extents_status.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032
  1. /*
  2. * fs/ext4/extents_status.c
  3. *
  4. * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
  5. * Modified by
  6. * Allison Henderson <achender@linux.vnet.ibm.com>
  7. * Hugh Dickins <hughd@google.com>
  8. * Zheng Liu <wenqing.lz@taobao.com>
  9. *
  10. * Ext4 extents status tree core functions.
  11. */
  12. #include <linux/rbtree.h>
  13. #include <linux/list_sort.h>
  14. #include "ext4.h"
  15. #include "extents_status.h"
  16. #include "ext4_extents.h"
  17. #include <trace/events/ext4.h>
  18. /*
  19. * According to previous discussion in Ext4 Developer Workshop, we
  20. * will introduce a new structure called io tree to track all extent
  21. * status in order to solve some problems that we have met
  22. * (e.g. Reservation space warning), and provide extent-level locking.
  23. * Delay extent tree is the first step to achieve this goal. It is
  24. * original built by Yongqiang Yang. At that time it is called delay
  25. * extent tree, whose goal is only track delayed extents in memory to
  26. * simplify the implementation of fiemap and bigalloc, and introduce
  27. * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
  28. * delay extent tree at the first commit. But for better understand
  29. * what it does, it has been rename to extent status tree.
  30. *
  31. * Step1:
  32. * Currently the first step has been done. All delayed extents are
  33. * tracked in the tree. It maintains the delayed extent when a delayed
  34. * allocation is issued, and the delayed extent is written out or
  35. * invalidated. Therefore the implementation of fiemap and bigalloc
  36. * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  37. *
  38. * The following comment describes the implemenmtation of extent
  39. * status tree and future works.
  40. *
  41. * Step2:
  42. * In this step all extent status are tracked by extent status tree.
  43. * Thus, we can first try to lookup a block mapping in this tree before
  44. * finding it in extent tree. Hence, single extent cache can be removed
  45. * because extent status tree can do a better job. Extents in status
  46. * tree are loaded on-demand. Therefore, the extent status tree may not
  47. * contain all of the extents in a file. Meanwhile we define a shrinker
  48. * to reclaim memory from extent status tree because fragmented extent
  49. * tree will make status tree cost too much memory. written/unwritten/-
  50. * hole extents in the tree will be reclaimed by this shrinker when we
  51. * are under high memory pressure. Delayed extents will not be
  52. * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  53. */
  54. /*
  55. * Extent status tree implementation for ext4.
  56. *
  57. *
  58. * ==========================================================================
  59. * Extent status tree tracks all extent status.
  60. *
  61. * 1. Why we need to implement extent status tree?
  62. *
  63. * Without extent status tree, ext4 identifies a delayed extent by looking
  64. * up page cache, this has several deficiencies - complicated, buggy,
  65. * and inefficient code.
  66. *
  67. * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  68. * block or a range of blocks are belonged to a delayed extent.
  69. *
  70. * Let us have a look at how they do without extent status tree.
  71. * -- FIEMAP
  72. * FIEMAP looks up page cache to identify delayed allocations from holes.
  73. *
  74. * -- SEEK_HOLE/DATA
  75. * SEEK_HOLE/DATA has the same problem as FIEMAP.
  76. *
  77. * -- bigalloc
  78. * bigalloc looks up page cache to figure out if a block is
  79. * already under delayed allocation or not to determine whether
  80. * quota reserving is needed for the cluster.
  81. *
  82. * -- writeout
  83. * Writeout looks up whole page cache to see if a buffer is
  84. * mapped, If there are not very many delayed buffers, then it is
  85. * time comsuming.
  86. *
  87. * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  88. * bigalloc and writeout can figure out if a block or a range of
  89. * blocks is under delayed allocation(belonged to a delayed extent) or
  90. * not by searching the extent tree.
  91. *
  92. *
  93. * ==========================================================================
  94. * 2. Ext4 extent status tree impelmentation
  95. *
  96. * -- extent
  97. * A extent is a range of blocks which are contiguous logically and
  98. * physically. Unlike extent in extent tree, this extent in ext4 is
  99. * a in-memory struct, there is no corresponding on-disk data. There
  100. * is no limit on length of extent, so an extent can contain as many
  101. * blocks as they are contiguous logically and physically.
  102. *
  103. * -- extent status tree
  104. * Every inode has an extent status tree and all allocation blocks
  105. * are added to the tree with different status. The extent in the
  106. * tree are ordered by logical block no.
  107. *
  108. * -- operations on a extent status tree
  109. * There are three important operations on a delayed extent tree: find
  110. * next extent, adding a extent(a range of blocks) and removing a extent.
  111. *
  112. * -- race on a extent status tree
  113. * Extent status tree is protected by inode->i_es_lock.
  114. *
  115. * -- memory consumption
  116. * Fragmented extent tree will make extent status tree cost too much
  117. * memory. Hence, we will reclaim written/unwritten/hole extents from
  118. * the tree under a heavy memory pressure.
  119. *
  120. *
  121. * ==========================================================================
  122. * 3. Performance analysis
  123. *
  124. * -- overhead
  125. * 1. There is a cache extent for write access, so if writes are
  126. * not very random, adding space operaions are in O(1) time.
  127. *
  128. * -- gain
  129. * 2. Code is much simpler, more readable, more maintainable and
  130. * more efficient.
  131. *
  132. *
  133. * ==========================================================================
  134. * 4. TODO list
  135. *
  136. * -- Refactor delayed space reservation
  137. *
  138. * -- Extent-level locking
  139. */
  140. static struct kmem_cache *ext4_es_cachep;
  141. static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
  142. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  143. ext4_lblk_t end);
  144. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  145. int nr_to_scan);
  146. int __init ext4_init_es(void)
  147. {
  148. ext4_es_cachep = kmem_cache_create("ext4_extent_status",
  149. sizeof(struct extent_status),
  150. 0, (SLAB_RECLAIM_ACCOUNT), NULL);
  151. if (ext4_es_cachep == NULL)
  152. return -ENOMEM;
  153. return 0;
  154. }
  155. void ext4_exit_es(void)
  156. {
  157. if (ext4_es_cachep)
  158. kmem_cache_destroy(ext4_es_cachep);
  159. }
  160. void ext4_es_init_tree(struct ext4_es_tree *tree)
  161. {
  162. tree->root = RB_ROOT;
  163. tree->cache_es = NULL;
  164. }
  165. #ifdef ES_DEBUG__
  166. static void ext4_es_print_tree(struct inode *inode)
  167. {
  168. struct ext4_es_tree *tree;
  169. struct rb_node *node;
  170. printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
  171. tree = &EXT4_I(inode)->i_es_tree;
  172. node = rb_first(&tree->root);
  173. while (node) {
  174. struct extent_status *es;
  175. es = rb_entry(node, struct extent_status, rb_node);
  176. printk(KERN_DEBUG " [%u/%u) %llu %llx",
  177. es->es_lblk, es->es_len,
  178. ext4_es_pblock(es), ext4_es_status(es));
  179. node = rb_next(node);
  180. }
  181. printk(KERN_DEBUG "\n");
  182. }
  183. #else
  184. #define ext4_es_print_tree(inode)
  185. #endif
  186. static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
  187. {
  188. BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
  189. return es->es_lblk + es->es_len - 1;
  190. }
  191. /*
  192. * search through the tree for an delayed extent with a given offset. If
  193. * it can't be found, try to find next extent.
  194. */
  195. static struct extent_status *__es_tree_search(struct rb_root *root,
  196. ext4_lblk_t lblk)
  197. {
  198. struct rb_node *node = root->rb_node;
  199. struct extent_status *es = NULL;
  200. while (node) {
  201. es = rb_entry(node, struct extent_status, rb_node);
  202. if (lblk < es->es_lblk)
  203. node = node->rb_left;
  204. else if (lblk > ext4_es_end(es))
  205. node = node->rb_right;
  206. else
  207. return es;
  208. }
  209. if (es && lblk < es->es_lblk)
  210. return es;
  211. if (es && lblk > ext4_es_end(es)) {
  212. node = rb_next(&es->rb_node);
  213. return node ? rb_entry(node, struct extent_status, rb_node) :
  214. NULL;
  215. }
  216. return NULL;
  217. }
  218. /*
  219. * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
  220. * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
  221. *
  222. * @inode: the inode which owns delayed extents
  223. * @lblk: the offset where we start to search
  224. * @end: the offset where we stop to search
  225. * @es: delayed extent that we found
  226. */
  227. void ext4_es_find_delayed_extent_range(struct inode *inode,
  228. ext4_lblk_t lblk, ext4_lblk_t end,
  229. struct extent_status *es)
  230. {
  231. struct ext4_es_tree *tree = NULL;
  232. struct extent_status *es1 = NULL;
  233. struct rb_node *node;
  234. BUG_ON(es == NULL);
  235. BUG_ON(end < lblk);
  236. trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
  237. read_lock(&EXT4_I(inode)->i_es_lock);
  238. tree = &EXT4_I(inode)->i_es_tree;
  239. /* find extent in cache firstly */
  240. es->es_lblk = es->es_len = es->es_pblk = 0;
  241. if (tree->cache_es) {
  242. es1 = tree->cache_es;
  243. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  244. es_debug("%u cached by [%u/%u) %llu %llx\n",
  245. lblk, es1->es_lblk, es1->es_len,
  246. ext4_es_pblock(es1), ext4_es_status(es1));
  247. goto out;
  248. }
  249. }
  250. es1 = __es_tree_search(&tree->root, lblk);
  251. out:
  252. if (es1 && !ext4_es_is_delayed(es1)) {
  253. while ((node = rb_next(&es1->rb_node)) != NULL) {
  254. es1 = rb_entry(node, struct extent_status, rb_node);
  255. if (es1->es_lblk > end) {
  256. es1 = NULL;
  257. break;
  258. }
  259. if (ext4_es_is_delayed(es1))
  260. break;
  261. }
  262. }
  263. if (es1 && ext4_es_is_delayed(es1)) {
  264. tree->cache_es = es1;
  265. es->es_lblk = es1->es_lblk;
  266. es->es_len = es1->es_len;
  267. es->es_pblk = es1->es_pblk;
  268. }
  269. read_unlock(&EXT4_I(inode)->i_es_lock);
  270. trace_ext4_es_find_delayed_extent_range_exit(inode, es);
  271. }
  272. static struct extent_status *
  273. ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
  274. ext4_fsblk_t pblk)
  275. {
  276. struct extent_status *es;
  277. es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
  278. if (es == NULL)
  279. return NULL;
  280. es->es_lblk = lblk;
  281. es->es_len = len;
  282. es->es_pblk = pblk;
  283. /*
  284. * We don't count delayed extent because we never try to reclaim them
  285. */
  286. if (!ext4_es_is_delayed(es)) {
  287. EXT4_I(inode)->i_es_lru_nr++;
  288. percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
  289. }
  290. return es;
  291. }
  292. static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
  293. {
  294. /* Decrease the lru counter when this es is not delayed */
  295. if (!ext4_es_is_delayed(es)) {
  296. BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
  297. EXT4_I(inode)->i_es_lru_nr--;
  298. percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
  299. }
  300. kmem_cache_free(ext4_es_cachep, es);
  301. }
  302. /*
  303. * Check whether or not two extents can be merged
  304. * Condition:
  305. * - logical block number is contiguous
  306. * - physical block number is contiguous
  307. * - status is equal
  308. */
  309. static int ext4_es_can_be_merged(struct extent_status *es1,
  310. struct extent_status *es2)
  311. {
  312. if (ext4_es_status(es1) != ext4_es_status(es2))
  313. return 0;
  314. if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL)
  315. return 0;
  316. if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
  317. return 0;
  318. if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
  319. (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
  320. return 1;
  321. if (ext4_es_is_hole(es1))
  322. return 1;
  323. /* we need to check delayed extent is without unwritten status */
  324. if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
  325. return 1;
  326. return 0;
  327. }
  328. static struct extent_status *
  329. ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
  330. {
  331. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  332. struct extent_status *es1;
  333. struct rb_node *node;
  334. node = rb_prev(&es->rb_node);
  335. if (!node)
  336. return es;
  337. es1 = rb_entry(node, struct extent_status, rb_node);
  338. if (ext4_es_can_be_merged(es1, es)) {
  339. es1->es_len += es->es_len;
  340. rb_erase(&es->rb_node, &tree->root);
  341. ext4_es_free_extent(inode, es);
  342. es = es1;
  343. }
  344. return es;
  345. }
  346. static struct extent_status *
  347. ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
  348. {
  349. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  350. struct extent_status *es1;
  351. struct rb_node *node;
  352. node = rb_next(&es->rb_node);
  353. if (!node)
  354. return es;
  355. es1 = rb_entry(node, struct extent_status, rb_node);
  356. if (ext4_es_can_be_merged(es, es1)) {
  357. es->es_len += es1->es_len;
  358. rb_erase(node, &tree->root);
  359. ext4_es_free_extent(inode, es1);
  360. }
  361. return es;
  362. }
  363. #ifdef ES_AGGRESSIVE_TEST
  364. static void ext4_es_insert_extent_ext_check(struct inode *inode,
  365. struct extent_status *es)
  366. {
  367. struct ext4_ext_path *path = NULL;
  368. struct ext4_extent *ex;
  369. ext4_lblk_t ee_block;
  370. ext4_fsblk_t ee_start;
  371. unsigned short ee_len;
  372. int depth, ee_status, es_status;
  373. path = ext4_ext_find_extent(inode, es->es_lblk, NULL);
  374. if (IS_ERR(path))
  375. return;
  376. depth = ext_depth(inode);
  377. ex = path[depth].p_ext;
  378. if (ex) {
  379. ee_block = le32_to_cpu(ex->ee_block);
  380. ee_start = ext4_ext_pblock(ex);
  381. ee_len = ext4_ext_get_actual_len(ex);
  382. ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0;
  383. es_status = ext4_es_is_unwritten(es) ? 1 : 0;
  384. /*
  385. * Make sure ex and es are not overlap when we try to insert
  386. * a delayed/hole extent.
  387. */
  388. if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
  389. if (in_range(es->es_lblk, ee_block, ee_len)) {
  390. pr_warn("ES insert assertion failed for "
  391. "inode: %lu we can find an extent "
  392. "at block [%d/%d/%llu/%c], but we "
  393. "want to add an delayed/hole extent "
  394. "[%d/%d/%llu/%llx]\n",
  395. inode->i_ino, ee_block, ee_len,
  396. ee_start, ee_status ? 'u' : 'w',
  397. es->es_lblk, es->es_len,
  398. ext4_es_pblock(es), ext4_es_status(es));
  399. }
  400. goto out;
  401. }
  402. /*
  403. * We don't check ee_block == es->es_lblk, etc. because es
  404. * might be a part of whole extent, vice versa.
  405. */
  406. if (es->es_lblk < ee_block ||
  407. ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
  408. pr_warn("ES insert assertion failed for inode: %lu "
  409. "ex_status [%d/%d/%llu/%c] != "
  410. "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
  411. ee_block, ee_len, ee_start,
  412. ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
  413. ext4_es_pblock(es), es_status ? 'u' : 'w');
  414. goto out;
  415. }
  416. if (ee_status ^ es_status) {
  417. pr_warn("ES insert assertion failed for inode: %lu "
  418. "ex_status [%d/%d/%llu/%c] != "
  419. "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
  420. ee_block, ee_len, ee_start,
  421. ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
  422. ext4_es_pblock(es), es_status ? 'u' : 'w');
  423. }
  424. } else {
  425. /*
  426. * We can't find an extent on disk. So we need to make sure
  427. * that we don't want to add an written/unwritten extent.
  428. */
  429. if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
  430. pr_warn("ES insert assertion failed for inode: %lu "
  431. "can't find an extent at block %d but we want "
  432. "to add an written/unwritten extent "
  433. "[%d/%d/%llu/%llx]\n", inode->i_ino,
  434. es->es_lblk, es->es_lblk, es->es_len,
  435. ext4_es_pblock(es), ext4_es_status(es));
  436. }
  437. }
  438. out:
  439. if (path) {
  440. ext4_ext_drop_refs(path);
  441. kfree(path);
  442. }
  443. }
  444. static void ext4_es_insert_extent_ind_check(struct inode *inode,
  445. struct extent_status *es)
  446. {
  447. struct ext4_map_blocks map;
  448. int retval;
  449. /*
  450. * Here we call ext4_ind_map_blocks to lookup a block mapping because
  451. * 'Indirect' structure is defined in indirect.c. So we couldn't
  452. * access direct/indirect tree from outside. It is too dirty to define
  453. * this function in indirect.c file.
  454. */
  455. map.m_lblk = es->es_lblk;
  456. map.m_len = es->es_len;
  457. retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
  458. if (retval > 0) {
  459. if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
  460. /*
  461. * We want to add a delayed/hole extent but this
  462. * block has been allocated.
  463. */
  464. pr_warn("ES insert assertion failed for inode: %lu "
  465. "We can find blocks but we want to add a "
  466. "delayed/hole extent [%d/%d/%llu/%llx]\n",
  467. inode->i_ino, es->es_lblk, es->es_len,
  468. ext4_es_pblock(es), ext4_es_status(es));
  469. return;
  470. } else if (ext4_es_is_written(es)) {
  471. if (retval != es->es_len) {
  472. pr_warn("ES insert assertion failed for "
  473. "inode: %lu retval %d != es_len %d\n",
  474. inode->i_ino, retval, es->es_len);
  475. return;
  476. }
  477. if (map.m_pblk != ext4_es_pblock(es)) {
  478. pr_warn("ES insert assertion failed for "
  479. "inode: %lu m_pblk %llu != "
  480. "es_pblk %llu\n",
  481. inode->i_ino, map.m_pblk,
  482. ext4_es_pblock(es));
  483. return;
  484. }
  485. } else {
  486. /*
  487. * We don't need to check unwritten extent because
  488. * indirect-based file doesn't have it.
  489. */
  490. BUG_ON(1);
  491. }
  492. } else if (retval == 0) {
  493. if (ext4_es_is_written(es)) {
  494. pr_warn("ES insert assertion failed for inode: %lu "
  495. "We can't find the block but we want to add "
  496. "an written extent [%d/%d/%llu/%llx]\n",
  497. inode->i_ino, es->es_lblk, es->es_len,
  498. ext4_es_pblock(es), ext4_es_status(es));
  499. return;
  500. }
  501. }
  502. }
  503. static inline void ext4_es_insert_extent_check(struct inode *inode,
  504. struct extent_status *es)
  505. {
  506. /*
  507. * We don't need to worry about the race condition because
  508. * caller takes i_data_sem locking.
  509. */
  510. BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
  511. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  512. ext4_es_insert_extent_ext_check(inode, es);
  513. else
  514. ext4_es_insert_extent_ind_check(inode, es);
  515. }
  516. #else
  517. static inline void ext4_es_insert_extent_check(struct inode *inode,
  518. struct extent_status *es)
  519. {
  520. }
  521. #endif
  522. static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
  523. {
  524. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  525. struct rb_node **p = &tree->root.rb_node;
  526. struct rb_node *parent = NULL;
  527. struct extent_status *es;
  528. while (*p) {
  529. parent = *p;
  530. es = rb_entry(parent, struct extent_status, rb_node);
  531. if (newes->es_lblk < es->es_lblk) {
  532. if (ext4_es_can_be_merged(newes, es)) {
  533. /*
  534. * Here we can modify es_lblk directly
  535. * because it isn't overlapped.
  536. */
  537. es->es_lblk = newes->es_lblk;
  538. es->es_len += newes->es_len;
  539. if (ext4_es_is_written(es) ||
  540. ext4_es_is_unwritten(es))
  541. ext4_es_store_pblock(es,
  542. newes->es_pblk);
  543. es = ext4_es_try_to_merge_left(inode, es);
  544. goto out;
  545. }
  546. p = &(*p)->rb_left;
  547. } else if (newes->es_lblk > ext4_es_end(es)) {
  548. if (ext4_es_can_be_merged(es, newes)) {
  549. es->es_len += newes->es_len;
  550. es = ext4_es_try_to_merge_right(inode, es);
  551. goto out;
  552. }
  553. p = &(*p)->rb_right;
  554. } else {
  555. BUG_ON(1);
  556. return -EINVAL;
  557. }
  558. }
  559. es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
  560. newes->es_pblk);
  561. if (!es)
  562. return -ENOMEM;
  563. rb_link_node(&es->rb_node, parent, p);
  564. rb_insert_color(&es->rb_node, &tree->root);
  565. out:
  566. tree->cache_es = es;
  567. return 0;
  568. }
  569. /*
  570. * ext4_es_insert_extent() adds information to an inode's extent
  571. * status tree.
  572. *
  573. * Return 0 on success, error code on failure.
  574. */
  575. int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
  576. ext4_lblk_t len, ext4_fsblk_t pblk,
  577. unsigned long long status)
  578. {
  579. struct extent_status newes;
  580. ext4_lblk_t end = lblk + len - 1;
  581. int err = 0;
  582. es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
  583. lblk, len, pblk, status, inode->i_ino);
  584. if (!len)
  585. return 0;
  586. BUG_ON(end < lblk);
  587. newes.es_lblk = lblk;
  588. newes.es_len = len;
  589. ext4_es_store_pblock(&newes, pblk);
  590. ext4_es_store_status(&newes, status);
  591. trace_ext4_es_insert_extent(inode, &newes);
  592. ext4_es_insert_extent_check(inode, &newes);
  593. write_lock(&EXT4_I(inode)->i_es_lock);
  594. err = __es_remove_extent(inode, lblk, end);
  595. if (err != 0)
  596. goto error;
  597. err = __es_insert_extent(inode, &newes);
  598. error:
  599. write_unlock(&EXT4_I(inode)->i_es_lock);
  600. ext4_es_print_tree(inode);
  601. return err;
  602. }
  603. /*
  604. * ext4_es_lookup_extent() looks up an extent in extent status tree.
  605. *
  606. * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
  607. *
  608. * Return: 1 on found, 0 on not
  609. */
  610. int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
  611. struct extent_status *es)
  612. {
  613. struct ext4_es_tree *tree;
  614. struct extent_status *es1 = NULL;
  615. struct rb_node *node;
  616. int found = 0;
  617. trace_ext4_es_lookup_extent_enter(inode, lblk);
  618. es_debug("lookup extent in block %u\n", lblk);
  619. tree = &EXT4_I(inode)->i_es_tree;
  620. read_lock(&EXT4_I(inode)->i_es_lock);
  621. /* find extent in cache firstly */
  622. es->es_lblk = es->es_len = es->es_pblk = 0;
  623. if (tree->cache_es) {
  624. es1 = tree->cache_es;
  625. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  626. es_debug("%u cached by [%u/%u)\n",
  627. lblk, es1->es_lblk, es1->es_len);
  628. found = 1;
  629. goto out;
  630. }
  631. }
  632. node = tree->root.rb_node;
  633. while (node) {
  634. es1 = rb_entry(node, struct extent_status, rb_node);
  635. if (lblk < es1->es_lblk)
  636. node = node->rb_left;
  637. else if (lblk > ext4_es_end(es1))
  638. node = node->rb_right;
  639. else {
  640. found = 1;
  641. break;
  642. }
  643. }
  644. out:
  645. if (found) {
  646. BUG_ON(!es1);
  647. es->es_lblk = es1->es_lblk;
  648. es->es_len = es1->es_len;
  649. es->es_pblk = es1->es_pblk;
  650. }
  651. read_unlock(&EXT4_I(inode)->i_es_lock);
  652. trace_ext4_es_lookup_extent_exit(inode, es, found);
  653. return found;
  654. }
  655. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  656. ext4_lblk_t end)
  657. {
  658. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  659. struct rb_node *node;
  660. struct extent_status *es;
  661. struct extent_status orig_es;
  662. ext4_lblk_t len1, len2;
  663. ext4_fsblk_t block;
  664. int err = 0;
  665. es = __es_tree_search(&tree->root, lblk);
  666. if (!es)
  667. goto out;
  668. if (es->es_lblk > end)
  669. goto out;
  670. /* Simply invalidate cache_es. */
  671. tree->cache_es = NULL;
  672. orig_es.es_lblk = es->es_lblk;
  673. orig_es.es_len = es->es_len;
  674. orig_es.es_pblk = es->es_pblk;
  675. len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
  676. len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
  677. if (len1 > 0)
  678. es->es_len = len1;
  679. if (len2 > 0) {
  680. if (len1 > 0) {
  681. struct extent_status newes;
  682. newes.es_lblk = end + 1;
  683. newes.es_len = len2;
  684. if (ext4_es_is_written(&orig_es) ||
  685. ext4_es_is_unwritten(&orig_es)) {
  686. block = ext4_es_pblock(&orig_es) +
  687. orig_es.es_len - len2;
  688. ext4_es_store_pblock(&newes, block);
  689. }
  690. ext4_es_store_status(&newes, ext4_es_status(&orig_es));
  691. err = __es_insert_extent(inode, &newes);
  692. if (err) {
  693. es->es_lblk = orig_es.es_lblk;
  694. es->es_len = orig_es.es_len;
  695. goto out;
  696. }
  697. } else {
  698. es->es_lblk = end + 1;
  699. es->es_len = len2;
  700. if (ext4_es_is_written(es) ||
  701. ext4_es_is_unwritten(es)) {
  702. block = orig_es.es_pblk + orig_es.es_len - len2;
  703. ext4_es_store_pblock(es, block);
  704. }
  705. }
  706. goto out;
  707. }
  708. if (len1 > 0) {
  709. node = rb_next(&es->rb_node);
  710. if (node)
  711. es = rb_entry(node, struct extent_status, rb_node);
  712. else
  713. es = NULL;
  714. }
  715. while (es && ext4_es_end(es) <= end) {
  716. node = rb_next(&es->rb_node);
  717. rb_erase(&es->rb_node, &tree->root);
  718. ext4_es_free_extent(inode, es);
  719. if (!node) {
  720. es = NULL;
  721. break;
  722. }
  723. es = rb_entry(node, struct extent_status, rb_node);
  724. }
  725. if (es && es->es_lblk < end + 1) {
  726. ext4_lblk_t orig_len = es->es_len;
  727. len1 = ext4_es_end(es) - end;
  728. es->es_lblk = end + 1;
  729. es->es_len = len1;
  730. if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
  731. block = es->es_pblk + orig_len - len1;
  732. ext4_es_store_pblock(es, block);
  733. }
  734. }
  735. out:
  736. return err;
  737. }
  738. /*
  739. * ext4_es_remove_extent() removes a space from a extent status tree.
  740. *
  741. * Return 0 on success, error code on failure.
  742. */
  743. int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  744. ext4_lblk_t len)
  745. {
  746. ext4_lblk_t end;
  747. int err = 0;
  748. trace_ext4_es_remove_extent(inode, lblk, len);
  749. es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
  750. lblk, len, inode->i_ino);
  751. if (!len)
  752. return err;
  753. end = lblk + len - 1;
  754. BUG_ON(end < lblk);
  755. write_lock(&EXT4_I(inode)->i_es_lock);
  756. err = __es_remove_extent(inode, lblk, end);
  757. write_unlock(&EXT4_I(inode)->i_es_lock);
  758. ext4_es_print_tree(inode);
  759. return err;
  760. }
  761. int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex)
  762. {
  763. ext4_lblk_t ee_block;
  764. ext4_fsblk_t ee_pblock;
  765. unsigned int ee_len;
  766. ee_block = le32_to_cpu(ex->ee_block);
  767. ee_len = ext4_ext_get_actual_len(ex);
  768. ee_pblock = ext4_ext_pblock(ex);
  769. if (ee_len == 0)
  770. return 0;
  771. return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
  772. EXTENT_STATUS_WRITTEN);
  773. }
  774. static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
  775. struct list_head *b)
  776. {
  777. struct ext4_inode_info *eia, *eib;
  778. eia = list_entry(a, struct ext4_inode_info, i_es_lru);
  779. eib = list_entry(b, struct ext4_inode_info, i_es_lru);
  780. if (eia->i_touch_when == eib->i_touch_when)
  781. return 0;
  782. if (time_after(eia->i_touch_when, eib->i_touch_when))
  783. return 1;
  784. else
  785. return -1;
  786. }
  787. static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
  788. {
  789. struct ext4_sb_info *sbi = container_of(shrink,
  790. struct ext4_sb_info, s_es_shrinker);
  791. struct ext4_inode_info *ei;
  792. struct list_head *cur, *tmp;
  793. LIST_HEAD(skiped);
  794. int nr_to_scan = sc->nr_to_scan;
  795. int ret, nr_shrunk = 0;
  796. ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
  797. trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
  798. if (!nr_to_scan)
  799. return ret;
  800. spin_lock(&sbi->s_es_lru_lock);
  801. /*
  802. * If the inode that is at the head of LRU list is newer than
  803. * last_sorted time, that means that we need to sort this list.
  804. */
  805. ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info, i_es_lru);
  806. if (sbi->s_es_last_sorted < ei->i_touch_when) {
  807. list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
  808. sbi->s_es_last_sorted = jiffies;
  809. }
  810. list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
  811. /*
  812. * If we have already reclaimed all extents from extent
  813. * status tree, just stop the loop immediately.
  814. */
  815. if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0)
  816. break;
  817. ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
  818. /* Skip the inode that is newer than the last_sorted time */
  819. if (sbi->s_es_last_sorted < ei->i_touch_when) {
  820. list_move_tail(cur, &skiped);
  821. continue;
  822. }
  823. if (ei->i_es_lru_nr == 0)
  824. continue;
  825. write_lock(&ei->i_es_lock);
  826. ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
  827. if (ei->i_es_lru_nr == 0)
  828. list_del_init(&ei->i_es_lru);
  829. write_unlock(&ei->i_es_lock);
  830. nr_shrunk += ret;
  831. nr_to_scan -= ret;
  832. if (nr_to_scan == 0)
  833. break;
  834. }
  835. /* Move the newer inodes into the tail of the LRU list. */
  836. list_splice_tail(&skiped, &sbi->s_es_lru);
  837. spin_unlock(&sbi->s_es_lru_lock);
  838. ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
  839. trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
  840. return ret;
  841. }
  842. void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
  843. {
  844. INIT_LIST_HEAD(&sbi->s_es_lru);
  845. spin_lock_init(&sbi->s_es_lru_lock);
  846. sbi->s_es_last_sorted = 0;
  847. sbi->s_es_shrinker.shrink = ext4_es_shrink;
  848. sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
  849. register_shrinker(&sbi->s_es_shrinker);
  850. }
  851. void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
  852. {
  853. unregister_shrinker(&sbi->s_es_shrinker);
  854. }
  855. void ext4_es_lru_add(struct inode *inode)
  856. {
  857. struct ext4_inode_info *ei = EXT4_I(inode);
  858. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  859. ei->i_touch_when = jiffies;
  860. if (!list_empty(&ei->i_es_lru))
  861. return;
  862. spin_lock(&sbi->s_es_lru_lock);
  863. if (list_empty(&ei->i_es_lru))
  864. list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
  865. spin_unlock(&sbi->s_es_lru_lock);
  866. }
  867. void ext4_es_lru_del(struct inode *inode)
  868. {
  869. struct ext4_inode_info *ei = EXT4_I(inode);
  870. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  871. spin_lock(&sbi->s_es_lru_lock);
  872. if (!list_empty(&ei->i_es_lru))
  873. list_del_init(&ei->i_es_lru);
  874. spin_unlock(&sbi->s_es_lru_lock);
  875. }
  876. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  877. int nr_to_scan)
  878. {
  879. struct inode *inode = &ei->vfs_inode;
  880. struct ext4_es_tree *tree = &ei->i_es_tree;
  881. struct rb_node *node;
  882. struct extent_status *es;
  883. int nr_shrunk = 0;
  884. if (ei->i_es_lru_nr == 0)
  885. return 0;
  886. node = rb_first(&tree->root);
  887. while (node != NULL) {
  888. es = rb_entry(node, struct extent_status, rb_node);
  889. node = rb_next(&es->rb_node);
  890. /*
  891. * We can't reclaim delayed extent from status tree because
  892. * fiemap, bigallic, and seek_data/hole need to use it.
  893. */
  894. if (!ext4_es_is_delayed(es)) {
  895. rb_erase(&es->rb_node, &tree->root);
  896. ext4_es_free_extent(inode, es);
  897. nr_shrunk++;
  898. if (--nr_to_scan == 0)
  899. break;
  900. }
  901. }
  902. tree->cache_es = NULL;
  903. return nr_shrunk;
  904. }