_TEMPORARY;
  1522. dprintk("svc: svc_setup_socket %p\n", sock);
  1523. if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
  1524. *errp = -ENOMEM;
  1525. return NULL;
  1526. }
  1527. inet = sock->sk;
  1528. /* Register socket with portmapper */
  1529. if (*errp >= 0 && pmap_register)
  1530. *errp = svc_register(serv, inet->sk_protocol,
  1531. ntohs(inet_sk(inet)->sport));
  1532. if (*errp < 0) {
  1533. kfree(svsk);
  1534. return NULL;
  1535. }
  1536. set_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags);
  1537. inet->sk_user_data = svsk;
  1538. svsk->sk_sock = sock;
  1539. svsk->sk_sk = inet;
  1540. svsk->sk_ostate = inet->sk_state_change;
  1541. svsk->sk_odata = inet->sk_data_ready;
  1542. svsk->sk_owspace = inet->sk_write_space;
  1543. INIT_LIST_HEAD(&svsk->sk_deferred);
  1544. /* Initialize the socket */
  1545. if (sock->type == SOCK_DGRAM)
  1546. svc_udp_init(svsk, serv);
  1547. else
  1548. svc_tcp_init(svsk, serv);
  1549. spin_lock_bh(&serv->sv_lock);
  1550. if (is_temporary) {
  1551. set_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
  1552. list_add(&svsk->sk_xprt.xpt_list, &serv->sv_tempsocks);
  1553. serv->sv_tmpcnt++;
  1554. if (serv->sv_temptimer.function == NULL) {
  1555. /* setup timer to age temp sockets */
  1556. setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
  1557. (unsigned long)serv);
  1558. mod_timer(&serv->sv_temptimer,
  1559. jiffies + svc_conn_age_period * HZ);
  1560. }
  1561. } else {
  1562. clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
  1563. list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
  1564. }
  1565. spin_unlock_bh(&serv->sv_lock);
  1566. dprintk("svc: svc_setup_socket created %p (inet %p)\n",
  1567. svsk, svsk->sk_sk);
  1568. return svsk;
  1569. }
  1570. int svc_addsock(struct svc_serv *serv,
  1571. int fd,
  1572. char *name_return,
  1573. int *proto)
  1574. {
  1575. int err = 0;
  1576. struct socket *so = sockfd_lookup(fd, &err);
  1577. struct svc_sock *svsk = NULL;
  1578. if (!so)
  1579. return err;
  1580. if (so->sk->sk_family != AF_INET)
  1581. err = -EAFNOSUPPORT;
  1582. else if (so->sk->sk_protocol != IPPROTO_TCP &&
  1583. so->sk->sk_protocol != IPPROTO_UDP)
  1584. err = -EPROTONOSUPPORT;
  1585. else if (so->state > SS_UNCONNECTED)
  1586. err = -EISCONN;
  1587. else {
  1588. svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
  1589. if (svsk) {
  1590. svc_xprt_received(&svsk->sk_xprt);
  1591. err = 0;
  1592. }
  1593. }
  1594. if (err) {
  1595. sockfd_put(so);
  1596. return err;
  1597. }
  1598. if (proto) *proto = so->sk->sk_protocol;
  1599. return one_sock_name(name_return, svsk);
  1600. }
  1601. EXPORT_SYMBOL_GPL(svc_addsock);
  1602. /*
  1603. * Create socket for RPC service.
  1604. */
  1605. static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
  1606. int protocol,
  1607. struct sockaddr *sin, int len,
  1608. int flags)
  1609. {
  1610. struct svc_sock *svsk;
  1611. struct socket *sock;
  1612. int error;
  1613. int type;
  1614. char buf[RPC_MAX_ADDRBUFLEN];
  1615. dprintk("svc: svc_create_socket(%s, %d, %s)\n",
  1616. serv->sv_program->pg_name, protocol,
  1617. __svc_print_addr(sin, buf, sizeof(buf)));
  1618. if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
  1619. printk(KERN_WARNING "svc: only UDP and TCP "
  1620. "sockets supported\n");
  1621. return ERR_PTR(-EINVAL);
  1622. }
  1623. type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
  1624. error = sock_create_kern(sin->sa_family, type, protocol, &sock);
  1625. if (error < 0)
  1626. return ERR_PTR(error);
  1627. svc_reclassify_socket(sock);
  1628. if (type == SOCK_STREAM)
  1629. sock->sk->sk_reuse = 1; /* allow address reuse */
  1630. error = kernel_bind(sock, sin, len);
  1631. if (error < 0)
  1632. goto bummer;
  1633. if (protocol == IPPROTO_TCP) {
  1634. if ((error = kernel_listen(sock, 64)) < 0)
  1635. goto bummer;
  1636. }
  1637. if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
  1638. svc_xprt_received(&svsk->sk_xprt);
  1639. return (struct svc_xprt *)svsk;
  1640. }
  1641. bummer:
  1642. dprintk("svc: svc_create_socket error = %d\n", -error);
  1643. sock_release(sock);
  1644. return ERR_PTR(error);
  1645. }
  1646. /*
  1647. * Detach the svc_sock from the socket so that no
  1648. * more callbacks occur.
  1649. */
  1650. static void svc_sock_detach(struct svc_xprt *xprt)
  1651. {
  1652. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1653. struct sock *sk = svsk->sk_sk;
  1654. dprintk("svc: svc_sock_detach(%p)\n", svsk);
  1655. /* put back the old socket callbacks */
  1656. sk->sk_state_change = svsk->sk_ostate;
  1657. sk->sk_data_ready = svsk->sk_odata;
  1658. sk->sk_write_space = svsk->sk_owspace;
  1659. }
  1660. /*
  1661. * Free the svc_sock's socket resources and the svc_sock itself.
  1662. */
  1663. static void svc_sock_free(struct svc_xprt *xprt)
  1664. {
  1665. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1666. dprintk("svc: svc_sock_free(%p)\n", svsk);
  1667. if (svsk->sk_sock->file)
  1668. sockfd_put(svsk->sk_sock);
  1669. else
  1670. sock_release(svsk->sk_sock);
  1671. kfree(svsk);
  1672. }
  1673. /*
  1674. * Remove a dead transport
  1675. */
  1676. static void svc_delete_xprt(struct svc_xprt *xprt)
  1677. {
  1678. struct svc_serv *serv = xprt->xpt_server;
  1679. dprintk("svc: svc_delete_xprt(%p)\n", xprt);
  1680. xprt->xpt_ops->xpo_detach(xprt);
  1681. spin_lock_bh(&serv->sv_lock);
  1682. if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
  1683. list_del_init(&xprt->xpt_list);
  1684. /*
  1685. * We used to delete the transport from whichever list
  1686. * it's sk_xprt.xpt_ready node was on, but we don't actually
  1687. * need to. This is because the only time we're called
  1688. * while still attached to a queue, the queue itself
  1689. * is about to be destroyed (in svc_destroy).
  1690. */
  1691. if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
  1692. BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
  1693. if (test_bit(XPT_TEMP, &xprt->xpt_flags))
  1694. serv->sv_tmpcnt--;
  1695. svc_xprt_put(xprt);
  1696. }
  1697. spin_unlock_bh(&serv->sv_lock);
  1698. }
  1699. static void svc_close_xprt(struct svc_xprt *xprt)
  1700. {
  1701. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  1702. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
  1703. /* someone else will have to effect the close */
  1704. return;
  1705. svc_xprt_get(xprt);
  1706. svc_delete_xprt(xprt);
  1707. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  1708. svc_xprt_put(xprt);
  1709. }
  1710. void svc_close_all(struct list_head *xprt_list)
  1711. {
  1712. struct svc_xprt *xprt;
  1713. struct svc_xprt *tmp;
  1714. list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
  1715. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  1716. if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
  1717. /* Waiting to be processed, but no threads left,
  1718. * So just remove it from the waiting list
  1719. */
  1720. list_del_init(&xprt->xpt_ready);
  1721. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  1722. }
  1723. svc_close_xprt(xprt);
  1724. }
  1725. }
  1726. /*
  1727. * Handle defer and revisit of requests
  1728. */
  1729. static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
  1730. {
  1731. struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
  1732. struct svc_sock *svsk;
  1733. if (too_many) {
  1734. svc_xprt_put(&dr->svsk->sk_xprt);
  1735. kfree(dr);
  1736. return;
  1737. }
  1738. dprintk("revisit queued\n");
  1739. svsk = dr->svsk;
  1740. dr->svsk = NULL;
  1741. spin_lock(&svsk->sk_xprt.xpt_lock);
  1742. list_add(&dr->handle.recent, &svsk->sk_deferred);
  1743. spin_unlock(&svsk->sk_xprt.xpt_lock);
  1744. set_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags);
  1745. svc_xprt_enqueue(&svsk->sk_xprt);
  1746. svc_xprt_put(&svsk->sk_xprt);
  1747. }
  1748. static struct cache_deferred_req *
  1749. svc_defer(struct cache_req *req)
  1750. {
  1751. struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
  1752. int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
  1753. struct svc_deferred_req *dr;
  1754. if (rqstp->rq_arg.page_len)
  1755. return NULL; /* if more than a page, give up FIXME */
  1756. if (rqstp->rq_deferred) {
  1757. dr = rqstp->rq_deferred;
  1758. rqstp->rq_deferred = NULL;
  1759. } else {
  1760. int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
  1761. /* FIXME maybe discard if size too large */
  1762. dr = kmalloc(size, GFP_KERNEL);
  1763. if (dr == NULL)
  1764. return NULL;
  1765. dr->handle.owner = rqstp->rq_server;
  1766. dr->prot = rqstp->rq_prot;
  1767. memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
  1768. dr->addrlen = rqstp->rq_addrlen;
  1769. dr->daddr = rqstp->rq_daddr;
  1770. dr->argslen = rqstp->rq_arg.len >> 2;
  1771. memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
  1772. }
  1773. svc_xprt_get(rqstp->rq_xprt);
  1774. dr->svsk = rqstp->rq_sock;
  1775. dr->handle.revisit = svc_revisit;
  1776. return &dr->handle;
  1777. }
  1778. /*
  1779. * recv data from a deferred request into an active one
  1780. */
  1781. static int svc_deferred_recv(struct svc_rqst *rqstp)
  1782. {
  1783. struct svc_deferred_req *dr = rqstp->rq_deferred;
  1784. rqstp->rq_arg.head[0].iov_base = dr->args;
  1785. rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
  1786. rqstp->rq_arg.page_len = 0;
  1787. rqstp->rq_arg.len = dr->argslen<<2;
  1788. rqstp->rq_prot = dr->prot;
  1789. memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
  1790. rqstp->rq_addrlen = dr->addrlen;
  1791. rqstp->rq_daddr = dr->daddr;
  1792. rqstp->rq_respages = rqstp->rq_pages;
  1793. return dr->argslen<<2;
  1794. }
  1795. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
  1796. {
  1797. struct svc_deferred_req *dr = NULL;
  1798. if (!test_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags))
  1799. return NULL;
  1800. spin_lock(&svsk->sk_xprt.xpt_lock);
  1801. clear_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags);
  1802. if (!list_empty(&svsk->sk_deferred)) {
  1803. dr = list_entry(svsk->sk_deferred.next,
  1804. struct svc_deferred_req,
  1805. handle.recent);
  1806. list_del_init(&dr->handle.recent);
  1807. set_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags);
  1808. }
  1809. spin_unlock(&svsk->sk_xprt.xpt_lock);
  1810. return dr;
  1811. }