fork.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/freezer.h>
  47. #include <linux/delayacct.h>
  48. #include <linux/taskstats_kern.h>
  49. #include <linux/random.h>
  50. #include <linux/tty.h>
  51. #include <asm/pgtable.h>
  52. #include <asm/pgalloc.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/mmu_context.h>
  55. #include <asm/cacheflush.h>
  56. #include <asm/tlbflush.h>
  57. /*
  58. * Protected counters by write_lock_irq(&tasklist_lock)
  59. */
  60. unsigned long total_forks; /* Handle normal Linux uptimes. */
  61. int nr_threads; /* The idle threads do not count.. */
  62. int max_threads; /* tunable limit on nr_threads */
  63. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  64. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  65. int nr_processes(void)
  66. {
  67. int cpu;
  68. int total = 0;
  69. for_each_online_cpu(cpu)
  70. total += per_cpu(process_counts, cpu);
  71. return total;
  72. }
  73. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  74. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  75. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  76. static struct kmem_cache *task_struct_cachep;
  77. #endif
  78. /* SLAB cache for signal_struct structures (tsk->signal) */
  79. static struct kmem_cache *signal_cachep;
  80. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  81. struct kmem_cache *sighand_cachep;
  82. /* SLAB cache for files_struct structures (tsk->files) */
  83. struct kmem_cache *files_cachep;
  84. /* SLAB cache for fs_struct structures (tsk->fs) */
  85. struct kmem_cache *fs_cachep;
  86. /* SLAB cache for vm_area_struct structures */
  87. struct kmem_cache *vm_area_cachep;
  88. /* SLAB cache for mm_struct structures (tsk->mm) */
  89. static struct kmem_cache *mm_cachep;
  90. void free_task(struct task_struct *tsk)
  91. {
  92. free_thread_info(tsk->stack);
  93. rt_mutex_debug_task_free(tsk);
  94. free_task_struct(tsk);
  95. }
  96. EXPORT_SYMBOL(free_task);
  97. void __put_task_struct(struct task_struct *tsk)
  98. {
  99. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  100. WARN_ON(atomic_read(&tsk->usage));
  101. WARN_ON(tsk == current);
  102. security_task_free(tsk);
  103. free_uid(tsk->user);
  104. put_group_info(tsk->group_info);
  105. delayacct_tsk_free(tsk);
  106. if (!profile_handoff_task(tsk))
  107. free_task(tsk);
  108. }
  109. void __init fork_init(unsigned long mempages)
  110. {
  111. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  112. #ifndef ARCH_MIN_TASKALIGN
  113. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  114. #endif
  115. /* create a slab on which task_structs can be allocated */
  116. task_struct_cachep =
  117. kmem_cache_create("task_struct", sizeof(struct task_struct),
  118. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
  119. #endif
  120. /*
  121. * The default maximum number of threads is set to a safe
  122. * value: the thread structures can take up at most half
  123. * of memory.
  124. */
  125. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  126. /*
  127. * we need to allow at least 20 threads to boot a system
  128. */
  129. if(max_threads < 20)
  130. max_threads = 20;
  131. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  132. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  133. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  134. init_task.signal->rlim[RLIMIT_NPROC];
  135. }
  136. static struct task_struct *dup_task_struct(struct task_struct *orig)
  137. {
  138. struct task_struct *tsk;
  139. struct thread_info *ti;
  140. prepare_to_copy(orig);
  141. tsk = alloc_task_struct();
  142. if (!tsk)
  143. return NULL;
  144. ti = alloc_thread_info(tsk);
  145. if (!ti) {
  146. free_task_struct(tsk);
  147. return NULL;
  148. }
  149. *tsk = *orig;
  150. tsk->stack = ti;
  151. setup_thread_stack(tsk, orig);
  152. #ifdef CONFIG_CC_STACKPROTECTOR
  153. tsk->stack_canary = get_random_int();
  154. #endif
  155. /* One for us, one for whoever does the "release_task()" (usually parent) */
  156. atomic_set(&tsk->usage,2);
  157. atomic_set(&tsk->fs_excl, 0);
  158. #ifdef CONFIG_BLK_DEV_IO_TRACE
  159. tsk->btrace_seq = 0;
  160. #endif
  161. tsk->splice_pipe = NULL;
  162. return tsk;
  163. }
  164. #ifdef CONFIG_MMU
  165. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  166. {
  167. struct vm_area_struct *mpnt, *tmp, **pprev;
  168. struct rb_node **rb_link, *rb_parent;
  169. int retval;
  170. unsigned long charge;
  171. struct mempolicy *pol;
  172. down_write(&oldmm->mmap_sem);
  173. flush_cache_dup_mm(oldmm);
  174. /*
  175. * Not linked in yet - no deadlock potential:
  176. */
  177. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  178. mm->locked_vm = 0;
  179. mm->mmap = NULL;
  180. mm->mmap_cache = NULL;
  181. mm->free_area_cache = oldmm->mmap_base;
  182. mm->cached_hole_size = ~0UL;
  183. mm->map_count = 0;
  184. cpus_clear(mm->cpu_vm_mask);
  185. mm->mm_rb = RB_ROOT;
  186. rb_link = &mm->mm_rb.rb_node;
  187. rb_parent = NULL;
  188. pprev = &mm->mmap;
  189. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  190. struct file *file;
  191. if (mpnt->vm_flags & VM_DONTCOPY) {
  192. long pages = vma_pages(mpnt);
  193. mm->total_vm -= pages;
  194. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  195. -pages);
  196. continue;
  197. }
  198. charge = 0;
  199. if (mpnt->vm_flags & VM_ACCOUNT) {
  200. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  201. if (security_vm_enough_memory(len))
  202. goto fail_nomem;
  203. charge = len;
  204. }
  205. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  206. if (!tmp)
  207. goto fail_nomem;
  208. *tmp = *mpnt;
  209. pol = mpol_copy(vma_policy(mpnt));
  210. retval = PTR_ERR(pol);
  211. if (IS_ERR(pol))
  212. goto fail_nomem_policy;
  213. vma_set_policy(tmp, pol);
  214. tmp->vm_flags &= ~VM_LOCKED;
  215. tmp->vm_mm = mm;
  216. tmp->vm_next = NULL;
  217. anon_vma_link(tmp);
  218. file = tmp->vm_file;
  219. if (file) {
  220. struct inode *inode = file->f_path.dentry->d_inode;
  221. get_file(file);
  222. if (tmp->vm_flags & VM_DENYWRITE)
  223. atomic_dec(&inode->i_writecount);
  224. /* insert tmp into the share list, just after mpnt */
  225. spin_lock(&file->f_mapping->i_mmap_lock);
  226. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  227. flush_dcache_mmap_lock(file->f_mapping);
  228. vma_prio_tree_add(tmp, mpnt);
  229. flush_dcache_mmap_unlock(file->f_mapping);
  230. spin_unlock(&file->f_mapping->i_mmap_lock);
  231. }
  232. /*
  233. * Link in the new vma and copy the page table entries.
  234. */
  235. *pprev = tmp;
  236. pprev = &tmp->vm_next;
  237. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  238. rb_link = &tmp->vm_rb.rb_right;
  239. rb_parent = &tmp->vm_rb;
  240. mm->map_count++;
  241. retval = copy_page_range(mm, oldmm, mpnt);
  242. if (tmp->vm_ops && tmp->vm_ops->open)
  243. tmp->vm_ops->open(tmp);
  244. if (retval)
  245. goto out;
  246. }
  247. /* a new mm has just been created */
  248. arch_dup_mmap(oldmm, mm);
  249. retval = 0;
  250. out:
  251. up_write(&mm->mmap_sem);
  252. flush_tlb_mm(oldmm);
  253. up_write(&oldmm->mmap_sem);
  254. return retval;
  255. fail_nomem_policy:
  256. kmem_cache_free(vm_area_cachep, tmp);
  257. fail_nomem:
  258. retval = -ENOMEM;
  259. vm_unacct_memory(charge);
  260. goto out;
  261. }
  262. static inline int mm_alloc_pgd(struct mm_struct * mm)
  263. {
  264. mm->pgd = pgd_alloc(mm);
  265. if (unlikely(!mm->pgd))
  266. return -ENOMEM;
  267. return 0;
  268. }
  269. static inline void mm_free_pgd(struct mm_struct * mm)
  270. {
  271. pgd_free(mm->pgd);
  272. }
  273. #else
  274. #define dup_mmap(mm, oldmm) (0)
  275. #define mm_alloc_pgd(mm) (0)
  276. #define mm_free_pgd(mm)
  277. #endif /* CONFIG_MMU */
  278. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  279. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  280. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  281. #include <linux/init_task.h>
  282. static struct mm_struct * mm_init(struct mm_struct * mm)
  283. {
  284. atomic_set(&mm->mm_users, 1);
  285. atomic_set(&mm->mm_count, 1);
  286. init_rwsem(&mm->mmap_sem);
  287. INIT_LIST_HEAD(&mm->mmlist);
  288. mm->flags = (current->mm) ? current->mm->flags
  289. : MMF_DUMP_FILTER_DEFAULT;
  290. mm->core_waiters = 0;
  291. mm->nr_ptes = 0;
  292. set_mm_counter(mm, file_rss, 0);
  293. set_mm_counter(mm, anon_rss, 0);
  294. spin_lock_init(&mm->page_table_lock);
  295. rwlock_init(&mm->ioctx_list_lock);
  296. mm->ioctx_list = NULL;
  297. mm->free_area_cache = TASK_UNMAPPED_BASE;
  298. mm->cached_hole_size = ~0UL;
  299. if (likely(!mm_alloc_pgd(mm))) {
  300. mm->def_flags = 0;
  301. return mm;
  302. }
  303. free_mm(mm);
  304. return NULL;
  305. }
  306. /*
  307. * Allocate and initialize an mm_struct.
  308. */
  309. struct mm_struct * mm_alloc(void)
  310. {
  311. struct mm_struct * mm;
  312. mm = allocate_mm();
  313. if (mm) {
  314. memset(mm, 0, sizeof(*mm));
  315. mm = mm_init(mm);
  316. }
  317. return mm;
  318. }
  319. /*
  320. * Called when the last reference to the mm
  321. * is dropped: either by a lazy thread or by
  322. * mmput. Free the page directory and the mm.
  323. */
  324. void fastcall __mmdrop(struct mm_struct *mm)
  325. {
  326. BUG_ON(mm == &init_mm);
  327. mm_free_pgd(mm);
  328. destroy_context(mm);
  329. free_mm(mm);
  330. }
  331. /*
  332. * Decrement the use count and release all resources for an mm.
  333. */
  334. void mmput(struct mm_struct *mm)
  335. {
  336. might_sleep();
  337. if (atomic_dec_and_test(&mm->mm_users)) {
  338. exit_aio(mm);
  339. exit_mmap(mm);
  340. if (!list_empty(&mm->mmlist)) {
  341. spin_lock(&mmlist_lock);
  342. list_del(&mm->mmlist);
  343. spin_unlock(&mmlist_lock);
  344. }
  345. put_swap_token(mm);
  346. mmdrop(mm);
  347. }
  348. }
  349. EXPORT_SYMBOL_GPL(mmput);
  350. /**
  351. * get_task_mm - acquire a reference to the task's mm
  352. *
  353. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  354. * this kernel workthread has transiently adopted a user mm with use_mm,
  355. * to do its AIO) is not set and if so returns a reference to it, after
  356. * bumping up the use count. User must release the mm via mmput()
  357. * after use. Typically used by /proc and ptrace.
  358. */
  359. struct mm_struct *get_task_mm(struct task_struct *task)
  360. {
  361. struct mm_struct *mm;
  362. task_lock(task);
  363. mm = task->mm;
  364. if (mm) {
  365. if (task->flags & PF_BORROWED_MM)
  366. mm = NULL;
  367. else
  368. atomic_inc(&mm->mm_users);
  369. }
  370. task_unlock(task);
  371. return mm;
  372. }
  373. EXPORT_SYMBOL_GPL(get_task_mm);
  374. /* Please note the differences between mmput and mm_release.
  375. * mmput is called whenever we stop holding onto a mm_struct,
  376. * error success whatever.
  377. *
  378. * mm_release is called after a mm_struct has been removed
  379. * from the current process.
  380. *
  381. * This difference is important for error handling, when we
  382. * only half set up a mm_struct for a new process and need to restore
  383. * the old one. Because we mmput the new mm_struct before
  384. * restoring the old one. . .
  385. * Eric Biederman 10 January 1998
  386. */
  387. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  388. {
  389. struct completion *vfork_done = tsk->vfork_done;
  390. /* Get rid of any cached register state */
  391. deactivate_mm(tsk, mm);
  392. /* notify parent sleeping on vfork() */
  393. if (vfork_done) {
  394. tsk->vfork_done = NULL;
  395. complete(vfork_done);
  396. }
  397. /*
  398. * If we're exiting normally, clear a user-space tid field if
  399. * requested. We leave this alone when dying by signal, to leave
  400. * the value intact in a core dump, and to save the unnecessary
  401. * trouble otherwise. Userland only wants this done for a sys_exit.
  402. */
  403. if (tsk->clear_child_tid
  404. && !(tsk->flags & PF_SIGNALED)
  405. && atomic_read(&mm->mm_users) > 1) {
  406. u32 __user * tidptr = tsk->clear_child_tid;
  407. tsk->clear_child_tid = NULL;
  408. /*
  409. * We don't check the error code - if userspace has
  410. * not set up a proper pointer then tough luck.
  411. */
  412. put_user(0, tidptr);
  413. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  414. }
  415. }
  416. /*
  417. * Allocate a new mm structure and copy contents from the
  418. * mm structure of the passed in task structure.
  419. */
  420. static struct mm_struct *dup_mm(struct task_struct *tsk)
  421. {
  422. struct mm_struct *mm, *oldmm = current->mm;
  423. int err;
  424. if (!oldmm)
  425. return NULL;
  426. mm = allocate_mm();
  427. if (!mm)
  428. goto fail_nomem;
  429. memcpy(mm, oldmm, sizeof(*mm));
  430. /* Initializing for Swap token stuff */
  431. mm->token_priority = 0;
  432. mm->last_interval = 0;
  433. if (!mm_init(mm))
  434. goto fail_nomem;
  435. if (init_new_context(tsk, mm))
  436. goto fail_nocontext;
  437. err = dup_mmap(mm, oldmm);
  438. if (err)
  439. goto free_pt;
  440. mm->hiwater_rss = get_mm_rss(mm);
  441. mm->hiwater_vm = mm->total_vm;
  442. return mm;
  443. free_pt:
  444. mmput(mm);
  445. fail_nomem:
  446. return NULL;
  447. fail_nocontext:
  448. /*
  449. * If init_new_context() failed, we cannot use mmput() to free the mm
  450. * because it calls destroy_context()
  451. */
  452. mm_free_pgd(mm);
  453. free_mm(mm);
  454. return NULL;
  455. }
  456. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  457. {
  458. struct mm_struct * mm, *oldmm;
  459. int retval;
  460. tsk->min_flt = tsk->maj_flt = 0;
  461. tsk->nvcsw = tsk->nivcsw = 0;
  462. tsk->mm = NULL;
  463. tsk->active_mm = NULL;
  464. /*
  465. * Are we cloning a kernel thread?
  466. *
  467. * We need to steal a active VM for that..
  468. */
  469. oldmm = current->mm;
  470. if (!oldmm)
  471. return 0;
  472. if (clone_flags & CLONE_VM) {
  473. atomic_inc(&oldmm->mm_users);
  474. mm = oldmm;
  475. goto good_mm;
  476. }
  477. retval = -ENOMEM;
  478. mm = dup_mm(tsk);
  479. if (!mm)
  480. goto fail_nomem;
  481. good_mm:
  482. /* Initializing for Swap token stuff */
  483. mm->token_priority = 0;
  484. mm->last_interval = 0;
  485. tsk->mm = mm;
  486. tsk->active_mm = mm;
  487. return 0;
  488. fail_nomem:
  489. return retval;
  490. }
  491. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  492. {
  493. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  494. /* We don't need to lock fs - think why ;-) */
  495. if (fs) {
  496. atomic_set(&fs->count, 1);
  497. rwlock_init(&fs->lock);
  498. fs->umask = old->umask;
  499. read_lock(&old->lock);
  500. fs->rootmnt = mntget(old->rootmnt);
  501. fs->root = dget(old->root);
  502. fs->pwdmnt = mntget(old->pwdmnt);
  503. fs->pwd = dget(old->pwd);
  504. if (old->altroot) {
  505. fs->altrootmnt = mntget(old->altrootmnt);
  506. fs->altroot = dget(old->altroot);
  507. } else {
  508. fs->altrootmnt = NULL;
  509. fs->altroot = NULL;
  510. }
  511. read_unlock(&old->lock);
  512. }
  513. return fs;
  514. }
  515. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  516. {
  517. return __copy_fs_struct(old);
  518. }
  519. EXPORT_SYMBOL_GPL(copy_fs_struct);
  520. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  521. {
  522. if (clone_flags & CLONE_FS) {
  523. atomic_inc(&current->fs->count);
  524. return 0;
  525. }
  526. tsk->fs = __copy_fs_struct(current->fs);
  527. if (!tsk->fs)
  528. return -ENOMEM;
  529. return 0;
  530. }
  531. static int count_open_files(struct fdtable *fdt)
  532. {
  533. int size = fdt->max_fds;
  534. int i;
  535. /* Find the last open fd */
  536. for (i = size/(8*sizeof(long)); i > 0; ) {
  537. if (fdt->open_fds->fds_bits[--i])
  538. break;
  539. }
  540. i = (i+1) * 8 * sizeof(long);
  541. return i;
  542. }
  543. static struct files_struct *alloc_files(void)
  544. {
  545. struct files_struct *newf;
  546. struct fdtable *fdt;
  547. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  548. if (!newf)
  549. goto out;
  550. atomic_set(&newf->count, 1);
  551. spin_lock_init(&newf->file_lock);
  552. newf->next_fd = 0;
  553. fdt = &newf->fdtab;
  554. fdt->max_fds = NR_OPEN_DEFAULT;
  555. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  556. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  557. fdt->fd = &newf->fd_array[0];
  558. INIT_RCU_HEAD(&fdt->rcu);
  559. fdt->next = NULL;
  560. rcu_assign_pointer(newf->fdt, fdt);
  561. out:
  562. return newf;
  563. }
  564. /*
  565. * Allocate a new files structure and copy contents from the
  566. * passed in files structure.
  567. * errorp will be valid only when the returned files_struct is NULL.
  568. */
  569. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  570. {
  571. struct files_struct *newf;
  572. struct file **old_fds, **new_fds;
  573. int open_files, size, i;
  574. struct fdtable *old_fdt, *new_fdt;
  575. *errorp = -ENOMEM;
  576. newf = alloc_files();
  577. if (!newf)
  578. goto out;
  579. spin_lock(&oldf->file_lock);
  580. old_fdt = files_fdtable(oldf);
  581. new_fdt = files_fdtable(newf);
  582. open_files = count_open_files(old_fdt);
  583. /*
  584. * Check whether we need to allocate a larger fd array and fd set.
  585. * Note: we're not a clone task, so the open count won't change.
  586. */
  587. if (open_files > new_fdt->max_fds) {
  588. new_fdt->max_fds = 0;
  589. spin_unlock(&oldf->file_lock);
  590. spin_lock(&newf->file_lock);
  591. *errorp = expand_files(newf, open_files-1);
  592. spin_unlock(&newf->file_lock);
  593. if (*errorp < 0)
  594. goto out_release;
  595. new_fdt = files_fdtable(newf);
  596. /*
  597. * Reacquire the oldf lock and a pointer to its fd table
  598. * who knows it may have a new bigger fd table. We need
  599. * the latest pointer.
  600. */
  601. spin_lock(&oldf->file_lock);
  602. old_fdt = files_fdtable(oldf);
  603. }
  604. old_fds = old_fdt->fd;
  605. new_fds = new_fdt->fd;
  606. memcpy(new_fdt->open_fds->fds_bits,
  607. old_fdt->open_fds->fds_bits, open_files/8);
  608. memcpy(new_fdt->close_on_exec->fds_bits,
  609. old_fdt->close_on_exec->fds_bits, open_files/8);
  610. for (i = open_files; i != 0; i--) {
  611. struct file *f = *old_fds++;
  612. if (f) {
  613. get_file(f);
  614. } else {
  615. /*
  616. * The fd may be claimed in the fd bitmap but not yet
  617. * instantiated in the files array if a sibling thread
  618. * is partway through open(). So make sure that this
  619. * fd is available to the new process.
  620. */
  621. FD_CLR(open_files - i, new_fdt->open_fds);
  622. }
  623. rcu_assign_pointer(*new_fds++, f);
  624. }
  625. spin_unlock(&oldf->file_lock);
  626. /* compute the remainder to be cleared */
  627. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  628. /* This is long word aligned thus could use a optimized version */
  629. memset(new_fds, 0, size);
  630. if (new_fdt->max_fds > open_files) {
  631. int left = (new_fdt->max_fds-open_files)/8;
  632. int start = open_files / (8 * sizeof(unsigned long));
  633. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  634. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  635. }
  636. return newf;
  637. out_release:
  638. kmem_cache_free(files_cachep, newf);
  639. out:
  640. return NULL;
  641. }
  642. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  643. {
  644. struct files_struct *oldf, *newf;
  645. int error = 0;
  646. /*
  647. * A background process may not have any files ...
  648. */
  649. oldf = current->files;
  650. if (!oldf)
  651. goto out;
  652. if (clone_flags & CLONE_FILES) {
  653. atomic_inc(&oldf->count);
  654. goto out;
  655. }
  656. /*
  657. * Note: we may be using current for both targets (See exec.c)
  658. * This works because we cache current->files (old) as oldf. Don't
  659. * break this.
  660. */
  661. tsk->files = NULL;
  662. newf = dup_fd(oldf, &error);
  663. if (!newf)
  664. goto out;
  665. tsk->files = newf;
  666. error = 0;
  667. out:
  668. return error;
  669. }
  670. /*
  671. * Helper to unshare the files of the current task.
  672. * We don't want to expose copy_files internals to
  673. * the exec layer of the kernel.
  674. */
  675. int unshare_files(void)
  676. {
  677. struct files_struct *files = current->files;
  678. int rc;
  679. BUG_ON(!files);
  680. /* This can race but the race causes us to copy when we don't
  681. need to and drop the copy */
  682. if(atomic_read(&files->count) == 1)
  683. {
  684. atomic_inc(&files->count);
  685. return 0;
  686. }
  687. rc = copy_files(0, current);
  688. if(rc)
  689. current->files = files;
  690. return rc;
  691. }
  692. EXPORT_SYMBOL(unshare_files);
  693. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  694. {
  695. struct sighand_struct *sig;
  696. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  697. atomic_inc(&current->sighand->count);
  698. return 0;
  699. }
  700. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  701. rcu_assign_pointer(tsk->sighand, sig);
  702. if (!sig)
  703. return -ENOMEM;
  704. atomic_set(&sig->count, 1);
  705. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  706. return 0;
  707. }
  708. void __cleanup_sighand(struct sighand_struct *sighand)
  709. {
  710. if (atomic_dec_and_test(&sighand->count))
  711. kmem_cache_free(sighand_cachep, sighand);
  712. }
  713. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  714. {
  715. struct signal_struct *sig;
  716. int ret;
  717. if (clone_flags & CLONE_THREAD) {
  718. atomic_inc(&current->signal->count);
  719. atomic_inc(&current->signal->live);
  720. return 0;
  721. }
  722. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  723. tsk->signal = sig;
  724. if (!sig)
  725. return -ENOMEM;
  726. ret = copy_thread_group_keys(tsk);
  727. if (ret < 0) {
  728. kmem_cache_free(signal_cachep, sig);
  729. return ret;
  730. }
  731. atomic_set(&sig->count, 1);
  732. atomic_set(&sig->live, 1);
  733. init_waitqueue_head(&sig->wait_chldexit);
  734. sig->flags = 0;
  735. sig->group_exit_code = 0;
  736. sig->group_exit_task = NULL;
  737. sig->group_stop_count = 0;
  738. sig->curr_target = NULL;
  739. init_sigpending(&sig->shared_pending);
  740. INIT_LIST_HEAD(&sig->posix_timers);
  741. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  742. sig->it_real_incr.tv64 = 0;
  743. sig->real_timer.function = it_real_fn;
  744. sig->tsk = tsk;
  745. sig->it_virt_expires = cputime_zero;
  746. sig->it_virt_incr = cputime_zero;
  747. sig->it_prof_expires = cputime_zero;
  748. sig->it_prof_incr = cputime_zero;
  749. sig->leader = 0; /* session leadership doesn't inherit */
  750. sig->tty_old_pgrp = NULL;
  751. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  752. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  753. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  754. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  755. sig->sum_sched_runtime = 0;
  756. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  757. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  758. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  759. taskstats_tgid_init(sig);
  760. task_lock(current->group_leader);
  761. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  762. task_unlock(current->group_leader);
  763. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  764. /*
  765. * New sole thread in the process gets an expiry time
  766. * of the whole CPU time limit.
  767. */
  768. tsk->it_prof_expires =
  769. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  770. }
  771. acct_init_pacct(&sig->pacct);
  772. tty_audit_fork(sig);
  773. return 0;
  774. }
  775. void __cleanup_signal(struct signal_struct *sig)
  776. {
  777. exit_thread_group_keys(sig);
  778. kmem_cache_free(signal_cachep, sig);
  779. }
  780. static inline void cleanup_signal(struct task_struct *tsk)
  781. {
  782. struct signal_struct *sig = tsk->signal;
  783. atomic_dec(&sig->live);
  784. if (atomic_dec_and_test(&sig->count))
  785. __cleanup_signal(sig);
  786. }
  787. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  788. {
  789. unsigned long new_flags = p->flags;
  790. new_flags &= ~PF_SUPERPRIV;
  791. new_flags |= PF_FORKNOEXEC;
  792. if (!(clone_flags & CLONE_PTRACE))
  793. p->ptrace = 0;
  794. p->flags = new_flags;
  795. }
  796. asmlinkage long sys_set_tid_address(int __user *tidptr)
  797. {
  798. current->clear_child_tid = tidptr;
  799. return current->pid;
  800. }
  801. static inline void rt_mutex_init_task(struct task_struct *p)
  802. {
  803. spin_lock_init(&p->pi_lock);
  804. #ifdef CONFIG_RT_MUTEXES
  805. plist_head_init(&p->pi_waiters, &p->pi_lock);
  806. p->pi_blocked_on = NULL;
  807. #endif
  808. }
  809. /*
  810. * This creates a new process as a copy of the old one,
  811. * but does not actually start it yet.
  812. *
  813. * It copies the registers, and all the appropriate
  814. * parts of the process environment (as per the clone
  815. * flags). The actual kick-off is left to the caller.
  816. */
  817. static struct task_struct *copy_process(unsigned long clone_flags,
  818. unsigned long stack_start,
  819. struct pt_regs *regs,
  820. unsigned long stack_size,
  821. int __user *parent_tidptr,
  822. int __user *child_tidptr,
  823. struct pid *pid)
  824. {
  825. int retval;
  826. struct task_struct *p = NULL;
  827. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  828. return ERR_PTR(-EINVAL);
  829. /*
  830. * Thread groups must share signals as well, and detached threads
  831. * can only be started up within the thread group.
  832. */
  833. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  834. return ERR_PTR(-EINVAL);
  835. /*
  836. * Shared signal handlers imply shared VM. By way of the above,
  837. * thread groups also imply shared VM. Blocking this case allows
  838. * for various simplifications in other code.
  839. */
  840. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  841. return ERR_PTR(-EINVAL);
  842. retval = security_task_create(clone_flags);
  843. if (retval)
  844. goto fork_out;
  845. retval = -ENOMEM;
  846. p = dup_task_struct(current);
  847. if (!p)
  848. goto fork_out;
  849. rt_mutex_init_task(p);
  850. #ifdef CONFIG_TRACE_IRQFLAGS
  851. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  852. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  853. #endif
  854. retval = -EAGAIN;
  855. if (atomic_read(&p->user->processes) >=
  856. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  857. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  858. p->user != current->nsproxy->user_ns->root_user)
  859. goto bad_fork_free;
  860. }
  861. atomic_inc(&p->user->__count);
  862. atomic_inc(&p->user->processes);
  863. get_group_info(p->group_info);
  864. /*
  865. * If multiple threads are within copy_process(), then this check
  866. * triggers too late. This doesn't hurt, the check is only there
  867. * to stop root fork bombs.
  868. */
  869. if (nr_threads >= max_threads)
  870. goto bad_fork_cleanup_count;
  871. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  872. goto bad_fork_cleanup_count;
  873. if (p->binfmt && !try_module_get(p->binfmt->module))
  874. goto bad_fork_cleanup_put_domain;
  875. p->did_exec = 0;
  876. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  877. copy_flags(clone_flags, p);
  878. p->pid = pid_nr(pid);
  879. retval = -EFAULT;
  880. if (clone_flags & CLONE_PARENT_SETTID)
  881. if (put_user(p->pid, parent_tidptr))
  882. goto bad_fork_cleanup_delays_binfmt;
  883. INIT_LIST_HEAD(&p->children);
  884. INIT_LIST_HEAD(&p->sibling);
  885. p->vfork_done = NULL;
  886. spin_lock_init(&p->alloc_lock);
  887. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  888. init_sigpending(&p->pending);
  889. p->utime = cputime_zero;
  890. p->stime = cputime_zero;
  891. #ifdef CONFIG_TASK_XACCT
  892. p->rchar = 0; /* I/O counter: bytes read */
  893. p->wchar = 0; /* I/O counter: bytes written */
  894. p->syscr = 0; /* I/O counter: read syscalls */
  895. p->syscw = 0; /* I/O counter: write syscalls */
  896. #endif
  897. task_io_accounting_init(p);
  898. acct_clear_integrals(p);
  899. p->it_virt_expires = cputime_zero;
  900. p->it_prof_expires = cputime_zero;
  901. p->it_sched_expires = 0;
  902. INIT_LIST_HEAD(&p->cpu_timers[0]);
  903. INIT_LIST_HEAD(&p->cpu_timers[1]);
  904. INIT_LIST_HEAD(&p->cpu_timers[2]);
  905. p->lock_depth = -1; /* -1 = no lock */
  906. do_posix_clock_monotonic_gettime(&p->start_time);
  907. p->real_start_time = p->start_time;
  908. monotonic_to_bootbased(&p->real_start_time);
  909. p->security = NULL;
  910. p->io_context = NULL;
  911. p->io_wait = NULL;
  912. p->audit_context = NULL;
  913. cpuset_fork(p);
  914. #ifdef CONFIG_NUMA
  915. p->mempolicy = mpol_copy(p->mempolicy);
  916. if (IS_ERR(p->mempolicy)) {
  917. retval = PTR_ERR(p->mempolicy);
  918. p->mempolicy = NULL;
  919. goto bad_fork_cleanup_cpuset;
  920. }
  921. mpol_fix_fork_child_flag(p);
  922. #endif
  923. #ifdef CONFIG_TRACE_IRQFLAGS
  924. p->irq_events = 0;
  925. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  926. p->hardirqs_enabled = 1;
  927. #else
  928. p->hardirqs_enabled = 0;
  929. #endif
  930. p->hardirq_enable_ip = 0;
  931. p->hardirq_enable_event = 0;
  932. p->hardirq_disable_ip = _THIS_IP_;
  933. p->hardirq_disable_event = 0;
  934. p->softirqs_enabled = 1;
  935. p->softirq_enable_ip = _THIS_IP_;
  936. p->softirq_enable_event = 0;
  937. p->softirq_disable_ip = 0;
  938. p->softirq_disable_event = 0;
  939. p->hardirq_context = 0;
  940. p->softirq_context = 0;
  941. #endif
  942. #ifdef CONFIG_LOCKDEP
  943. p->lockdep_depth = 0; /* no locks held yet */
  944. p->curr_chain_key = 0;
  945. p->lockdep_recursion = 0;
  946. #endif
  947. #ifdef CONFIG_DEBUG_MUTEXES
  948. p->blocked_on = NULL; /* not blocked yet */
  949. #endif
  950. p->tgid = p->pid;
  951. if (clone_flags & CLONE_THREAD)
  952. p->tgid = current->tgid;
  953. if ((retval = security_task_alloc(p)))
  954. goto bad_fork_cleanup_policy;
  955. if ((retval = audit_alloc(p)))
  956. goto bad_fork_cleanup_security;
  957. /* copy all the process information */
  958. if ((retval = copy_semundo(clone_flags, p)))
  959. goto bad_fork_cleanup_audit;
  960. if ((retval = copy_files(clone_flags, p)))
  961. goto bad_fork_cleanup_semundo;
  962. if ((retval = copy_fs(clone_flags, p)))
  963. goto bad_fork_cleanup_files;
  964. if ((retval = copy_sighand(clone_flags, p)))
  965. goto bad_fork_cleanup_fs;
  966. if ((retval = copy_signal(clone_flags, p)))
  967. goto bad_fork_cleanup_sighand;
  968. if ((retval = copy_mm(clone_flags, p)))
  969. goto bad_fork_cleanup_signal;
  970. if ((retval = copy_keys(clone_flags, p)))
  971. goto bad_fork_cleanup_mm;
  972. if ((retval = copy_namespaces(clone_flags, p)))
  973. goto bad_fork_cleanup_keys;
  974. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  975. if (retval)
  976. goto bad_fork_cleanup_namespaces;
  977. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  978. /*
  979. * Clear TID on mm_release()?
  980. */
  981. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  982. p->robust_list = NULL;
  983. #ifdef CONFIG_COMPAT
  984. p->compat_robust_list = NULL;
  985. #endif
  986. INIT_LIST_HEAD(&p->pi_state_list);
  987. p->pi_state_cache = NULL;
  988. /*
  989. * sigaltstack should be cleared when sharing the same VM
  990. */
  991. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  992. p->sas_ss_sp = p->sas_ss_size = 0;
  993. /*
  994. * Syscall tracing should be turned off in the child regardless
  995. * of CLONE_PTRACE.
  996. */
  997. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  998. #ifdef TIF_SYSCALL_EMU
  999. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1000. #endif
  1001. /* Our parent execution domain becomes current domain
  1002. These must match for thread signalling to apply */
  1003. p->parent_exec_id = p->self_exec_id;
  1004. /* ok, now we should be set up.. */
  1005. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1006. p->pdeath_signal = 0;
  1007. p->exit_state = 0;
  1008. /*
  1009. * Ok, make it visible to the rest of the system.
  1010. * We dont wake it up yet.
  1011. */
  1012. p->group_leader = p;
  1013. INIT_LIST_HEAD(&p->thread_group);
  1014. INIT_LIST_HEAD(&p->ptrace_children);
  1015. INIT_LIST_HEAD(&p->ptrace_list);
  1016. /* Perform scheduler related setup. Assign this task to a CPU. */
  1017. sched_fork(p, clone_flags);
  1018. /* Need tasklist lock for parent etc handling! */
  1019. write_lock_irq(&tasklist_lock);
  1020. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1021. p->ioprio = current->ioprio;
  1022. /*
  1023. * The task hasn't been attached yet, so its cpus_allowed mask will
  1024. * not be changed, nor will its assigned CPU.
  1025. *
  1026. * The cpus_allowed mask of the parent may have changed after it was
  1027. * copied first time - so re-copy it here, then check the child's CPU
  1028. * to ensure it is on a valid CPU (and if not, just force it back to
  1029. * parent's CPU). This avoids alot of nasty races.
  1030. */
  1031. p->cpus_allowed = current->cpus_allowed;
  1032. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1033. !cpu_online(task_cpu(p))))
  1034. set_task_cpu(p, smp_processor_id());
  1035. /* CLONE_PARENT re-uses the old parent */
  1036. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1037. p->real_parent = current->real_parent;
  1038. else
  1039. p->real_parent = current;
  1040. p->parent = p->real_parent;
  1041. spin_lock(&current->sighand->siglock);
  1042. /*
  1043. * Process group and session signals need to be delivered to just the
  1044. * parent before the fork or both the parent and the child after the
  1045. * fork. Restart if a signal comes in before we add the new process to
  1046. * it's process group.
  1047. * A fatal signal pending means that current will exit, so the new
  1048. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1049. */
  1050. recalc_sigpending();
  1051. if (signal_pending(current)) {
  1052. spin_unlock(&current->sighand->siglock);
  1053. write_unlock_irq(&tasklist_lock);
  1054. retval = -ERESTARTNOINTR;
  1055. goto bad_fork_cleanup_namespaces;
  1056. }
  1057. if (clone_flags & CLONE_THREAD) {
  1058. p->group_leader = current->group_leader;
  1059. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1060. if (!cputime_eq(current->signal->it_virt_expires,
  1061. cputime_zero) ||
  1062. !cputime_eq(current->signal->it_prof_expires,
  1063. cputime_zero) ||
  1064. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1065. !list_empty(&current->signal->cpu_timers[0]) ||
  1066. !list_empty(&current->signal->cpu_timers[1]) ||
  1067. !list_empty(&current->signal->cpu_timers[2])) {
  1068. /*
  1069. * Have child wake up on its first tick to check
  1070. * for process CPU timers.
  1071. */
  1072. p->it_prof_expires = jiffies_to_cputime(1);
  1073. }
  1074. }
  1075. if (likely(p->pid)) {
  1076. add_parent(p);
  1077. if (unlikely(p->ptrace & PT_PTRACED))
  1078. __ptrace_link(p, current->parent);
  1079. if (thread_group_leader(p)) {
  1080. p->signal->tty = current->signal->tty;
  1081. p->signal->pgrp = process_group(current);
  1082. set_signal_session(p->signal, process_session(current));
  1083. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1084. attach_pid(p, PIDTYPE_SID, task_session(current));
  1085. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1086. __get_cpu_var(process_counts)++;
  1087. }
  1088. attach_pid(p, PIDTYPE_PID, pid);
  1089. nr_threads++;
  1090. }
  1091. total_forks++;
  1092. spin_unlock(&current->sighand->siglock);
  1093. write_unlock_irq(&tasklist_lock);
  1094. proc_fork_connector(p);
  1095. return p;
  1096. bad_fork_cleanup_namespaces:
  1097. exit_task_namespaces(p);
  1098. bad_fork_cleanup_keys:
  1099. exit_keys(p);
  1100. bad_fork_cleanup_mm:
  1101. if (p->mm)
  1102. mmput(p->mm);
  1103. bad_fork_cleanup_signal:
  1104. cleanup_signal(p);
  1105. bad_fork_cleanup_sighand:
  1106. __cleanup_sighand(p->sighand);
  1107. bad_fork_cleanup_fs:
  1108. exit_fs(p); /* blocking */
  1109. bad_fork_cleanup_files:
  1110. exit_files(p); /* blocking */
  1111. bad_fork_cleanup_semundo:
  1112. exit_sem(p);
  1113. bad_fork_cleanup_audit:
  1114. audit_free(p);
  1115. bad_fork_cleanup_security:
  1116. security_task_free(p);
  1117. bad_fork_cleanup_policy:
  1118. #ifdef CONFIG_NUMA
  1119. mpol_free(p->mempolicy);
  1120. bad_fork_cleanup_cpuset:
  1121. #endif
  1122. cpuset_exit(p);
  1123. bad_fork_cleanup_delays_binfmt:
  1124. delayacct_tsk_free(p);
  1125. if (p->binfmt)
  1126. module_put(p->binfmt->module);
  1127. bad_fork_cleanup_put_domain:
  1128. module_put(task_thread_info(p)->exec_domain->module);
  1129. bad_fork_cleanup_count:
  1130. put_group_info(p->group_info);
  1131. atomic_dec(&p->user->processes);
  1132. free_uid(p->user);
  1133. bad_fork_free:
  1134. free_task(p);
  1135. fork_out:
  1136. return ERR_PTR(retval);
  1137. }
  1138. noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1139. {
  1140. memset(regs, 0, sizeof(struct pt_regs));
  1141. return regs;
  1142. }
  1143. struct task_struct * __cpuinit fork_idle(int cpu)
  1144. {
  1145. struct task_struct *task;
  1146. struct pt_regs regs;
  1147. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
  1148. &init_struct_pid);
  1149. if (!IS_ERR(task))
  1150. init_idle(task, cpu);
  1151. return task;
  1152. }
  1153. static inline int fork_traceflag (unsigned clone_flags)
  1154. {
  1155. if (clone_flags & CLONE_UNTRACED)
  1156. return 0;
  1157. else if (clone_flags & CLONE_VFORK) {
  1158. if (current->ptrace & PT_TRACE_VFORK)
  1159. return PTRACE_EVENT_VFORK;
  1160. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1161. if (current->ptrace & PT_TRACE_CLONE)
  1162. return PTRACE_EVENT_CLONE;
  1163. } else if (current->ptrace & PT_TRACE_FORK)
  1164. return PTRACE_EVENT_FORK;
  1165. return 0;
  1166. }
  1167. /*
  1168. * Ok, this is the main fork-routine.
  1169. *
  1170. * It copies the process, and if successful kick-starts
  1171. * it and waits for it to finish using the VM if required.
  1172. */
  1173. long do_fork(unsigned long clone_flags,
  1174. unsigned long stack_start,
  1175. struct pt_regs *regs,
  1176. unsigned long stack_size,
  1177. int __user *parent_tidptr,
  1178. int __user *child_tidptr)
  1179. {
  1180. struct task_struct *p;
  1181. int trace = 0;
  1182. struct pid *pid = alloc_pid();
  1183. long nr;
  1184. if (!pid)
  1185. return -EAGAIN;
  1186. nr = pid->nr;
  1187. if (unlikely(current->ptrace)) {
  1188. trace = fork_traceflag (clone_flags);
  1189. if (trace)
  1190. clone_flags |= CLONE_PTRACE;
  1191. }
  1192. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
  1193. /*
  1194. * Do this prior waking up the new thread - the thread pointer
  1195. * might get invalid after that point, if the thread exits quickly.
  1196. */
  1197. if (!IS_ERR(p)) {
  1198. struct completion vfork;
  1199. if (clone_flags & CLONE_VFORK) {
  1200. p->vfork_done = &vfork;
  1201. init_completion(&vfork);
  1202. }
  1203. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1204. /*
  1205. * We'll start up with an immediate SIGSTOP.
  1206. */
  1207. sigaddset(&p->pending.signal, SIGSTOP);
  1208. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1209. }
  1210. if (!(clone_flags & CLONE_STOPPED))
  1211. wake_up_new_task(p, clone_flags);
  1212. else
  1213. p->state = TASK_STOPPED;
  1214. if (unlikely (trace)) {
  1215. current->ptrace_message = nr;
  1216. ptrace_notify ((trace << 8) | SIGTRAP);
  1217. }
  1218. if (clone_flags & CLONE_VFORK) {
  1219. freezer_do_not_count();
  1220. wait_for_completion(&vfork);
  1221. freezer_count();
  1222. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1223. current->ptrace_message = nr;
  1224. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1225. }
  1226. }
  1227. } else {
  1228. free_pid(pid);
  1229. nr = PTR_ERR(p);
  1230. }
  1231. return nr;
  1232. }
  1233. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1234. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1235. #endif
  1236. static void sighand_ctor(void *data, struct kmem_cache *cachep,
  1237. unsigned long flags)
  1238. {
  1239. struct sighand_struct *sighand = data;
  1240. spin_lock_init(&sighand->siglock);
  1241. INIT_LIST_HEAD(&sighand->signalfd_list);
  1242. }
  1243. void __init proc_caches_init(void)
  1244. {
  1245. sighand_cachep = kmem_cache_create("sighand_cache",
  1246. sizeof(struct sighand_struct), 0,
  1247. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1248. sighand_ctor);
  1249. signal_cachep = kmem_cache_create("signal_cache",
  1250. sizeof(struct signal_struct), 0,
  1251. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1252. files_cachep = kmem_cache_create("files_cache",
  1253. sizeof(struct files_struct), 0,
  1254. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1255. fs_cachep = kmem_cache_create("fs_cache",
  1256. sizeof(struct fs_struct), 0,
  1257. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1258. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1259. sizeof(struct vm_area_struct), 0,
  1260. SLAB_PANIC, NULL);
  1261. mm_cachep = kmem_cache_create("mm_struct",
  1262. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1263. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1264. }
  1265. /*
  1266. * Check constraints on flags passed to the unshare system call and
  1267. * force unsharing of additional process context as appropriate.
  1268. */
  1269. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1270. {
  1271. /*
  1272. * If unsharing a thread from a thread group, must also
  1273. * unshare vm.
  1274. */
  1275. if (*flags_ptr & CLONE_THREAD)
  1276. *flags_ptr |= CLONE_VM;
  1277. /*
  1278. * If unsharing vm, must also unshare signal handlers.
  1279. */
  1280. if (*flags_ptr & CLONE_VM)
  1281. *flags_ptr |= CLONE_SIGHAND;
  1282. /*
  1283. * If unsharing signal handlers and the task was created
  1284. * using CLONE_THREAD, then must unshare the thread
  1285. */
  1286. if ((*flags_ptr & CLONE_SIGHAND) &&
  1287. (atomic_read(&current->signal->count) > 1))
  1288. *flags_ptr |= CLONE_THREAD;
  1289. /*
  1290. * If unsharing namespace, must also unshare filesystem information.
  1291. */
  1292. if (*flags_ptr & CLONE_NEWNS)
  1293. *flags_ptr |= CLONE_FS;
  1294. }
  1295. /*
  1296. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1297. */
  1298. static int unshare_thread(unsigned long unshare_flags)
  1299. {
  1300. if (unshare_flags & CLONE_THREAD)
  1301. return -EINVAL;
  1302. return 0;
  1303. }
  1304. /*
  1305. * Unshare the filesystem structure if it is being shared
  1306. */
  1307. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1308. {
  1309. struct fs_struct *fs = current->fs;
  1310. if ((unshare_flags & CLONE_FS) &&
  1311. (fs && atomic_read(&fs->count) > 1)) {
  1312. *new_fsp = __copy_fs_struct(current->fs);
  1313. if (!*new_fsp)
  1314. return -ENOMEM;
  1315. }
  1316. return 0;
  1317. }
  1318. /*
  1319. * Unsharing of sighand is not supported yet
  1320. */
  1321. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1322. {
  1323. struct sighand_struct *sigh = current->sighand;
  1324. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1325. return -EINVAL;
  1326. else
  1327. return 0;
  1328. }
  1329. /*
  1330. * Unshare vm if it is being shared
  1331. */
  1332. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1333. {
  1334. struct mm_struct *mm = current->mm;
  1335. if ((unshare_flags & CLONE_VM) &&
  1336. (mm && atomic_read(&mm->mm_users) > 1)) {
  1337. return -EINVAL;
  1338. }
  1339. return 0;
  1340. }
  1341. /*
  1342. * Unshare file descriptor table if it is being shared
  1343. */
  1344. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1345. {
  1346. struct files_struct *fd = current->files;
  1347. int error = 0;
  1348. if ((unshare_flags & CLONE_FILES) &&
  1349. (fd && atomic_read(&fd->count) > 1)) {
  1350. *new_fdp = dup_fd(fd, &error);
  1351. if (!*new_fdp)
  1352. return error;
  1353. }
  1354. return 0;
  1355. }
  1356. /*
  1357. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1358. * supported yet
  1359. */
  1360. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1361. {
  1362. if (unshare_flags & CLONE_SYSVSEM)
  1363. return -EINVAL;
  1364. return 0;
  1365. }
  1366. /*
  1367. * unshare allows a process to 'unshare' part of the process
  1368. * context which was originally shared using clone. copy_*
  1369. * functions used by do_fork() cannot be used here directly
  1370. * because they modify an inactive task_struct that is being
  1371. * constructed. Here we are modifying the current, active,
  1372. * task_struct.
  1373. */
  1374. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1375. {
  1376. int err = 0;
  1377. struct fs_struct *fs, *new_fs = NULL;
  1378. struct sighand_struct *new_sigh = NULL;
  1379. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1380. struct files_struct *fd, *new_fd = NULL;
  1381. struct sem_undo_list *new_ulist = NULL;
  1382. struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
  1383. check_unshare_flags(&unshare_flags);
  1384. /* Return -EINVAL for all unsupported flags */
  1385. err = -EINVAL;
  1386. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1387. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1388. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER))
  1389. goto bad_unshare_out;
  1390. if ((err = unshare_thread(unshare_flags)))
  1391. goto bad_unshare_out;
  1392. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1393. goto bad_unshare_cleanup_thread;
  1394. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1395. goto bad_unshare_cleanup_fs;
  1396. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1397. goto bad_unshare_cleanup_sigh;
  1398. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1399. goto bad_unshare_cleanup_vm;
  1400. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1401. goto bad_unshare_cleanup_fd;
  1402. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1403. new_fs)))
  1404. goto bad_unshare_cleanup_semundo;
  1405. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1406. task_lock(current);
  1407. if (new_nsproxy) {
  1408. old_nsproxy = current->nsproxy;
  1409. current->nsproxy = new_nsproxy;
  1410. new_nsproxy = old_nsproxy;
  1411. }
  1412. if (new_fs) {
  1413. fs = current->fs;
  1414. current->fs = new_fs;
  1415. new_fs = fs;
  1416. }
  1417. if (new_mm) {
  1418. mm = current->mm;
  1419. active_mm = current->active_mm;
  1420. current->mm = new_mm;
  1421. current->active_mm = new_mm;
  1422. activate_mm(active_mm, new_mm);
  1423. new_mm = mm;
  1424. }
  1425. if (new_fd) {
  1426. fd = current->files;
  1427. current->files = new_fd;
  1428. new_fd = fd;
  1429. }
  1430. task_unlock(current);
  1431. }
  1432. if (new_nsproxy)
  1433. put_nsproxy(new_nsproxy);
  1434. bad_unshare_cleanup_semundo:
  1435. bad_unshare_cleanup_fd:
  1436. if (new_fd)
  1437. put_files_struct(new_fd);
  1438. bad_unshare_cleanup_vm:
  1439. if (new_mm)
  1440. mmput(new_mm);
  1441. bad_unshare_cleanup_sigh:
  1442. if (new_sigh)
  1443. if (atomic_dec_and_test(&new_sigh->count))
  1444. kmem_cache_free(sighand_cachep, new_sigh);
  1445. bad_unshare_cleanup_fs:
  1446. if (new_fs)
  1447. put_fs_struct(new_fs);
  1448. bad_unshare_cleanup_thread:
  1449. bad_unshare_out:
  1450. return err;
  1451. }