cpuset.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Workqueue for cpuset related tasks.
  62. *
  63. * Using kevent workqueue may cause deadlock when memory_migrate
  64. * is set. So we create a separate workqueue thread for cpuset.
  65. */
  66. static struct workqueue_struct *cpuset_wq;
  67. /*
  68. * Tracks how many cpusets are currently defined in system.
  69. * When there is only one cpuset (the root cpuset) we can
  70. * short circuit some hooks.
  71. */
  72. int number_of_cpusets __read_mostly;
  73. /* Forward declare cgroup structures */
  74. struct cgroup_subsys cpuset_subsys;
  75. struct cpuset;
  76. /* See "Frequency meter" comments, below. */
  77. struct fmeter {
  78. int cnt; /* unprocessed events count */
  79. int val; /* most recent output value */
  80. time_t time; /* clock (secs) when val computed */
  81. spinlock_t lock; /* guards read or write of above */
  82. };
  83. struct cpuset {
  84. struct cgroup_subsys_state css;
  85. unsigned long flags; /* "unsigned long" so bitops work */
  86. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  87. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  88. struct cpuset *parent; /* my parent */
  89. struct fmeter fmeter; /* memory_pressure filter */
  90. /* partition number for rebuild_sched_domains() */
  91. int pn;
  92. /* for custom sched domain */
  93. int relax_domain_level;
  94. /* used for walking a cpuset hierarchy */
  95. struct list_head stack_list;
  96. };
  97. /* Retrieve the cpuset for a cgroup */
  98. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  99. {
  100. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  101. struct cpuset, css);
  102. }
  103. /* Retrieve the cpuset for a task */
  104. static inline struct cpuset *task_cs(struct task_struct *task)
  105. {
  106. return container_of(task_subsys_state(task, cpuset_subsys_id),
  107. struct cpuset, css);
  108. }
  109. #ifdef CONFIG_NUMA
  110. static inline bool task_has_mempolicy(struct task_struct *task)
  111. {
  112. return task->mempolicy;
  113. }
  114. #else
  115. static inline bool task_has_mempolicy(struct task_struct *task)
  116. {
  117. return false;
  118. }
  119. #endif
  120. /* bits in struct cpuset flags field */
  121. typedef enum {
  122. CS_ONLINE,
  123. CS_CPU_EXCLUSIVE,
  124. CS_MEM_EXCLUSIVE,
  125. CS_MEM_HARDWALL,
  126. CS_MEMORY_MIGRATE,
  127. CS_SCHED_LOAD_BALANCE,
  128. CS_SPREAD_PAGE,
  129. CS_SPREAD_SLAB,
  130. } cpuset_flagbits_t;
  131. /* convenient tests for these bits */
  132. static inline bool is_cpuset_online(const struct cpuset *cs)
  133. {
  134. return test_bit(CS_ONLINE, &cs->flags);
  135. }
  136. static inline int is_cpu_exclusive(const struct cpuset *cs)
  137. {
  138. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  139. }
  140. static inline int is_mem_exclusive(const struct cpuset *cs)
  141. {
  142. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  143. }
  144. static inline int is_mem_hardwall(const struct cpuset *cs)
  145. {
  146. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  147. }
  148. static inline int is_sched_load_balance(const struct cpuset *cs)
  149. {
  150. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  151. }
  152. static inline int is_memory_migrate(const struct cpuset *cs)
  153. {
  154. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  155. }
  156. static inline int is_spread_page(const struct cpuset *cs)
  157. {
  158. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  159. }
  160. static inline int is_spread_slab(const struct cpuset *cs)
  161. {
  162. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  163. }
  164. static struct cpuset top_cpuset = {
  165. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  166. (1 << CS_MEM_EXCLUSIVE)),
  167. };
  168. /**
  169. * cpuset_for_each_child - traverse online children of a cpuset
  170. * @child_cs: loop cursor pointing to the current child
  171. * @pos_cgrp: used for iteration
  172. * @parent_cs: target cpuset to walk children of
  173. *
  174. * Walk @child_cs through the online children of @parent_cs. Must be used
  175. * with RCU read locked.
  176. */
  177. #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
  178. cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
  179. if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
  180. /*
  181. * There are two global mutexes guarding cpuset structures. The first
  182. * is the main control groups cgroup_mutex, accessed via
  183. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  184. * callback_mutex, below. They can nest. It is ok to first take
  185. * cgroup_mutex, then nest callback_mutex. We also require taking
  186. * task_lock() when dereferencing a task's cpuset pointer. See "The
  187. * task_lock() exception", at the end of this comment.
  188. *
  189. * A task must hold both mutexes to modify cpusets. If a task
  190. * holds cgroup_mutex, then it blocks others wanting that mutex,
  191. * ensuring that it is the only task able to also acquire callback_mutex
  192. * and be able to modify cpusets. It can perform various checks on
  193. * the cpuset structure first, knowing nothing will change. It can
  194. * also allocate memory while just holding cgroup_mutex. While it is
  195. * performing these checks, various callback routines can briefly
  196. * acquire callback_mutex to query cpusets. Once it is ready to make
  197. * the changes, it takes callback_mutex, blocking everyone else.
  198. *
  199. * Calls to the kernel memory allocator can not be made while holding
  200. * callback_mutex, as that would risk double tripping on callback_mutex
  201. * from one of the callbacks into the cpuset code from within
  202. * __alloc_pages().
  203. *
  204. * If a task is only holding callback_mutex, then it has read-only
  205. * access to cpusets.
  206. *
  207. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  208. * by other task, we use alloc_lock in the task_struct fields to protect
  209. * them.
  210. *
  211. * The cpuset_common_file_read() handlers only hold callback_mutex across
  212. * small pieces of code, such as when reading out possibly multi-word
  213. * cpumasks and nodemasks.
  214. *
  215. * Accessing a task's cpuset should be done in accordance with the
  216. * guidelines for accessing subsystem state in kernel/cgroup.c
  217. */
  218. static DEFINE_MUTEX(callback_mutex);
  219. /*
  220. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  221. * buffers. They are statically allocated to prevent using excess stack
  222. * when calling cpuset_print_task_mems_allowed().
  223. */
  224. #define CPUSET_NAME_LEN (128)
  225. #define CPUSET_NODELIST_LEN (256)
  226. static char cpuset_name[CPUSET_NAME_LEN];
  227. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  228. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  229. /*
  230. * This is ugly, but preserves the userspace API for existing cpuset
  231. * users. If someone tries to mount the "cpuset" filesystem, we
  232. * silently switch it to mount "cgroup" instead
  233. */
  234. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  235. int flags, const char *unused_dev_name, void *data)
  236. {
  237. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  238. struct dentry *ret = ERR_PTR(-ENODEV);
  239. if (cgroup_fs) {
  240. char mountopts[] =
  241. "cpuset,noprefix,"
  242. "release_agent=/sbin/cpuset_release_agent";
  243. ret = cgroup_fs->mount(cgroup_fs, flags,
  244. unused_dev_name, mountopts);
  245. put_filesystem(cgroup_fs);
  246. }
  247. return ret;
  248. }
  249. static struct file_system_type cpuset_fs_type = {
  250. .name = "cpuset",
  251. .mount = cpuset_mount,
  252. };
  253. /*
  254. * Return in pmask the portion of a cpusets's cpus_allowed that
  255. * are online. If none are online, walk up the cpuset hierarchy
  256. * until we find one that does have some online cpus. If we get
  257. * all the way to the top and still haven't found any online cpus,
  258. * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
  259. * task, return cpu_online_mask.
  260. *
  261. * One way or another, we guarantee to return some non-empty subset
  262. * of cpu_online_mask.
  263. *
  264. * Call with callback_mutex held.
  265. */
  266. static void guarantee_online_cpus(const struct cpuset *cs,
  267. struct cpumask *pmask)
  268. {
  269. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  270. cs = cs->parent;
  271. if (cs)
  272. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  273. else
  274. cpumask_copy(pmask, cpu_online_mask);
  275. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  276. }
  277. /*
  278. * Return in *pmask the portion of a cpusets's mems_allowed that
  279. * are online, with memory. If none are online with memory, walk
  280. * up the cpuset hierarchy until we find one that does have some
  281. * online mems. If we get all the way to the top and still haven't
  282. * found any online mems, return node_states[N_MEMORY].
  283. *
  284. * One way or another, we guarantee to return some non-empty subset
  285. * of node_states[N_MEMORY].
  286. *
  287. * Call with callback_mutex held.
  288. */
  289. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  290. {
  291. while (cs && !nodes_intersects(cs->mems_allowed,
  292. node_states[N_MEMORY]))
  293. cs = cs->parent;
  294. if (cs)
  295. nodes_and(*pmask, cs->mems_allowed,
  296. node_states[N_MEMORY]);
  297. else
  298. *pmask = node_states[N_MEMORY];
  299. BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
  300. }
  301. /*
  302. * update task's spread flag if cpuset's page/slab spread flag is set
  303. *
  304. * Called with callback_mutex/cgroup_mutex held
  305. */
  306. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  307. struct task_struct *tsk)
  308. {
  309. if (is_spread_page(cs))
  310. tsk->flags |= PF_SPREAD_PAGE;
  311. else
  312. tsk->flags &= ~PF_SPREAD_PAGE;
  313. if (is_spread_slab(cs))
  314. tsk->flags |= PF_SPREAD_SLAB;
  315. else
  316. tsk->flags &= ~PF_SPREAD_SLAB;
  317. }
  318. /*
  319. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  320. *
  321. * One cpuset is a subset of another if all its allowed CPUs and
  322. * Memory Nodes are a subset of the other, and its exclusive flags
  323. * are only set if the other's are set. Call holding cgroup_mutex.
  324. */
  325. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  326. {
  327. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  328. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  329. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  330. is_mem_exclusive(p) <= is_mem_exclusive(q);
  331. }
  332. /**
  333. * alloc_trial_cpuset - allocate a trial cpuset
  334. * @cs: the cpuset that the trial cpuset duplicates
  335. */
  336. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  337. {
  338. struct cpuset *trial;
  339. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  340. if (!trial)
  341. return NULL;
  342. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  343. kfree(trial);
  344. return NULL;
  345. }
  346. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  347. return trial;
  348. }
  349. /**
  350. * free_trial_cpuset - free the trial cpuset
  351. * @trial: the trial cpuset to be freed
  352. */
  353. static void free_trial_cpuset(struct cpuset *trial)
  354. {
  355. free_cpumask_var(trial->cpus_allowed);
  356. kfree(trial);
  357. }
  358. /*
  359. * validate_change() - Used to validate that any proposed cpuset change
  360. * follows the structural rules for cpusets.
  361. *
  362. * If we replaced the flag and mask values of the current cpuset
  363. * (cur) with those values in the trial cpuset (trial), would
  364. * our various subset and exclusive rules still be valid? Presumes
  365. * cgroup_mutex held.
  366. *
  367. * 'cur' is the address of an actual, in-use cpuset. Operations
  368. * such as list traversal that depend on the actual address of the
  369. * cpuset in the list must use cur below, not trial.
  370. *
  371. * 'trial' is the address of bulk structure copy of cur, with
  372. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  373. * or flags changed to new, trial values.
  374. *
  375. * Return 0 if valid, -errno if not.
  376. */
  377. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  378. {
  379. struct cgroup *cont;
  380. struct cpuset *c, *par;
  381. int ret;
  382. rcu_read_lock();
  383. /* Each of our child cpusets must be a subset of us */
  384. ret = -EBUSY;
  385. cpuset_for_each_child(c, cont, cur)
  386. if (!is_cpuset_subset(c, trial))
  387. goto out;
  388. /* Remaining checks don't apply to root cpuset */
  389. ret = 0;
  390. if (cur == &top_cpuset)
  391. goto out;
  392. par = cur->parent;
  393. /* We must be a subset of our parent cpuset */
  394. ret = -EACCES;
  395. if (!is_cpuset_subset(trial, par))
  396. goto out;
  397. /*
  398. * If either I or some sibling (!= me) is exclusive, we can't
  399. * overlap
  400. */
  401. ret = -EINVAL;
  402. cpuset_for_each_child(c, cont, par) {
  403. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  404. c != cur &&
  405. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  406. goto out;
  407. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  408. c != cur &&
  409. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  410. goto out;
  411. }
  412. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  413. ret = -ENOSPC;
  414. if (cgroup_task_count(cur->css.cgroup) &&
  415. (cpumask_empty(trial->cpus_allowed) ||
  416. nodes_empty(trial->mems_allowed)))
  417. goto out;
  418. ret = 0;
  419. out:
  420. rcu_read_unlock();
  421. return ret;
  422. }
  423. #ifdef CONFIG_SMP
  424. /*
  425. * Helper routine for generate_sched_domains().
  426. * Do cpusets a, b have overlapping cpus_allowed masks?
  427. */
  428. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  429. {
  430. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  431. }
  432. static void
  433. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  434. {
  435. if (dattr->relax_domain_level < c->relax_domain_level)
  436. dattr->relax_domain_level = c->relax_domain_level;
  437. return;
  438. }
  439. static void
  440. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  441. {
  442. LIST_HEAD(q);
  443. list_add(&c->stack_list, &q);
  444. while (!list_empty(&q)) {
  445. struct cpuset *cp;
  446. struct cgroup *cont;
  447. struct cpuset *child;
  448. cp = list_first_entry(&q, struct cpuset, stack_list);
  449. list_del(q.next);
  450. if (cpumask_empty(cp->cpus_allowed))
  451. continue;
  452. if (is_sched_load_balance(cp))
  453. update_domain_attr(dattr, cp);
  454. rcu_read_lock();
  455. cpuset_for_each_child(child, cont, cp)
  456. list_add_tail(&child->stack_list, &q);
  457. rcu_read_unlock();
  458. }
  459. }
  460. /*
  461. * generate_sched_domains()
  462. *
  463. * This function builds a partial partition of the systems CPUs
  464. * A 'partial partition' is a set of non-overlapping subsets whose
  465. * union is a subset of that set.
  466. * The output of this function needs to be passed to kernel/sched.c
  467. * partition_sched_domains() routine, which will rebuild the scheduler's
  468. * load balancing domains (sched domains) as specified by that partial
  469. * partition.
  470. *
  471. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  472. * for a background explanation of this.
  473. *
  474. * Does not return errors, on the theory that the callers of this
  475. * routine would rather not worry about failures to rebuild sched
  476. * domains when operating in the severe memory shortage situations
  477. * that could cause allocation failures below.
  478. *
  479. * Must be called with cgroup_lock held.
  480. *
  481. * The three key local variables below are:
  482. * q - a linked-list queue of cpuset pointers, used to implement a
  483. * top-down scan of all cpusets. This scan loads a pointer
  484. * to each cpuset marked is_sched_load_balance into the
  485. * array 'csa'. For our purposes, rebuilding the schedulers
  486. * sched domains, we can ignore !is_sched_load_balance cpusets.
  487. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  488. * that need to be load balanced, for convenient iterative
  489. * access by the subsequent code that finds the best partition,
  490. * i.e the set of domains (subsets) of CPUs such that the
  491. * cpus_allowed of every cpuset marked is_sched_load_balance
  492. * is a subset of one of these domains, while there are as
  493. * many such domains as possible, each as small as possible.
  494. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  495. * the kernel/sched.c routine partition_sched_domains() in a
  496. * convenient format, that can be easily compared to the prior
  497. * value to determine what partition elements (sched domains)
  498. * were changed (added or removed.)
  499. *
  500. * Finding the best partition (set of domains):
  501. * The triple nested loops below over i, j, k scan over the
  502. * load balanced cpusets (using the array of cpuset pointers in
  503. * csa[]) looking for pairs of cpusets that have overlapping
  504. * cpus_allowed, but which don't have the same 'pn' partition
  505. * number and gives them in the same partition number. It keeps
  506. * looping on the 'restart' label until it can no longer find
  507. * any such pairs.
  508. *
  509. * The union of the cpus_allowed masks from the set of
  510. * all cpusets having the same 'pn' value then form the one
  511. * element of the partition (one sched domain) to be passed to
  512. * partition_sched_domains().
  513. */
  514. static int generate_sched_domains(cpumask_var_t **domains,
  515. struct sched_domain_attr **attributes)
  516. {
  517. LIST_HEAD(q); /* queue of cpusets to be scanned */
  518. struct cpuset *cp; /* scans q */
  519. struct cpuset **csa; /* array of all cpuset ptrs */
  520. int csn; /* how many cpuset ptrs in csa so far */
  521. int i, j, k; /* indices for partition finding loops */
  522. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  523. struct sched_domain_attr *dattr; /* attributes for custom domains */
  524. int ndoms = 0; /* number of sched domains in result */
  525. int nslot; /* next empty doms[] struct cpumask slot */
  526. doms = NULL;
  527. dattr = NULL;
  528. csa = NULL;
  529. /* Special case for the 99% of systems with one, full, sched domain */
  530. if (is_sched_load_balance(&top_cpuset)) {
  531. ndoms = 1;
  532. doms = alloc_sched_domains(ndoms);
  533. if (!doms)
  534. goto done;
  535. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  536. if (dattr) {
  537. *dattr = SD_ATTR_INIT;
  538. update_domain_attr_tree(dattr, &top_cpuset);
  539. }
  540. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  541. goto done;
  542. }
  543. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  544. if (!csa)
  545. goto done;
  546. csn = 0;
  547. list_add(&top_cpuset.stack_list, &q);
  548. while (!list_empty(&q)) {
  549. struct cgroup *cont;
  550. struct cpuset *child; /* scans child cpusets of cp */
  551. cp = list_first_entry(&q, struct cpuset, stack_list);
  552. list_del(q.next);
  553. if (cpumask_empty(cp->cpus_allowed))
  554. continue;
  555. /*
  556. * All child cpusets contain a subset of the parent's cpus, so
  557. * just skip them, and then we call update_domain_attr_tree()
  558. * to calc relax_domain_level of the corresponding sched
  559. * domain.
  560. */
  561. if (is_sched_load_balance(cp)) {
  562. csa[csn++] = cp;
  563. continue;
  564. }
  565. rcu_read_lock();
  566. cpuset_for_each_child(child, cont, cp)
  567. list_add_tail(&child->stack_list, &q);
  568. rcu_read_unlock();
  569. }
  570. for (i = 0; i < csn; i++)
  571. csa[i]->pn = i;
  572. ndoms = csn;
  573. restart:
  574. /* Find the best partition (set of sched domains) */
  575. for (i = 0; i < csn; i++) {
  576. struct cpuset *a = csa[i];
  577. int apn = a->pn;
  578. for (j = 0; j < csn; j++) {
  579. struct cpuset *b = csa[j];
  580. int bpn = b->pn;
  581. if (apn != bpn && cpusets_overlap(a, b)) {
  582. for (k = 0; k < csn; k++) {
  583. struct cpuset *c = csa[k];
  584. if (c->pn == bpn)
  585. c->pn = apn;
  586. }
  587. ndoms--; /* one less element */
  588. goto restart;
  589. }
  590. }
  591. }
  592. /*
  593. * Now we know how many domains to create.
  594. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  595. */
  596. doms = alloc_sched_domains(ndoms);
  597. if (!doms)
  598. goto done;
  599. /*
  600. * The rest of the code, including the scheduler, can deal with
  601. * dattr==NULL case. No need to abort if alloc fails.
  602. */
  603. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  604. for (nslot = 0, i = 0; i < csn; i++) {
  605. struct cpuset *a = csa[i];
  606. struct cpumask *dp;
  607. int apn = a->pn;
  608. if (apn < 0) {
  609. /* Skip completed partitions */
  610. continue;
  611. }
  612. dp = doms[nslot];
  613. if (nslot == ndoms) {
  614. static int warnings = 10;
  615. if (warnings) {
  616. printk(KERN_WARNING
  617. "rebuild_sched_domains confused:"
  618. " nslot %d, ndoms %d, csn %d, i %d,"
  619. " apn %d\n",
  620. nslot, ndoms, csn, i, apn);
  621. warnings--;
  622. }
  623. continue;
  624. }
  625. cpumask_clear(dp);
  626. if (dattr)
  627. *(dattr + nslot) = SD_ATTR_INIT;
  628. for (j = i; j < csn; j++) {
  629. struct cpuset *b = csa[j];
  630. if (apn == b->pn) {
  631. cpumask_or(dp, dp, b->cpus_allowed);
  632. if (dattr)
  633. update_domain_attr_tree(dattr + nslot, b);
  634. /* Done with this partition */
  635. b->pn = -1;
  636. }
  637. }
  638. nslot++;
  639. }
  640. BUG_ON(nslot != ndoms);
  641. done:
  642. kfree(csa);
  643. /*
  644. * Fallback to the default domain if kmalloc() failed.
  645. * See comments in partition_sched_domains().
  646. */
  647. if (doms == NULL)
  648. ndoms = 1;
  649. *domains = doms;
  650. *attributes = dattr;
  651. return ndoms;
  652. }
  653. /*
  654. * Rebuild scheduler domains.
  655. *
  656. * Call with neither cgroup_mutex held nor within get_online_cpus().
  657. * Takes both cgroup_mutex and get_online_cpus().
  658. *
  659. * Cannot be directly called from cpuset code handling changes
  660. * to the cpuset pseudo-filesystem, because it cannot be called
  661. * from code that already holds cgroup_mutex.
  662. */
  663. static void do_rebuild_sched_domains(struct work_struct *unused)
  664. {
  665. struct sched_domain_attr *attr;
  666. cpumask_var_t *doms;
  667. int ndoms;
  668. get_online_cpus();
  669. /* Generate domain masks and attrs */
  670. cgroup_lock();
  671. ndoms = generate_sched_domains(&doms, &attr);
  672. cgroup_unlock();
  673. /* Have scheduler rebuild the domains */
  674. partition_sched_domains(ndoms, doms, attr);
  675. put_online_cpus();
  676. }
  677. #else /* !CONFIG_SMP */
  678. static void do_rebuild_sched_domains(struct work_struct *unused)
  679. {
  680. }
  681. static int generate_sched_domains(cpumask_var_t **domains,
  682. struct sched_domain_attr **attributes)
  683. {
  684. *domains = NULL;
  685. return 1;
  686. }
  687. #endif /* CONFIG_SMP */
  688. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  689. /*
  690. * Rebuild scheduler domains, asynchronously via workqueue.
  691. *
  692. * If the flag 'sched_load_balance' of any cpuset with non-empty
  693. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  694. * which has that flag enabled, or if any cpuset with a non-empty
  695. * 'cpus' is removed, then call this routine to rebuild the
  696. * scheduler's dynamic sched domains.
  697. *
  698. * The rebuild_sched_domains() and partition_sched_domains()
  699. * routines must nest cgroup_lock() inside get_online_cpus(),
  700. * but such cpuset changes as these must nest that locking the
  701. * other way, holding cgroup_lock() for much of the code.
  702. *
  703. * So in order to avoid an ABBA deadlock, the cpuset code handling
  704. * these user changes delegates the actual sched domain rebuilding
  705. * to a separate workqueue thread, which ends up processing the
  706. * above do_rebuild_sched_domains() function.
  707. */
  708. static void async_rebuild_sched_domains(void)
  709. {
  710. queue_work(cpuset_wq, &rebuild_sched_domains_work);
  711. }
  712. /*
  713. * Accomplishes the same scheduler domain rebuild as the above
  714. * async_rebuild_sched_domains(), however it directly calls the
  715. * rebuild routine synchronously rather than calling it via an
  716. * asynchronous work thread.
  717. *
  718. * This can only be called from code that is not holding
  719. * cgroup_mutex (not nested in a cgroup_lock() call.)
  720. */
  721. void rebuild_sched_domains(void)
  722. {
  723. do_rebuild_sched_domains(NULL);
  724. }
  725. /**
  726. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  727. * @tsk: task to test
  728. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  729. *
  730. * Call with cgroup_mutex held. May take callback_mutex during call.
  731. * Called for each task in a cgroup by cgroup_scan_tasks().
  732. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  733. * words, if its mask is not equal to its cpuset's mask).
  734. */
  735. static int cpuset_test_cpumask(struct task_struct *tsk,
  736. struct cgroup_scanner *scan)
  737. {
  738. return !cpumask_equal(&tsk->cpus_allowed,
  739. (cgroup_cs(scan->cg))->cpus_allowed);
  740. }
  741. /**
  742. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  743. * @tsk: task to test
  744. * @scan: struct cgroup_scanner containing the cgroup of the task
  745. *
  746. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  747. * cpus_allowed mask needs to be changed.
  748. *
  749. * We don't need to re-check for the cgroup/cpuset membership, since we're
  750. * holding cgroup_lock() at this point.
  751. */
  752. static void cpuset_change_cpumask(struct task_struct *tsk,
  753. struct cgroup_scanner *scan)
  754. {
  755. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  756. }
  757. /**
  758. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  759. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  760. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  761. *
  762. * Called with cgroup_mutex held
  763. *
  764. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  765. * calling callback functions for each.
  766. *
  767. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  768. * if @heap != NULL.
  769. */
  770. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  771. {
  772. struct cgroup_scanner scan;
  773. scan.cg = cs->css.cgroup;
  774. scan.test_task = cpuset_test_cpumask;
  775. scan.process_task = cpuset_change_cpumask;
  776. scan.heap = heap;
  777. cgroup_scan_tasks(&scan);
  778. }
  779. /**
  780. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  781. * @cs: the cpuset to consider
  782. * @buf: buffer of cpu numbers written to this cpuset
  783. */
  784. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  785. const char *buf)
  786. {
  787. struct ptr_heap heap;
  788. int retval;
  789. int is_load_balanced;
  790. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  791. if (cs == &top_cpuset)
  792. return -EACCES;
  793. /*
  794. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  795. * Since cpulist_parse() fails on an empty mask, we special case
  796. * that parsing. The validate_change() call ensures that cpusets
  797. * with tasks have cpus.
  798. */
  799. if (!*buf) {
  800. cpumask_clear(trialcs->cpus_allowed);
  801. } else {
  802. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  803. if (retval < 0)
  804. return retval;
  805. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  806. return -EINVAL;
  807. }
  808. retval = validate_change(cs, trialcs);
  809. if (retval < 0)
  810. return retval;
  811. /* Nothing to do if the cpus didn't change */
  812. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  813. return 0;
  814. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  815. if (retval)
  816. return retval;
  817. is_load_balanced = is_sched_load_balance(trialcs);
  818. mutex_lock(&callback_mutex);
  819. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  820. mutex_unlock(&callback_mutex);
  821. /*
  822. * Scan tasks in the cpuset, and update the cpumasks of any
  823. * that need an update.
  824. */
  825. update_tasks_cpumask(cs, &heap);
  826. heap_free(&heap);
  827. if (is_load_balanced)
  828. async_rebuild_sched_domains();
  829. return 0;
  830. }
  831. /*
  832. * cpuset_migrate_mm
  833. *
  834. * Migrate memory region from one set of nodes to another.
  835. *
  836. * Temporarilly set tasks mems_allowed to target nodes of migration,
  837. * so that the migration code can allocate pages on these nodes.
  838. *
  839. * Call holding cgroup_mutex, so current's cpuset won't change
  840. * during this call, as manage_mutex holds off any cpuset_attach()
  841. * calls. Therefore we don't need to take task_lock around the
  842. * call to guarantee_online_mems(), as we know no one is changing
  843. * our task's cpuset.
  844. *
  845. * While the mm_struct we are migrating is typically from some
  846. * other task, the task_struct mems_allowed that we are hacking
  847. * is for our current task, which must allocate new pages for that
  848. * migrating memory region.
  849. */
  850. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  851. const nodemask_t *to)
  852. {
  853. struct task_struct *tsk = current;
  854. tsk->mems_allowed = *to;
  855. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  856. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  857. }
  858. /*
  859. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  860. * @tsk: the task to change
  861. * @newmems: new nodes that the task will be set
  862. *
  863. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  864. * we structure updates as setting all new allowed nodes, then clearing newly
  865. * disallowed ones.
  866. */
  867. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  868. nodemask_t *newmems)
  869. {
  870. bool need_loop;
  871. /*
  872. * Allow tasks that have access to memory reserves because they have
  873. * been OOM killed to get memory anywhere.
  874. */
  875. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  876. return;
  877. if (current->flags & PF_EXITING) /* Let dying task have memory */
  878. return;
  879. task_lock(tsk);
  880. /*
  881. * Determine if a loop is necessary if another thread is doing
  882. * get_mems_allowed(). If at least one node remains unchanged and
  883. * tsk does not have a mempolicy, then an empty nodemask will not be
  884. * possible when mems_allowed is larger than a word.
  885. */
  886. need_loop = task_has_mempolicy(tsk) ||
  887. !nodes_intersects(*newmems, tsk->mems_allowed);
  888. if (need_loop)
  889. write_seqcount_begin(&tsk->mems_allowed_seq);
  890. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  891. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  892. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  893. tsk->mems_allowed = *newmems;
  894. if (need_loop)
  895. write_seqcount_end(&tsk->mems_allowed_seq);
  896. task_unlock(tsk);
  897. }
  898. /*
  899. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  900. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  901. * memory_migrate flag is set. Called with cgroup_mutex held.
  902. */
  903. static void cpuset_change_nodemask(struct task_struct *p,
  904. struct cgroup_scanner *scan)
  905. {
  906. struct mm_struct *mm;
  907. struct cpuset *cs;
  908. int migrate;
  909. const nodemask_t *oldmem = scan->data;
  910. static nodemask_t newmems; /* protected by cgroup_mutex */
  911. cs = cgroup_cs(scan->cg);
  912. guarantee_online_mems(cs, &newmems);
  913. cpuset_change_task_nodemask(p, &newmems);
  914. mm = get_task_mm(p);
  915. if (!mm)
  916. return;
  917. migrate = is_memory_migrate(cs);
  918. mpol_rebind_mm(mm, &cs->mems_allowed);
  919. if (migrate)
  920. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  921. mmput(mm);
  922. }
  923. static void *cpuset_being_rebound;
  924. /**
  925. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  926. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  927. * @oldmem: old mems_allowed of cpuset cs
  928. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  929. *
  930. * Called with cgroup_mutex held
  931. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  932. * if @heap != NULL.
  933. */
  934. static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
  935. struct ptr_heap *heap)
  936. {
  937. struct cgroup_scanner scan;
  938. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  939. scan.cg = cs->css.cgroup;
  940. scan.test_task = NULL;
  941. scan.process_task = cpuset_change_nodemask;
  942. scan.heap = heap;
  943. scan.data = (nodemask_t *)oldmem;
  944. /*
  945. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  946. * take while holding tasklist_lock. Forks can happen - the
  947. * mpol_dup() cpuset_being_rebound check will catch such forks,
  948. * and rebind their vma mempolicies too. Because we still hold
  949. * the global cgroup_mutex, we know that no other rebind effort
  950. * will be contending for the global variable cpuset_being_rebound.
  951. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  952. * is idempotent. Also migrate pages in each mm to new nodes.
  953. */
  954. cgroup_scan_tasks(&scan);
  955. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  956. cpuset_being_rebound = NULL;
  957. }
  958. /*
  959. * Handle user request to change the 'mems' memory placement
  960. * of a cpuset. Needs to validate the request, update the
  961. * cpusets mems_allowed, and for each task in the cpuset,
  962. * update mems_allowed and rebind task's mempolicy and any vma
  963. * mempolicies and if the cpuset is marked 'memory_migrate',
  964. * migrate the tasks pages to the new memory.
  965. *
  966. * Call with cgroup_mutex held. May take callback_mutex during call.
  967. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  968. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  969. * their mempolicies to the cpusets new mems_allowed.
  970. */
  971. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  972. const char *buf)
  973. {
  974. NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
  975. int retval;
  976. struct ptr_heap heap;
  977. if (!oldmem)
  978. return -ENOMEM;
  979. /*
  980. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  981. * it's read-only
  982. */
  983. if (cs == &top_cpuset) {
  984. retval = -EACCES;
  985. goto done;
  986. }
  987. /*
  988. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  989. * Since nodelist_parse() fails on an empty mask, we special case
  990. * that parsing. The validate_change() call ensures that cpusets
  991. * with tasks have memory.
  992. */
  993. if (!*buf) {
  994. nodes_clear(trialcs->mems_allowed);
  995. } else {
  996. retval = nodelist_parse(buf, trialcs->mems_allowed);
  997. if (retval < 0)
  998. goto done;
  999. if (!nodes_subset(trialcs->mems_allowed,
  1000. node_states[N_MEMORY])) {
  1001. retval = -EINVAL;
  1002. goto done;
  1003. }
  1004. }
  1005. *oldmem = cs->mems_allowed;
  1006. if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
  1007. retval = 0; /* Too easy - nothing to do */
  1008. goto done;
  1009. }
  1010. retval = validate_change(cs, trialcs);
  1011. if (retval < 0)
  1012. goto done;
  1013. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1014. if (retval < 0)
  1015. goto done;
  1016. mutex_lock(&callback_mutex);
  1017. cs->mems_allowed = trialcs->mems_allowed;
  1018. mutex_unlock(&callback_mutex);
  1019. update_tasks_nodemask(cs, oldmem, &heap);
  1020. heap_free(&heap);
  1021. done:
  1022. NODEMASK_FREE(oldmem);
  1023. return retval;
  1024. }
  1025. int current_cpuset_is_being_rebound(void)
  1026. {
  1027. return task_cs(current) == cpuset_being_rebound;
  1028. }
  1029. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1030. {
  1031. #ifdef CONFIG_SMP
  1032. if (val < -1 || val >= sched_domain_level_max)
  1033. return -EINVAL;
  1034. #endif
  1035. if (val != cs->relax_domain_level) {
  1036. cs->relax_domain_level = val;
  1037. if (!cpumask_empty(cs->cpus_allowed) &&
  1038. is_sched_load_balance(cs))
  1039. async_rebuild_sched_domains();
  1040. }
  1041. return 0;
  1042. }
  1043. /*
  1044. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1045. * @tsk: task to be updated
  1046. * @scan: struct cgroup_scanner containing the cgroup of the task
  1047. *
  1048. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1049. *
  1050. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1051. * holding cgroup_lock() at this point.
  1052. */
  1053. static void cpuset_change_flag(struct task_struct *tsk,
  1054. struct cgroup_scanner *scan)
  1055. {
  1056. cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
  1057. }
  1058. /*
  1059. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1060. * @cs: the cpuset in which each task's spread flags needs to be changed
  1061. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1062. *
  1063. * Called with cgroup_mutex held
  1064. *
  1065. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1066. * calling callback functions for each.
  1067. *
  1068. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1069. * if @heap != NULL.
  1070. */
  1071. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1072. {
  1073. struct cgroup_scanner scan;
  1074. scan.cg = cs->css.cgroup;
  1075. scan.test_task = NULL;
  1076. scan.process_task = cpuset_change_flag;
  1077. scan.heap = heap;
  1078. cgroup_scan_tasks(&scan);
  1079. }
  1080. /*
  1081. * update_flag - read a 0 or a 1 in a file and update associated flag
  1082. * bit: the bit to update (see cpuset_flagbits_t)
  1083. * cs: the cpuset to update
  1084. * turning_on: whether the flag is being set or cleared
  1085. *
  1086. * Call with cgroup_mutex held.
  1087. */
  1088. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1089. int turning_on)
  1090. {
  1091. struct cpuset *trialcs;
  1092. int balance_flag_changed;
  1093. int spread_flag_changed;
  1094. struct ptr_heap heap;
  1095. int err;
  1096. trialcs = alloc_trial_cpuset(cs);
  1097. if (!trialcs)
  1098. return -ENOMEM;
  1099. if (turning_on)
  1100. set_bit(bit, &trialcs->flags);
  1101. else
  1102. clear_bit(bit, &trialcs->flags);
  1103. err = validate_change(cs, trialcs);
  1104. if (err < 0)
  1105. goto out;
  1106. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1107. if (err < 0)
  1108. goto out;
  1109. balance_flag_changed = (is_sched_load_balance(cs) !=
  1110. is_sched_load_balance(trialcs));
  1111. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1112. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1113. mutex_lock(&callback_mutex);
  1114. cs->flags = trialcs->flags;
  1115. mutex_unlock(&callback_mutex);
  1116. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1117. async_rebuild_sched_domains();
  1118. if (spread_flag_changed)
  1119. update_tasks_flags(cs, &heap);
  1120. heap_free(&heap);
  1121. out:
  1122. free_trial_cpuset(trialcs);
  1123. return err;
  1124. }
  1125. /*
  1126. * Frequency meter - How fast is some event occurring?
  1127. *
  1128. * These routines manage a digitally filtered, constant time based,
  1129. * event frequency meter. There are four routines:
  1130. * fmeter_init() - initialize a frequency meter.
  1131. * fmeter_markevent() - called each time the event happens.
  1132. * fmeter_getrate() - returns the recent rate of such events.
  1133. * fmeter_update() - internal routine used to update fmeter.
  1134. *
  1135. * A common data structure is passed to each of these routines,
  1136. * which is used to keep track of the state required to manage the
  1137. * frequency meter and its digital filter.
  1138. *
  1139. * The filter works on the number of events marked per unit time.
  1140. * The filter is single-pole low-pass recursive (IIR). The time unit
  1141. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1142. * simulate 3 decimal digits of precision (multiplied by 1000).
  1143. *
  1144. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1145. * has a half-life of 10 seconds, meaning that if the events quit
  1146. * happening, then the rate returned from the fmeter_getrate()
  1147. * will be cut in half each 10 seconds, until it converges to zero.
  1148. *
  1149. * It is not worth doing a real infinitely recursive filter. If more
  1150. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1151. * just compute FM_MAXTICKS ticks worth, by which point the level
  1152. * will be stable.
  1153. *
  1154. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1155. * arithmetic overflow in the fmeter_update() routine.
  1156. *
  1157. * Given the simple 32 bit integer arithmetic used, this meter works
  1158. * best for reporting rates between one per millisecond (msec) and
  1159. * one per 32 (approx) seconds. At constant rates faster than one
  1160. * per msec it maxes out at values just under 1,000,000. At constant
  1161. * rates between one per msec, and one per second it will stabilize
  1162. * to a value N*1000, where N is the rate of events per second.
  1163. * At constant rates between one per second and one per 32 seconds,
  1164. * it will be choppy, moving up on the seconds that have an event,
  1165. * and then decaying until the next event. At rates slower than
  1166. * about one in 32 seconds, it decays all the way back to zero between
  1167. * each event.
  1168. */
  1169. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1170. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1171. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1172. #define FM_SCALE 1000 /* faux fixed point scale */
  1173. /* Initialize a frequency meter */
  1174. static void fmeter_init(struct fmeter *fmp)
  1175. {
  1176. fmp->cnt = 0;
  1177. fmp->val = 0;
  1178. fmp->time = 0;
  1179. spin_lock_init(&fmp->lock);
  1180. }
  1181. /* Internal meter update - process cnt events and update value */
  1182. static void fmeter_update(struct fmeter *fmp)
  1183. {
  1184. time_t now = get_seconds();
  1185. time_t ticks = now - fmp->time;
  1186. if (ticks == 0)
  1187. return;
  1188. ticks = min(FM_MAXTICKS, ticks);
  1189. while (ticks-- > 0)
  1190. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1191. fmp->time = now;
  1192. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1193. fmp->cnt = 0;
  1194. }
  1195. /* Process any previous ticks, then bump cnt by one (times scale). */
  1196. static void fmeter_markevent(struct fmeter *fmp)
  1197. {
  1198. spin_lock(&fmp->lock);
  1199. fmeter_update(fmp);
  1200. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1201. spin_unlock(&fmp->lock);
  1202. }
  1203. /* Process any previous ticks, then return current value. */
  1204. static int fmeter_getrate(struct fmeter *fmp)
  1205. {
  1206. int val;
  1207. spin_lock(&fmp->lock);
  1208. fmeter_update(fmp);
  1209. val = fmp->val;
  1210. spin_unlock(&fmp->lock);
  1211. return val;
  1212. }
  1213. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1214. static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1215. {
  1216. struct cpuset *cs = cgroup_cs(cgrp);
  1217. struct task_struct *task;
  1218. int ret;
  1219. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1220. return -ENOSPC;
  1221. cgroup_taskset_for_each(task, cgrp, tset) {
  1222. /*
  1223. * Kthreads bound to specific cpus cannot be moved to a new
  1224. * cpuset; we cannot change their cpu affinity and
  1225. * isolating such threads by their set of allowed nodes is
  1226. * unnecessary. Thus, cpusets are not applicable for such
  1227. * threads. This prevents checking for success of
  1228. * set_cpus_allowed_ptr() on all attached tasks before
  1229. * cpus_allowed may be changed.
  1230. */
  1231. if (task->flags & PF_THREAD_BOUND)
  1232. return -EINVAL;
  1233. if ((ret = security_task_setscheduler(task)))
  1234. return ret;
  1235. }
  1236. return 0;
  1237. }
  1238. /*
  1239. * Protected by cgroup_mutex. cpus_attach is used only by cpuset_attach()
  1240. * but we can't allocate it dynamically there. Define it global and
  1241. * allocate from cpuset_init().
  1242. */
  1243. static cpumask_var_t cpus_attach;
  1244. static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1245. {
  1246. /* static bufs protected by cgroup_mutex */
  1247. static nodemask_t cpuset_attach_nodemask_from;
  1248. static nodemask_t cpuset_attach_nodemask_to;
  1249. struct mm_struct *mm;
  1250. struct task_struct *task;
  1251. struct task_struct *leader = cgroup_taskset_first(tset);
  1252. struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
  1253. struct cpuset *cs = cgroup_cs(cgrp);
  1254. struct cpuset *oldcs = cgroup_cs(oldcgrp);
  1255. /* prepare for attach */
  1256. if (cs == &top_cpuset)
  1257. cpumask_copy(cpus_attach, cpu_possible_mask);
  1258. else
  1259. guarantee_online_cpus(cs, cpus_attach);
  1260. guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
  1261. cgroup_taskset_for_each(task, cgrp, tset) {
  1262. /*
  1263. * can_attach beforehand should guarantee that this doesn't
  1264. * fail. TODO: have a better way to handle failure here
  1265. */
  1266. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1267. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1268. cpuset_update_task_spread_flag(cs, task);
  1269. }
  1270. /*
  1271. * Change mm, possibly for multiple threads in a threadgroup. This is
  1272. * expensive and may sleep.
  1273. */
  1274. cpuset_attach_nodemask_from = oldcs->mems_allowed;
  1275. cpuset_attach_nodemask_to = cs->mems_allowed;
  1276. mm = get_task_mm(leader);
  1277. if (mm) {
  1278. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1279. if (is_memory_migrate(cs))
  1280. cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
  1281. &cpuset_attach_nodemask_to);
  1282. mmput(mm);
  1283. }
  1284. }
  1285. /* The various types of files and directories in a cpuset file system */
  1286. typedef enum {
  1287. FILE_MEMORY_MIGRATE,
  1288. FILE_CPULIST,
  1289. FILE_MEMLIST,
  1290. FILE_CPU_EXCLUSIVE,
  1291. FILE_MEM_EXCLUSIVE,
  1292. FILE_MEM_HARDWALL,
  1293. FILE_SCHED_LOAD_BALANCE,
  1294. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1295. FILE_MEMORY_PRESSURE_ENABLED,
  1296. FILE_MEMORY_PRESSURE,
  1297. FILE_SPREAD_PAGE,
  1298. FILE_SPREAD_SLAB,
  1299. } cpuset_filetype_t;
  1300. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1301. {
  1302. int retval = 0;
  1303. struct cpuset *cs = cgroup_cs(cgrp);
  1304. cpuset_filetype_t type = cft->private;
  1305. if (!cgroup_lock_live_group(cgrp))
  1306. return -ENODEV;
  1307. switch (type) {
  1308. case FILE_CPU_EXCLUSIVE:
  1309. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1310. break;
  1311. case FILE_MEM_EXCLUSIVE:
  1312. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1313. break;
  1314. case FILE_MEM_HARDWALL:
  1315. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1316. break;
  1317. case FILE_SCHED_LOAD_BALANCE:
  1318. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1319. break;
  1320. case FILE_MEMORY_MIGRATE:
  1321. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1322. break;
  1323. case FILE_MEMORY_PRESSURE_ENABLED:
  1324. cpuset_memory_pressure_enabled = !!val;
  1325. break;
  1326. case FILE_MEMORY_PRESSURE:
  1327. retval = -EACCES;
  1328. break;
  1329. case FILE_SPREAD_PAGE:
  1330. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1331. break;
  1332. case FILE_SPREAD_SLAB:
  1333. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1334. break;
  1335. default:
  1336. retval = -EINVAL;
  1337. break;
  1338. }
  1339. cgroup_unlock();
  1340. return retval;
  1341. }
  1342. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1343. {
  1344. int retval = 0;
  1345. struct cpuset *cs = cgroup_cs(cgrp);
  1346. cpuset_filetype_t type = cft->private;
  1347. if (!cgroup_lock_live_group(cgrp))
  1348. return -ENODEV;
  1349. switch (type) {
  1350. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1351. retval = update_relax_domain_level(cs, val);
  1352. break;
  1353. default:
  1354. retval = -EINVAL;
  1355. break;
  1356. }
  1357. cgroup_unlock();
  1358. return retval;
  1359. }
  1360. /*
  1361. * Common handling for a write to a "cpus" or "mems" file.
  1362. */
  1363. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1364. const char *buf)
  1365. {
  1366. int retval = 0;
  1367. struct cpuset *cs = cgroup_cs(cgrp);
  1368. struct cpuset *trialcs;
  1369. if (!cgroup_lock_live_group(cgrp))
  1370. return -ENODEV;
  1371. trialcs = alloc_trial_cpuset(cs);
  1372. if (!trialcs) {
  1373. retval = -ENOMEM;
  1374. goto out;
  1375. }
  1376. switch (cft->private) {
  1377. case FILE_CPULIST:
  1378. retval = update_cpumask(cs, trialcs, buf);
  1379. break;
  1380. case FILE_MEMLIST:
  1381. retval = update_nodemask(cs, trialcs, buf);
  1382. break;
  1383. default:
  1384. retval = -EINVAL;
  1385. break;
  1386. }
  1387. free_trial_cpuset(trialcs);
  1388. out:
  1389. cgroup_unlock();
  1390. return retval;
  1391. }
  1392. /*
  1393. * These ascii lists should be read in a single call, by using a user
  1394. * buffer large enough to hold the entire map. If read in smaller
  1395. * chunks, there is no guarantee of atomicity. Since the display format
  1396. * used, list of ranges of sequential numbers, is variable length,
  1397. * and since these maps can change value dynamically, one could read
  1398. * gibberish by doing partial reads while a list was changing.
  1399. * A single large read to a buffer that crosses a page boundary is
  1400. * ok, because the result being copied to user land is not recomputed
  1401. * across a page fault.
  1402. */
  1403. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1404. {
  1405. size_t count;
  1406. mutex_lock(&callback_mutex);
  1407. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1408. mutex_unlock(&callback_mutex);
  1409. return count;
  1410. }
  1411. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1412. {
  1413. size_t count;
  1414. mutex_lock(&callback_mutex);
  1415. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1416. mutex_unlock(&callback_mutex);
  1417. return count;
  1418. }
  1419. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1420. struct cftype *cft,
  1421. struct file *file,
  1422. char __user *buf,
  1423. size_t nbytes, loff_t *ppos)
  1424. {
  1425. struct cpuset *cs = cgroup_cs(cont);
  1426. cpuset_filetype_t type = cft->private;
  1427. char *page;
  1428. ssize_t retval = 0;
  1429. char *s;
  1430. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1431. return -ENOMEM;
  1432. s = page;
  1433. switch (type) {
  1434. case FILE_CPULIST:
  1435. s += cpuset_sprintf_cpulist(s, cs);
  1436. break;
  1437. case FILE_MEMLIST:
  1438. s += cpuset_sprintf_memlist(s, cs);
  1439. break;
  1440. default:
  1441. retval = -EINVAL;
  1442. goto out;
  1443. }
  1444. *s++ = '\n';
  1445. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1446. out:
  1447. free_page((unsigned long)page);
  1448. return retval;
  1449. }
  1450. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1451. {
  1452. struct cpuset *cs = cgroup_cs(cont);
  1453. cpuset_filetype_t type = cft->private;
  1454. switch (type) {
  1455. case FILE_CPU_EXCLUSIVE:
  1456. return is_cpu_exclusive(cs);
  1457. case FILE_MEM_EXCLUSIVE:
  1458. return is_mem_exclusive(cs);
  1459. case FILE_MEM_HARDWALL:
  1460. return is_mem_hardwall(cs);
  1461. case FILE_SCHED_LOAD_BALANCE:
  1462. return is_sched_load_balance(cs);
  1463. case FILE_MEMORY_MIGRATE:
  1464. return is_memory_migrate(cs);
  1465. case FILE_MEMORY_PRESSURE_ENABLED:
  1466. return cpuset_memory_pressure_enabled;
  1467. case FILE_MEMORY_PRESSURE:
  1468. return fmeter_getrate(&cs->fmeter);
  1469. case FILE_SPREAD_PAGE:
  1470. return is_spread_page(cs);
  1471. case FILE_SPREAD_SLAB:
  1472. return is_spread_slab(cs);
  1473. default:
  1474. BUG();
  1475. }
  1476. /* Unreachable but makes gcc happy */
  1477. return 0;
  1478. }
  1479. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1480. {
  1481. struct cpuset *cs = cgroup_cs(cont);
  1482. cpuset_filetype_t type = cft->private;
  1483. switch (type) {
  1484. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1485. return cs->relax_domain_level;
  1486. default:
  1487. BUG();
  1488. }
  1489. /* Unrechable but makes gcc happy */
  1490. return 0;
  1491. }
  1492. /*
  1493. * for the common functions, 'private' gives the type of file
  1494. */
  1495. static struct cftype files[] = {
  1496. {
  1497. .name = "cpus",
  1498. .read = cpuset_common_file_read,
  1499. .write_string = cpuset_write_resmask,
  1500. .max_write_len = (100U + 6 * NR_CPUS),
  1501. .private = FILE_CPULIST,
  1502. },
  1503. {
  1504. .name = "mems",
  1505. .read = cpuset_common_file_read,
  1506. .write_string = cpuset_write_resmask,
  1507. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1508. .private = FILE_MEMLIST,
  1509. },
  1510. {
  1511. .name = "cpu_exclusive",
  1512. .read_u64 = cpuset_read_u64,
  1513. .write_u64 = cpuset_write_u64,
  1514. .private = FILE_CPU_EXCLUSIVE,
  1515. },
  1516. {
  1517. .name = "mem_exclusive",
  1518. .read_u64 = cpuset_read_u64,
  1519. .write_u64 = cpuset_write_u64,
  1520. .private = FILE_MEM_EXCLUSIVE,
  1521. },
  1522. {
  1523. .name = "mem_hardwall",
  1524. .read_u64 = cpuset_read_u64,
  1525. .write_u64 = cpuset_write_u64,
  1526. .private = FILE_MEM_HARDWALL,
  1527. },
  1528. {
  1529. .name = "sched_load_balance",
  1530. .read_u64 = cpuset_read_u64,
  1531. .write_u64 = cpuset_write_u64,
  1532. .private = FILE_SCHED_LOAD_BALANCE,
  1533. },
  1534. {
  1535. .name = "sched_relax_domain_level",
  1536. .read_s64 = cpuset_read_s64,
  1537. .write_s64 = cpuset_write_s64,
  1538. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1539. },
  1540. {
  1541. .name = "memory_migrate",
  1542. .read_u64 = cpuset_read_u64,
  1543. .write_u64 = cpuset_write_u64,
  1544. .private = FILE_MEMORY_MIGRATE,
  1545. },
  1546. {
  1547. .name = "memory_pressure",
  1548. .read_u64 = cpuset_read_u64,
  1549. .write_u64 = cpuset_write_u64,
  1550. .private = FILE_MEMORY_PRESSURE,
  1551. .mode = S_IRUGO,
  1552. },
  1553. {
  1554. .name = "memory_spread_page",
  1555. .read_u64 = cpuset_read_u64,
  1556. .write_u64 = cpuset_write_u64,
  1557. .private = FILE_SPREAD_PAGE,
  1558. },
  1559. {
  1560. .name = "memory_spread_slab",
  1561. .read_u64 = cpuset_read_u64,
  1562. .write_u64 = cpuset_write_u64,
  1563. .private = FILE_SPREAD_SLAB,
  1564. },
  1565. {
  1566. .name = "memory_pressure_enabled",
  1567. .flags = CFTYPE_ONLY_ON_ROOT,
  1568. .read_u64 = cpuset_read_u64,
  1569. .write_u64 = cpuset_write_u64,
  1570. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1571. },
  1572. { } /* terminate */
  1573. };
  1574. /*
  1575. * cpuset_css_alloc - allocate a cpuset css
  1576. * cont: control group that the new cpuset will be part of
  1577. */
  1578. static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
  1579. {
  1580. struct cpuset *cs;
  1581. if (!cont->parent)
  1582. return &top_cpuset.css;
  1583. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1584. if (!cs)
  1585. return ERR_PTR(-ENOMEM);
  1586. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1587. kfree(cs);
  1588. return ERR_PTR(-ENOMEM);
  1589. }
  1590. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1591. cpumask_clear(cs->cpus_allowed);
  1592. nodes_clear(cs->mems_allowed);
  1593. fmeter_init(&cs->fmeter);
  1594. cs->relax_domain_level = -1;
  1595. cs->parent = cgroup_cs(cont->parent);
  1596. return &cs->css;
  1597. }
  1598. static int cpuset_css_online(struct cgroup *cgrp)
  1599. {
  1600. struct cpuset *cs = cgroup_cs(cgrp);
  1601. struct cpuset *parent = cs->parent;
  1602. struct cpuset *tmp_cs;
  1603. struct cgroup *pos_cg;
  1604. if (!parent)
  1605. return 0;
  1606. set_bit(CS_ONLINE, &cs->flags);
  1607. if (is_spread_page(parent))
  1608. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1609. if (is_spread_slab(parent))
  1610. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1611. number_of_cpusets++;
  1612. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
  1613. return 0;
  1614. /*
  1615. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1616. * set. This flag handling is implemented in cgroup core for
  1617. * histrical reasons - the flag may be specified during mount.
  1618. *
  1619. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1620. * refuse to clone the configuration - thereby refusing the task to
  1621. * be entered, and as a result refusing the sys_unshare() or
  1622. * clone() which initiated it. If this becomes a problem for some
  1623. * users who wish to allow that scenario, then this could be
  1624. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1625. * (and likewise for mems) to the new cgroup.
  1626. */
  1627. rcu_read_lock();
  1628. cpuset_for_each_child(tmp_cs, pos_cg, parent) {
  1629. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1630. rcu_read_unlock();
  1631. return 0;
  1632. }
  1633. }
  1634. rcu_read_unlock();
  1635. mutex_lock(&callback_mutex);
  1636. cs->mems_allowed = parent->mems_allowed;
  1637. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1638. mutex_unlock(&callback_mutex);
  1639. return 0;
  1640. }
  1641. static void cpuset_css_offline(struct cgroup *cgrp)
  1642. {
  1643. struct cpuset *cs = cgroup_cs(cgrp);
  1644. /* css_offline is called w/o cgroup_mutex, grab it */
  1645. cgroup_lock();
  1646. if (is_sched_load_balance(cs))
  1647. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1648. number_of_cpusets--;
  1649. clear_bit(CS_ONLINE, &cs->flags);
  1650. cgroup_unlock();
  1651. }
  1652. /*
  1653. * If the cpuset being removed has its flag 'sched_load_balance'
  1654. * enabled, then simulate turning sched_load_balance off, which
  1655. * will call async_rebuild_sched_domains().
  1656. */
  1657. static void cpuset_css_free(struct cgroup *cont)
  1658. {
  1659. struct cpuset *cs = cgroup_cs(cont);
  1660. free_cpumask_var(cs->cpus_allowed);
  1661. kfree(cs);
  1662. }
  1663. struct cgroup_subsys cpuset_subsys = {
  1664. .name = "cpuset",
  1665. .css_alloc = cpuset_css_alloc,
  1666. .css_online = cpuset_css_online,
  1667. .css_offline = cpuset_css_offline,
  1668. .css_free = cpuset_css_free,
  1669. .can_attach = cpuset_can_attach,
  1670. .attach = cpuset_attach,
  1671. .subsys_id = cpuset_subsys_id,
  1672. .base_cftypes = files,
  1673. .early_init = 1,
  1674. };
  1675. /**
  1676. * cpuset_init - initialize cpusets at system boot
  1677. *
  1678. * Description: Initialize top_cpuset and the cpuset internal file system,
  1679. **/
  1680. int __init cpuset_init(void)
  1681. {
  1682. int err = 0;
  1683. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1684. BUG();
  1685. cpumask_setall(top_cpuset.cpus_allowed);
  1686. nodes_setall(top_cpuset.mems_allowed);
  1687. fmeter_init(&top_cpuset.fmeter);
  1688. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1689. top_cpuset.relax_domain_level = -1;
  1690. err = register_filesystem(&cpuset_fs_type);
  1691. if (err < 0)
  1692. return err;
  1693. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1694. BUG();
  1695. number_of_cpusets = 1;
  1696. return 0;
  1697. }
  1698. /**
  1699. * cpuset_do_move_task - move a given task to another cpuset
  1700. * @tsk: pointer to task_struct the task to move
  1701. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1702. *
  1703. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1704. * Return nonzero to stop the walk through the tasks.
  1705. */
  1706. static void cpuset_do_move_task(struct task_struct *tsk,
  1707. struct cgroup_scanner *scan)
  1708. {
  1709. struct cgroup *new_cgroup = scan->data;
  1710. cgroup_attach_task(new_cgroup, tsk);
  1711. }
  1712. /**
  1713. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1714. * @from: cpuset in which the tasks currently reside
  1715. * @to: cpuset to which the tasks will be moved
  1716. *
  1717. * Called with cgroup_mutex held
  1718. * callback_mutex must not be held, as cpuset_attach() will take it.
  1719. *
  1720. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1721. * calling callback functions for each.
  1722. */
  1723. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1724. {
  1725. struct cgroup_scanner scan;
  1726. scan.cg = from->css.cgroup;
  1727. scan.test_task = NULL; /* select all tasks in cgroup */
  1728. scan.process_task = cpuset_do_move_task;
  1729. scan.heap = NULL;
  1730. scan.data = to->css.cgroup;
  1731. if (cgroup_scan_tasks(&scan))
  1732. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1733. "cgroup_scan_tasks failed\n");
  1734. }
  1735. /*
  1736. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1737. * or memory nodes, we need to walk over the cpuset hierarchy,
  1738. * removing that CPU or node from all cpusets. If this removes the
  1739. * last CPU or node from a cpuset, then move the tasks in the empty
  1740. * cpuset to its next-highest non-empty parent.
  1741. *
  1742. * Called with cgroup_mutex held
  1743. * callback_mutex must not be held, as cpuset_attach() will take it.
  1744. */
  1745. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1746. {
  1747. struct cpuset *parent;
  1748. /*
  1749. * Find its next-highest non-empty parent, (top cpuset
  1750. * has online cpus, so can't be empty).
  1751. */
  1752. parent = cs->parent;
  1753. while (cpumask_empty(parent->cpus_allowed) ||
  1754. nodes_empty(parent->mems_allowed))
  1755. parent = parent->parent;
  1756. move_member_tasks_to_cpuset(cs, parent);
  1757. }
  1758. /*
  1759. * Helper function to traverse cpusets.
  1760. * It can be used to walk the cpuset tree from top to bottom, completing
  1761. * one layer before dropping down to the next (thus always processing a
  1762. * node before any of its children).
  1763. */
  1764. static struct cpuset *cpuset_next(struct list_head *queue)
  1765. {
  1766. struct cpuset *cp;
  1767. struct cpuset *child; /* scans child cpusets of cp */
  1768. struct cgroup *cont;
  1769. if (list_empty(queue))
  1770. return NULL;
  1771. cp = list_first_entry(queue, struct cpuset, stack_list);
  1772. list_del(queue->next);
  1773. rcu_read_lock();
  1774. cpuset_for_each_child(child, cont, cp)
  1775. list_add_tail(&child->stack_list, queue);
  1776. rcu_read_unlock();
  1777. return cp;
  1778. }
  1779. /**
  1780. * cpuset_propagate_hotplug - propagate CPU/memory hotplug to a cpuset
  1781. * @cs: cpuset in interest
  1782. *
  1783. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1784. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1785. * all its tasks are moved to the nearest ancestor with both resources.
  1786. *
  1787. * Should be called with cgroup_mutex held.
  1788. */
  1789. static void cpuset_propagate_hotplug(struct cpuset *cs)
  1790. {
  1791. static cpumask_t off_cpus;
  1792. static nodemask_t off_mems, tmp_mems;
  1793. WARN_ON_ONCE(!cgroup_lock_is_held());
  1794. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1795. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1796. /* remove offline cpus from @cs */
  1797. if (!cpumask_empty(&off_cpus)) {
  1798. mutex_lock(&callback_mutex);
  1799. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1800. mutex_unlock(&callback_mutex);
  1801. update_tasks_cpumask(cs, NULL);
  1802. }
  1803. /* remove offline mems from @cs */
  1804. if (!nodes_empty(off_mems)) {
  1805. tmp_mems = cs->mems_allowed;
  1806. mutex_lock(&callback_mutex);
  1807. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1808. mutex_unlock(&callback_mutex);
  1809. update_tasks_nodemask(cs, &tmp_mems, NULL);
  1810. }
  1811. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1812. remove_tasks_in_empty_cpuset(cs);
  1813. }
  1814. /**
  1815. * cpuset_handle_hotplug - handle CPU/memory hot[un]plug
  1816. *
  1817. * This function is called after either CPU or memory configuration has
  1818. * changed and updates cpuset accordingly. The top_cpuset is always
  1819. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1820. * order to make cpusets transparent (of no affect) on systems that are
  1821. * actively using CPU hotplug but making no active use of cpusets.
  1822. *
  1823. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1824. * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
  1825. * descendants.
  1826. *
  1827. * Note that CPU offlining during suspend is ignored. We don't modify
  1828. * cpusets across suspend/resume cycles at all.
  1829. */
  1830. static void cpuset_handle_hotplug(void)
  1831. {
  1832. static cpumask_t new_cpus, tmp_cpus;
  1833. static nodemask_t new_mems, tmp_mems;
  1834. bool cpus_updated, mems_updated;
  1835. bool cpus_offlined, mems_offlined;
  1836. cgroup_lock();
  1837. /* fetch the available cpus/mems and find out which changed how */
  1838. cpumask_copy(&new_cpus, cpu_active_mask);
  1839. new_mems = node_states[N_MEMORY];
  1840. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1841. cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
  1842. &new_cpus);
  1843. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1844. nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
  1845. mems_offlined = !nodes_empty(tmp_mems);
  1846. /* synchronize cpus_allowed to cpu_active_mask */
  1847. if (cpus_updated) {
  1848. mutex_lock(&callback_mutex);
  1849. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1850. mutex_unlock(&callback_mutex);
  1851. /* we don't mess with cpumasks of tasks in top_cpuset */
  1852. }
  1853. /* synchronize mems_allowed to N_MEMORY */
  1854. if (mems_updated) {
  1855. tmp_mems = top_cpuset.mems_allowed;
  1856. mutex_lock(&callback_mutex);
  1857. top_cpuset.mems_allowed = new_mems;
  1858. mutex_unlock(&callback_mutex);
  1859. update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
  1860. }
  1861. /* if cpus or mems went down, we need to propagate to descendants */
  1862. if (cpus_offlined || mems_offlined) {
  1863. struct cpuset *cs;
  1864. LIST_HEAD(queue);
  1865. list_add_tail(&top_cpuset.stack_list, &queue);
  1866. while ((cs = cpuset_next(&queue)))
  1867. if (cs != &top_cpuset)
  1868. cpuset_propagate_hotplug(cs);
  1869. }
  1870. cgroup_unlock();
  1871. /* rebuild sched domains if cpus_allowed has changed */
  1872. if (cpus_updated) {
  1873. struct sched_domain_attr *attr;
  1874. cpumask_var_t *doms;
  1875. int ndoms;
  1876. cgroup_lock();
  1877. ndoms = generate_sched_domains(&doms, &attr);
  1878. cgroup_unlock();
  1879. partition_sched_domains(ndoms, doms, attr);
  1880. }
  1881. }
  1882. void cpuset_update_active_cpus(bool cpu_online)
  1883. {
  1884. cpuset_handle_hotplug();
  1885. }
  1886. #ifdef CONFIG_MEMORY_HOTPLUG
  1887. /*
  1888. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1889. * Call this routine anytime after node_states[N_MEMORY] changes.
  1890. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1891. */
  1892. static int cpuset_track_online_nodes(struct notifier_block *self,
  1893. unsigned long action, void *arg)
  1894. {
  1895. cpuset_handle_hotplug();
  1896. return NOTIFY_OK;
  1897. }
  1898. #endif
  1899. /**
  1900. * cpuset_init_smp - initialize cpus_allowed
  1901. *
  1902. * Description: Finish top cpuset after cpu, node maps are initialized
  1903. **/
  1904. void __init cpuset_init_smp(void)
  1905. {
  1906. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1907. top_cpuset.mems_allowed = node_states[N_MEMORY];
  1908. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1909. cpuset_wq = create_singlethread_workqueue("cpuset");
  1910. BUG_ON(!cpuset_wq);
  1911. }
  1912. /**
  1913. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1914. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1915. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1916. *
  1917. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1918. * attached to the specified @tsk. Guaranteed to return some non-empty
  1919. * subset of cpu_online_mask, even if this means going outside the
  1920. * tasks cpuset.
  1921. **/
  1922. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1923. {
  1924. mutex_lock(&callback_mutex);
  1925. task_lock(tsk);
  1926. guarantee_online_cpus(task_cs(tsk), pmask);
  1927. task_unlock(tsk);
  1928. mutex_unlock(&callback_mutex);
  1929. }
  1930. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  1931. {
  1932. const struct cpuset *cs;
  1933. rcu_read_lock();
  1934. cs = task_cs(tsk);
  1935. if (cs)
  1936. do_set_cpus_allowed(tsk, cs->cpus_allowed);
  1937. rcu_read_unlock();
  1938. /*
  1939. * We own tsk->cpus_allowed, nobody can change it under us.
  1940. *
  1941. * But we used cs && cs->cpus_allowed lockless and thus can
  1942. * race with cgroup_attach_task() or update_cpumask() and get
  1943. * the wrong tsk->cpus_allowed. However, both cases imply the
  1944. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  1945. * which takes task_rq_lock().
  1946. *
  1947. * If we are called after it dropped the lock we must see all
  1948. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  1949. * set any mask even if it is not right from task_cs() pov,
  1950. * the pending set_cpus_allowed_ptr() will fix things.
  1951. *
  1952. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  1953. * if required.
  1954. */
  1955. }
  1956. void cpuset_init_current_mems_allowed(void)
  1957. {
  1958. nodes_setall(current->mems_allowed);
  1959. }
  1960. /**
  1961. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1962. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1963. *
  1964. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1965. * attached to the specified @tsk. Guaranteed to return some non-empty
  1966. * subset of node_states[N_MEMORY], even if this means going outside the
  1967. * tasks cpuset.
  1968. **/
  1969. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1970. {
  1971. nodemask_t mask;
  1972. mutex_lock(&callback_mutex);
  1973. task_lock(tsk);
  1974. guarantee_online_mems(task_cs(tsk), &mask);
  1975. task_unlock(tsk);
  1976. mutex_unlock(&callback_mutex);
  1977. return mask;
  1978. }
  1979. /**
  1980. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1981. * @nodemask: the nodemask to be checked
  1982. *
  1983. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1984. */
  1985. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1986. {
  1987. return nodes_intersects(*nodemask, current->mems_allowed);
  1988. }
  1989. /*
  1990. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1991. * mem_hardwall ancestor to the specified cpuset. Call holding
  1992. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1993. * (an unusual configuration), then returns the root cpuset.
  1994. */
  1995. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1996. {
  1997. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1998. cs = cs->parent;
  1999. return cs;
  2000. }
  2001. /**
  2002. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2003. * @node: is this an allowed node?
  2004. * @gfp_mask: memory allocation flags
  2005. *
  2006. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2007. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2008. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2009. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2010. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2011. * flag, yes.
  2012. * Otherwise, no.
  2013. *
  2014. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2015. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2016. * might sleep, and might allow a node from an enclosing cpuset.
  2017. *
  2018. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2019. * cpusets, and never sleeps.
  2020. *
  2021. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2022. * by forcibly using a zonelist starting at a specified node, and by
  2023. * (in get_page_from_freelist()) refusing to consider the zones for
  2024. * any node on the zonelist except the first. By the time any such
  2025. * calls get to this routine, we should just shut up and say 'yes'.
  2026. *
  2027. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2028. * and do not allow allocations outside the current tasks cpuset
  2029. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2030. * GFP_KERNEL allocations are not so marked, so can escape to the
  2031. * nearest enclosing hardwalled ancestor cpuset.
  2032. *
  2033. * Scanning up parent cpusets requires callback_mutex. The
  2034. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2035. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2036. * current tasks mems_allowed came up empty on the first pass over
  2037. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2038. * cpuset are short of memory, might require taking the callback_mutex
  2039. * mutex.
  2040. *
  2041. * The first call here from mm/page_alloc:get_page_from_freelist()
  2042. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2043. * so no allocation on a node outside the cpuset is allowed (unless
  2044. * in interrupt, of course).
  2045. *
  2046. * The second pass through get_page_from_freelist() doesn't even call
  2047. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2048. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2049. * in alloc_flags. That logic and the checks below have the combined
  2050. * affect that:
  2051. * in_interrupt - any node ok (current task context irrelevant)
  2052. * GFP_ATOMIC - any node ok
  2053. * TIF_MEMDIE - any node ok
  2054. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2055. * GFP_USER - only nodes in current tasks mems allowed ok.
  2056. *
  2057. * Rule:
  2058. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2059. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2060. * the code that might scan up ancestor cpusets and sleep.
  2061. */
  2062. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2063. {
  2064. const struct cpuset *cs; /* current cpuset ancestors */
  2065. int allowed; /* is allocation in zone z allowed? */
  2066. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2067. return 1;
  2068. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2069. if (node_isset(node, current->mems_allowed))
  2070. return 1;
  2071. /*
  2072. * Allow tasks that have access to memory reserves because they have
  2073. * been OOM killed to get memory anywhere.
  2074. */
  2075. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2076. return 1;
  2077. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2078. return 0;
  2079. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2080. return 1;
  2081. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2082. mutex_lock(&callback_mutex);
  2083. task_lock(current);
  2084. cs = nearest_hardwall_ancestor(task_cs(current));
  2085. task_unlock(current);
  2086. allowed = node_isset(node, cs->mems_allowed);
  2087. mutex_unlock(&callback_mutex);
  2088. return allowed;
  2089. }
  2090. /*
  2091. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2092. * @node: is this an allowed node?
  2093. * @gfp_mask: memory allocation flags
  2094. *
  2095. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2096. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2097. * yes. If the task has been OOM killed and has access to memory reserves as
  2098. * specified by the TIF_MEMDIE flag, yes.
  2099. * Otherwise, no.
  2100. *
  2101. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2102. * by forcibly using a zonelist starting at a specified node, and by
  2103. * (in get_page_from_freelist()) refusing to consider the zones for
  2104. * any node on the zonelist except the first. By the time any such
  2105. * calls get to this routine, we should just shut up and say 'yes'.
  2106. *
  2107. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2108. * this variant requires that the node be in the current task's
  2109. * mems_allowed or that we're in interrupt. It does not scan up the
  2110. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2111. * It never sleeps.
  2112. */
  2113. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2114. {
  2115. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2116. return 1;
  2117. if (node_isset(node, current->mems_allowed))
  2118. return 1;
  2119. /*
  2120. * Allow tasks that have access to memory reserves because they have
  2121. * been OOM killed to get memory anywhere.
  2122. */
  2123. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2124. return 1;
  2125. return 0;
  2126. }
  2127. /**
  2128. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2129. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2130. *
  2131. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2132. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2133. * and if the memory allocation used cpuset_mem_spread_node()
  2134. * to determine on which node to start looking, as it will for
  2135. * certain page cache or slab cache pages such as used for file
  2136. * system buffers and inode caches, then instead of starting on the
  2137. * local node to look for a free page, rather spread the starting
  2138. * node around the tasks mems_allowed nodes.
  2139. *
  2140. * We don't have to worry about the returned node being offline
  2141. * because "it can't happen", and even if it did, it would be ok.
  2142. *
  2143. * The routines calling guarantee_online_mems() are careful to
  2144. * only set nodes in task->mems_allowed that are online. So it
  2145. * should not be possible for the following code to return an
  2146. * offline node. But if it did, that would be ok, as this routine
  2147. * is not returning the node where the allocation must be, only
  2148. * the node where the search should start. The zonelist passed to
  2149. * __alloc_pages() will include all nodes. If the slab allocator
  2150. * is passed an offline node, it will fall back to the local node.
  2151. * See kmem_cache_alloc_node().
  2152. */
  2153. static int cpuset_spread_node(int *rotor)
  2154. {
  2155. int node;
  2156. node = next_node(*rotor, current->mems_allowed);
  2157. if (node == MAX_NUMNODES)
  2158. node = first_node(current->mems_allowed);
  2159. *rotor = node;
  2160. return node;
  2161. }
  2162. int cpuset_mem_spread_node(void)
  2163. {
  2164. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2165. current->cpuset_mem_spread_rotor =
  2166. node_random(&current->mems_allowed);
  2167. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2168. }
  2169. int cpuset_slab_spread_node(void)
  2170. {
  2171. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2172. current->cpuset_slab_spread_rotor =
  2173. node_random(&current->mems_allowed);
  2174. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2175. }
  2176. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2177. /**
  2178. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2179. * @tsk1: pointer to task_struct of some task.
  2180. * @tsk2: pointer to task_struct of some other task.
  2181. *
  2182. * Description: Return true if @tsk1's mems_allowed intersects the
  2183. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2184. * one of the task's memory usage might impact the memory available
  2185. * to the other.
  2186. **/
  2187. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2188. const struct task_struct *tsk2)
  2189. {
  2190. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2191. }
  2192. /**
  2193. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2194. * @task: pointer to task_struct of some task.
  2195. *
  2196. * Description: Prints @task's name, cpuset name, and cached copy of its
  2197. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2198. * dereferencing task_cs(task).
  2199. */
  2200. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2201. {
  2202. struct dentry *dentry;
  2203. dentry = task_cs(tsk)->css.cgroup->dentry;
  2204. spin_lock(&cpuset_buffer_lock);
  2205. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2206. dentry ? (const char *)dentry->d_name.name : "/");
  2207. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2208. tsk->mems_allowed);
  2209. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2210. tsk->comm, cpuset_name, cpuset_nodelist);
  2211. spin_unlock(&cpuset_buffer_lock);
  2212. }
  2213. /*
  2214. * Collection of memory_pressure is suppressed unless
  2215. * this flag is enabled by writing "1" to the special
  2216. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2217. */
  2218. int cpuset_memory_pressure_enabled __read_mostly;
  2219. /**
  2220. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2221. *
  2222. * Keep a running average of the rate of synchronous (direct)
  2223. * page reclaim efforts initiated by tasks in each cpuset.
  2224. *
  2225. * This represents the rate at which some task in the cpuset
  2226. * ran low on memory on all nodes it was allowed to use, and
  2227. * had to enter the kernels page reclaim code in an effort to
  2228. * create more free memory by tossing clean pages or swapping
  2229. * or writing dirty pages.
  2230. *
  2231. * Display to user space in the per-cpuset read-only file
  2232. * "memory_pressure". Value displayed is an integer
  2233. * representing the recent rate of entry into the synchronous
  2234. * (direct) page reclaim by any task attached to the cpuset.
  2235. **/
  2236. void __cpuset_memory_pressure_bump(void)
  2237. {
  2238. task_lock(current);
  2239. fmeter_markevent(&task_cs(current)->fmeter);
  2240. task_unlock(current);
  2241. }
  2242. #ifdef CONFIG_PROC_PID_CPUSET
  2243. /*
  2244. * proc_cpuset_show()
  2245. * - Print tasks cpuset path into seq_file.
  2246. * - Used for /proc/<pid>/cpuset.
  2247. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2248. * doesn't really matter if tsk->cpuset changes after we read it,
  2249. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2250. * anyway.
  2251. */
  2252. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2253. {
  2254. struct pid *pid;
  2255. struct task_struct *tsk;
  2256. char *buf;
  2257. struct cgroup_subsys_state *css;
  2258. int retval;
  2259. retval = -ENOMEM;
  2260. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2261. if (!buf)
  2262. goto out;
  2263. retval = -ESRCH;
  2264. pid = m->private;
  2265. tsk = get_pid_task(pid, PIDTYPE_PID);
  2266. if (!tsk)
  2267. goto out_free;
  2268. retval = -EINVAL;
  2269. cgroup_lock();
  2270. css = task_subsys_state(tsk, cpuset_subsys_id);
  2271. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2272. if (retval < 0)
  2273. goto out_unlock;
  2274. seq_puts(m, buf);
  2275. seq_putc(m, '\n');
  2276. out_unlock:
  2277. cgroup_unlock();
  2278. put_task_struct(tsk);
  2279. out_free:
  2280. kfree(buf);
  2281. out:
  2282. return retval;
  2283. }
  2284. static int cpuset_open(struct inode *inode, struct file *file)
  2285. {
  2286. struct pid *pid = PROC_I(inode)->pid;
  2287. return single_open(file, proc_cpuset_show, pid);
  2288. }
  2289. const struct file_operations proc_cpuset_operations = {
  2290. .open = cpuset_open,
  2291. .read = seq_read,
  2292. .llseek = seq_lseek,
  2293. .release = single_release,
  2294. };
  2295. #endif /* CONFIG_PROC_PID_CPUSET */
  2296. /* Display task mems_allowed in /proc/<pid>/status file. */
  2297. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2298. {
  2299. seq_printf(m, "Mems_allowed:\t");
  2300. seq_nodemask(m, &task->mems_allowed);
  2301. seq_printf(m, "\n");
  2302. seq_printf(m, "Mems_allowed_list:\t");
  2303. seq_nodemask_list(m, &task->mems_allowed);
  2304. seq_printf(m, "\n");
  2305. }