hrtimer.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. /*
  2. * linux/kernel/hrtimer.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * High-resolution kernel timers
  9. *
  10. * In contrast to the low-resolution timeout API implemented in
  11. * kernel/timer.c, hrtimers provide finer resolution and accuracy
  12. * depending on system configuration and capabilities.
  13. *
  14. * These timers are currently used for:
  15. * - itimers
  16. * - POSIX timers
  17. * - nanosleep
  18. * - precise in-kernel timing
  19. *
  20. * Started by: Thomas Gleixner and Ingo Molnar
  21. *
  22. * Credits:
  23. * based on kernel/timer.c
  24. *
  25. * Help, testing, suggestions, bugfixes, improvements were
  26. * provided by:
  27. *
  28. * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29. * et. al.
  30. *
  31. * For licencing details see kernel-base/COPYING
  32. */
  33. #include <linux/cpu.h>
  34. #include <linux/irq.h>
  35. #include <linux/module.h>
  36. #include <linux/percpu.h>
  37. #include <linux/hrtimer.h>
  38. #include <linux/notifier.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/kallsyms.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/tick.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/err.h>
  45. #include <asm/uaccess.h>
  46. /**
  47. * ktime_get - get the monotonic time in ktime_t format
  48. *
  49. * returns the time in ktime_t format
  50. */
  51. ktime_t ktime_get(void)
  52. {
  53. struct timespec now;
  54. ktime_get_ts(&now);
  55. return timespec_to_ktime(now);
  56. }
  57. EXPORT_SYMBOL_GPL(ktime_get);
  58. /**
  59. * ktime_get_real - get the real (wall-) time in ktime_t format
  60. *
  61. * returns the time in ktime_t format
  62. */
  63. ktime_t ktime_get_real(void)
  64. {
  65. struct timespec now;
  66. getnstimeofday(&now);
  67. return timespec_to_ktime(now);
  68. }
  69. EXPORT_SYMBOL_GPL(ktime_get_real);
  70. /*
  71. * The timer bases:
  72. *
  73. * Note: If we want to add new timer bases, we have to skip the two
  74. * clock ids captured by the cpu-timers. We do this by holding empty
  75. * entries rather than doing math adjustment of the clock ids.
  76. * This ensures that we capture erroneous accesses to these clock ids
  77. * rather than moving them into the range of valid clock id's.
  78. */
  79. DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  80. {
  81. .clock_base =
  82. {
  83. {
  84. .index = CLOCK_REALTIME,
  85. .get_time = &ktime_get_real,
  86. .resolution = KTIME_LOW_RES,
  87. },
  88. {
  89. .index = CLOCK_MONOTONIC,
  90. .get_time = &ktime_get,
  91. .resolution = KTIME_LOW_RES,
  92. },
  93. }
  94. };
  95. /**
  96. * ktime_get_ts - get the monotonic clock in timespec format
  97. * @ts: pointer to timespec variable
  98. *
  99. * The function calculates the monotonic clock from the realtime
  100. * clock and the wall_to_monotonic offset and stores the result
  101. * in normalized timespec format in the variable pointed to by @ts.
  102. */
  103. void ktime_get_ts(struct timespec *ts)
  104. {
  105. struct timespec tomono;
  106. unsigned long seq;
  107. do {
  108. seq = read_seqbegin(&xtime_lock);
  109. getnstimeofday(ts);
  110. tomono = wall_to_monotonic;
  111. } while (read_seqretry(&xtime_lock, seq));
  112. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  113. ts->tv_nsec + tomono.tv_nsec);
  114. }
  115. EXPORT_SYMBOL_GPL(ktime_get_ts);
  116. /*
  117. * Get the coarse grained time at the softirq based on xtime and
  118. * wall_to_monotonic.
  119. */
  120. static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
  121. {
  122. ktime_t xtim, tomono;
  123. struct timespec xts, tom;
  124. unsigned long seq;
  125. do {
  126. seq = read_seqbegin(&xtime_lock);
  127. xts = current_kernel_time();
  128. tom = wall_to_monotonic;
  129. } while (read_seqretry(&xtime_lock, seq));
  130. xtim = timespec_to_ktime(xts);
  131. tomono = timespec_to_ktime(tom);
  132. base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
  133. base->clock_base[CLOCK_MONOTONIC].softirq_time =
  134. ktime_add(xtim, tomono);
  135. }
  136. /*
  137. * Helper function to check, whether the timer is running the callback
  138. * function
  139. */
  140. static inline int hrtimer_callback_running(struct hrtimer *timer)
  141. {
  142. return timer->state & HRTIMER_STATE_CALLBACK;
  143. }
  144. /*
  145. * Functions and macros which are different for UP/SMP systems are kept in a
  146. * single place
  147. */
  148. #ifdef CONFIG_SMP
  149. /*
  150. * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
  151. * means that all timers which are tied to this base via timer->base are
  152. * locked, and the base itself is locked too.
  153. *
  154. * So __run_timers/migrate_timers can safely modify all timers which could
  155. * be found on the lists/queues.
  156. *
  157. * When the timer's base is locked, and the timer removed from list, it is
  158. * possible to set timer->base = NULL and drop the lock: the timer remains
  159. * locked.
  160. */
  161. static
  162. struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
  163. unsigned long *flags)
  164. {
  165. struct hrtimer_clock_base *base;
  166. for (;;) {
  167. base = timer->base;
  168. if (likely(base != NULL)) {
  169. spin_lock_irqsave(&base->cpu_base->lock, *flags);
  170. if (likely(base == timer->base))
  171. return base;
  172. /* The timer has migrated to another CPU: */
  173. spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
  174. }
  175. cpu_relax();
  176. }
  177. }
  178. /*
  179. * Switch the timer base to the current CPU when possible.
  180. */
  181. static inline struct hrtimer_clock_base *
  182. switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
  183. {
  184. struct hrtimer_clock_base *new_base;
  185. struct hrtimer_cpu_base *new_cpu_base;
  186. new_cpu_base = &__get_cpu_var(hrtimer_bases);
  187. new_base = &new_cpu_base->clock_base[base->index];
  188. if (base != new_base) {
  189. /*
  190. * We are trying to schedule the timer on the local CPU.
  191. * However we can't change timer's base while it is running,
  192. * so we keep it on the same CPU. No hassle vs. reprogramming
  193. * the event source in the high resolution case. The softirq
  194. * code will take care of this when the timer function has
  195. * completed. There is no conflict as we hold the lock until
  196. * the timer is enqueued.
  197. */
  198. if (unlikely(hrtimer_callback_running(timer)))
  199. return base;
  200. /* See the comment in lock_timer_base() */
  201. timer->base = NULL;
  202. spin_unlock(&base->cpu_base->lock);
  203. spin_lock(&new_base->cpu_base->lock);
  204. timer->base = new_base;
  205. }
  206. return new_base;
  207. }
  208. #else /* CONFIG_SMP */
  209. static inline struct hrtimer_clock_base *
  210. lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  211. {
  212. struct hrtimer_clock_base *base = timer->base;
  213. spin_lock_irqsave(&base->cpu_base->lock, *flags);
  214. return base;
  215. }
  216. # define switch_hrtimer_base(t, b) (b)
  217. #endif /* !CONFIG_SMP */
  218. /*
  219. * Functions for the union type storage format of ktime_t which are
  220. * too large for inlining:
  221. */
  222. #if BITS_PER_LONG < 64
  223. # ifndef CONFIG_KTIME_SCALAR
  224. /**
  225. * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
  226. * @kt: addend
  227. * @nsec: the scalar nsec value to add
  228. *
  229. * Returns the sum of kt and nsec in ktime_t format
  230. */
  231. ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
  232. {
  233. ktime_t tmp;
  234. if (likely(nsec < NSEC_PER_SEC)) {
  235. tmp.tv64 = nsec;
  236. } else {
  237. unsigned long rem = do_div(nsec, NSEC_PER_SEC);
  238. tmp = ktime_set((long)nsec, rem);
  239. }
  240. return ktime_add(kt, tmp);
  241. }
  242. EXPORT_SYMBOL_GPL(ktime_add_ns);
  243. # endif /* !CONFIG_KTIME_SCALAR */
  244. /*
  245. * Divide a ktime value by a nanosecond value
  246. */
  247. unsigned long ktime_divns(const ktime_t kt, s64 div)
  248. {
  249. u64 dclc, inc, dns;
  250. int sft = 0;
  251. dclc = dns = ktime_to_ns(kt);
  252. inc = div;
  253. /* Make sure the divisor is less than 2^32: */
  254. while (div >> 32) {
  255. sft++;
  256. div >>= 1;
  257. }
  258. dclc >>= sft;
  259. do_div(dclc, (unsigned long) div);
  260. return (unsigned long) dclc;
  261. }
  262. #endif /* BITS_PER_LONG >= 64 */
  263. /* High resolution timer related functions */
  264. #ifdef CONFIG_HIGH_RES_TIMERS
  265. /*
  266. * High resolution timer enabled ?
  267. */
  268. static int hrtimer_hres_enabled __read_mostly = 1;
  269. /*
  270. * Enable / Disable high resolution mode
  271. */
  272. static int __init setup_hrtimer_hres(char *str)
  273. {
  274. if (!strcmp(str, "off"))
  275. hrtimer_hres_enabled = 0;
  276. else if (!strcmp(str, "on"))
  277. hrtimer_hres_enabled = 1;
  278. else
  279. return 0;
  280. return 1;
  281. }
  282. __setup("highres=", setup_hrtimer_hres);
  283. /*
  284. * hrtimer_high_res_enabled - query, if the highres mode is enabled
  285. */
  286. static inline int hrtimer_is_hres_enabled(void)
  287. {
  288. return hrtimer_hres_enabled;
  289. }
  290. /*
  291. * Is the high resolution mode active ?
  292. */
  293. static inline int hrtimer_hres_active(void)
  294. {
  295. return __get_cpu_var(hrtimer_bases).hres_active;
  296. }
  297. /*
  298. * Reprogram the event source with checking both queues for the
  299. * next event
  300. * Called with interrupts disabled and base->lock held
  301. */
  302. static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
  303. {
  304. int i;
  305. struct hrtimer_clock_base *base = cpu_base->clock_base;
  306. ktime_t expires;
  307. cpu_base->expires_next.tv64 = KTIME_MAX;
  308. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
  309. struct hrtimer *timer;
  310. if (!base->first)
  311. continue;
  312. timer = rb_entry(base->first, struct hrtimer, node);
  313. expires = ktime_sub(timer->expires, base->offset);
  314. if (expires.tv64 < cpu_base->expires_next.tv64)
  315. cpu_base->expires_next = expires;
  316. }
  317. if (cpu_base->expires_next.tv64 != KTIME_MAX)
  318. tick_program_event(cpu_base->expires_next, 1);
  319. }
  320. /*
  321. * Shared reprogramming for clock_realtime and clock_monotonic
  322. *
  323. * When a timer is enqueued and expires earlier than the already enqueued
  324. * timers, we have to check, whether it expires earlier than the timer for
  325. * which the clock event device was armed.
  326. *
  327. * Called with interrupts disabled and base->cpu_base.lock held
  328. */
  329. static int hrtimer_reprogram(struct hrtimer *timer,
  330. struct hrtimer_clock_base *base)
  331. {
  332. ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
  333. ktime_t expires = ktime_sub(timer->expires, base->offset);
  334. int res;
  335. /*
  336. * When the callback is running, we do not reprogram the clock event
  337. * device. The timer callback is either running on a different CPU or
  338. * the callback is executed in the hrtimer_interupt context. The
  339. * reprogramming is handled either by the softirq, which called the
  340. * callback or at the end of the hrtimer_interrupt.
  341. */
  342. if (hrtimer_callback_running(timer))
  343. return 0;
  344. if (expires.tv64 >= expires_next->tv64)
  345. return 0;
  346. /*
  347. * Clockevents returns -ETIME, when the event was in the past.
  348. */
  349. res = tick_program_event(expires, 0);
  350. if (!IS_ERR_VALUE(res))
  351. *expires_next = expires;
  352. return res;
  353. }
  354. /*
  355. * Retrigger next event is called after clock was set
  356. *
  357. * Called with interrupts disabled via on_each_cpu()
  358. */
  359. static void retrigger_next_event(void *arg)
  360. {
  361. struct hrtimer_cpu_base *base;
  362. struct timespec realtime_offset;
  363. unsigned long seq;
  364. if (!hrtimer_hres_active())
  365. return;
  366. do {
  367. seq = read_seqbegin(&xtime_lock);
  368. set_normalized_timespec(&realtime_offset,
  369. -wall_to_monotonic.tv_sec,
  370. -wall_to_monotonic.tv_nsec);
  371. } while (read_seqretry(&xtime_lock, seq));
  372. base = &__get_cpu_var(hrtimer_bases);
  373. /* Adjust CLOCK_REALTIME offset */
  374. spin_lock(&base->lock);
  375. base->clock_base[CLOCK_REALTIME].offset =
  376. timespec_to_ktime(realtime_offset);
  377. hrtimer_force_reprogram(base);
  378. spin_unlock(&base->lock);
  379. }
  380. /*
  381. * Clock realtime was set
  382. *
  383. * Change the offset of the realtime clock vs. the monotonic
  384. * clock.
  385. *
  386. * We might have to reprogram the high resolution timer interrupt. On
  387. * SMP we call the architecture specific code to retrigger _all_ high
  388. * resolution timer interrupts. On UP we just disable interrupts and
  389. * call the high resolution interrupt code.
  390. */
  391. void clock_was_set(void)
  392. {
  393. /* Retrigger the CPU local events everywhere */
  394. on_each_cpu(retrigger_next_event, NULL, 0, 1);
  395. }
  396. /*
  397. * During resume we might have to reprogram the high resolution timer
  398. * interrupt (on the local CPU):
  399. */
  400. void hres_timers_resume(void)
  401. {
  402. WARN_ON_ONCE(num_online_cpus() > 1);
  403. /* Retrigger the CPU local events: */
  404. retrigger_next_event(NULL);
  405. }
  406. /*
  407. * Check, whether the timer is on the callback pending list
  408. */
  409. static inline int hrtimer_cb_pending(const struct hrtimer *timer)
  410. {
  411. return timer->state & HRTIMER_STATE_PENDING;
  412. }
  413. /*
  414. * Remove a timer from the callback pending list
  415. */
  416. static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
  417. {
  418. list_del_init(&timer->cb_entry);
  419. }
  420. /*
  421. * Initialize the high resolution related parts of cpu_base
  422. */
  423. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
  424. {
  425. base->expires_next.tv64 = KTIME_MAX;
  426. base->hres_active = 0;
  427. INIT_LIST_HEAD(&base->cb_pending);
  428. }
  429. /*
  430. * Initialize the high resolution related parts of a hrtimer
  431. */
  432. static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
  433. {
  434. INIT_LIST_HEAD(&timer->cb_entry);
  435. }
  436. /*
  437. * When High resolution timers are active, try to reprogram. Note, that in case
  438. * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
  439. * check happens. The timer gets enqueued into the rbtree. The reprogramming
  440. * and expiry check is done in the hrtimer_interrupt or in the softirq.
  441. */
  442. static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
  443. struct hrtimer_clock_base *base)
  444. {
  445. if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
  446. /* Timer is expired, act upon the callback mode */
  447. switch(timer->cb_mode) {
  448. case HRTIMER_CB_IRQSAFE_NO_RESTART:
  449. /*
  450. * We can call the callback from here. No restart
  451. * happens, so no danger of recursion
  452. */
  453. BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
  454. return 1;
  455. case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
  456. /*
  457. * This is solely for the sched tick emulation with
  458. * dynamic tick support to ensure that we do not
  459. * restart the tick right on the edge and end up with
  460. * the tick timer in the softirq ! The calling site
  461. * takes care of this.
  462. */
  463. return 1;
  464. case HRTIMER_CB_IRQSAFE:
  465. case HRTIMER_CB_SOFTIRQ:
  466. /*
  467. * Move everything else into the softirq pending list !
  468. */
  469. list_add_tail(&timer->cb_entry,
  470. &base->cpu_base->cb_pending);
  471. timer->state = HRTIMER_STATE_PENDING;
  472. raise_softirq(HRTIMER_SOFTIRQ);
  473. return 1;
  474. default:
  475. BUG();
  476. }
  477. }
  478. return 0;
  479. }
  480. /*
  481. * Switch to high resolution mode
  482. */
  483. static int hrtimer_switch_to_hres(void)
  484. {
  485. int cpu = smp_processor_id();
  486. struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
  487. unsigned long flags;
  488. if (base->hres_active)
  489. return 1;
  490. local_irq_save(flags);
  491. if (tick_init_highres()) {
  492. local_irq_restore(flags);
  493. printk(KERN_WARNING "Could not switch to high resolution "
  494. "mode on CPU %d\n", cpu);
  495. return 0;
  496. }
  497. base->hres_active = 1;
  498. base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
  499. base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
  500. tick_setup_sched_timer();
  501. /* "Retrigger" the interrupt to get things going */
  502. retrigger_next_event(NULL);
  503. local_irq_restore(flags);
  504. printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
  505. smp_processor_id());
  506. return 1;
  507. }
  508. #else
  509. static inline int hrtimer_hres_active(void) { return 0; }
  510. static inline int hrtimer_is_hres_enabled(void) { return 0; }
  511. static inline int hrtimer_switch_to_hres(void) { return 0; }
  512. static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
  513. static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
  514. struct hrtimer_clock_base *base)
  515. {
  516. return 0;
  517. }
  518. static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
  519. static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
  520. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
  521. static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
  522. #endif /* CONFIG_HIGH_RES_TIMERS */
  523. #ifdef CONFIG_TIMER_STATS
  524. void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
  525. {
  526. if (timer->start_site)
  527. return;
  528. timer->start_site = addr;
  529. memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
  530. timer->start_pid = current->pid;
  531. }
  532. #endif
  533. /*
  534. * Counterpart to lock_timer_base above:
  535. */
  536. static inline
  537. void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  538. {
  539. spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
  540. }
  541. /**
  542. * hrtimer_forward - forward the timer expiry
  543. * @timer: hrtimer to forward
  544. * @now: forward past this time
  545. * @interval: the interval to forward
  546. *
  547. * Forward the timer expiry so it will expire in the future.
  548. * Returns the number of overruns.
  549. */
  550. unsigned long
  551. hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
  552. {
  553. unsigned long orun = 1;
  554. ktime_t delta;
  555. delta = ktime_sub(now, timer->expires);
  556. if (delta.tv64 < 0)
  557. return 0;
  558. if (interval.tv64 < timer->base->resolution.tv64)
  559. interval.tv64 = timer->base->resolution.tv64;
  560. if (unlikely(delta.tv64 >= interval.tv64)) {
  561. s64 incr = ktime_to_ns(interval);
  562. orun = ktime_divns(delta, incr);
  563. timer->expires = ktime_add_ns(timer->expires, incr * orun);
  564. if (timer->expires.tv64 > now.tv64)
  565. return orun;
  566. /*
  567. * This (and the ktime_add() below) is the
  568. * correction for exact:
  569. */
  570. orun++;
  571. }
  572. timer->expires = ktime_add(timer->expires, interval);
  573. /*
  574. * Make sure, that the result did not wrap with a very large
  575. * interval.
  576. */
  577. if (timer->expires.tv64 < 0)
  578. timer->expires = ktime_set(KTIME_SEC_MAX, 0);
  579. return orun;
  580. }
  581. EXPORT_SYMBOL_GPL(hrtimer_forward);
  582. /*
  583. * enqueue_hrtimer - internal function to (re)start a timer
  584. *
  585. * The timer is inserted in expiry order. Insertion into the
  586. * red black tree is O(log(n)). Must hold the base lock.
  587. */
  588. static void enqueue_hrtimer(struct hrtimer *timer,
  589. struct hrtimer_clock_base *base, int reprogram)
  590. {
  591. struct rb_node **link = &base->active.rb_node;
  592. struct rb_node *parent = NULL;
  593. struct hrtimer *entry;
  594. int leftmost = 1;
  595. /*
  596. * Find the right place in the rbtree:
  597. */
  598. while (*link) {
  599. parent = *link;
  600. entry = rb_entry(parent, struct hrtimer, node);
  601. /*
  602. * We dont care about collisions. Nodes with
  603. * the same expiry time stay together.
  604. */
  605. if (timer->expires.tv64 < entry->expires.tv64) {
  606. link = &(*link)->rb_left;
  607. } else {
  608. link = &(*link)->rb_right;
  609. leftmost = 0;
  610. }
  611. }
  612. /*
  613. * Insert the timer to the rbtree and check whether it
  614. * replaces the first pending timer
  615. */
  616. if (leftmost) {
  617. /*
  618. * Reprogram the clock event device. When the timer is already
  619. * expired hrtimer_enqueue_reprogram has either called the
  620. * callback or added it to the pending list and raised the
  621. * softirq.
  622. *
  623. * This is a NOP for !HIGHRES
  624. */
  625. if (reprogram && hrtimer_enqueue_reprogram(timer, base))
  626. return;
  627. base->first = &timer->node;
  628. }
  629. rb_link_node(&timer->node, parent, link);
  630. rb_insert_color(&timer->node, &base->active);
  631. /*
  632. * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
  633. * state of a possibly running callback.
  634. */
  635. timer->state |= HRTIMER_STATE_ENQUEUED;
  636. }
  637. /*
  638. * __remove_hrtimer - internal function to remove a timer
  639. *
  640. * Caller must hold the base lock.
  641. *
  642. * High resolution timer mode reprograms the clock event device when the
  643. * timer is the one which expires next. The caller can disable this by setting
  644. * reprogram to zero. This is useful, when the context does a reprogramming
  645. * anyway (e.g. timer interrupt)
  646. */
  647. static void __remove_hrtimer(struct hrtimer *timer,
  648. struct hrtimer_clock_base *base,
  649. unsigned long newstate, int reprogram)
  650. {
  651. /* High res. callback list. NOP for !HIGHRES */
  652. if (hrtimer_cb_pending(timer))
  653. hrtimer_remove_cb_pending(timer);
  654. else {
  655. /*
  656. * Remove the timer from the rbtree and replace the
  657. * first entry pointer if necessary.
  658. */
  659. if (base->first == &timer->node) {
  660. base->first = rb_next(&timer->node);
  661. /* Reprogram the clock event device. if enabled */
  662. if (reprogram && hrtimer_hres_active())
  663. hrtimer_force_reprogram(base->cpu_base);
  664. }
  665. rb_erase(&timer->node, &base->active);
  666. }
  667. timer->state = newstate;
  668. }
  669. /*
  670. * remove hrtimer, called with base lock held
  671. */
  672. static inline int
  673. remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
  674. {
  675. if (hrtimer_is_queued(timer)) {
  676. int reprogram;
  677. /*
  678. * Remove the timer and force reprogramming when high
  679. * resolution mode is active and the timer is on the current
  680. * CPU. If we remove a timer on another CPU, reprogramming is
  681. * skipped. The interrupt event on this CPU is fired and
  682. * reprogramming happens in the interrupt handler. This is a
  683. * rare case and less expensive than a smp call.
  684. */
  685. timer_stats_hrtimer_clear_start_info(timer);
  686. reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
  687. __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
  688. reprogram);
  689. return 1;
  690. }
  691. return 0;
  692. }
  693. /**
  694. * hrtimer_start - (re)start an relative timer on the current CPU
  695. * @timer: the timer to be added
  696. * @tim: expiry time
  697. * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
  698. *
  699. * Returns:
  700. * 0 on success
  701. * 1 when the timer was active
  702. */
  703. int
  704. hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
  705. {
  706. struct hrtimer_clock_base *base, *new_base;
  707. unsigned long flags;
  708. int ret;
  709. base = lock_hrtimer_base(timer, &flags);
  710. /* Remove an active timer from the queue: */
  711. ret = remove_hrtimer(timer, base);
  712. /* Switch the timer base, if necessary: */
  713. new_base = switch_hrtimer_base(timer, base);
  714. if (mode == HRTIMER_MODE_REL) {
  715. tim = ktime_add(tim, new_base->get_time());
  716. /*
  717. * CONFIG_TIME_LOW_RES is a temporary way for architectures
  718. * to signal that they simply return xtime in
  719. * do_gettimeoffset(). In this case we want to round up by
  720. * resolution when starting a relative timer, to avoid short
  721. * timeouts. This will go away with the GTOD framework.
  722. */
  723. #ifdef CONFIG_TIME_LOW_RES
  724. tim = ktime_add(tim, base->resolution);
  725. #endif
  726. }
  727. timer->expires = tim;
  728. timer_stats_hrtimer_set_start_info(timer);
  729. /*
  730. * Only allow reprogramming if the new base is on this CPU.
  731. * (it might still be on another CPU if the timer was pending)
  732. */
  733. enqueue_hrtimer(timer, new_base,
  734. new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
  735. unlock_hrtimer_base(timer, &flags);
  736. return ret;
  737. }
  738. EXPORT_SYMBOL_GPL(hrtimer_start);
  739. /**
  740. * hrtimer_try_to_cancel - try to deactivate a timer
  741. * @timer: hrtimer to stop
  742. *
  743. * Returns:
  744. * 0 when the timer was not active
  745. * 1 when the timer was active
  746. * -1 when the timer is currently excuting the callback function and
  747. * cannot be stopped
  748. */
  749. int hrtimer_try_to_cancel(struct hrtimer *timer)
  750. {
  751. struct hrtimer_clock_base *base;
  752. unsigned long flags;
  753. int ret = -1;
  754. base = lock_hrtimer_base(timer, &flags);
  755. if (!hrtimer_callback_running(timer))
  756. ret = remove_hrtimer(timer, base);
  757. unlock_hrtimer_base(timer, &flags);
  758. return ret;
  759. }
  760. EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
  761. /**
  762. * hrtimer_cancel - cancel a timer and wait for the handler to finish.
  763. * @timer: the timer to be cancelled
  764. *
  765. * Returns:
  766. * 0 when the timer was not active
  767. * 1 when the timer was active
  768. */
  769. int hrtimer_cancel(struct hrtimer *timer)
  770. {
  771. for (;;) {
  772. int ret = hrtimer_try_to_cancel(timer);
  773. if (ret >= 0)
  774. return ret;
  775. cpu_relax();
  776. }
  777. }
  778. EXPORT_SYMBOL_GPL(hrtimer_cancel);
  779. /**
  780. * hrtimer_get_remaining - get remaining time for the timer
  781. * @timer: the timer to read
  782. */
  783. ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
  784. {
  785. struct hrtimer_clock_base *base;
  786. unsigned long flags;
  787. ktime_t rem;
  788. base = lock_hrtimer_base(timer, &flags);
  789. rem = ktime_sub(timer->expires, base->get_time());
  790. unlock_hrtimer_base(timer, &flags);
  791. return rem;
  792. }
  793. EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
  794. #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
  795. /**
  796. * hrtimer_get_next_event - get the time until next expiry event
  797. *
  798. * Returns the delta to the next expiry event or KTIME_MAX if no timer
  799. * is pending.
  800. */
  801. ktime_t hrtimer_get_next_event(void)
  802. {
  803. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  804. struct hrtimer_clock_base *base = cpu_base->clock_base;
  805. ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
  806. unsigned long flags;
  807. int i;
  808. spin_lock_irqsave(&cpu_base->lock, flags);
  809. if (!hrtimer_hres_active()) {
  810. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
  811. struct hrtimer *timer;
  812. if (!base->first)
  813. continue;
  814. timer = rb_entry(base->first, struct hrtimer, node);
  815. delta.tv64 = timer->expires.tv64;
  816. delta = ktime_sub(delta, base->get_time());
  817. if (delta.tv64 < mindelta.tv64)
  818. mindelta.tv64 = delta.tv64;
  819. }
  820. }
  821. spin_unlock_irqrestore(&cpu_base->lock, flags);
  822. if (mindelta.tv64 < 0)
  823. mindelta.tv64 = 0;
  824. return mindelta;
  825. }
  826. #endif
  827. /**
  828. * hrtimer_init - initialize a timer to the given clock
  829. * @timer: the timer to be initialized
  830. * @clock_id: the clock to be used
  831. * @mode: timer mode abs/rel
  832. */
  833. void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  834. enum hrtimer_mode mode)
  835. {
  836. struct hrtimer_cpu_base *cpu_base;
  837. memset(timer, 0, sizeof(struct hrtimer));
  838. cpu_base = &__raw_get_cpu_var(hrtimer_bases);
  839. if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
  840. clock_id = CLOCK_MONOTONIC;
  841. timer->base = &cpu_base->clock_base[clock_id];
  842. hrtimer_init_timer_hres(timer);
  843. #ifdef CONFIG_TIMER_STATS
  844. timer->start_site = NULL;
  845. timer->start_pid = -1;
  846. memset(timer->start_comm, 0, TASK_COMM_LEN);
  847. #endif
  848. }
  849. EXPORT_SYMBOL_GPL(hrtimer_init);
  850. /**
  851. * hrtimer_get_res - get the timer resolution for a clock
  852. * @which_clock: which clock to query
  853. * @tp: pointer to timespec variable to store the resolution
  854. *
  855. * Store the resolution of the clock selected by @which_clock in the
  856. * variable pointed to by @tp.
  857. */
  858. int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
  859. {
  860. struct hrtimer_cpu_base *cpu_base;
  861. cpu_base = &__raw_get_cpu_var(hrtimer_bases);
  862. *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
  863. return 0;
  864. }
  865. EXPORT_SYMBOL_GPL(hrtimer_get_res);
  866. #ifdef CONFIG_HIGH_RES_TIMERS
  867. /*
  868. * High resolution timer interrupt
  869. * Called with interrupts disabled
  870. */
  871. void hrtimer_interrupt(struct clock_event_device *dev)
  872. {
  873. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  874. struct hrtimer_clock_base *base;
  875. ktime_t expires_next, now;
  876. int i, raise = 0;
  877. BUG_ON(!cpu_base->hres_active);
  878. cpu_base->nr_events++;
  879. dev->next_event.tv64 = KTIME_MAX;
  880. retry:
  881. now = ktime_get();
  882. expires_next.tv64 = KTIME_MAX;
  883. base = cpu_base->clock_base;
  884. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  885. ktime_t basenow;
  886. struct rb_node *node;
  887. spin_lock(&cpu_base->lock);
  888. basenow = ktime_add(now, base->offset);
  889. while ((node = base->first)) {
  890. struct hrtimer *timer;
  891. timer = rb_entry(node, struct hrtimer, node);
  892. if (basenow.tv64 < timer->expires.tv64) {
  893. ktime_t expires;
  894. expires = ktime_sub(timer->expires,
  895. base->offset);
  896. if (expires.tv64 < expires_next.tv64)
  897. expires_next = expires;
  898. break;
  899. }
  900. /* Move softirq callbacks to the pending list */
  901. if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
  902. __remove_hrtimer(timer, base,
  903. HRTIMER_STATE_PENDING, 0);
  904. list_add_tail(&timer->cb_entry,
  905. &base->cpu_base->cb_pending);
  906. raise = 1;
  907. continue;
  908. }
  909. __remove_hrtimer(timer, base,
  910. HRTIMER_STATE_CALLBACK, 0);
  911. timer_stats_account_hrtimer(timer);
  912. /*
  913. * Note: We clear the CALLBACK bit after
  914. * enqueue_hrtimer to avoid reprogramming of
  915. * the event hardware. This happens at the end
  916. * of this function anyway.
  917. */
  918. if (timer->function(timer) != HRTIMER_NORESTART) {
  919. BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
  920. enqueue_hrtimer(timer, base, 0);
  921. }
  922. timer->state &= ~HRTIMER_STATE_CALLBACK;
  923. }
  924. spin_unlock(&cpu_base->lock);
  925. base++;
  926. }
  927. cpu_base->expires_next = expires_next;
  928. /* Reprogramming necessary ? */
  929. if (expires_next.tv64 != KTIME_MAX) {
  930. if (tick_program_event(expires_next, 0))
  931. goto retry;
  932. }
  933. /* Raise softirq ? */
  934. if (raise)
  935. raise_softirq(HRTIMER_SOFTIRQ);
  936. }
  937. static void run_hrtimer_softirq(struct softirq_action *h)
  938. {
  939. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  940. spin_lock_irq(&cpu_base->lock);
  941. while (!list_empty(&cpu_base->cb_pending)) {
  942. enum hrtimer_restart (*fn)(struct hrtimer *);
  943. struct hrtimer *timer;
  944. int restart;
  945. timer = list_entry(cpu_base->cb_pending.next,
  946. struct hrtimer, cb_entry);
  947. timer_stats_account_hrtimer(timer);
  948. fn = timer->function;
  949. __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
  950. spin_unlock_irq(&cpu_base->lock);
  951. restart = fn(timer);
  952. spin_lock_irq(&cpu_base->lock);
  953. timer->state &= ~HRTIMER_STATE_CALLBACK;
  954. if (restart == HRTIMER_RESTART) {
  955. BUG_ON(hrtimer_active(timer));
  956. /*
  957. * Enqueue the timer, allow reprogramming of the event
  958. * device
  959. */
  960. enqueue_hrtimer(timer, timer->base, 1);
  961. } else if (hrtimer_active(timer)) {
  962. /*
  963. * If the timer was rearmed on another CPU, reprogram
  964. * the event device.
  965. */
  966. if (timer->base->first == &timer->node)
  967. hrtimer_reprogram(timer, timer->base);
  968. }
  969. }
  970. spin_unlock_irq(&cpu_base->lock);
  971. }
  972. #endif /* CONFIG_HIGH_RES_TIMERS */
  973. /*
  974. * Expire the per base hrtimer-queue:
  975. */
  976. static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
  977. int index)
  978. {
  979. struct rb_node *node;
  980. struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
  981. if (!base->first)
  982. return;
  983. if (base->get_softirq_time)
  984. base->softirq_time = base->get_softirq_time();
  985. spin_lock_irq(&cpu_base->lock);
  986. while ((node = base->first)) {
  987. struct hrtimer *timer;
  988. enum hrtimer_restart (*fn)(struct hrtimer *);
  989. int restart;
  990. timer = rb_entry(node, struct hrtimer, node);
  991. if (base->softirq_time.tv64 <= timer->expires.tv64)
  992. break;
  993. #ifdef CONFIG_HIGH_RES_TIMERS
  994. WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
  995. #endif
  996. timer_stats_account_hrtimer(timer);
  997. fn = timer->function;
  998. __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
  999. spin_unlock_irq(&cpu_base->lock);
  1000. restart = fn(timer);
  1001. spin_lock_irq(&cpu_base->lock);
  1002. timer->state &= ~HRTIMER_STATE_CALLBACK;
  1003. if (restart != HRTIMER_NORESTART) {
  1004. BUG_ON(hrtimer_active(timer));
  1005. enqueue_hrtimer(timer, base, 0);
  1006. }
  1007. }
  1008. spin_unlock_irq(&cpu_base->lock);
  1009. }
  1010. /*
  1011. * Called from timer softirq every jiffy, expire hrtimers:
  1012. *
  1013. * For HRT its the fall back code to run the softirq in the timer
  1014. * softirq context in case the hrtimer initialization failed or has
  1015. * not been done yet.
  1016. */
  1017. void hrtimer_run_queues(void)
  1018. {
  1019. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  1020. int i;
  1021. if (hrtimer_hres_active())
  1022. return;
  1023. /*
  1024. * This _is_ ugly: We have to check in the softirq context,
  1025. * whether we can switch to highres and / or nohz mode. The
  1026. * clocksource switch happens in the timer interrupt with
  1027. * xtime_lock held. Notification from there only sets the
  1028. * check bit in the tick_oneshot code, otherwise we might
  1029. * deadlock vs. xtime_lock.
  1030. */
  1031. if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
  1032. if (hrtimer_switch_to_hres())
  1033. return;
  1034. hrtimer_get_softirq_time(cpu_base);
  1035. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
  1036. run_hrtimer_queue(cpu_base, i);
  1037. }
  1038. /*
  1039. * Sleep related functions:
  1040. */
  1041. static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
  1042. {
  1043. struct hrtimer_sleeper *t =
  1044. container_of(timer, struct hrtimer_sleeper, timer);
  1045. struct task_struct *task = t->task;
  1046. t->task = NULL;
  1047. if (task)
  1048. wake_up_process(task);
  1049. return HRTIMER_NORESTART;
  1050. }
  1051. void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
  1052. {
  1053. sl->timer.function = hrtimer_wakeup;
  1054. sl->task = task;
  1055. #ifdef CONFIG_HIGH_RES_TIMERS
  1056. sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
  1057. #endif
  1058. }
  1059. static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
  1060. {
  1061. hrtimer_init_sleeper(t, current);
  1062. do {
  1063. set_current_state(TASK_INTERRUPTIBLE);
  1064. hrtimer_start(&t->timer, t->timer.expires, mode);
  1065. if (likely(t->task))
  1066. schedule();
  1067. hrtimer_cancel(&t->timer);
  1068. mode = HRTIMER_MODE_ABS;
  1069. } while (t->task && !signal_pending(current));
  1070. return t->task == NULL;
  1071. }
  1072. long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
  1073. {
  1074. struct hrtimer_sleeper t;
  1075. struct timespec __user *rmtp;
  1076. struct timespec tu;
  1077. ktime_t time;
  1078. restart->fn = do_no_restart_syscall;
  1079. hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
  1080. t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
  1081. if (do_nanosleep(&t, HRTIMER_MODE_ABS))
  1082. return 0;
  1083. rmtp = (struct timespec __user *) restart->arg1;
  1084. if (rmtp) {
  1085. time = ktime_sub(t.timer.expires, t.timer.base->get_time());
  1086. if (time.tv64 <= 0)
  1087. return 0;
  1088. tu = ktime_to_timespec(time);
  1089. if (copy_to_user(rmtp, &tu, sizeof(tu)))
  1090. return -EFAULT;
  1091. }
  1092. restart->fn = hrtimer_nanosleep_restart;
  1093. /* The other values in restart are already filled in */
  1094. return -ERESTART_RESTARTBLOCK;
  1095. }
  1096. long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
  1097. const enum hrtimer_mode mode, const clockid_t clockid)
  1098. {
  1099. struct restart_block *restart;
  1100. struct hrtimer_sleeper t;
  1101. struct timespec tu;
  1102. ktime_t rem;
  1103. hrtimer_init(&t.timer, clockid, mode);
  1104. t.timer.expires = timespec_to_ktime(*rqtp);
  1105. if (do_nanosleep(&t, mode))
  1106. return 0;
  1107. /* Absolute timers do not update the rmtp value and restart: */
  1108. if (mode == HRTIMER_MODE_ABS)
  1109. return -ERESTARTNOHAND;
  1110. if (rmtp) {
  1111. rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
  1112. if (rem.tv64 <= 0)
  1113. return 0;
  1114. tu = ktime_to_timespec(rem);
  1115. if (copy_to_user(rmtp, &tu, sizeof(tu)))
  1116. return -EFAULT;
  1117. }
  1118. restart = &current_thread_info()->restart_block;
  1119. restart->fn = hrtimer_nanosleep_restart;
  1120. restart->arg0 = (unsigned long) t.timer.base->index;
  1121. restart->arg1 = (unsigned long) rmtp;
  1122. restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
  1123. restart->arg3 = t.timer.expires.tv64 >> 32;
  1124. return -ERESTART_RESTARTBLOCK;
  1125. }
  1126. asmlinkage long
  1127. sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
  1128. {
  1129. struct timespec tu;
  1130. if (copy_from_user(&tu, rqtp, sizeof(tu)))
  1131. return -EFAULT;
  1132. if (!timespec_valid(&tu))
  1133. return -EINVAL;
  1134. return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
  1135. }
  1136. /*
  1137. * Functions related to boot-time initialization:
  1138. */
  1139. static void __devinit init_hrtimers_cpu(int cpu)
  1140. {
  1141. struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
  1142. int i;
  1143. spin_lock_init(&cpu_base->lock);
  1144. lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
  1145. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
  1146. cpu_base->clock_base[i].cpu_base = cpu_base;
  1147. hrtimer_init_hres(cpu_base);
  1148. }
  1149. #ifdef CONFIG_HOTPLUG_CPU
  1150. static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
  1151. struct hrtimer_clock_base *new_base)
  1152. {
  1153. struct hrtimer *timer;
  1154. struct rb_node *node;
  1155. while ((node = rb_first(&old_base->active))) {
  1156. timer = rb_entry(node, struct hrtimer, node);
  1157. BUG_ON(hrtimer_callback_running(timer));
  1158. __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
  1159. timer->base = new_base;
  1160. /*
  1161. * Enqueue the timer. Allow reprogramming of the event device
  1162. */
  1163. enqueue_hrtimer(timer, new_base, 1);
  1164. }
  1165. }
  1166. static void migrate_hrtimers(int cpu)
  1167. {
  1168. struct hrtimer_cpu_base *old_base, *new_base;
  1169. int i;
  1170. BUG_ON(cpu_online(cpu));
  1171. old_base = &per_cpu(hrtimer_bases, cpu);
  1172. new_base = &get_cpu_var(hrtimer_bases);
  1173. tick_cancel_sched_timer(cpu);
  1174. local_irq_disable();
  1175. double_spin_lock(&new_base->lock, &old_base->lock,
  1176. smp_processor_id() < cpu);
  1177. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1178. migrate_hrtimer_list(&old_base->clock_base[i],
  1179. &new_base->clock_base[i]);
  1180. }
  1181. double_spin_unlock(&new_base->lock, &old_base->lock,
  1182. smp_processor_id() < cpu);
  1183. local_irq_enable();
  1184. put_cpu_var(hrtimer_bases);
  1185. }
  1186. #endif /* CONFIG_HOTPLUG_CPU */
  1187. static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
  1188. unsigned long action, void *hcpu)
  1189. {
  1190. unsigned int cpu = (long)hcpu;
  1191. switch (action) {
  1192. case CPU_UP_PREPARE:
  1193. case CPU_UP_PREPARE_FROZEN:
  1194. init_hrtimers_cpu(cpu);
  1195. break;
  1196. #ifdef CONFIG_HOTPLUG_CPU
  1197. case CPU_DEAD:
  1198. case CPU_DEAD_FROZEN:
  1199. clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
  1200. migrate_hrtimers(cpu);
  1201. break;
  1202. #endif
  1203. default:
  1204. break;
  1205. }
  1206. return NOTIFY_OK;
  1207. }
  1208. static struct notifier_block __cpuinitdata hrtimers_nb = {
  1209. .notifier_call = hrtimer_cpu_notify,
  1210. };
  1211. void __init hrtimers_init(void)
  1212. {
  1213. hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
  1214. (void *)(long)smp_processor_id());
  1215. register_cpu_notifier(&hrtimers_nb);
  1216. #ifdef CONFIG_HIGH_RES_TIMERS
  1217. open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
  1218. #endif
  1219. }