af_key.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/xfrm.h>
  29. #include <linux/audit.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. };
  45. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  46. {
  47. return (struct pfkey_sock *)sk;
  48. }
  49. static void pfkey_sock_destruct(struct sock *sk)
  50. {
  51. skb_queue_purge(&sk->sk_receive_queue);
  52. if (!sock_flag(sk, SOCK_DEAD)) {
  53. printk("Attempt to release alive pfkey socket: %p\n", sk);
  54. return;
  55. }
  56. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  57. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  58. atomic_dec(&pfkey_socks_nr);
  59. }
  60. static void pfkey_table_grab(void)
  61. {
  62. write_lock_bh(&pfkey_table_lock);
  63. if (atomic_read(&pfkey_table_users)) {
  64. DECLARE_WAITQUEUE(wait, current);
  65. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  66. for(;;) {
  67. set_current_state(TASK_UNINTERRUPTIBLE);
  68. if (atomic_read(&pfkey_table_users) == 0)
  69. break;
  70. write_unlock_bh(&pfkey_table_lock);
  71. schedule();
  72. write_lock_bh(&pfkey_table_lock);
  73. }
  74. __set_current_state(TASK_RUNNING);
  75. remove_wait_queue(&pfkey_table_wait, &wait);
  76. }
  77. }
  78. static __inline__ void pfkey_table_ungrab(void)
  79. {
  80. write_unlock_bh(&pfkey_table_lock);
  81. wake_up(&pfkey_table_wait);
  82. }
  83. static __inline__ void pfkey_lock_table(void)
  84. {
  85. /* read_lock() synchronizes us to pfkey_table_grab */
  86. read_lock(&pfkey_table_lock);
  87. atomic_inc(&pfkey_table_users);
  88. read_unlock(&pfkey_table_lock);
  89. }
  90. static __inline__ void pfkey_unlock_table(void)
  91. {
  92. if (atomic_dec_and_test(&pfkey_table_users))
  93. wake_up(&pfkey_table_wait);
  94. }
  95. static const struct proto_ops pfkey_ops;
  96. static void pfkey_insert(struct sock *sk)
  97. {
  98. pfkey_table_grab();
  99. sk_add_node(sk, &pfkey_table);
  100. pfkey_table_ungrab();
  101. }
  102. static void pfkey_remove(struct sock *sk)
  103. {
  104. pfkey_table_grab();
  105. sk_del_node_init(sk);
  106. pfkey_table_ungrab();
  107. }
  108. static struct proto key_proto = {
  109. .name = "KEY",
  110. .owner = THIS_MODULE,
  111. .obj_size = sizeof(struct pfkey_sock),
  112. };
  113. static int pfkey_create(struct socket *sock, int protocol)
  114. {
  115. struct sock *sk;
  116. int err;
  117. if (!capable(CAP_NET_ADMIN))
  118. return -EPERM;
  119. if (sock->type != SOCK_RAW)
  120. return -ESOCKTNOSUPPORT;
  121. if (protocol != PF_KEY_V2)
  122. return -EPROTONOSUPPORT;
  123. err = -ENOMEM;
  124. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  125. if (sk == NULL)
  126. goto out;
  127. sock->ops = &pfkey_ops;
  128. sock_init_data(sock, sk);
  129. sk->sk_family = PF_KEY;
  130. sk->sk_destruct = pfkey_sock_destruct;
  131. atomic_inc(&pfkey_socks_nr);
  132. pfkey_insert(sk);
  133. return 0;
  134. out:
  135. return err;
  136. }
  137. static int pfkey_release(struct socket *sock)
  138. {
  139. struct sock *sk = sock->sk;
  140. if (!sk)
  141. return 0;
  142. pfkey_remove(sk);
  143. sock_orphan(sk);
  144. sock->sk = NULL;
  145. skb_queue_purge(&sk->sk_write_queue);
  146. sock_put(sk);
  147. return 0;
  148. }
  149. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  150. gfp_t allocation, struct sock *sk)
  151. {
  152. int err = -ENOBUFS;
  153. sock_hold(sk);
  154. if (*skb2 == NULL) {
  155. if (atomic_read(&skb->users) != 1) {
  156. *skb2 = skb_clone(skb, allocation);
  157. } else {
  158. *skb2 = skb;
  159. atomic_inc(&skb->users);
  160. }
  161. }
  162. if (*skb2 != NULL) {
  163. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  164. skb_orphan(*skb2);
  165. skb_set_owner_r(*skb2, sk);
  166. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  167. sk->sk_data_ready(sk, (*skb2)->len);
  168. *skb2 = NULL;
  169. err = 0;
  170. }
  171. }
  172. sock_put(sk);
  173. return err;
  174. }
  175. /* Send SKB to all pfkey sockets matching selected criteria. */
  176. #define BROADCAST_ALL 0
  177. #define BROADCAST_ONE 1
  178. #define BROADCAST_REGISTERED 2
  179. #define BROADCAST_PROMISC_ONLY 4
  180. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  181. int broadcast_flags, struct sock *one_sk)
  182. {
  183. struct sock *sk;
  184. struct hlist_node *node;
  185. struct sk_buff *skb2 = NULL;
  186. int err = -ESRCH;
  187. /* XXX Do we need something like netlink_overrun? I think
  188. * XXX PF_KEY socket apps will not mind current behavior.
  189. */
  190. if (!skb)
  191. return -ENOMEM;
  192. pfkey_lock_table();
  193. sk_for_each(sk, node, &pfkey_table) {
  194. struct pfkey_sock *pfk = pfkey_sk(sk);
  195. int err2;
  196. /* Yes, it means that if you are meant to receive this
  197. * pfkey message you receive it twice as promiscuous
  198. * socket.
  199. */
  200. if (pfk->promisc)
  201. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  202. /* the exact target will be processed later */
  203. if (sk == one_sk)
  204. continue;
  205. if (broadcast_flags != BROADCAST_ALL) {
  206. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  207. continue;
  208. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  209. !pfk->registered)
  210. continue;
  211. if (broadcast_flags & BROADCAST_ONE)
  212. continue;
  213. }
  214. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  215. /* Error is cleare after succecful sending to at least one
  216. * registered KM */
  217. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  218. err = err2;
  219. }
  220. pfkey_unlock_table();
  221. if (one_sk != NULL)
  222. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  223. if (skb2)
  224. kfree_skb(skb2);
  225. kfree_skb(skb);
  226. return err;
  227. }
  228. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  229. {
  230. *new = *orig;
  231. }
  232. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  233. {
  234. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  235. struct sadb_msg *hdr;
  236. if (!skb)
  237. return -ENOBUFS;
  238. /* Woe be to the platform trying to support PFKEY yet
  239. * having normal errnos outside the 1-255 range, inclusive.
  240. */
  241. err = -err;
  242. if (err == ERESTARTSYS ||
  243. err == ERESTARTNOHAND ||
  244. err == ERESTARTNOINTR)
  245. err = EINTR;
  246. if (err >= 512)
  247. err = EINVAL;
  248. BUG_ON(err <= 0 || err >= 256);
  249. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  250. pfkey_hdr_dup(hdr, orig);
  251. hdr->sadb_msg_errno = (uint8_t) err;
  252. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  253. sizeof(uint64_t));
  254. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  255. return 0;
  256. }
  257. static u8 sadb_ext_min_len[] = {
  258. [SADB_EXT_RESERVED] = (u8) 0,
  259. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  260. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  268. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  270. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  271. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  272. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  274. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  275. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  276. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  277. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  278. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  279. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  281. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  282. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  283. };
  284. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  285. static int verify_address_len(void *p)
  286. {
  287. struct sadb_address *sp = p;
  288. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  289. struct sockaddr_in *sin;
  290. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  291. struct sockaddr_in6 *sin6;
  292. #endif
  293. int len;
  294. switch (addr->sa_family) {
  295. case AF_INET:
  296. len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
  297. len /= sizeof(uint64_t);
  298. if (sp->sadb_address_len != len ||
  299. sp->sadb_address_prefixlen > 32)
  300. return -EINVAL;
  301. break;
  302. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  303. case AF_INET6:
  304. len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
  305. len /= sizeof(uint64_t);
  306. if (sp->sadb_address_len != len ||
  307. sp->sadb_address_prefixlen > 128)
  308. return -EINVAL;
  309. break;
  310. #endif
  311. default:
  312. /* It is user using kernel to keep track of security
  313. * associations for another protocol, such as
  314. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  315. * lengths.
  316. *
  317. * XXX Actually, association/policy database is not yet
  318. * XXX able to cope with arbitrary sockaddr families.
  319. * XXX When it can, remove this -EINVAL. -DaveM
  320. */
  321. return -EINVAL;
  322. break;
  323. }
  324. return 0;
  325. }
  326. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  327. {
  328. int len = 0;
  329. len += sizeof(struct sadb_x_sec_ctx);
  330. len += sec_ctx->sadb_x_ctx_len;
  331. len += sizeof(uint64_t) - 1;
  332. len /= sizeof(uint64_t);
  333. return len;
  334. }
  335. static inline int verify_sec_ctx_len(void *p)
  336. {
  337. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  338. int len;
  339. if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
  340. return -EINVAL;
  341. len = pfkey_sec_ctx_len(sec_ctx);
  342. if (sec_ctx->sadb_x_sec_len != len)
  343. return -EINVAL;
  344. return 0;
  345. }
  346. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  347. {
  348. struct xfrm_user_sec_ctx *uctx = NULL;
  349. int ctx_size = sec_ctx->sadb_x_ctx_len;
  350. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  351. if (!uctx)
  352. return NULL;
  353. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  354. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  355. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  356. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  357. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  358. memcpy(uctx + 1, sec_ctx + 1,
  359. uctx->ctx_len);
  360. return uctx;
  361. }
  362. static int present_and_same_family(struct sadb_address *src,
  363. struct sadb_address *dst)
  364. {
  365. struct sockaddr *s_addr, *d_addr;
  366. if (!src || !dst)
  367. return 0;
  368. s_addr = (struct sockaddr *)(src + 1);
  369. d_addr = (struct sockaddr *)(dst + 1);
  370. if (s_addr->sa_family != d_addr->sa_family)
  371. return 0;
  372. if (s_addr->sa_family != AF_INET
  373. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  374. && s_addr->sa_family != AF_INET6
  375. #endif
  376. )
  377. return 0;
  378. return 1;
  379. }
  380. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  381. {
  382. char *p = (char *) hdr;
  383. int len = skb->len;
  384. len -= sizeof(*hdr);
  385. p += sizeof(*hdr);
  386. while (len > 0) {
  387. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  388. uint16_t ext_type;
  389. int ext_len;
  390. ext_len = ehdr->sadb_ext_len;
  391. ext_len *= sizeof(uint64_t);
  392. ext_type = ehdr->sadb_ext_type;
  393. if (ext_len < sizeof(uint64_t) ||
  394. ext_len > len ||
  395. ext_type == SADB_EXT_RESERVED)
  396. return -EINVAL;
  397. if (ext_type <= SADB_EXT_MAX) {
  398. int min = (int) sadb_ext_min_len[ext_type];
  399. if (ext_len < min)
  400. return -EINVAL;
  401. if (ext_hdrs[ext_type-1] != NULL)
  402. return -EINVAL;
  403. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  404. ext_type == SADB_EXT_ADDRESS_DST ||
  405. ext_type == SADB_EXT_ADDRESS_PROXY ||
  406. ext_type == SADB_X_EXT_NAT_T_OA) {
  407. if (verify_address_len(p))
  408. return -EINVAL;
  409. }
  410. if (ext_type == SADB_X_EXT_SEC_CTX) {
  411. if (verify_sec_ctx_len(p))
  412. return -EINVAL;
  413. }
  414. ext_hdrs[ext_type-1] = p;
  415. }
  416. p += ext_len;
  417. len -= ext_len;
  418. }
  419. return 0;
  420. }
  421. static uint16_t
  422. pfkey_satype2proto(uint8_t satype)
  423. {
  424. switch (satype) {
  425. case SADB_SATYPE_UNSPEC:
  426. return IPSEC_PROTO_ANY;
  427. case SADB_SATYPE_AH:
  428. return IPPROTO_AH;
  429. case SADB_SATYPE_ESP:
  430. return IPPROTO_ESP;
  431. case SADB_X_SATYPE_IPCOMP:
  432. return IPPROTO_COMP;
  433. break;
  434. default:
  435. return 0;
  436. }
  437. /* NOTREACHED */
  438. }
  439. static uint8_t
  440. pfkey_proto2satype(uint16_t proto)
  441. {
  442. switch (proto) {
  443. case IPPROTO_AH:
  444. return SADB_SATYPE_AH;
  445. case IPPROTO_ESP:
  446. return SADB_SATYPE_ESP;
  447. case IPPROTO_COMP:
  448. return SADB_X_SATYPE_IPCOMP;
  449. break;
  450. default:
  451. return 0;
  452. }
  453. /* NOTREACHED */
  454. }
  455. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  456. * say specifically 'just raw sockets' as we encode them as 255.
  457. */
  458. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  459. {
  460. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  461. }
  462. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  463. {
  464. return (proto ? proto : IPSEC_PROTO_ANY);
  465. }
  466. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  467. xfrm_address_t *xaddr)
  468. {
  469. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  470. case AF_INET:
  471. xaddr->a4 =
  472. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  473. return AF_INET;
  474. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  475. case AF_INET6:
  476. memcpy(xaddr->a6,
  477. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  478. sizeof(struct in6_addr));
  479. return AF_INET6;
  480. #endif
  481. default:
  482. return 0;
  483. }
  484. /* NOTREACHED */
  485. }
  486. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  487. {
  488. struct sadb_sa *sa;
  489. struct sadb_address *addr;
  490. uint16_t proto;
  491. unsigned short family;
  492. xfrm_address_t *xaddr;
  493. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  494. if (sa == NULL)
  495. return NULL;
  496. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  497. if (proto == 0)
  498. return NULL;
  499. /* sadb_address_len should be checked by caller */
  500. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  501. if (addr == NULL)
  502. return NULL;
  503. family = ((struct sockaddr *)(addr + 1))->sa_family;
  504. switch (family) {
  505. case AF_INET:
  506. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  507. break;
  508. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  509. case AF_INET6:
  510. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  511. break;
  512. #endif
  513. default:
  514. xaddr = NULL;
  515. }
  516. if (!xaddr)
  517. return NULL;
  518. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  519. }
  520. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  521. static int
  522. pfkey_sockaddr_size(sa_family_t family)
  523. {
  524. switch (family) {
  525. case AF_INET:
  526. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  527. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  528. case AF_INET6:
  529. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  530. #endif
  531. default:
  532. return 0;
  533. }
  534. /* NOTREACHED */
  535. }
  536. static inline int pfkey_mode_from_xfrm(int mode)
  537. {
  538. switch(mode) {
  539. case XFRM_MODE_TRANSPORT:
  540. return IPSEC_MODE_TRANSPORT;
  541. case XFRM_MODE_TUNNEL:
  542. return IPSEC_MODE_TUNNEL;
  543. case XFRM_MODE_BEET:
  544. return IPSEC_MODE_BEET;
  545. default:
  546. return -1;
  547. }
  548. }
  549. static inline int pfkey_mode_to_xfrm(int mode)
  550. {
  551. switch(mode) {
  552. case IPSEC_MODE_ANY: /*XXX*/
  553. case IPSEC_MODE_TRANSPORT:
  554. return XFRM_MODE_TRANSPORT;
  555. case IPSEC_MODE_TUNNEL:
  556. return XFRM_MODE_TUNNEL;
  557. case IPSEC_MODE_BEET:
  558. return XFRM_MODE_BEET;
  559. default:
  560. return -1;
  561. }
  562. }
  563. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  564. {
  565. struct sk_buff *skb;
  566. struct sadb_msg *hdr;
  567. struct sadb_sa *sa;
  568. struct sadb_lifetime *lifetime;
  569. struct sadb_address *addr;
  570. struct sadb_key *key;
  571. struct sadb_x_sa2 *sa2;
  572. struct sockaddr_in *sin;
  573. struct sadb_x_sec_ctx *sec_ctx;
  574. struct xfrm_sec_ctx *xfrm_ctx;
  575. int ctx_size = 0;
  576. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  577. struct sockaddr_in6 *sin6;
  578. #endif
  579. int size;
  580. int auth_key_size = 0;
  581. int encrypt_key_size = 0;
  582. int sockaddr_size;
  583. struct xfrm_encap_tmpl *natt = NULL;
  584. int mode;
  585. /* address family check */
  586. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  587. if (!sockaddr_size)
  588. return ERR_PTR(-EINVAL);
  589. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  590. key(AE), (identity(SD),) (sensitivity)> */
  591. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  592. sizeof(struct sadb_lifetime) +
  593. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  594. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  595. sizeof(struct sadb_address)*2 +
  596. sockaddr_size*2 +
  597. sizeof(struct sadb_x_sa2);
  598. if ((xfrm_ctx = x->security)) {
  599. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  600. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  601. }
  602. /* identity & sensitivity */
  603. if ((x->props.family == AF_INET &&
  604. x->sel.saddr.a4 != x->props.saddr.a4)
  605. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  606. || (x->props.family == AF_INET6 &&
  607. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  608. #endif
  609. )
  610. size += sizeof(struct sadb_address) + sockaddr_size;
  611. if (add_keys) {
  612. if (x->aalg && x->aalg->alg_key_len) {
  613. auth_key_size =
  614. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  615. size += sizeof(struct sadb_key) + auth_key_size;
  616. }
  617. if (x->ealg && x->ealg->alg_key_len) {
  618. encrypt_key_size =
  619. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  620. size += sizeof(struct sadb_key) + encrypt_key_size;
  621. }
  622. }
  623. if (x->encap)
  624. natt = x->encap;
  625. if (natt && natt->encap_type) {
  626. size += sizeof(struct sadb_x_nat_t_type);
  627. size += sizeof(struct sadb_x_nat_t_port);
  628. size += sizeof(struct sadb_x_nat_t_port);
  629. }
  630. skb = alloc_skb(size + 16, GFP_ATOMIC);
  631. if (skb == NULL)
  632. return ERR_PTR(-ENOBUFS);
  633. /* call should fill header later */
  634. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  635. memset(hdr, 0, size); /* XXX do we need this ? */
  636. hdr->sadb_msg_len = size / sizeof(uint64_t);
  637. /* sa */
  638. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  639. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  640. sa->sadb_sa_exttype = SADB_EXT_SA;
  641. sa->sadb_sa_spi = x->id.spi;
  642. sa->sadb_sa_replay = x->props.replay_window;
  643. switch (x->km.state) {
  644. case XFRM_STATE_VALID:
  645. sa->sadb_sa_state = x->km.dying ?
  646. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  647. break;
  648. case XFRM_STATE_ACQ:
  649. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  650. break;
  651. default:
  652. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  653. break;
  654. }
  655. sa->sadb_sa_auth = 0;
  656. if (x->aalg) {
  657. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  658. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  659. }
  660. sa->sadb_sa_encrypt = 0;
  661. BUG_ON(x->ealg && x->calg);
  662. if (x->ealg) {
  663. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  664. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  665. }
  666. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  667. if (x->calg) {
  668. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  669. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  670. }
  671. sa->sadb_sa_flags = 0;
  672. if (x->props.flags & XFRM_STATE_NOECN)
  673. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  674. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  675. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  676. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  677. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  678. /* hard time */
  679. if (hsc & 2) {
  680. lifetime = (struct sadb_lifetime *) skb_put(skb,
  681. sizeof(struct sadb_lifetime));
  682. lifetime->sadb_lifetime_len =
  683. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  684. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  685. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  686. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  687. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  688. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  689. }
  690. /* soft time */
  691. if (hsc & 1) {
  692. lifetime = (struct sadb_lifetime *) skb_put(skb,
  693. sizeof(struct sadb_lifetime));
  694. lifetime->sadb_lifetime_len =
  695. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  696. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  697. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  698. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  699. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  700. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  701. }
  702. /* current time */
  703. lifetime = (struct sadb_lifetime *) skb_put(skb,
  704. sizeof(struct sadb_lifetime));
  705. lifetime->sadb_lifetime_len =
  706. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  707. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  708. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  709. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  710. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  711. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  712. /* src address */
  713. addr = (struct sadb_address*) skb_put(skb,
  714. sizeof(struct sadb_address)+sockaddr_size);
  715. addr->sadb_address_len =
  716. (sizeof(struct sadb_address)+sockaddr_size)/
  717. sizeof(uint64_t);
  718. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  719. /* "if the ports are non-zero, then the sadb_address_proto field,
  720. normally zero, MUST be filled in with the transport
  721. protocol's number." - RFC2367 */
  722. addr->sadb_address_proto = 0;
  723. addr->sadb_address_reserved = 0;
  724. if (x->props.family == AF_INET) {
  725. addr->sadb_address_prefixlen = 32;
  726. sin = (struct sockaddr_in *) (addr + 1);
  727. sin->sin_family = AF_INET;
  728. sin->sin_addr.s_addr = x->props.saddr.a4;
  729. sin->sin_port = 0;
  730. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  731. }
  732. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  733. else if (x->props.family == AF_INET6) {
  734. addr->sadb_address_prefixlen = 128;
  735. sin6 = (struct sockaddr_in6 *) (addr + 1);
  736. sin6->sin6_family = AF_INET6;
  737. sin6->sin6_port = 0;
  738. sin6->sin6_flowinfo = 0;
  739. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  740. sizeof(struct in6_addr));
  741. sin6->sin6_scope_id = 0;
  742. }
  743. #endif
  744. else
  745. BUG();
  746. /* dst address */
  747. addr = (struct sadb_address*) skb_put(skb,
  748. sizeof(struct sadb_address)+sockaddr_size);
  749. addr->sadb_address_len =
  750. (sizeof(struct sadb_address)+sockaddr_size)/
  751. sizeof(uint64_t);
  752. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  753. addr->sadb_address_proto = 0;
  754. addr->sadb_address_prefixlen = 32; /* XXX */
  755. addr->sadb_address_reserved = 0;
  756. if (x->props.family == AF_INET) {
  757. sin = (struct sockaddr_in *) (addr + 1);
  758. sin->sin_family = AF_INET;
  759. sin->sin_addr.s_addr = x->id.daddr.a4;
  760. sin->sin_port = 0;
  761. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  762. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  763. addr = (struct sadb_address*) skb_put(skb,
  764. sizeof(struct sadb_address)+sockaddr_size);
  765. addr->sadb_address_len =
  766. (sizeof(struct sadb_address)+sockaddr_size)/
  767. sizeof(uint64_t);
  768. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  769. addr->sadb_address_proto =
  770. pfkey_proto_from_xfrm(x->sel.proto);
  771. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  772. addr->sadb_address_reserved = 0;
  773. sin = (struct sockaddr_in *) (addr + 1);
  774. sin->sin_family = AF_INET;
  775. sin->sin_addr.s_addr = x->sel.saddr.a4;
  776. sin->sin_port = x->sel.sport;
  777. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  778. }
  779. }
  780. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  781. else if (x->props.family == AF_INET6) {
  782. addr->sadb_address_prefixlen = 128;
  783. sin6 = (struct sockaddr_in6 *) (addr + 1);
  784. sin6->sin6_family = AF_INET6;
  785. sin6->sin6_port = 0;
  786. sin6->sin6_flowinfo = 0;
  787. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  788. sin6->sin6_scope_id = 0;
  789. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  790. sizeof(struct in6_addr))) {
  791. addr = (struct sadb_address *) skb_put(skb,
  792. sizeof(struct sadb_address)+sockaddr_size);
  793. addr->sadb_address_len =
  794. (sizeof(struct sadb_address)+sockaddr_size)/
  795. sizeof(uint64_t);
  796. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  797. addr->sadb_address_proto =
  798. pfkey_proto_from_xfrm(x->sel.proto);
  799. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  800. addr->sadb_address_reserved = 0;
  801. sin6 = (struct sockaddr_in6 *) (addr + 1);
  802. sin6->sin6_family = AF_INET6;
  803. sin6->sin6_port = x->sel.sport;
  804. sin6->sin6_flowinfo = 0;
  805. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  806. sizeof(struct in6_addr));
  807. sin6->sin6_scope_id = 0;
  808. }
  809. }
  810. #endif
  811. else
  812. BUG();
  813. /* auth key */
  814. if (add_keys && auth_key_size) {
  815. key = (struct sadb_key *) skb_put(skb,
  816. sizeof(struct sadb_key)+auth_key_size);
  817. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  818. sizeof(uint64_t);
  819. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  820. key->sadb_key_bits = x->aalg->alg_key_len;
  821. key->sadb_key_reserved = 0;
  822. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  823. }
  824. /* encrypt key */
  825. if (add_keys && encrypt_key_size) {
  826. key = (struct sadb_key *) skb_put(skb,
  827. sizeof(struct sadb_key)+encrypt_key_size);
  828. key->sadb_key_len = (sizeof(struct sadb_key) +
  829. encrypt_key_size) / sizeof(uint64_t);
  830. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  831. key->sadb_key_bits = x->ealg->alg_key_len;
  832. key->sadb_key_reserved = 0;
  833. memcpy(key + 1, x->ealg->alg_key,
  834. (x->ealg->alg_key_len+7)/8);
  835. }
  836. /* sa */
  837. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  838. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  839. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  840. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  841. kfree_skb(skb);
  842. return ERR_PTR(-EINVAL);
  843. }
  844. sa2->sadb_x_sa2_mode = mode;
  845. sa2->sadb_x_sa2_reserved1 = 0;
  846. sa2->sadb_x_sa2_reserved2 = 0;
  847. sa2->sadb_x_sa2_sequence = 0;
  848. sa2->sadb_x_sa2_reqid = x->props.reqid;
  849. if (natt && natt->encap_type) {
  850. struct sadb_x_nat_t_type *n_type;
  851. struct sadb_x_nat_t_port *n_port;
  852. /* type */
  853. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  854. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  855. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  856. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  857. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  858. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  859. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  860. /* source port */
  861. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  862. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  863. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  864. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  865. n_port->sadb_x_nat_t_port_reserved = 0;
  866. /* dest port */
  867. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  868. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  869. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  870. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  871. n_port->sadb_x_nat_t_port_reserved = 0;
  872. }
  873. /* security context */
  874. if (xfrm_ctx) {
  875. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  876. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  877. sec_ctx->sadb_x_sec_len =
  878. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  879. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  880. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  881. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  882. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  883. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  884. xfrm_ctx->ctx_len);
  885. }
  886. return skb;
  887. }
  888. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  889. void **ext_hdrs)
  890. {
  891. struct xfrm_state *x;
  892. struct sadb_lifetime *lifetime;
  893. struct sadb_sa *sa;
  894. struct sadb_key *key;
  895. struct sadb_x_sec_ctx *sec_ctx;
  896. uint16_t proto;
  897. int err;
  898. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  899. if (!sa ||
  900. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  901. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  902. return ERR_PTR(-EINVAL);
  903. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  904. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  905. return ERR_PTR(-EINVAL);
  906. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  907. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  908. return ERR_PTR(-EINVAL);
  909. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  910. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  911. return ERR_PTR(-EINVAL);
  912. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  913. if (proto == 0)
  914. return ERR_PTR(-EINVAL);
  915. /* default error is no buffer space */
  916. err = -ENOBUFS;
  917. /* RFC2367:
  918. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  919. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  920. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  921. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  922. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  923. not true.
  924. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  925. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  926. */
  927. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  928. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  929. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  930. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  931. return ERR_PTR(-EINVAL);
  932. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  933. if (key != NULL &&
  934. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  935. ((key->sadb_key_bits+7) / 8 == 0 ||
  936. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  937. return ERR_PTR(-EINVAL);
  938. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  939. if (key != NULL &&
  940. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  941. ((key->sadb_key_bits+7) / 8 == 0 ||
  942. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  943. return ERR_PTR(-EINVAL);
  944. x = xfrm_state_alloc();
  945. if (x == NULL)
  946. return ERR_PTR(-ENOBUFS);
  947. x->id.proto = proto;
  948. x->id.spi = sa->sadb_sa_spi;
  949. x->props.replay_window = sa->sadb_sa_replay;
  950. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  951. x->props.flags |= XFRM_STATE_NOECN;
  952. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  953. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  954. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  955. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  956. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  957. if (lifetime != NULL) {
  958. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  959. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  960. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  961. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  962. }
  963. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  964. if (lifetime != NULL) {
  965. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  966. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  967. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  968. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  969. }
  970. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  971. if (sec_ctx != NULL) {
  972. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  973. if (!uctx)
  974. goto out;
  975. err = security_xfrm_state_alloc(x, uctx);
  976. kfree(uctx);
  977. if (err)
  978. goto out;
  979. }
  980. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  981. if (sa->sadb_sa_auth) {
  982. int keysize = 0;
  983. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  984. if (!a) {
  985. err = -ENOSYS;
  986. goto out;
  987. }
  988. if (key)
  989. keysize = (key->sadb_key_bits + 7) / 8;
  990. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  991. if (!x->aalg)
  992. goto out;
  993. strcpy(x->aalg->alg_name, a->name);
  994. x->aalg->alg_key_len = 0;
  995. if (key) {
  996. x->aalg->alg_key_len = key->sadb_key_bits;
  997. memcpy(x->aalg->alg_key, key+1, keysize);
  998. }
  999. x->props.aalgo = sa->sadb_sa_auth;
  1000. /* x->algo.flags = sa->sadb_sa_flags; */
  1001. }
  1002. if (sa->sadb_sa_encrypt) {
  1003. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1004. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1005. if (!a) {
  1006. err = -ENOSYS;
  1007. goto out;
  1008. }
  1009. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1010. if (!x->calg)
  1011. goto out;
  1012. strcpy(x->calg->alg_name, a->name);
  1013. x->props.calgo = sa->sadb_sa_encrypt;
  1014. } else {
  1015. int keysize = 0;
  1016. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1017. if (!a) {
  1018. err = -ENOSYS;
  1019. goto out;
  1020. }
  1021. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1022. if (key)
  1023. keysize = (key->sadb_key_bits + 7) / 8;
  1024. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1025. if (!x->ealg)
  1026. goto out;
  1027. strcpy(x->ealg->alg_name, a->name);
  1028. x->ealg->alg_key_len = 0;
  1029. if (key) {
  1030. x->ealg->alg_key_len = key->sadb_key_bits;
  1031. memcpy(x->ealg->alg_key, key+1, keysize);
  1032. }
  1033. x->props.ealgo = sa->sadb_sa_encrypt;
  1034. }
  1035. }
  1036. /* x->algo.flags = sa->sadb_sa_flags; */
  1037. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1038. &x->props.saddr);
  1039. if (!x->props.family) {
  1040. err = -EAFNOSUPPORT;
  1041. goto out;
  1042. }
  1043. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1044. &x->id.daddr);
  1045. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1046. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1047. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1048. if (mode < 0) {
  1049. err = -EINVAL;
  1050. goto out;
  1051. }
  1052. x->props.mode = mode;
  1053. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1054. }
  1055. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1056. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1057. /* Nobody uses this, but we try. */
  1058. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1059. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1060. }
  1061. if (!x->sel.family)
  1062. x->sel.family = x->props.family;
  1063. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1064. struct sadb_x_nat_t_type* n_type;
  1065. struct xfrm_encap_tmpl *natt;
  1066. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1067. if (!x->encap)
  1068. goto out;
  1069. natt = x->encap;
  1070. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1071. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1072. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1073. struct sadb_x_nat_t_port* n_port =
  1074. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1075. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1076. }
  1077. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1078. struct sadb_x_nat_t_port* n_port =
  1079. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1080. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1081. }
  1082. }
  1083. err = xfrm_init_state(x);
  1084. if (err)
  1085. goto out;
  1086. x->km.seq = hdr->sadb_msg_seq;
  1087. return x;
  1088. out:
  1089. x->km.state = XFRM_STATE_DEAD;
  1090. xfrm_state_put(x);
  1091. return ERR_PTR(err);
  1092. }
  1093. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1094. {
  1095. return -EOPNOTSUPP;
  1096. }
  1097. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1098. {
  1099. struct sk_buff *resp_skb;
  1100. struct sadb_x_sa2 *sa2;
  1101. struct sadb_address *saddr, *daddr;
  1102. struct sadb_msg *out_hdr;
  1103. struct xfrm_state *x = NULL;
  1104. int mode;
  1105. u32 reqid;
  1106. u8 proto;
  1107. unsigned short family;
  1108. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1109. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1110. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1111. return -EINVAL;
  1112. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1113. if (proto == 0)
  1114. return -EINVAL;
  1115. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1116. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1117. if (mode < 0)
  1118. return -EINVAL;
  1119. reqid = sa2->sadb_x_sa2_reqid;
  1120. } else {
  1121. mode = 0;
  1122. reqid = 0;
  1123. }
  1124. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1125. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1126. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1127. switch (family) {
  1128. case AF_INET:
  1129. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1130. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1131. break;
  1132. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1133. case AF_INET6:
  1134. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1135. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1136. break;
  1137. #endif
  1138. }
  1139. if (hdr->sadb_msg_seq) {
  1140. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1141. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1142. xfrm_state_put(x);
  1143. x = NULL;
  1144. }
  1145. }
  1146. if (!x)
  1147. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1148. if (x == NULL)
  1149. return -ENOENT;
  1150. resp_skb = ERR_PTR(-ENOENT);
  1151. spin_lock_bh(&x->lock);
  1152. if (x->km.state != XFRM_STATE_DEAD) {
  1153. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1154. u32 min_spi, max_spi;
  1155. if (range != NULL) {
  1156. min_spi = range->sadb_spirange_min;
  1157. max_spi = range->sadb_spirange_max;
  1158. } else {
  1159. min_spi = 0x100;
  1160. max_spi = 0x0fffffff;
  1161. }
  1162. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1163. if (x->id.spi)
  1164. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1165. }
  1166. spin_unlock_bh(&x->lock);
  1167. if (IS_ERR(resp_skb)) {
  1168. xfrm_state_put(x);
  1169. return PTR_ERR(resp_skb);
  1170. }
  1171. out_hdr = (struct sadb_msg *) resp_skb->data;
  1172. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1173. out_hdr->sadb_msg_type = SADB_GETSPI;
  1174. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1175. out_hdr->sadb_msg_errno = 0;
  1176. out_hdr->sadb_msg_reserved = 0;
  1177. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1178. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1179. xfrm_state_put(x);
  1180. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1181. return 0;
  1182. }
  1183. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1184. {
  1185. struct xfrm_state *x;
  1186. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1187. return -EOPNOTSUPP;
  1188. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1189. return 0;
  1190. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1191. if (x == NULL)
  1192. return 0;
  1193. spin_lock_bh(&x->lock);
  1194. if (x->km.state == XFRM_STATE_ACQ) {
  1195. x->km.state = XFRM_STATE_ERROR;
  1196. wake_up(&km_waitq);
  1197. }
  1198. spin_unlock_bh(&x->lock);
  1199. xfrm_state_put(x);
  1200. return 0;
  1201. }
  1202. static inline int event2poltype(int event)
  1203. {
  1204. switch (event) {
  1205. case XFRM_MSG_DELPOLICY:
  1206. return SADB_X_SPDDELETE;
  1207. case XFRM_MSG_NEWPOLICY:
  1208. return SADB_X_SPDADD;
  1209. case XFRM_MSG_UPDPOLICY:
  1210. return SADB_X_SPDUPDATE;
  1211. case XFRM_MSG_POLEXPIRE:
  1212. // return SADB_X_SPDEXPIRE;
  1213. default:
  1214. printk("pfkey: Unknown policy event %d\n", event);
  1215. break;
  1216. }
  1217. return 0;
  1218. }
  1219. static inline int event2keytype(int event)
  1220. {
  1221. switch (event) {
  1222. case XFRM_MSG_DELSA:
  1223. return SADB_DELETE;
  1224. case XFRM_MSG_NEWSA:
  1225. return SADB_ADD;
  1226. case XFRM_MSG_UPDSA:
  1227. return SADB_UPDATE;
  1228. case XFRM_MSG_EXPIRE:
  1229. return SADB_EXPIRE;
  1230. default:
  1231. printk("pfkey: Unknown SA event %d\n", event);
  1232. break;
  1233. }
  1234. return 0;
  1235. }
  1236. /* ADD/UPD/DEL */
  1237. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1238. {
  1239. struct sk_buff *skb;
  1240. struct sadb_msg *hdr;
  1241. int hsc = 3;
  1242. if (c->event == XFRM_MSG_DELSA)
  1243. hsc = 0;
  1244. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1245. if (IS_ERR(skb))
  1246. return PTR_ERR(skb);
  1247. hdr = (struct sadb_msg *) skb->data;
  1248. hdr->sadb_msg_version = PF_KEY_V2;
  1249. hdr->sadb_msg_type = event2keytype(c->event);
  1250. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1251. hdr->sadb_msg_errno = 0;
  1252. hdr->sadb_msg_reserved = 0;
  1253. hdr->sadb_msg_seq = c->seq;
  1254. hdr->sadb_msg_pid = c->pid;
  1255. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1256. return 0;
  1257. }
  1258. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1259. {
  1260. struct xfrm_state *x;
  1261. int err;
  1262. struct km_event c;
  1263. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1264. if (IS_ERR(x))
  1265. return PTR_ERR(x);
  1266. xfrm_state_hold(x);
  1267. if (hdr->sadb_msg_type == SADB_ADD)
  1268. err = xfrm_state_add(x);
  1269. else
  1270. err = xfrm_state_update(x);
  1271. xfrm_audit_log(audit_get_loginuid(current->audit_context), 0,
  1272. AUDIT_MAC_IPSEC_ADDSA, err ? 0 : 1, NULL, x);
  1273. if (err < 0) {
  1274. x->km.state = XFRM_STATE_DEAD;
  1275. __xfrm_state_put(x);
  1276. goto out;
  1277. }
  1278. if (hdr->sadb_msg_type == SADB_ADD)
  1279. c.event = XFRM_MSG_NEWSA;
  1280. else
  1281. c.event = XFRM_MSG_UPDSA;
  1282. c.seq = hdr->sadb_msg_seq;
  1283. c.pid = hdr->sadb_msg_pid;
  1284. km_state_notify(x, &c);
  1285. out:
  1286. xfrm_state_put(x);
  1287. return err;
  1288. }
  1289. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1290. {
  1291. struct xfrm_state *x;
  1292. struct km_event c;
  1293. int err;
  1294. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1295. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1296. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1297. return -EINVAL;
  1298. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1299. if (x == NULL)
  1300. return -ESRCH;
  1301. if ((err = security_xfrm_state_delete(x)))
  1302. goto out;
  1303. if (xfrm_state_kern(x)) {
  1304. err = -EPERM;
  1305. goto out;
  1306. }
  1307. err = xfrm_state_delete(x);
  1308. if (err < 0)
  1309. goto out;
  1310. c.seq = hdr->sadb_msg_seq;
  1311. c.pid = hdr->sadb_msg_pid;
  1312. c.event = XFRM_MSG_DELSA;
  1313. km_state_notify(x, &c);
  1314. out:
  1315. xfrm_audit_log(audit_get_loginuid(current->audit_context), 0,
  1316. AUDIT_MAC_IPSEC_DELSA, err ? 0 : 1, NULL, x);
  1317. xfrm_state_put(x);
  1318. return err;
  1319. }
  1320. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1321. {
  1322. __u8 proto;
  1323. struct sk_buff *out_skb;
  1324. struct sadb_msg *out_hdr;
  1325. struct xfrm_state *x;
  1326. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1327. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1328. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1329. return -EINVAL;
  1330. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1331. if (x == NULL)
  1332. return -ESRCH;
  1333. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1334. proto = x->id.proto;
  1335. xfrm_state_put(x);
  1336. if (IS_ERR(out_skb))
  1337. return PTR_ERR(out_skb);
  1338. out_hdr = (struct sadb_msg *) out_skb->data;
  1339. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1340. out_hdr->sadb_msg_type = SADB_DUMP;
  1341. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1342. out_hdr->sadb_msg_errno = 0;
  1343. out_hdr->sadb_msg_reserved = 0;
  1344. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1345. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1346. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1347. return 0;
  1348. }
  1349. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1350. gfp_t allocation)
  1351. {
  1352. struct sk_buff *skb;
  1353. struct sadb_msg *hdr;
  1354. int len, auth_len, enc_len, i;
  1355. auth_len = xfrm_count_auth_supported();
  1356. if (auth_len) {
  1357. auth_len *= sizeof(struct sadb_alg);
  1358. auth_len += sizeof(struct sadb_supported);
  1359. }
  1360. enc_len = xfrm_count_enc_supported();
  1361. if (enc_len) {
  1362. enc_len *= sizeof(struct sadb_alg);
  1363. enc_len += sizeof(struct sadb_supported);
  1364. }
  1365. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1366. skb = alloc_skb(len + 16, allocation);
  1367. if (!skb)
  1368. goto out_put_algs;
  1369. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1370. pfkey_hdr_dup(hdr, orig);
  1371. hdr->sadb_msg_errno = 0;
  1372. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1373. if (auth_len) {
  1374. struct sadb_supported *sp;
  1375. struct sadb_alg *ap;
  1376. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1377. ap = (struct sadb_alg *) (sp + 1);
  1378. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1379. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1380. for (i = 0; ; i++) {
  1381. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1382. if (!aalg)
  1383. break;
  1384. if (aalg->available)
  1385. *ap++ = aalg->desc;
  1386. }
  1387. }
  1388. if (enc_len) {
  1389. struct sadb_supported *sp;
  1390. struct sadb_alg *ap;
  1391. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1392. ap = (struct sadb_alg *) (sp + 1);
  1393. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1394. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1395. for (i = 0; ; i++) {
  1396. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1397. if (!ealg)
  1398. break;
  1399. if (ealg->available)
  1400. *ap++ = ealg->desc;
  1401. }
  1402. }
  1403. out_put_algs:
  1404. return skb;
  1405. }
  1406. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1407. {
  1408. struct pfkey_sock *pfk = pfkey_sk(sk);
  1409. struct sk_buff *supp_skb;
  1410. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1411. return -EINVAL;
  1412. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1413. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1414. return -EEXIST;
  1415. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1416. }
  1417. xfrm_probe_algs();
  1418. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1419. if (!supp_skb) {
  1420. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1421. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1422. return -ENOBUFS;
  1423. }
  1424. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1425. return 0;
  1426. }
  1427. static int key_notify_sa_flush(struct km_event *c)
  1428. {
  1429. struct sk_buff *skb;
  1430. struct sadb_msg *hdr;
  1431. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1432. if (!skb)
  1433. return -ENOBUFS;
  1434. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1435. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1436. hdr->sadb_msg_type = SADB_FLUSH;
  1437. hdr->sadb_msg_seq = c->seq;
  1438. hdr->sadb_msg_pid = c->pid;
  1439. hdr->sadb_msg_version = PF_KEY_V2;
  1440. hdr->sadb_msg_errno = (uint8_t) 0;
  1441. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1442. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1443. return 0;
  1444. }
  1445. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1446. {
  1447. unsigned proto;
  1448. struct km_event c;
  1449. struct xfrm_audit audit_info;
  1450. int err;
  1451. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1452. if (proto == 0)
  1453. return -EINVAL;
  1454. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  1455. audit_info.secid = 0;
  1456. err = xfrm_state_flush(proto, &audit_info);
  1457. if (err)
  1458. return err;
  1459. c.data.proto = proto;
  1460. c.seq = hdr->sadb_msg_seq;
  1461. c.pid = hdr->sadb_msg_pid;
  1462. c.event = XFRM_MSG_FLUSHSA;
  1463. km_state_notify(NULL, &c);
  1464. return 0;
  1465. }
  1466. struct pfkey_dump_data
  1467. {
  1468. struct sk_buff *skb;
  1469. struct sadb_msg *hdr;
  1470. struct sock *sk;
  1471. };
  1472. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1473. {
  1474. struct pfkey_dump_data *data = ptr;
  1475. struct sk_buff *out_skb;
  1476. struct sadb_msg *out_hdr;
  1477. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1478. if (IS_ERR(out_skb))
  1479. return PTR_ERR(out_skb);
  1480. out_hdr = (struct sadb_msg *) out_skb->data;
  1481. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1482. out_hdr->sadb_msg_type = SADB_DUMP;
  1483. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1484. out_hdr->sadb_msg_errno = 0;
  1485. out_hdr->sadb_msg_reserved = 0;
  1486. out_hdr->sadb_msg_seq = count;
  1487. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1488. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1489. return 0;
  1490. }
  1491. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1492. {
  1493. u8 proto;
  1494. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1495. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1496. if (proto == 0)
  1497. return -EINVAL;
  1498. return xfrm_state_walk(proto, dump_sa, &data);
  1499. }
  1500. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1501. {
  1502. struct pfkey_sock *pfk = pfkey_sk(sk);
  1503. int satype = hdr->sadb_msg_satype;
  1504. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1505. /* XXX we mangle packet... */
  1506. hdr->sadb_msg_errno = 0;
  1507. if (satype != 0 && satype != 1)
  1508. return -EINVAL;
  1509. pfk->promisc = satype;
  1510. }
  1511. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1512. return 0;
  1513. }
  1514. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1515. {
  1516. int i;
  1517. u32 reqid = *(u32*)ptr;
  1518. for (i=0; i<xp->xfrm_nr; i++) {
  1519. if (xp->xfrm_vec[i].reqid == reqid)
  1520. return -EEXIST;
  1521. }
  1522. return 0;
  1523. }
  1524. static u32 gen_reqid(void)
  1525. {
  1526. u32 start;
  1527. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1528. start = reqid;
  1529. do {
  1530. ++reqid;
  1531. if (reqid == 0)
  1532. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1533. if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid,
  1534. (void*)&reqid) != -EEXIST)
  1535. return reqid;
  1536. } while (reqid != start);
  1537. return 0;
  1538. }
  1539. static int
  1540. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1541. {
  1542. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1543. struct sockaddr_in *sin;
  1544. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1545. struct sockaddr_in6 *sin6;
  1546. #endif
  1547. int mode;
  1548. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1549. return -ELOOP;
  1550. if (rq->sadb_x_ipsecrequest_mode == 0)
  1551. return -EINVAL;
  1552. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1553. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1554. return -EINVAL;
  1555. t->mode = mode;
  1556. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1557. t->optional = 1;
  1558. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1559. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1560. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1561. t->reqid = 0;
  1562. if (!t->reqid && !(t->reqid = gen_reqid()))
  1563. return -ENOBUFS;
  1564. }
  1565. /* addresses present only in tunnel mode */
  1566. if (t->mode == XFRM_MODE_TUNNEL) {
  1567. struct sockaddr *sa;
  1568. sa = (struct sockaddr *)(rq+1);
  1569. switch(sa->sa_family) {
  1570. case AF_INET:
  1571. sin = (struct sockaddr_in*)sa;
  1572. t->saddr.a4 = sin->sin_addr.s_addr;
  1573. sin++;
  1574. if (sin->sin_family != AF_INET)
  1575. return -EINVAL;
  1576. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1577. break;
  1578. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1579. case AF_INET6:
  1580. sin6 = (struct sockaddr_in6*)sa;
  1581. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1582. sin6++;
  1583. if (sin6->sin6_family != AF_INET6)
  1584. return -EINVAL;
  1585. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1586. break;
  1587. #endif
  1588. default:
  1589. return -EINVAL;
  1590. }
  1591. t->encap_family = sa->sa_family;
  1592. } else
  1593. t->encap_family = xp->family;
  1594. /* No way to set this via kame pfkey */
  1595. t->aalgos = t->ealgos = t->calgos = ~0;
  1596. xp->xfrm_nr++;
  1597. return 0;
  1598. }
  1599. static int
  1600. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1601. {
  1602. int err;
  1603. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1604. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1605. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1606. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1607. return err;
  1608. len -= rq->sadb_x_ipsecrequest_len;
  1609. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1610. }
  1611. return 0;
  1612. }
  1613. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1614. {
  1615. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1616. if (xfrm_ctx) {
  1617. int len = sizeof(struct sadb_x_sec_ctx);
  1618. len += xfrm_ctx->ctx_len;
  1619. return PFKEY_ALIGN8(len);
  1620. }
  1621. return 0;
  1622. }
  1623. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1624. {
  1625. struct xfrm_tmpl *t;
  1626. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1627. int socklen = 0;
  1628. int i;
  1629. for (i=0; i<xp->xfrm_nr; i++) {
  1630. t = xp->xfrm_vec + i;
  1631. socklen += (t->encap_family == AF_INET ?
  1632. sizeof(struct sockaddr_in) :
  1633. sizeof(struct sockaddr_in6));
  1634. }
  1635. return sizeof(struct sadb_msg) +
  1636. (sizeof(struct sadb_lifetime) * 3) +
  1637. (sizeof(struct sadb_address) * 2) +
  1638. (sockaddr_size * 2) +
  1639. sizeof(struct sadb_x_policy) +
  1640. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1641. (socklen * 2) +
  1642. pfkey_xfrm_policy2sec_ctx_size(xp);
  1643. }
  1644. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1645. {
  1646. struct sk_buff *skb;
  1647. int size;
  1648. size = pfkey_xfrm_policy2msg_size(xp);
  1649. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1650. if (skb == NULL)
  1651. return ERR_PTR(-ENOBUFS);
  1652. return skb;
  1653. }
  1654. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1655. {
  1656. struct sadb_msg *hdr;
  1657. struct sadb_address *addr;
  1658. struct sadb_lifetime *lifetime;
  1659. struct sadb_x_policy *pol;
  1660. struct sockaddr_in *sin;
  1661. struct sadb_x_sec_ctx *sec_ctx;
  1662. struct xfrm_sec_ctx *xfrm_ctx;
  1663. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1664. struct sockaddr_in6 *sin6;
  1665. #endif
  1666. int i;
  1667. int size;
  1668. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1669. int socklen = (xp->family == AF_INET ?
  1670. sizeof(struct sockaddr_in) :
  1671. sizeof(struct sockaddr_in6));
  1672. size = pfkey_xfrm_policy2msg_size(xp);
  1673. /* call should fill header later */
  1674. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1675. memset(hdr, 0, size); /* XXX do we need this ? */
  1676. /* src address */
  1677. addr = (struct sadb_address*) skb_put(skb,
  1678. sizeof(struct sadb_address)+sockaddr_size);
  1679. addr->sadb_address_len =
  1680. (sizeof(struct sadb_address)+sockaddr_size)/
  1681. sizeof(uint64_t);
  1682. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1683. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1684. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1685. addr->sadb_address_reserved = 0;
  1686. /* src address */
  1687. if (xp->family == AF_INET) {
  1688. sin = (struct sockaddr_in *) (addr + 1);
  1689. sin->sin_family = AF_INET;
  1690. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1691. sin->sin_port = xp->selector.sport;
  1692. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1693. }
  1694. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1695. else if (xp->family == AF_INET6) {
  1696. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1697. sin6->sin6_family = AF_INET6;
  1698. sin6->sin6_port = xp->selector.sport;
  1699. sin6->sin6_flowinfo = 0;
  1700. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1701. sizeof(struct in6_addr));
  1702. sin6->sin6_scope_id = 0;
  1703. }
  1704. #endif
  1705. else
  1706. BUG();
  1707. /* dst address */
  1708. addr = (struct sadb_address*) skb_put(skb,
  1709. sizeof(struct sadb_address)+sockaddr_size);
  1710. addr->sadb_address_len =
  1711. (sizeof(struct sadb_address)+sockaddr_size)/
  1712. sizeof(uint64_t);
  1713. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1714. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1715. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1716. addr->sadb_address_reserved = 0;
  1717. if (xp->family == AF_INET) {
  1718. sin = (struct sockaddr_in *) (addr + 1);
  1719. sin->sin_family = AF_INET;
  1720. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1721. sin->sin_port = xp->selector.dport;
  1722. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1723. }
  1724. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1725. else if (xp->family == AF_INET6) {
  1726. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1727. sin6->sin6_family = AF_INET6;
  1728. sin6->sin6_port = xp->selector.dport;
  1729. sin6->sin6_flowinfo = 0;
  1730. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1731. sizeof(struct in6_addr));
  1732. sin6->sin6_scope_id = 0;
  1733. }
  1734. #endif
  1735. else
  1736. BUG();
  1737. /* hard time */
  1738. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1739. sizeof(struct sadb_lifetime));
  1740. lifetime->sadb_lifetime_len =
  1741. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1742. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1743. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1744. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1745. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1746. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1747. /* soft time */
  1748. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1749. sizeof(struct sadb_lifetime));
  1750. lifetime->sadb_lifetime_len =
  1751. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1752. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1753. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1754. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1755. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1756. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1757. /* current time */
  1758. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1759. sizeof(struct sadb_lifetime));
  1760. lifetime->sadb_lifetime_len =
  1761. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1762. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1763. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1764. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1765. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1766. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1767. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1768. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1769. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1770. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1771. if (xp->action == XFRM_POLICY_ALLOW) {
  1772. if (xp->xfrm_nr)
  1773. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1774. else
  1775. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1776. }
  1777. pol->sadb_x_policy_dir = dir+1;
  1778. pol->sadb_x_policy_id = xp->index;
  1779. pol->sadb_x_policy_priority = xp->priority;
  1780. for (i=0; i<xp->xfrm_nr; i++) {
  1781. struct sadb_x_ipsecrequest *rq;
  1782. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1783. int req_size;
  1784. int mode;
  1785. req_size = sizeof(struct sadb_x_ipsecrequest);
  1786. if (t->mode == XFRM_MODE_TUNNEL)
  1787. req_size += ((t->encap_family == AF_INET ?
  1788. sizeof(struct sockaddr_in) :
  1789. sizeof(struct sockaddr_in6)) * 2);
  1790. else
  1791. size -= 2*socklen;
  1792. rq = (void*)skb_put(skb, req_size);
  1793. pol->sadb_x_policy_len += req_size/8;
  1794. memset(rq, 0, sizeof(*rq));
  1795. rq->sadb_x_ipsecrequest_len = req_size;
  1796. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1797. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1798. return -EINVAL;
  1799. rq->sadb_x_ipsecrequest_mode = mode;
  1800. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1801. if (t->reqid)
  1802. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1803. if (t->optional)
  1804. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1805. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1806. if (t->mode == XFRM_MODE_TUNNEL) {
  1807. switch (t->encap_family) {
  1808. case AF_INET:
  1809. sin = (void*)(rq+1);
  1810. sin->sin_family = AF_INET;
  1811. sin->sin_addr.s_addr = t->saddr.a4;
  1812. sin->sin_port = 0;
  1813. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1814. sin++;
  1815. sin->sin_family = AF_INET;
  1816. sin->sin_addr.s_addr = t->id.daddr.a4;
  1817. sin->sin_port = 0;
  1818. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1819. break;
  1820. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1821. case AF_INET6:
  1822. sin6 = (void*)(rq+1);
  1823. sin6->sin6_family = AF_INET6;
  1824. sin6->sin6_port = 0;
  1825. sin6->sin6_flowinfo = 0;
  1826. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1827. sizeof(struct in6_addr));
  1828. sin6->sin6_scope_id = 0;
  1829. sin6++;
  1830. sin6->sin6_family = AF_INET6;
  1831. sin6->sin6_port = 0;
  1832. sin6->sin6_flowinfo = 0;
  1833. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1834. sizeof(struct in6_addr));
  1835. sin6->sin6_scope_id = 0;
  1836. break;
  1837. #endif
  1838. default:
  1839. break;
  1840. }
  1841. }
  1842. }
  1843. /* security context */
  1844. if ((xfrm_ctx = xp->security)) {
  1845. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1846. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1847. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1848. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1849. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1850. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1851. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1852. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1853. xfrm_ctx->ctx_len);
  1854. }
  1855. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1856. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1857. return 0;
  1858. }
  1859. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1860. {
  1861. struct sk_buff *out_skb;
  1862. struct sadb_msg *out_hdr;
  1863. int err;
  1864. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1865. if (IS_ERR(out_skb)) {
  1866. err = PTR_ERR(out_skb);
  1867. goto out;
  1868. }
  1869. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1870. if (err < 0)
  1871. return err;
  1872. out_hdr = (struct sadb_msg *) out_skb->data;
  1873. out_hdr->sadb_msg_version = PF_KEY_V2;
  1874. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1875. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1876. else
  1877. out_hdr->sadb_msg_type = event2poltype(c->event);
  1878. out_hdr->sadb_msg_errno = 0;
  1879. out_hdr->sadb_msg_seq = c->seq;
  1880. out_hdr->sadb_msg_pid = c->pid;
  1881. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1882. out:
  1883. return 0;
  1884. }
  1885. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1886. {
  1887. int err = 0;
  1888. struct sadb_lifetime *lifetime;
  1889. struct sadb_address *sa;
  1890. struct sadb_x_policy *pol;
  1891. struct xfrm_policy *xp;
  1892. struct km_event c;
  1893. struct sadb_x_sec_ctx *sec_ctx;
  1894. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1895. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1896. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1897. return -EINVAL;
  1898. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1899. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1900. return -EINVAL;
  1901. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1902. return -EINVAL;
  1903. xp = xfrm_policy_alloc(GFP_KERNEL);
  1904. if (xp == NULL)
  1905. return -ENOBUFS;
  1906. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1907. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1908. xp->priority = pol->sadb_x_policy_priority;
  1909. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1910. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1911. if (!xp->family) {
  1912. err = -EINVAL;
  1913. goto out;
  1914. }
  1915. xp->selector.family = xp->family;
  1916. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1917. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1918. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1919. if (xp->selector.sport)
  1920. xp->selector.sport_mask = htons(0xffff);
  1921. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1922. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1923. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1924. /* Amusing, we set this twice. KAME apps appear to set same value
  1925. * in both addresses.
  1926. */
  1927. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1928. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1929. if (xp->selector.dport)
  1930. xp->selector.dport_mask = htons(0xffff);
  1931. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1932. if (sec_ctx != NULL) {
  1933. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1934. if (!uctx) {
  1935. err = -ENOBUFS;
  1936. goto out;
  1937. }
  1938. err = security_xfrm_policy_alloc(xp, uctx);
  1939. kfree(uctx);
  1940. if (err)
  1941. goto out;
  1942. }
  1943. xp->lft.soft_byte_limit = XFRM_INF;
  1944. xp->lft.hard_byte_limit = XFRM_INF;
  1945. xp->lft.soft_packet_limit = XFRM_INF;
  1946. xp->lft.hard_packet_limit = XFRM_INF;
  1947. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1948. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1949. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1950. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1951. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1952. }
  1953. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1954. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1955. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1956. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1957. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1958. }
  1959. xp->xfrm_nr = 0;
  1960. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1961. (err = parse_ipsecrequests(xp, pol)) < 0)
  1962. goto out;
  1963. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1964. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1965. xfrm_audit_log(audit_get_loginuid(current->audit_context), 0,
  1966. AUDIT_MAC_IPSEC_ADDSPD, err ? 0 : 1, xp, NULL);
  1967. if (err)
  1968. goto out;
  1969. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1970. c.event = XFRM_MSG_UPDPOLICY;
  1971. else
  1972. c.event = XFRM_MSG_NEWPOLICY;
  1973. c.seq = hdr->sadb_msg_seq;
  1974. c.pid = hdr->sadb_msg_pid;
  1975. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1976. xfrm_pol_put(xp);
  1977. return 0;
  1978. out:
  1979. security_xfrm_policy_free(xp);
  1980. kfree(xp);
  1981. return err;
  1982. }
  1983. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1984. {
  1985. int err;
  1986. struct sadb_address *sa;
  1987. struct sadb_x_policy *pol;
  1988. struct xfrm_policy *xp, tmp;
  1989. struct xfrm_selector sel;
  1990. struct km_event c;
  1991. struct sadb_x_sec_ctx *sec_ctx;
  1992. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1993. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1994. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1995. return -EINVAL;
  1996. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1997. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1998. return -EINVAL;
  1999. memset(&sel, 0, sizeof(sel));
  2000. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2001. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2002. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2003. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2004. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2005. if (sel.sport)
  2006. sel.sport_mask = htons(0xffff);
  2007. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  2008. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2009. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2010. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2011. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2012. if (sel.dport)
  2013. sel.dport_mask = htons(0xffff);
  2014. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2015. memset(&tmp, 0, sizeof(struct xfrm_policy));
  2016. if (sec_ctx != NULL) {
  2017. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2018. if (!uctx)
  2019. return -ENOMEM;
  2020. err = security_xfrm_policy_alloc(&tmp, uctx);
  2021. kfree(uctx);
  2022. if (err)
  2023. return err;
  2024. }
  2025. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1,
  2026. &sel, tmp.security, 1, &err);
  2027. security_xfrm_policy_free(&tmp);
  2028. if (xp == NULL)
  2029. return -ENOENT;
  2030. xfrm_audit_log(audit_get_loginuid(current->audit_context), 0,
  2031. AUDIT_MAC_IPSEC_DELSPD, err ? 0 : 1, xp, NULL);
  2032. if (err)
  2033. goto out;
  2034. c.seq = hdr->sadb_msg_seq;
  2035. c.pid = hdr->sadb_msg_pid;
  2036. c.event = XFRM_MSG_DELPOLICY;
  2037. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2038. out:
  2039. xfrm_pol_put(xp);
  2040. return err;
  2041. }
  2042. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2043. {
  2044. int err;
  2045. struct sk_buff *out_skb;
  2046. struct sadb_msg *out_hdr;
  2047. err = 0;
  2048. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2049. if (IS_ERR(out_skb)) {
  2050. err = PTR_ERR(out_skb);
  2051. goto out;
  2052. }
  2053. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2054. if (err < 0)
  2055. goto out;
  2056. out_hdr = (struct sadb_msg *) out_skb->data;
  2057. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2058. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2059. out_hdr->sadb_msg_satype = 0;
  2060. out_hdr->sadb_msg_errno = 0;
  2061. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2062. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2063. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2064. err = 0;
  2065. out:
  2066. return err;
  2067. }
  2068. #ifdef CONFIG_NET_KEY_MIGRATE
  2069. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2070. {
  2071. switch (family) {
  2072. case AF_INET:
  2073. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2074. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2075. case AF_INET6:
  2076. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2077. #endif
  2078. default:
  2079. return 0;
  2080. }
  2081. /* NOTREACHED */
  2082. }
  2083. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2084. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2085. u16 *family)
  2086. {
  2087. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2088. if (rq->sadb_x_ipsecrequest_len <
  2089. pfkey_sockaddr_pair_size(sa->sa_family))
  2090. return -EINVAL;
  2091. switch (sa->sa_family) {
  2092. case AF_INET:
  2093. {
  2094. struct sockaddr_in *sin;
  2095. sin = (struct sockaddr_in *)sa;
  2096. if ((sin+1)->sin_family != AF_INET)
  2097. return -EINVAL;
  2098. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2099. sin++;
  2100. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2101. *family = AF_INET;
  2102. break;
  2103. }
  2104. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2105. case AF_INET6:
  2106. {
  2107. struct sockaddr_in6 *sin6;
  2108. sin6 = (struct sockaddr_in6 *)sa;
  2109. if ((sin6+1)->sin6_family != AF_INET6)
  2110. return -EINVAL;
  2111. memcpy(&saddr->a6, &sin6->sin6_addr,
  2112. sizeof(saddr->a6));
  2113. sin6++;
  2114. memcpy(&daddr->a6, &sin6->sin6_addr,
  2115. sizeof(daddr->a6));
  2116. *family = AF_INET6;
  2117. break;
  2118. }
  2119. #endif
  2120. default:
  2121. return -EINVAL;
  2122. }
  2123. return 0;
  2124. }
  2125. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2126. struct xfrm_migrate *m)
  2127. {
  2128. int err;
  2129. struct sadb_x_ipsecrequest *rq2;
  2130. int mode;
  2131. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2132. len < rq1->sadb_x_ipsecrequest_len)
  2133. return -EINVAL;
  2134. /* old endoints */
  2135. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2136. &m->old_family);
  2137. if (err)
  2138. return err;
  2139. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2140. len -= rq1->sadb_x_ipsecrequest_len;
  2141. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2142. len < rq2->sadb_x_ipsecrequest_len)
  2143. return -EINVAL;
  2144. /* new endpoints */
  2145. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2146. &m->new_family);
  2147. if (err)
  2148. return err;
  2149. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2150. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2151. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2152. return -EINVAL;
  2153. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2154. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2155. return -EINVAL;
  2156. m->mode = mode;
  2157. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2158. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2159. rq2->sadb_x_ipsecrequest_len));
  2160. }
  2161. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2162. struct sadb_msg *hdr, void **ext_hdrs)
  2163. {
  2164. int i, len, ret, err = -EINVAL;
  2165. u8 dir;
  2166. struct sadb_address *sa;
  2167. struct sadb_x_policy *pol;
  2168. struct sadb_x_ipsecrequest *rq;
  2169. struct xfrm_selector sel;
  2170. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2171. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2172. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2173. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2174. err = -EINVAL;
  2175. goto out;
  2176. }
  2177. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2178. if (!pol) {
  2179. err = -EINVAL;
  2180. goto out;
  2181. }
  2182. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2183. err = -EINVAL;
  2184. goto out;
  2185. }
  2186. dir = pol->sadb_x_policy_dir - 1;
  2187. memset(&sel, 0, sizeof(sel));
  2188. /* set source address info of selector */
  2189. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2190. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2191. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2192. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2193. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2194. if (sel.sport)
  2195. sel.sport_mask = htons(0xffff);
  2196. /* set destination address info of selector */
  2197. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2198. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2199. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2200. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2201. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2202. if (sel.dport)
  2203. sel.dport_mask = htons(0xffff);
  2204. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2205. /* extract ipsecrequests */
  2206. i = 0;
  2207. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2208. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2209. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2210. if (ret < 0) {
  2211. err = ret;
  2212. goto out;
  2213. } else {
  2214. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2215. len -= ret;
  2216. i++;
  2217. }
  2218. }
  2219. if (!i || len > 0) {
  2220. err = -EINVAL;
  2221. goto out;
  2222. }
  2223. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2224. out:
  2225. return err;
  2226. }
  2227. #else
  2228. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2229. struct sadb_msg *hdr, void **ext_hdrs)
  2230. {
  2231. return -ENOPROTOOPT;
  2232. }
  2233. #endif
  2234. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2235. {
  2236. unsigned int dir;
  2237. int err = 0, delete;
  2238. struct sadb_x_policy *pol;
  2239. struct xfrm_policy *xp;
  2240. struct km_event c;
  2241. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2242. return -EINVAL;
  2243. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2244. if (dir >= XFRM_POLICY_MAX)
  2245. return -EINVAL;
  2246. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2247. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2248. delete, &err);
  2249. if (xp == NULL)
  2250. return -ENOENT;
  2251. if (delete) {
  2252. xfrm_audit_log(audit_get_loginuid(current->audit_context), 0,
  2253. AUDIT_MAC_IPSEC_DELSPD, err ? 0 : 1, xp, NULL);
  2254. if (err)
  2255. goto out;
  2256. c.seq = hdr->sadb_msg_seq;
  2257. c.pid = hdr->sadb_msg_pid;
  2258. c.data.byid = 1;
  2259. c.event = XFRM_MSG_DELPOLICY;
  2260. km_policy_notify(xp, dir, &c);
  2261. } else {
  2262. err = key_pol_get_resp(sk, xp, hdr, dir);
  2263. }
  2264. out:
  2265. xfrm_pol_put(xp);
  2266. return err;
  2267. }
  2268. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2269. {
  2270. struct pfkey_dump_data *data = ptr;
  2271. struct sk_buff *out_skb;
  2272. struct sadb_msg *out_hdr;
  2273. int err;
  2274. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2275. if (IS_ERR(out_skb))
  2276. return PTR_ERR(out_skb);
  2277. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2278. if (err < 0)
  2279. return err;
  2280. out_hdr = (struct sadb_msg *) out_skb->data;
  2281. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2282. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2283. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2284. out_hdr->sadb_msg_errno = 0;
  2285. out_hdr->sadb_msg_seq = count;
  2286. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2287. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2288. return 0;
  2289. }
  2290. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2291. {
  2292. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2293. return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data);
  2294. }
  2295. static int key_notify_policy_flush(struct km_event *c)
  2296. {
  2297. struct sk_buff *skb_out;
  2298. struct sadb_msg *hdr;
  2299. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2300. if (!skb_out)
  2301. return -ENOBUFS;
  2302. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2303. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2304. hdr->sadb_msg_seq = c->seq;
  2305. hdr->sadb_msg_pid = c->pid;
  2306. hdr->sadb_msg_version = PF_KEY_V2;
  2307. hdr->sadb_msg_errno = (uint8_t) 0;
  2308. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2309. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2310. return 0;
  2311. }
  2312. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2313. {
  2314. struct km_event c;
  2315. struct xfrm_audit audit_info;
  2316. int err;
  2317. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  2318. audit_info.secid = 0;
  2319. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2320. if (err)
  2321. return err;
  2322. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2323. c.event = XFRM_MSG_FLUSHPOLICY;
  2324. c.pid = hdr->sadb_msg_pid;
  2325. c.seq = hdr->sadb_msg_seq;
  2326. km_policy_notify(NULL, 0, &c);
  2327. return 0;
  2328. }
  2329. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2330. struct sadb_msg *hdr, void **ext_hdrs);
  2331. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2332. [SADB_RESERVED] = pfkey_reserved,
  2333. [SADB_GETSPI] = pfkey_getspi,
  2334. [SADB_UPDATE] = pfkey_add,
  2335. [SADB_ADD] = pfkey_add,
  2336. [SADB_DELETE] = pfkey_delete,
  2337. [SADB_GET] = pfkey_get,
  2338. [SADB_ACQUIRE] = pfkey_acquire,
  2339. [SADB_REGISTER] = pfkey_register,
  2340. [SADB_EXPIRE] = NULL,
  2341. [SADB_FLUSH] = pfkey_flush,
  2342. [SADB_DUMP] = pfkey_dump,
  2343. [SADB_X_PROMISC] = pfkey_promisc,
  2344. [SADB_X_PCHANGE] = NULL,
  2345. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2346. [SADB_X_SPDADD] = pfkey_spdadd,
  2347. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2348. [SADB_X_SPDGET] = pfkey_spdget,
  2349. [SADB_X_SPDACQUIRE] = NULL,
  2350. [SADB_X_SPDDUMP] = pfkey_spddump,
  2351. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2352. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2353. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2354. [SADB_X_MIGRATE] = pfkey_migrate,
  2355. };
  2356. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2357. {
  2358. void *ext_hdrs[SADB_EXT_MAX];
  2359. int err;
  2360. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2361. BROADCAST_PROMISC_ONLY, NULL);
  2362. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2363. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2364. if (!err) {
  2365. err = -EOPNOTSUPP;
  2366. if (pfkey_funcs[hdr->sadb_msg_type])
  2367. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2368. }
  2369. return err;
  2370. }
  2371. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2372. {
  2373. struct sadb_msg *hdr = NULL;
  2374. if (skb->len < sizeof(*hdr)) {
  2375. *errp = -EMSGSIZE;
  2376. } else {
  2377. hdr = (struct sadb_msg *) skb->data;
  2378. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2379. hdr->sadb_msg_reserved != 0 ||
  2380. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2381. hdr->sadb_msg_type > SADB_MAX)) {
  2382. hdr = NULL;
  2383. *errp = -EINVAL;
  2384. } else if (hdr->sadb_msg_len != (skb->len /
  2385. sizeof(uint64_t)) ||
  2386. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2387. sizeof(uint64_t))) {
  2388. hdr = NULL;
  2389. *errp = -EMSGSIZE;
  2390. } else {
  2391. *errp = 0;
  2392. }
  2393. }
  2394. return hdr;
  2395. }
  2396. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2397. {
  2398. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2399. }
  2400. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2401. {
  2402. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2403. }
  2404. static int count_ah_combs(struct xfrm_tmpl *t)
  2405. {
  2406. int i, sz = 0;
  2407. for (i = 0; ; i++) {
  2408. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2409. if (!aalg)
  2410. break;
  2411. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2412. sz += sizeof(struct sadb_comb);
  2413. }
  2414. return sz + sizeof(struct sadb_prop);
  2415. }
  2416. static int count_esp_combs(struct xfrm_tmpl *t)
  2417. {
  2418. int i, k, sz = 0;
  2419. for (i = 0; ; i++) {
  2420. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2421. if (!ealg)
  2422. break;
  2423. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2424. continue;
  2425. for (k = 1; ; k++) {
  2426. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2427. if (!aalg)
  2428. break;
  2429. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2430. sz += sizeof(struct sadb_comb);
  2431. }
  2432. }
  2433. return sz + sizeof(struct sadb_prop);
  2434. }
  2435. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2436. {
  2437. struct sadb_prop *p;
  2438. int i;
  2439. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2440. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2441. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2442. p->sadb_prop_replay = 32;
  2443. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2444. for (i = 0; ; i++) {
  2445. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2446. if (!aalg)
  2447. break;
  2448. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2449. struct sadb_comb *c;
  2450. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2451. memset(c, 0, sizeof(*c));
  2452. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2453. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2454. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2455. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2456. c->sadb_comb_hard_addtime = 24*60*60;
  2457. c->sadb_comb_soft_addtime = 20*60*60;
  2458. c->sadb_comb_hard_usetime = 8*60*60;
  2459. c->sadb_comb_soft_usetime = 7*60*60;
  2460. }
  2461. }
  2462. }
  2463. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2464. {
  2465. struct sadb_prop *p;
  2466. int i, k;
  2467. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2468. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2469. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2470. p->sadb_prop_replay = 32;
  2471. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2472. for (i=0; ; i++) {
  2473. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2474. if (!ealg)
  2475. break;
  2476. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2477. continue;
  2478. for (k = 1; ; k++) {
  2479. struct sadb_comb *c;
  2480. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2481. if (!aalg)
  2482. break;
  2483. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2484. continue;
  2485. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2486. memset(c, 0, sizeof(*c));
  2487. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2488. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2489. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2490. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2491. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2492. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2493. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2494. c->sadb_comb_hard_addtime = 24*60*60;
  2495. c->sadb_comb_soft_addtime = 20*60*60;
  2496. c->sadb_comb_hard_usetime = 8*60*60;
  2497. c->sadb_comb_soft_usetime = 7*60*60;
  2498. }
  2499. }
  2500. }
  2501. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2502. {
  2503. return 0;
  2504. }
  2505. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2506. {
  2507. struct sk_buff *out_skb;
  2508. struct sadb_msg *out_hdr;
  2509. int hard;
  2510. int hsc;
  2511. hard = c->data.hard;
  2512. if (hard)
  2513. hsc = 2;
  2514. else
  2515. hsc = 1;
  2516. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2517. if (IS_ERR(out_skb))
  2518. return PTR_ERR(out_skb);
  2519. out_hdr = (struct sadb_msg *) out_skb->data;
  2520. out_hdr->sadb_msg_version = PF_KEY_V2;
  2521. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2522. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2523. out_hdr->sadb_msg_errno = 0;
  2524. out_hdr->sadb_msg_reserved = 0;
  2525. out_hdr->sadb_msg_seq = 0;
  2526. out_hdr->sadb_msg_pid = 0;
  2527. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2528. return 0;
  2529. }
  2530. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2531. {
  2532. switch (c->event) {
  2533. case XFRM_MSG_EXPIRE:
  2534. return key_notify_sa_expire(x, c);
  2535. case XFRM_MSG_DELSA:
  2536. case XFRM_MSG_NEWSA:
  2537. case XFRM_MSG_UPDSA:
  2538. return key_notify_sa(x, c);
  2539. case XFRM_MSG_FLUSHSA:
  2540. return key_notify_sa_flush(c);
  2541. case XFRM_MSG_NEWAE: /* not yet supported */
  2542. break;
  2543. default:
  2544. printk("pfkey: Unknown SA event %d\n", c->event);
  2545. break;
  2546. }
  2547. return 0;
  2548. }
  2549. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2550. {
  2551. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2552. return 0;
  2553. switch (c->event) {
  2554. case XFRM_MSG_POLEXPIRE:
  2555. return key_notify_policy_expire(xp, c);
  2556. case XFRM_MSG_DELPOLICY:
  2557. case XFRM_MSG_NEWPOLICY:
  2558. case XFRM_MSG_UPDPOLICY:
  2559. return key_notify_policy(xp, dir, c);
  2560. case XFRM_MSG_FLUSHPOLICY:
  2561. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2562. break;
  2563. return key_notify_policy_flush(c);
  2564. default:
  2565. printk("pfkey: Unknown policy event %d\n", c->event);
  2566. break;
  2567. }
  2568. return 0;
  2569. }
  2570. static u32 get_acqseq(void)
  2571. {
  2572. u32 res;
  2573. static u32 acqseq;
  2574. static DEFINE_SPINLOCK(acqseq_lock);
  2575. spin_lock_bh(&acqseq_lock);
  2576. res = (++acqseq ? : ++acqseq);
  2577. spin_unlock_bh(&acqseq_lock);
  2578. return res;
  2579. }
  2580. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2581. {
  2582. struct sk_buff *skb;
  2583. struct sadb_msg *hdr;
  2584. struct sadb_address *addr;
  2585. struct sadb_x_policy *pol;
  2586. struct sockaddr_in *sin;
  2587. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2588. struct sockaddr_in6 *sin6;
  2589. #endif
  2590. int sockaddr_size;
  2591. int size;
  2592. struct sadb_x_sec_ctx *sec_ctx;
  2593. struct xfrm_sec_ctx *xfrm_ctx;
  2594. int ctx_size = 0;
  2595. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2596. if (!sockaddr_size)
  2597. return -EINVAL;
  2598. size = sizeof(struct sadb_msg) +
  2599. (sizeof(struct sadb_address) * 2) +
  2600. (sockaddr_size * 2) +
  2601. sizeof(struct sadb_x_policy);
  2602. if (x->id.proto == IPPROTO_AH)
  2603. size += count_ah_combs(t);
  2604. else if (x->id.proto == IPPROTO_ESP)
  2605. size += count_esp_combs(t);
  2606. if ((xfrm_ctx = x->security)) {
  2607. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2608. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2609. }
  2610. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2611. if (skb == NULL)
  2612. return -ENOMEM;
  2613. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2614. hdr->sadb_msg_version = PF_KEY_V2;
  2615. hdr->sadb_msg_type = SADB_ACQUIRE;
  2616. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2617. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2618. hdr->sadb_msg_errno = 0;
  2619. hdr->sadb_msg_reserved = 0;
  2620. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2621. hdr->sadb_msg_pid = 0;
  2622. /* src address */
  2623. addr = (struct sadb_address*) skb_put(skb,
  2624. sizeof(struct sadb_address)+sockaddr_size);
  2625. addr->sadb_address_len =
  2626. (sizeof(struct sadb_address)+sockaddr_size)/
  2627. sizeof(uint64_t);
  2628. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2629. addr->sadb_address_proto = 0;
  2630. addr->sadb_address_reserved = 0;
  2631. if (x->props.family == AF_INET) {
  2632. addr->sadb_address_prefixlen = 32;
  2633. sin = (struct sockaddr_in *) (addr + 1);
  2634. sin->sin_family = AF_INET;
  2635. sin->sin_addr.s_addr = x->props.saddr.a4;
  2636. sin->sin_port = 0;
  2637. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2638. }
  2639. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2640. else if (x->props.family == AF_INET6) {
  2641. addr->sadb_address_prefixlen = 128;
  2642. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2643. sin6->sin6_family = AF_INET6;
  2644. sin6->sin6_port = 0;
  2645. sin6->sin6_flowinfo = 0;
  2646. memcpy(&sin6->sin6_addr,
  2647. x->props.saddr.a6, sizeof(struct in6_addr));
  2648. sin6->sin6_scope_id = 0;
  2649. }
  2650. #endif
  2651. else
  2652. BUG();
  2653. /* dst address */
  2654. addr = (struct sadb_address*) skb_put(skb,
  2655. sizeof(struct sadb_address)+sockaddr_size);
  2656. addr->sadb_address_len =
  2657. (sizeof(struct sadb_address)+sockaddr_size)/
  2658. sizeof(uint64_t);
  2659. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2660. addr->sadb_address_proto = 0;
  2661. addr->sadb_address_reserved = 0;
  2662. if (x->props.family == AF_INET) {
  2663. addr->sadb_address_prefixlen = 32;
  2664. sin = (struct sockaddr_in *) (addr + 1);
  2665. sin->sin_family = AF_INET;
  2666. sin->sin_addr.s_addr = x->id.daddr.a4;
  2667. sin->sin_port = 0;
  2668. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2669. }
  2670. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2671. else if (x->props.family == AF_INET6) {
  2672. addr->sadb_address_prefixlen = 128;
  2673. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2674. sin6->sin6_family = AF_INET6;
  2675. sin6->sin6_port = 0;
  2676. sin6->sin6_flowinfo = 0;
  2677. memcpy(&sin6->sin6_addr,
  2678. x->id.daddr.a6, sizeof(struct in6_addr));
  2679. sin6->sin6_scope_id = 0;
  2680. }
  2681. #endif
  2682. else
  2683. BUG();
  2684. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2685. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2686. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2687. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2688. pol->sadb_x_policy_dir = dir+1;
  2689. pol->sadb_x_policy_id = xp->index;
  2690. /* Set sadb_comb's. */
  2691. if (x->id.proto == IPPROTO_AH)
  2692. dump_ah_combs(skb, t);
  2693. else if (x->id.proto == IPPROTO_ESP)
  2694. dump_esp_combs(skb, t);
  2695. /* security context */
  2696. if (xfrm_ctx) {
  2697. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2698. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2699. sec_ctx->sadb_x_sec_len =
  2700. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2701. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2702. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2703. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2704. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2705. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2706. xfrm_ctx->ctx_len);
  2707. }
  2708. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2709. }
  2710. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2711. u8 *data, int len, int *dir)
  2712. {
  2713. struct xfrm_policy *xp;
  2714. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2715. struct sadb_x_sec_ctx *sec_ctx;
  2716. switch (sk->sk_family) {
  2717. case AF_INET:
  2718. if (opt != IP_IPSEC_POLICY) {
  2719. *dir = -EOPNOTSUPP;
  2720. return NULL;
  2721. }
  2722. break;
  2723. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2724. case AF_INET6:
  2725. if (opt != IPV6_IPSEC_POLICY) {
  2726. *dir = -EOPNOTSUPP;
  2727. return NULL;
  2728. }
  2729. break;
  2730. #endif
  2731. default:
  2732. *dir = -EINVAL;
  2733. return NULL;
  2734. }
  2735. *dir = -EINVAL;
  2736. if (len < sizeof(struct sadb_x_policy) ||
  2737. pol->sadb_x_policy_len*8 > len ||
  2738. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2739. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2740. return NULL;
  2741. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2742. if (xp == NULL) {
  2743. *dir = -ENOBUFS;
  2744. return NULL;
  2745. }
  2746. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2747. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2748. xp->lft.soft_byte_limit = XFRM_INF;
  2749. xp->lft.hard_byte_limit = XFRM_INF;
  2750. xp->lft.soft_packet_limit = XFRM_INF;
  2751. xp->lft.hard_packet_limit = XFRM_INF;
  2752. xp->family = sk->sk_family;
  2753. xp->xfrm_nr = 0;
  2754. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2755. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2756. goto out;
  2757. /* security context too */
  2758. if (len >= (pol->sadb_x_policy_len*8 +
  2759. sizeof(struct sadb_x_sec_ctx))) {
  2760. char *p = (char *)pol;
  2761. struct xfrm_user_sec_ctx *uctx;
  2762. p += pol->sadb_x_policy_len*8;
  2763. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2764. if (len < pol->sadb_x_policy_len*8 +
  2765. sec_ctx->sadb_x_sec_len) {
  2766. *dir = -EINVAL;
  2767. goto out;
  2768. }
  2769. if ((*dir = verify_sec_ctx_len(p)))
  2770. goto out;
  2771. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2772. *dir = security_xfrm_policy_alloc(xp, uctx);
  2773. kfree(uctx);
  2774. if (*dir)
  2775. goto out;
  2776. }
  2777. *dir = pol->sadb_x_policy_dir-1;
  2778. return xp;
  2779. out:
  2780. security_xfrm_policy_free(xp);
  2781. kfree(xp);
  2782. return NULL;
  2783. }
  2784. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2785. {
  2786. struct sk_buff *skb;
  2787. struct sadb_msg *hdr;
  2788. struct sadb_sa *sa;
  2789. struct sadb_address *addr;
  2790. struct sadb_x_nat_t_port *n_port;
  2791. struct sockaddr_in *sin;
  2792. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2793. struct sockaddr_in6 *sin6;
  2794. #endif
  2795. int sockaddr_size;
  2796. int size;
  2797. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2798. struct xfrm_encap_tmpl *natt = NULL;
  2799. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2800. if (!sockaddr_size)
  2801. return -EINVAL;
  2802. if (!satype)
  2803. return -EINVAL;
  2804. if (!x->encap)
  2805. return -EINVAL;
  2806. natt = x->encap;
  2807. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2808. *
  2809. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2810. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2811. */
  2812. size = sizeof(struct sadb_msg) +
  2813. sizeof(struct sadb_sa) +
  2814. (sizeof(struct sadb_address) * 2) +
  2815. (sockaddr_size * 2) +
  2816. (sizeof(struct sadb_x_nat_t_port) * 2);
  2817. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2818. if (skb == NULL)
  2819. return -ENOMEM;
  2820. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2821. hdr->sadb_msg_version = PF_KEY_V2;
  2822. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2823. hdr->sadb_msg_satype = satype;
  2824. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2825. hdr->sadb_msg_errno = 0;
  2826. hdr->sadb_msg_reserved = 0;
  2827. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2828. hdr->sadb_msg_pid = 0;
  2829. /* SA */
  2830. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2831. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2832. sa->sadb_sa_exttype = SADB_EXT_SA;
  2833. sa->sadb_sa_spi = x->id.spi;
  2834. sa->sadb_sa_replay = 0;
  2835. sa->sadb_sa_state = 0;
  2836. sa->sadb_sa_auth = 0;
  2837. sa->sadb_sa_encrypt = 0;
  2838. sa->sadb_sa_flags = 0;
  2839. /* ADDRESS_SRC (old addr) */
  2840. addr = (struct sadb_address*)
  2841. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2842. addr->sadb_address_len =
  2843. (sizeof(struct sadb_address)+sockaddr_size)/
  2844. sizeof(uint64_t);
  2845. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2846. addr->sadb_address_proto = 0;
  2847. addr->sadb_address_reserved = 0;
  2848. if (x->props.family == AF_INET) {
  2849. addr->sadb_address_prefixlen = 32;
  2850. sin = (struct sockaddr_in *) (addr + 1);
  2851. sin->sin_family = AF_INET;
  2852. sin->sin_addr.s_addr = x->props.saddr.a4;
  2853. sin->sin_port = 0;
  2854. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2855. }
  2856. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2857. else if (x->props.family == AF_INET6) {
  2858. addr->sadb_address_prefixlen = 128;
  2859. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2860. sin6->sin6_family = AF_INET6;
  2861. sin6->sin6_port = 0;
  2862. sin6->sin6_flowinfo = 0;
  2863. memcpy(&sin6->sin6_addr,
  2864. x->props.saddr.a6, sizeof(struct in6_addr));
  2865. sin6->sin6_scope_id = 0;
  2866. }
  2867. #endif
  2868. else
  2869. BUG();
  2870. /* NAT_T_SPORT (old port) */
  2871. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2872. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2873. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2874. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2875. n_port->sadb_x_nat_t_port_reserved = 0;
  2876. /* ADDRESS_DST (new addr) */
  2877. addr = (struct sadb_address*)
  2878. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2879. addr->sadb_address_len =
  2880. (sizeof(struct sadb_address)+sockaddr_size)/
  2881. sizeof(uint64_t);
  2882. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2883. addr->sadb_address_proto = 0;
  2884. addr->sadb_address_reserved = 0;
  2885. if (x->props.family == AF_INET) {
  2886. addr->sadb_address_prefixlen = 32;
  2887. sin = (struct sockaddr_in *) (addr + 1);
  2888. sin->sin_family = AF_INET;
  2889. sin->sin_addr.s_addr = ipaddr->a4;
  2890. sin->sin_port = 0;
  2891. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2892. }
  2893. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2894. else if (x->props.family == AF_INET6) {
  2895. addr->sadb_address_prefixlen = 128;
  2896. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2897. sin6->sin6_family = AF_INET6;
  2898. sin6->sin6_port = 0;
  2899. sin6->sin6_flowinfo = 0;
  2900. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2901. sin6->sin6_scope_id = 0;
  2902. }
  2903. #endif
  2904. else
  2905. BUG();
  2906. /* NAT_T_DPORT (new port) */
  2907. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2908. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2909. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2910. n_port->sadb_x_nat_t_port_port = sport;
  2911. n_port->sadb_x_nat_t_port_reserved = 0;
  2912. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2913. }
  2914. #ifdef CONFIG_NET_KEY_MIGRATE
  2915. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2916. struct xfrm_selector *sel)
  2917. {
  2918. struct sadb_address *addr;
  2919. struct sockaddr_in *sin;
  2920. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2921. struct sockaddr_in6 *sin6;
  2922. #endif
  2923. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2924. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2925. addr->sadb_address_exttype = type;
  2926. addr->sadb_address_proto = sel->proto;
  2927. addr->sadb_address_reserved = 0;
  2928. switch (type) {
  2929. case SADB_EXT_ADDRESS_SRC:
  2930. if (sel->family == AF_INET) {
  2931. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2932. sin = (struct sockaddr_in *)(addr + 1);
  2933. sin->sin_family = AF_INET;
  2934. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  2935. sizeof(sin->sin_addr.s_addr));
  2936. sin->sin_port = 0;
  2937. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2938. }
  2939. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2940. else if (sel->family == AF_INET6) {
  2941. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2942. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2943. sin6->sin6_family = AF_INET6;
  2944. sin6->sin6_port = 0;
  2945. sin6->sin6_flowinfo = 0;
  2946. sin6->sin6_scope_id = 0;
  2947. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  2948. sizeof(sin6->sin6_addr.s6_addr));
  2949. }
  2950. #endif
  2951. break;
  2952. case SADB_EXT_ADDRESS_DST:
  2953. if (sel->family == AF_INET) {
  2954. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2955. sin = (struct sockaddr_in *)(addr + 1);
  2956. sin->sin_family = AF_INET;
  2957. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  2958. sizeof(sin->sin_addr.s_addr));
  2959. sin->sin_port = 0;
  2960. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2961. }
  2962. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2963. else if (sel->family == AF_INET6) {
  2964. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2965. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2966. sin6->sin6_family = AF_INET6;
  2967. sin6->sin6_port = 0;
  2968. sin6->sin6_flowinfo = 0;
  2969. sin6->sin6_scope_id = 0;
  2970. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  2971. sizeof(sin6->sin6_addr.s6_addr));
  2972. }
  2973. #endif
  2974. break;
  2975. default:
  2976. return -EINVAL;
  2977. }
  2978. return 0;
  2979. }
  2980. static int set_ipsecrequest(struct sk_buff *skb,
  2981. uint8_t proto, uint8_t mode, int level,
  2982. uint32_t reqid, uint8_t family,
  2983. xfrm_address_t *src, xfrm_address_t *dst)
  2984. {
  2985. struct sadb_x_ipsecrequest *rq;
  2986. struct sockaddr_in *sin;
  2987. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2988. struct sockaddr_in6 *sin6;
  2989. #endif
  2990. int size_req;
  2991. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2992. pfkey_sockaddr_pair_size(family);
  2993. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2994. memset(rq, 0, size_req);
  2995. rq->sadb_x_ipsecrequest_len = size_req;
  2996. rq->sadb_x_ipsecrequest_proto = proto;
  2997. rq->sadb_x_ipsecrequest_mode = mode;
  2998. rq->sadb_x_ipsecrequest_level = level;
  2999. rq->sadb_x_ipsecrequest_reqid = reqid;
  3000. switch (family) {
  3001. case AF_INET:
  3002. sin = (struct sockaddr_in *)(rq + 1);
  3003. sin->sin_family = AF_INET;
  3004. memcpy(&sin->sin_addr.s_addr, src,
  3005. sizeof(sin->sin_addr.s_addr));
  3006. sin++;
  3007. sin->sin_family = AF_INET;
  3008. memcpy(&sin->sin_addr.s_addr, dst,
  3009. sizeof(sin->sin_addr.s_addr));
  3010. break;
  3011. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3012. case AF_INET6:
  3013. sin6 = (struct sockaddr_in6 *)(rq + 1);
  3014. sin6->sin6_family = AF_INET6;
  3015. sin6->sin6_port = 0;
  3016. sin6->sin6_flowinfo = 0;
  3017. sin6->sin6_scope_id = 0;
  3018. memcpy(&sin6->sin6_addr.s6_addr, src,
  3019. sizeof(sin6->sin6_addr.s6_addr));
  3020. sin6++;
  3021. sin6->sin6_family = AF_INET6;
  3022. sin6->sin6_port = 0;
  3023. sin6->sin6_flowinfo = 0;
  3024. sin6->sin6_scope_id = 0;
  3025. memcpy(&sin6->sin6_addr.s6_addr, dst,
  3026. sizeof(sin6->sin6_addr.s6_addr));
  3027. break;
  3028. #endif
  3029. default:
  3030. return -EINVAL;
  3031. }
  3032. return 0;
  3033. }
  3034. #endif
  3035. #ifdef CONFIG_NET_KEY_MIGRATE
  3036. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3037. struct xfrm_migrate *m, int num_bundles)
  3038. {
  3039. int i;
  3040. int sasize_sel;
  3041. int size = 0;
  3042. int size_pol = 0;
  3043. struct sk_buff *skb;
  3044. struct sadb_msg *hdr;
  3045. struct sadb_x_policy *pol;
  3046. struct xfrm_migrate *mp;
  3047. if (type != XFRM_POLICY_TYPE_MAIN)
  3048. return 0;
  3049. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3050. return -EINVAL;
  3051. /* selector */
  3052. sasize_sel = pfkey_sockaddr_size(sel->family);
  3053. if (!sasize_sel)
  3054. return -EINVAL;
  3055. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3056. /* policy info */
  3057. size_pol += sizeof(struct sadb_x_policy);
  3058. /* ipsecrequests */
  3059. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3060. /* old locator pair */
  3061. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3062. pfkey_sockaddr_pair_size(mp->old_family);
  3063. /* new locator pair */
  3064. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3065. pfkey_sockaddr_pair_size(mp->new_family);
  3066. }
  3067. size += sizeof(struct sadb_msg) + size_pol;
  3068. /* alloc buffer */
  3069. skb = alloc_skb(size, GFP_ATOMIC);
  3070. if (skb == NULL)
  3071. return -ENOMEM;
  3072. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3073. hdr->sadb_msg_version = PF_KEY_V2;
  3074. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3075. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3076. hdr->sadb_msg_len = size / 8;
  3077. hdr->sadb_msg_errno = 0;
  3078. hdr->sadb_msg_reserved = 0;
  3079. hdr->sadb_msg_seq = 0;
  3080. hdr->sadb_msg_pid = 0;
  3081. /* selector src */
  3082. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3083. /* selector dst */
  3084. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3085. /* policy information */
  3086. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3087. pol->sadb_x_policy_len = size_pol / 8;
  3088. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3089. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3090. pol->sadb_x_policy_dir = dir + 1;
  3091. pol->sadb_x_policy_id = 0;
  3092. pol->sadb_x_policy_priority = 0;
  3093. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3094. /* old ipsecrequest */
  3095. int mode = pfkey_mode_from_xfrm(mp->mode);
  3096. if (mode < 0)
  3097. return -EINVAL;
  3098. if (set_ipsecrequest(skb, mp->proto, mode,
  3099. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3100. mp->reqid, mp->old_family,
  3101. &mp->old_saddr, &mp->old_daddr) < 0) {
  3102. return -EINVAL;
  3103. }
  3104. /* new ipsecrequest */
  3105. if (set_ipsecrequest(skb, mp->proto, mode,
  3106. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3107. mp->reqid, mp->new_family,
  3108. &mp->new_saddr, &mp->new_daddr) < 0) {
  3109. return -EINVAL;
  3110. }
  3111. }
  3112. /* broadcast migrate message to sockets */
  3113. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3114. return 0;
  3115. }
  3116. #else
  3117. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3118. struct xfrm_migrate *m, int num_bundles)
  3119. {
  3120. return -ENOPROTOOPT;
  3121. }
  3122. #endif
  3123. static int pfkey_sendmsg(struct kiocb *kiocb,
  3124. struct socket *sock, struct msghdr *msg, size_t len)
  3125. {
  3126. struct sock *sk = sock->sk;
  3127. struct sk_buff *skb = NULL;
  3128. struct sadb_msg *hdr = NULL;
  3129. int err;
  3130. err = -EOPNOTSUPP;
  3131. if (msg->msg_flags & MSG_OOB)
  3132. goto out;
  3133. err = -EMSGSIZE;
  3134. if ((unsigned)len > sk->sk_sndbuf - 32)
  3135. goto out;
  3136. err = -ENOBUFS;
  3137. skb = alloc_skb(len, GFP_KERNEL);
  3138. if (skb == NULL)
  3139. goto out;
  3140. err = -EFAULT;
  3141. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3142. goto out;
  3143. hdr = pfkey_get_base_msg(skb, &err);
  3144. if (!hdr)
  3145. goto out;
  3146. mutex_lock(&xfrm_cfg_mutex);
  3147. err = pfkey_process(sk, skb, hdr);
  3148. mutex_unlock(&xfrm_cfg_mutex);
  3149. out:
  3150. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3151. err = 0;
  3152. if (skb)
  3153. kfree_skb(skb);
  3154. return err ? : len;
  3155. }
  3156. static int pfkey_recvmsg(struct kiocb *kiocb,
  3157. struct socket *sock, struct msghdr *msg, size_t len,
  3158. int flags)
  3159. {
  3160. struct sock *sk = sock->sk;
  3161. struct sk_buff *skb;
  3162. int copied, err;
  3163. err = -EINVAL;
  3164. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3165. goto out;
  3166. msg->msg_namelen = 0;
  3167. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3168. if (skb == NULL)
  3169. goto out;
  3170. copied = skb->len;
  3171. if (copied > len) {
  3172. msg->msg_flags |= MSG_TRUNC;
  3173. copied = len;
  3174. }
  3175. skb_reset_transport_header(skb);
  3176. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3177. if (err)
  3178. goto out_free;
  3179. sock_recv_timestamp(msg, sk, skb);
  3180. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3181. out_free:
  3182. skb_free_datagram(sk, skb);
  3183. out:
  3184. return err;
  3185. }
  3186. static const struct proto_ops pfkey_ops = {
  3187. .family = PF_KEY,
  3188. .owner = THIS_MODULE,
  3189. /* Operations that make no sense on pfkey sockets. */
  3190. .bind = sock_no_bind,
  3191. .connect = sock_no_connect,
  3192. .socketpair = sock_no_socketpair,
  3193. .accept = sock_no_accept,
  3194. .getname = sock_no_getname,
  3195. .ioctl = sock_no_ioctl,
  3196. .listen = sock_no_listen,
  3197. .shutdown = sock_no_shutdown,
  3198. .setsockopt = sock_no_setsockopt,
  3199. .getsockopt = sock_no_getsockopt,
  3200. .mmap = sock_no_mmap,
  3201. .sendpage = sock_no_sendpage,
  3202. /* Now the operations that really occur. */
  3203. .release = pfkey_release,
  3204. .poll = datagram_poll,
  3205. .sendmsg = pfkey_sendmsg,
  3206. .recvmsg = pfkey_recvmsg,
  3207. };
  3208. static struct net_proto_family pfkey_family_ops = {
  3209. .family = PF_KEY,
  3210. .create = pfkey_create,
  3211. .owner = THIS_MODULE,
  3212. };
  3213. #ifdef CONFIG_PROC_FS
  3214. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  3215. int length, int *eof, void *data)
  3216. {
  3217. off_t pos = 0;
  3218. off_t begin = 0;
  3219. int len = 0;
  3220. struct sock *s;
  3221. struct hlist_node *node;
  3222. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  3223. read_lock(&pfkey_table_lock);
  3224. sk_for_each(s, node, &pfkey_table) {
  3225. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  3226. s,
  3227. atomic_read(&s->sk_refcnt),
  3228. atomic_read(&s->sk_rmem_alloc),
  3229. atomic_read(&s->sk_wmem_alloc),
  3230. sock_i_uid(s),
  3231. sock_i_ino(s)
  3232. );
  3233. buffer[len++] = '\n';
  3234. pos = begin + len;
  3235. if (pos < offset) {
  3236. len = 0;
  3237. begin = pos;
  3238. }
  3239. if(pos > offset + length)
  3240. goto done;
  3241. }
  3242. *eof = 1;
  3243. done:
  3244. read_unlock(&pfkey_table_lock);
  3245. *start = buffer + (offset - begin);
  3246. len -= (offset - begin);
  3247. if (len > length)
  3248. len = length;
  3249. if (len < 0)
  3250. len = 0;
  3251. return len;
  3252. }
  3253. #endif
  3254. static struct xfrm_mgr pfkeyv2_mgr =
  3255. {
  3256. .id = "pfkeyv2",
  3257. .notify = pfkey_send_notify,
  3258. .acquire = pfkey_send_acquire,
  3259. .compile_policy = pfkey_compile_policy,
  3260. .new_mapping = pfkey_send_new_mapping,
  3261. .notify_policy = pfkey_send_policy_notify,
  3262. .migrate = pfkey_send_migrate,
  3263. };
  3264. static void __exit ipsec_pfkey_exit(void)
  3265. {
  3266. xfrm_unregister_km(&pfkeyv2_mgr);
  3267. remove_proc_entry("net/pfkey", NULL);
  3268. sock_unregister(PF_KEY);
  3269. proto_unregister(&key_proto);
  3270. }
  3271. static int __init ipsec_pfkey_init(void)
  3272. {
  3273. int err = proto_register(&key_proto, 0);
  3274. if (err != 0)
  3275. goto out;
  3276. err = sock_register(&pfkey_family_ops);
  3277. if (err != 0)
  3278. goto out_unregister_key_proto;
  3279. #ifdef CONFIG_PROC_FS
  3280. err = -ENOMEM;
  3281. if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
  3282. goto out_sock_unregister;
  3283. #endif
  3284. err = xfrm_register_km(&pfkeyv2_mgr);
  3285. if (err != 0)
  3286. goto out_remove_proc_entry;
  3287. out:
  3288. return err;
  3289. out_remove_proc_entry:
  3290. #ifdef CONFIG_PROC_FS
  3291. remove_proc_entry("net/pfkey", NULL);
  3292. out_sock_unregister:
  3293. #endif
  3294. sock_unregister(PF_KEY);
  3295. out_unregister_key_proto:
  3296. proto_unregister(&key_proto);
  3297. goto out;
  3298. }
  3299. module_init(ipsec_pfkey_init);
  3300. module_exit(ipsec_pfkey_exit);
  3301. MODULE_LICENSE("GPL");
  3302. MODULE_ALIAS_NETPROTO(PF_KEY);