qla3xxx.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/mm.h>
  36. #include "qla3xxx.h"
  37. #define DRV_NAME "qla3xxx"
  38. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  39. #define DRV_VERSION "v2.03.00-k4"
  40. #define PFX DRV_NAME " "
  41. static const char ql3xxx_driver_name[] = DRV_NAME;
  42. static const char ql3xxx_driver_version[] = DRV_VERSION;
  43. MODULE_AUTHOR("QLogic Corporation");
  44. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  45. MODULE_LICENSE("GPL");
  46. MODULE_VERSION(DRV_VERSION);
  47. static const u32 default_msg
  48. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  49. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  50. static int debug = -1; /* defaults above */
  51. module_param(debug, int, 0);
  52. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  53. static int msi;
  54. module_param(msi, int, 0);
  55. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  56. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  59. /* required last entry */
  60. {0,}
  61. };
  62. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  63. /*
  64. * These are the known PHY's which are used
  65. */
  66. typedef enum {
  67. PHY_TYPE_UNKNOWN = 0,
  68. PHY_VITESSE_VSC8211,
  69. PHY_AGERE_ET1011C,
  70. MAX_PHY_DEV_TYPES
  71. } PHY_DEVICE_et;
  72. typedef struct {
  73. PHY_DEVICE_et phyDevice;
  74. u32 phyIdOUI;
  75. u16 phyIdModel;
  76. char *name;
  77. } PHY_DEVICE_INFO_t;
  78. static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
  79. {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  80. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  81. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  82. };
  83. /*
  84. * Caller must take hw_lock.
  85. */
  86. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  87. u32 sem_mask, u32 sem_bits)
  88. {
  89. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  90. u32 value;
  91. unsigned int seconds = 3;
  92. do {
  93. writel((sem_mask | sem_bits),
  94. &port_regs->CommonRegs.semaphoreReg);
  95. value = readl(&port_regs->CommonRegs.semaphoreReg);
  96. if ((value & (sem_mask >> 16)) == sem_bits)
  97. return 0;
  98. ssleep(1);
  99. } while(--seconds);
  100. return -1;
  101. }
  102. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  103. {
  104. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  105. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  106. readl(&port_regs->CommonRegs.semaphoreReg);
  107. }
  108. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  109. {
  110. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  111. u32 value;
  112. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  113. value = readl(&port_regs->CommonRegs.semaphoreReg);
  114. return ((value & (sem_mask >> 16)) == sem_bits);
  115. }
  116. /*
  117. * Caller holds hw_lock.
  118. */
  119. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  120. {
  121. int i = 0;
  122. while (1) {
  123. if (!ql_sem_lock(qdev,
  124. QL_DRVR_SEM_MASK,
  125. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  126. * 2) << 1)) {
  127. if (i < 10) {
  128. ssleep(1);
  129. i++;
  130. } else {
  131. printk(KERN_ERR PFX "%s: Timed out waiting for "
  132. "driver lock...\n",
  133. qdev->ndev->name);
  134. return 0;
  135. }
  136. } else {
  137. printk(KERN_DEBUG PFX
  138. "%s: driver lock acquired.\n",
  139. qdev->ndev->name);
  140. return 1;
  141. }
  142. }
  143. }
  144. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  145. {
  146. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  147. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  148. &port_regs->CommonRegs.ispControlStatus);
  149. readl(&port_regs->CommonRegs.ispControlStatus);
  150. qdev->current_page = page;
  151. }
  152. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  153. u32 __iomem * reg)
  154. {
  155. u32 value;
  156. unsigned long hw_flags;
  157. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  158. value = readl(reg);
  159. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  160. return value;
  161. }
  162. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  163. u32 __iomem * reg)
  164. {
  165. return readl(reg);
  166. }
  167. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  168. {
  169. u32 value;
  170. unsigned long hw_flags;
  171. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  172. if (qdev->current_page != 0)
  173. ql_set_register_page(qdev,0);
  174. value = readl(reg);
  175. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  176. return value;
  177. }
  178. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  179. {
  180. if (qdev->current_page != 0)
  181. ql_set_register_page(qdev,0);
  182. return readl(reg);
  183. }
  184. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  185. u32 __iomem *reg, u32 value)
  186. {
  187. unsigned long hw_flags;
  188. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  189. writel(value, reg);
  190. readl(reg);
  191. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  192. return;
  193. }
  194. static void ql_write_common_reg(struct ql3_adapter *qdev,
  195. u32 __iomem *reg, u32 value)
  196. {
  197. writel(value, reg);
  198. readl(reg);
  199. return;
  200. }
  201. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  202. u32 __iomem *reg, u32 value)
  203. {
  204. writel(value, reg);
  205. readl(reg);
  206. udelay(1);
  207. return;
  208. }
  209. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  210. u32 __iomem *reg, u32 value)
  211. {
  212. if (qdev->current_page != 0)
  213. ql_set_register_page(qdev,0);
  214. writel(value, reg);
  215. readl(reg);
  216. return;
  217. }
  218. /*
  219. * Caller holds hw_lock. Only called during init.
  220. */
  221. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  222. u32 __iomem *reg, u32 value)
  223. {
  224. if (qdev->current_page != 1)
  225. ql_set_register_page(qdev,1);
  226. writel(value, reg);
  227. readl(reg);
  228. return;
  229. }
  230. /*
  231. * Caller holds hw_lock. Only called during init.
  232. */
  233. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  234. u32 __iomem *reg, u32 value)
  235. {
  236. if (qdev->current_page != 2)
  237. ql_set_register_page(qdev,2);
  238. writel(value, reg);
  239. readl(reg);
  240. return;
  241. }
  242. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  243. {
  244. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  245. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  246. (ISP_IMR_ENABLE_INT << 16));
  247. }
  248. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  249. {
  250. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  251. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  252. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  253. }
  254. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  255. struct ql_rcv_buf_cb *lrg_buf_cb)
  256. {
  257. dma_addr_t map;
  258. int err;
  259. lrg_buf_cb->next = NULL;
  260. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  261. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  262. } else {
  263. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  264. qdev->lrg_buf_free_tail = lrg_buf_cb;
  265. }
  266. if (!lrg_buf_cb->skb) {
  267. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  268. qdev->lrg_buffer_len);
  269. if (unlikely(!lrg_buf_cb->skb)) {
  270. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  271. qdev->ndev->name);
  272. qdev->lrg_buf_skb_check++;
  273. } else {
  274. /*
  275. * We save some space to copy the ethhdr from first
  276. * buffer
  277. */
  278. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  279. map = pci_map_single(qdev->pdev,
  280. lrg_buf_cb->skb->data,
  281. qdev->lrg_buffer_len -
  282. QL_HEADER_SPACE,
  283. PCI_DMA_FROMDEVICE);
  284. err = pci_dma_mapping_error(map);
  285. if(err) {
  286. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  287. qdev->ndev->name, err);
  288. dev_kfree_skb(lrg_buf_cb->skb);
  289. lrg_buf_cb->skb = NULL;
  290. qdev->lrg_buf_skb_check++;
  291. return;
  292. }
  293. lrg_buf_cb->buf_phy_addr_low =
  294. cpu_to_le32(LS_64BITS(map));
  295. lrg_buf_cb->buf_phy_addr_high =
  296. cpu_to_le32(MS_64BITS(map));
  297. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  298. pci_unmap_len_set(lrg_buf_cb, maplen,
  299. qdev->lrg_buffer_len -
  300. QL_HEADER_SPACE);
  301. }
  302. }
  303. qdev->lrg_buf_free_count++;
  304. }
  305. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  306. *qdev)
  307. {
  308. struct ql_rcv_buf_cb *lrg_buf_cb;
  309. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  310. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  311. qdev->lrg_buf_free_tail = NULL;
  312. qdev->lrg_buf_free_count--;
  313. }
  314. return lrg_buf_cb;
  315. }
  316. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  317. static u32 dataBits = EEPROM_NO_DATA_BITS;
  318. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  319. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  320. unsigned short *value);
  321. /*
  322. * Caller holds hw_lock.
  323. */
  324. static void fm93c56a_select(struct ql3_adapter *qdev)
  325. {
  326. struct ql3xxx_port_registers __iomem *port_regs =
  327. qdev->mem_map_registers;
  328. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  329. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  330. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  331. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  332. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  333. }
  334. /*
  335. * Caller holds hw_lock.
  336. */
  337. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  338. {
  339. int i;
  340. u32 mask;
  341. u32 dataBit;
  342. u32 previousBit;
  343. struct ql3xxx_port_registers __iomem *port_regs =
  344. qdev->mem_map_registers;
  345. /* Clock in a zero, then do the start bit */
  346. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  347. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  348. AUBURN_EEPROM_DO_1);
  349. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  350. ISP_NVRAM_MASK | qdev->
  351. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  352. AUBURN_EEPROM_CLK_RISE);
  353. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  354. ISP_NVRAM_MASK | qdev->
  355. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  356. AUBURN_EEPROM_CLK_FALL);
  357. mask = 1 << (FM93C56A_CMD_BITS - 1);
  358. /* Force the previous data bit to be different */
  359. previousBit = 0xffff;
  360. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  361. dataBit =
  362. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  363. if (previousBit != dataBit) {
  364. /*
  365. * If the bit changed, then change the DO state to
  366. * match
  367. */
  368. ql_write_nvram_reg(qdev,
  369. &port_regs->CommonRegs.
  370. serialPortInterfaceReg,
  371. ISP_NVRAM_MASK | qdev->
  372. eeprom_cmd_data | dataBit);
  373. previousBit = dataBit;
  374. }
  375. ql_write_nvram_reg(qdev,
  376. &port_regs->CommonRegs.
  377. serialPortInterfaceReg,
  378. ISP_NVRAM_MASK | qdev->
  379. eeprom_cmd_data | dataBit |
  380. AUBURN_EEPROM_CLK_RISE);
  381. ql_write_nvram_reg(qdev,
  382. &port_regs->CommonRegs.
  383. serialPortInterfaceReg,
  384. ISP_NVRAM_MASK | qdev->
  385. eeprom_cmd_data | dataBit |
  386. AUBURN_EEPROM_CLK_FALL);
  387. cmd = cmd << 1;
  388. }
  389. mask = 1 << (addrBits - 1);
  390. /* Force the previous data bit to be different */
  391. previousBit = 0xffff;
  392. for (i = 0; i < addrBits; i++) {
  393. dataBit =
  394. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  395. AUBURN_EEPROM_DO_0;
  396. if (previousBit != dataBit) {
  397. /*
  398. * If the bit changed, then change the DO state to
  399. * match
  400. */
  401. ql_write_nvram_reg(qdev,
  402. &port_regs->CommonRegs.
  403. serialPortInterfaceReg,
  404. ISP_NVRAM_MASK | qdev->
  405. eeprom_cmd_data | dataBit);
  406. previousBit = dataBit;
  407. }
  408. ql_write_nvram_reg(qdev,
  409. &port_regs->CommonRegs.
  410. serialPortInterfaceReg,
  411. ISP_NVRAM_MASK | qdev->
  412. eeprom_cmd_data | dataBit |
  413. AUBURN_EEPROM_CLK_RISE);
  414. ql_write_nvram_reg(qdev,
  415. &port_regs->CommonRegs.
  416. serialPortInterfaceReg,
  417. ISP_NVRAM_MASK | qdev->
  418. eeprom_cmd_data | dataBit |
  419. AUBURN_EEPROM_CLK_FALL);
  420. eepromAddr = eepromAddr << 1;
  421. }
  422. }
  423. /*
  424. * Caller holds hw_lock.
  425. */
  426. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  427. {
  428. struct ql3xxx_port_registers __iomem *port_regs =
  429. qdev->mem_map_registers;
  430. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  431. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  432. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  433. }
  434. /*
  435. * Caller holds hw_lock.
  436. */
  437. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  438. {
  439. int i;
  440. u32 data = 0;
  441. u32 dataBit;
  442. struct ql3xxx_port_registers __iomem *port_regs =
  443. qdev->mem_map_registers;
  444. /* Read the data bits */
  445. /* The first bit is a dummy. Clock right over it. */
  446. for (i = 0; i < dataBits; i++) {
  447. ql_write_nvram_reg(qdev,
  448. &port_regs->CommonRegs.
  449. serialPortInterfaceReg,
  450. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  451. AUBURN_EEPROM_CLK_RISE);
  452. ql_write_nvram_reg(qdev,
  453. &port_regs->CommonRegs.
  454. serialPortInterfaceReg,
  455. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  456. AUBURN_EEPROM_CLK_FALL);
  457. dataBit =
  458. (ql_read_common_reg
  459. (qdev,
  460. &port_regs->CommonRegs.
  461. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  462. data = (data << 1) | dataBit;
  463. }
  464. *value = (u16) data;
  465. }
  466. /*
  467. * Caller holds hw_lock.
  468. */
  469. static void eeprom_readword(struct ql3_adapter *qdev,
  470. u32 eepromAddr, unsigned short *value)
  471. {
  472. fm93c56a_select(qdev);
  473. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  474. fm93c56a_datain(qdev, value);
  475. fm93c56a_deselect(qdev);
  476. }
  477. static void ql_swap_mac_addr(u8 * macAddress)
  478. {
  479. #ifdef __BIG_ENDIAN
  480. u8 temp;
  481. temp = macAddress[0];
  482. macAddress[0] = macAddress[1];
  483. macAddress[1] = temp;
  484. temp = macAddress[2];
  485. macAddress[2] = macAddress[3];
  486. macAddress[3] = temp;
  487. temp = macAddress[4];
  488. macAddress[4] = macAddress[5];
  489. macAddress[5] = temp;
  490. #endif
  491. }
  492. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  493. {
  494. u16 *pEEPROMData;
  495. u16 checksum = 0;
  496. u32 index;
  497. unsigned long hw_flags;
  498. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  499. pEEPROMData = (u16 *) & qdev->nvram_data;
  500. qdev->eeprom_cmd_data = 0;
  501. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  502. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  503. 2) << 10)) {
  504. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  505. __func__);
  506. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  507. return -1;
  508. }
  509. for (index = 0; index < EEPROM_SIZE; index++) {
  510. eeprom_readword(qdev, index, pEEPROMData);
  511. checksum += *pEEPROMData;
  512. pEEPROMData++;
  513. }
  514. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  515. if (checksum != 0) {
  516. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  517. qdev->ndev->name, checksum);
  518. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  519. return -1;
  520. }
  521. /*
  522. * We have a problem with endianness for the MAC addresses
  523. * and the two 8-bit values version, and numPorts. We
  524. * have to swap them on big endian systems.
  525. */
  526. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  527. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  528. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  529. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  530. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  531. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  532. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  533. return checksum;
  534. }
  535. static const u32 PHYAddr[2] = {
  536. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  537. };
  538. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  539. {
  540. struct ql3xxx_port_registers __iomem *port_regs =
  541. qdev->mem_map_registers;
  542. u32 temp;
  543. int count = 1000;
  544. while (count) {
  545. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  546. if (!(temp & MAC_MII_STATUS_BSY))
  547. return 0;
  548. udelay(10);
  549. count--;
  550. }
  551. return -1;
  552. }
  553. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  554. {
  555. struct ql3xxx_port_registers __iomem *port_regs =
  556. qdev->mem_map_registers;
  557. u32 scanControl;
  558. if (qdev->numPorts > 1) {
  559. /* Auto scan will cycle through multiple ports */
  560. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  561. } else {
  562. scanControl = MAC_MII_CONTROL_SC;
  563. }
  564. /*
  565. * Scan register 1 of PHY/PETBI,
  566. * Set up to scan both devices
  567. * The autoscan starts from the first register, completes
  568. * the last one before rolling over to the first
  569. */
  570. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  571. PHYAddr[0] | MII_SCAN_REGISTER);
  572. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  573. (scanControl) |
  574. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  575. }
  576. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  577. {
  578. u8 ret;
  579. struct ql3xxx_port_registers __iomem *port_regs =
  580. qdev->mem_map_registers;
  581. /* See if scan mode is enabled before we turn it off */
  582. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  583. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  584. /* Scan is enabled */
  585. ret = 1;
  586. } else {
  587. /* Scan is disabled */
  588. ret = 0;
  589. }
  590. /*
  591. * When disabling scan mode you must first change the MII register
  592. * address
  593. */
  594. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  595. PHYAddr[0] | MII_SCAN_REGISTER);
  596. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  597. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  598. MAC_MII_CONTROL_RC) << 16));
  599. return ret;
  600. }
  601. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  602. u16 regAddr, u16 value, u32 phyAddr)
  603. {
  604. struct ql3xxx_port_registers __iomem *port_regs =
  605. qdev->mem_map_registers;
  606. u8 scanWasEnabled;
  607. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  608. if (ql_wait_for_mii_ready(qdev)) {
  609. if (netif_msg_link(qdev))
  610. printk(KERN_WARNING PFX
  611. "%s Timed out waiting for management port to "
  612. "get free before issuing command.\n",
  613. qdev->ndev->name);
  614. return -1;
  615. }
  616. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  617. phyAddr | regAddr);
  618. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  619. /* Wait for write to complete 9/10/04 SJP */
  620. if (ql_wait_for_mii_ready(qdev)) {
  621. if (netif_msg_link(qdev))
  622. printk(KERN_WARNING PFX
  623. "%s: Timed out waiting for management port to"
  624. "get free before issuing command.\n",
  625. qdev->ndev->name);
  626. return -1;
  627. }
  628. if (scanWasEnabled)
  629. ql_mii_enable_scan_mode(qdev);
  630. return 0;
  631. }
  632. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  633. u16 * value, u32 phyAddr)
  634. {
  635. struct ql3xxx_port_registers __iomem *port_regs =
  636. qdev->mem_map_registers;
  637. u8 scanWasEnabled;
  638. u32 temp;
  639. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  640. if (ql_wait_for_mii_ready(qdev)) {
  641. if (netif_msg_link(qdev))
  642. printk(KERN_WARNING PFX
  643. "%s: Timed out waiting for management port to "
  644. "get free before issuing command.\n",
  645. qdev->ndev->name);
  646. return -1;
  647. }
  648. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  649. phyAddr | regAddr);
  650. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  651. (MAC_MII_CONTROL_RC << 16));
  652. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  653. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  654. /* Wait for the read to complete */
  655. if (ql_wait_for_mii_ready(qdev)) {
  656. if (netif_msg_link(qdev))
  657. printk(KERN_WARNING PFX
  658. "%s: Timed out waiting for management port to "
  659. "get free after issuing command.\n",
  660. qdev->ndev->name);
  661. return -1;
  662. }
  663. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  664. *value = (u16) temp;
  665. if (scanWasEnabled)
  666. ql_mii_enable_scan_mode(qdev);
  667. return 0;
  668. }
  669. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  670. {
  671. struct ql3xxx_port_registers __iomem *port_regs =
  672. qdev->mem_map_registers;
  673. ql_mii_disable_scan_mode(qdev);
  674. if (ql_wait_for_mii_ready(qdev)) {
  675. if (netif_msg_link(qdev))
  676. printk(KERN_WARNING PFX
  677. "%s: Timed out waiting for management port to "
  678. "get free before issuing command.\n",
  679. qdev->ndev->name);
  680. return -1;
  681. }
  682. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  683. qdev->PHYAddr | regAddr);
  684. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  685. /* Wait for write to complete. */
  686. if (ql_wait_for_mii_ready(qdev)) {
  687. if (netif_msg_link(qdev))
  688. printk(KERN_WARNING PFX
  689. "%s: Timed out waiting for management port to "
  690. "get free before issuing command.\n",
  691. qdev->ndev->name);
  692. return -1;
  693. }
  694. ql_mii_enable_scan_mode(qdev);
  695. return 0;
  696. }
  697. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  698. {
  699. u32 temp;
  700. struct ql3xxx_port_registers __iomem *port_regs =
  701. qdev->mem_map_registers;
  702. ql_mii_disable_scan_mode(qdev);
  703. if (ql_wait_for_mii_ready(qdev)) {
  704. if (netif_msg_link(qdev))
  705. printk(KERN_WARNING PFX
  706. "%s: Timed out waiting for management port to "
  707. "get free before issuing command.\n",
  708. qdev->ndev->name);
  709. return -1;
  710. }
  711. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  712. qdev->PHYAddr | regAddr);
  713. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  714. (MAC_MII_CONTROL_RC << 16));
  715. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  716. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  717. /* Wait for the read to complete */
  718. if (ql_wait_for_mii_ready(qdev)) {
  719. if (netif_msg_link(qdev))
  720. printk(KERN_WARNING PFX
  721. "%s: Timed out waiting for management port to "
  722. "get free before issuing command.\n",
  723. qdev->ndev->name);
  724. return -1;
  725. }
  726. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  727. *value = (u16) temp;
  728. ql_mii_enable_scan_mode(qdev);
  729. return 0;
  730. }
  731. static void ql_petbi_reset(struct ql3_adapter *qdev)
  732. {
  733. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  734. }
  735. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  736. {
  737. u16 reg;
  738. /* Enable Auto-negotiation sense */
  739. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  740. reg |= PETBI_TBI_AUTO_SENSE;
  741. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  742. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  743. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  744. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  745. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  746. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  747. }
  748. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  749. {
  750. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  751. PHYAddr[qdev->mac_index]);
  752. }
  753. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  754. {
  755. u16 reg;
  756. /* Enable Auto-negotiation sense */
  757. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  758. PHYAddr[qdev->mac_index]);
  759. reg |= PETBI_TBI_AUTO_SENSE;
  760. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  761. PHYAddr[qdev->mac_index]);
  762. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  763. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  764. PHYAddr[qdev->mac_index]);
  765. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  766. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  767. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  768. PHYAddr[qdev->mac_index]);
  769. }
  770. static void ql_petbi_init(struct ql3_adapter *qdev)
  771. {
  772. ql_petbi_reset(qdev);
  773. ql_petbi_start_neg(qdev);
  774. }
  775. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  776. {
  777. ql_petbi_reset_ex(qdev);
  778. ql_petbi_start_neg_ex(qdev);
  779. }
  780. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  781. {
  782. u16 reg;
  783. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  784. return 0;
  785. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  786. }
  787. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  788. {
  789. printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
  790. /* power down device bit 11 = 1 */
  791. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  792. /* enable diagnostic mode bit 2 = 1 */
  793. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  794. /* 1000MB amplitude adjust (see Agere errata) */
  795. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  796. /* 1000MB amplitude adjust (see Agere errata) */
  797. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  798. /* 100MB amplitude adjust (see Agere errata) */
  799. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  800. /* 100MB amplitude adjust (see Agere errata) */
  801. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  802. /* 10MB amplitude adjust (see Agere errata) */
  803. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  804. /* 10MB amplitude adjust (see Agere errata) */
  805. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  806. /* point to hidden reg 0x2806 */
  807. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  808. /* Write new PHYAD w/bit 5 set */
  809. ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  810. /*
  811. * Disable diagnostic mode bit 2 = 0
  812. * Power up device bit 11 = 0
  813. * Link up (on) and activity (blink)
  814. */
  815. ql_mii_write_reg(qdev, 0x12, 0x840a);
  816. ql_mii_write_reg(qdev, 0x00, 0x1140);
  817. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  818. }
  819. static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
  820. u16 phyIdReg0, u16 phyIdReg1)
  821. {
  822. PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
  823. u32 oui;
  824. u16 model;
  825. int i;
  826. if (phyIdReg0 == 0xffff) {
  827. return result;
  828. }
  829. if (phyIdReg1 == 0xffff) {
  830. return result;
  831. }
  832. /* oui is split between two registers */
  833. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  834. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  835. /* Scan table for this PHY */
  836. for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  837. if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
  838. {
  839. result = PHY_DEVICES[i].phyDevice;
  840. printk(KERN_INFO "%s: Phy: %s\n",
  841. qdev->ndev->name, PHY_DEVICES[i].name);
  842. break;
  843. }
  844. }
  845. return result;
  846. }
  847. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  848. {
  849. u16 reg;
  850. switch(qdev->phyType) {
  851. case PHY_AGERE_ET1011C:
  852. {
  853. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  854. return 0;
  855. reg = (reg >> 8) & 3;
  856. break;
  857. }
  858. default:
  859. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  860. return 0;
  861. reg = (((reg & 0x18) >> 3) & 3);
  862. }
  863. switch(reg) {
  864. case 2:
  865. return SPEED_1000;
  866. case 1:
  867. return SPEED_100;
  868. case 0:
  869. return SPEED_10;
  870. default:
  871. return -1;
  872. }
  873. }
  874. static int ql_is_full_dup(struct ql3_adapter *qdev)
  875. {
  876. u16 reg;
  877. switch(qdev->phyType) {
  878. case PHY_AGERE_ET1011C:
  879. {
  880. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  881. return 0;
  882. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  883. }
  884. case PHY_VITESSE_VSC8211:
  885. default:
  886. {
  887. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  888. return 0;
  889. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  890. }
  891. }
  892. }
  893. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  894. {
  895. u16 reg;
  896. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  897. return 0;
  898. return (reg & PHY_NEG_PAUSE) != 0;
  899. }
  900. static int PHY_Setup(struct ql3_adapter *qdev)
  901. {
  902. u16 reg1;
  903. u16 reg2;
  904. bool agereAddrChangeNeeded = false;
  905. u32 miiAddr = 0;
  906. int err;
  907. /* Determine the PHY we are using by reading the ID's */
  908. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  909. if(err != 0) {
  910. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  911. qdev->ndev->name);
  912. return err;
  913. }
  914. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  915. if(err != 0) {
  916. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  917. qdev->ndev->name);
  918. return err;
  919. }
  920. /* Check if we have a Agere PHY */
  921. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  922. /* Determine which MII address we should be using
  923. determined by the index of the card */
  924. if (qdev->mac_index == 0) {
  925. miiAddr = MII_AGERE_ADDR_1;
  926. } else {
  927. miiAddr = MII_AGERE_ADDR_2;
  928. }
  929. err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  930. if(err != 0) {
  931. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  932. qdev->ndev->name);
  933. return err;
  934. }
  935. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  936. if(err != 0) {
  937. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  938. qdev->ndev->name);
  939. return err;
  940. }
  941. /* We need to remember to initialize the Agere PHY */
  942. agereAddrChangeNeeded = true;
  943. }
  944. /* Determine the particular PHY we have on board to apply
  945. PHY specific initializations */
  946. qdev->phyType = getPhyType(qdev, reg1, reg2);
  947. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  948. /* need this here so address gets changed */
  949. phyAgereSpecificInit(qdev, miiAddr);
  950. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  951. printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
  952. return -EIO;
  953. }
  954. return 0;
  955. }
  956. /*
  957. * Caller holds hw_lock.
  958. */
  959. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  960. {
  961. struct ql3xxx_port_registers __iomem *port_regs =
  962. qdev->mem_map_registers;
  963. u32 value;
  964. if (enable)
  965. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  966. else
  967. value = (MAC_CONFIG_REG_PE << 16);
  968. if (qdev->mac_index)
  969. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  970. else
  971. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  972. }
  973. /*
  974. * Caller holds hw_lock.
  975. */
  976. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  977. {
  978. struct ql3xxx_port_registers __iomem *port_regs =
  979. qdev->mem_map_registers;
  980. u32 value;
  981. if (enable)
  982. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  983. else
  984. value = (MAC_CONFIG_REG_SR << 16);
  985. if (qdev->mac_index)
  986. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  987. else
  988. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  989. }
  990. /*
  991. * Caller holds hw_lock.
  992. */
  993. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  994. {
  995. struct ql3xxx_port_registers __iomem *port_regs =
  996. qdev->mem_map_registers;
  997. u32 value;
  998. if (enable)
  999. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  1000. else
  1001. value = (MAC_CONFIG_REG_GM << 16);
  1002. if (qdev->mac_index)
  1003. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1004. else
  1005. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1006. }
  1007. /*
  1008. * Caller holds hw_lock.
  1009. */
  1010. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  1011. {
  1012. struct ql3xxx_port_registers __iomem *port_regs =
  1013. qdev->mem_map_registers;
  1014. u32 value;
  1015. if (enable)
  1016. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  1017. else
  1018. value = (MAC_CONFIG_REG_FD << 16);
  1019. if (qdev->mac_index)
  1020. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1021. else
  1022. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1023. }
  1024. /*
  1025. * Caller holds hw_lock.
  1026. */
  1027. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  1028. {
  1029. struct ql3xxx_port_registers __iomem *port_regs =
  1030. qdev->mem_map_registers;
  1031. u32 value;
  1032. if (enable)
  1033. value =
  1034. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  1035. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  1036. else
  1037. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  1038. if (qdev->mac_index)
  1039. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1040. else
  1041. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1042. }
  1043. /*
  1044. * Caller holds hw_lock.
  1045. */
  1046. static int ql_is_fiber(struct ql3_adapter *qdev)
  1047. {
  1048. struct ql3xxx_port_registers __iomem *port_regs =
  1049. qdev->mem_map_registers;
  1050. u32 bitToCheck = 0;
  1051. u32 temp;
  1052. switch (qdev->mac_index) {
  1053. case 0:
  1054. bitToCheck = PORT_STATUS_SM0;
  1055. break;
  1056. case 1:
  1057. bitToCheck = PORT_STATUS_SM1;
  1058. break;
  1059. }
  1060. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1061. return (temp & bitToCheck) != 0;
  1062. }
  1063. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  1064. {
  1065. u16 reg;
  1066. ql_mii_read_reg(qdev, 0x00, &reg);
  1067. return (reg & 0x1000) != 0;
  1068. }
  1069. /*
  1070. * Caller holds hw_lock.
  1071. */
  1072. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  1073. {
  1074. struct ql3xxx_port_registers __iomem *port_regs =
  1075. qdev->mem_map_registers;
  1076. u32 bitToCheck = 0;
  1077. u32 temp;
  1078. switch (qdev->mac_index) {
  1079. case 0:
  1080. bitToCheck = PORT_STATUS_AC0;
  1081. break;
  1082. case 1:
  1083. bitToCheck = PORT_STATUS_AC1;
  1084. break;
  1085. }
  1086. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1087. if (temp & bitToCheck) {
  1088. if (netif_msg_link(qdev))
  1089. printk(KERN_INFO PFX
  1090. "%s: Auto-Negotiate complete.\n",
  1091. qdev->ndev->name);
  1092. return 1;
  1093. } else {
  1094. if (netif_msg_link(qdev))
  1095. printk(KERN_WARNING PFX
  1096. "%s: Auto-Negotiate incomplete.\n",
  1097. qdev->ndev->name);
  1098. return 0;
  1099. }
  1100. }
  1101. /*
  1102. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1103. */
  1104. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1105. {
  1106. if (ql_is_fiber(qdev))
  1107. return ql_is_petbi_neg_pause(qdev);
  1108. else
  1109. return ql_is_phy_neg_pause(qdev);
  1110. }
  1111. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1112. {
  1113. struct ql3xxx_port_registers __iomem *port_regs =
  1114. qdev->mem_map_registers;
  1115. u32 bitToCheck = 0;
  1116. u32 temp;
  1117. switch (qdev->mac_index) {
  1118. case 0:
  1119. bitToCheck = PORT_STATUS_AE0;
  1120. break;
  1121. case 1:
  1122. bitToCheck = PORT_STATUS_AE1;
  1123. break;
  1124. }
  1125. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1126. return (temp & bitToCheck) != 0;
  1127. }
  1128. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1129. {
  1130. if (ql_is_fiber(qdev))
  1131. return SPEED_1000;
  1132. else
  1133. return ql_phy_get_speed(qdev);
  1134. }
  1135. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1136. {
  1137. if (ql_is_fiber(qdev))
  1138. return 1;
  1139. else
  1140. return ql_is_full_dup(qdev);
  1141. }
  1142. /*
  1143. * Caller holds hw_lock.
  1144. */
  1145. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1146. {
  1147. struct ql3xxx_port_registers __iomem *port_regs =
  1148. qdev->mem_map_registers;
  1149. u32 bitToCheck = 0;
  1150. u32 temp;
  1151. switch (qdev->mac_index) {
  1152. case 0:
  1153. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1154. break;
  1155. case 1:
  1156. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1157. break;
  1158. }
  1159. temp =
  1160. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1161. return (temp & bitToCheck) != 0;
  1162. }
  1163. /*
  1164. * Caller holds hw_lock.
  1165. */
  1166. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1167. {
  1168. struct ql3xxx_port_registers __iomem *port_regs =
  1169. qdev->mem_map_registers;
  1170. switch (qdev->mac_index) {
  1171. case 0:
  1172. ql_write_common_reg(qdev,
  1173. &port_regs->CommonRegs.ispControlStatus,
  1174. (ISP_CONTROL_LINK_DN_0) |
  1175. (ISP_CONTROL_LINK_DN_0 << 16));
  1176. break;
  1177. case 1:
  1178. ql_write_common_reg(qdev,
  1179. &port_regs->CommonRegs.ispControlStatus,
  1180. (ISP_CONTROL_LINK_DN_1) |
  1181. (ISP_CONTROL_LINK_DN_1 << 16));
  1182. break;
  1183. default:
  1184. return 1;
  1185. }
  1186. return 0;
  1187. }
  1188. /*
  1189. * Caller holds hw_lock.
  1190. */
  1191. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1192. {
  1193. struct ql3xxx_port_registers __iomem *port_regs =
  1194. qdev->mem_map_registers;
  1195. u32 bitToCheck = 0;
  1196. u32 temp;
  1197. switch (qdev->mac_index) {
  1198. case 0:
  1199. bitToCheck = PORT_STATUS_F1_ENABLED;
  1200. break;
  1201. case 1:
  1202. bitToCheck = PORT_STATUS_F3_ENABLED;
  1203. break;
  1204. default:
  1205. break;
  1206. }
  1207. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1208. if (temp & bitToCheck) {
  1209. if (netif_msg_link(qdev))
  1210. printk(KERN_DEBUG PFX
  1211. "%s: is not link master.\n", qdev->ndev->name);
  1212. return 0;
  1213. } else {
  1214. if (netif_msg_link(qdev))
  1215. printk(KERN_DEBUG PFX
  1216. "%s: is link master.\n", qdev->ndev->name);
  1217. return 1;
  1218. }
  1219. }
  1220. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1221. {
  1222. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1223. PHYAddr[qdev->mac_index]);
  1224. }
  1225. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1226. {
  1227. u16 reg;
  1228. u16 portConfiguration;
  1229. if(qdev->phyType == PHY_AGERE_ET1011C) {
  1230. /* turn off external loopback */
  1231. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1232. }
  1233. if(qdev->mac_index == 0)
  1234. portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
  1235. else
  1236. portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
  1237. /* Some HBA's in the field are set to 0 and they need to
  1238. be reinterpreted with a default value */
  1239. if(portConfiguration == 0)
  1240. portConfiguration = PORT_CONFIG_DEFAULT;
  1241. /* Set the 1000 advertisements */
  1242. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1243. PHYAddr[qdev->mac_index]);
  1244. reg &= ~PHY_GIG_ALL_PARAMS;
  1245. if(portConfiguration &
  1246. PORT_CONFIG_FULL_DUPLEX_ENABLED &
  1247. PORT_CONFIG_1000MB_SPEED) {
  1248. reg |= PHY_GIG_ADV_1000F;
  1249. }
  1250. if(portConfiguration &
  1251. PORT_CONFIG_HALF_DUPLEX_ENABLED &
  1252. PORT_CONFIG_1000MB_SPEED) {
  1253. reg |= PHY_GIG_ADV_1000H;
  1254. }
  1255. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1256. PHYAddr[qdev->mac_index]);
  1257. /* Set the 10/100 & pause negotiation advertisements */
  1258. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1259. PHYAddr[qdev->mac_index]);
  1260. reg &= ~PHY_NEG_ALL_PARAMS;
  1261. if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1262. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1263. if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1264. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1265. reg |= PHY_NEG_ADV_100F;
  1266. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1267. reg |= PHY_NEG_ADV_10F;
  1268. }
  1269. if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1270. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1271. reg |= PHY_NEG_ADV_100H;
  1272. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1273. reg |= PHY_NEG_ADV_10H;
  1274. }
  1275. if(portConfiguration &
  1276. PORT_CONFIG_1000MB_SPEED) {
  1277. reg |= 1;
  1278. }
  1279. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1280. PHYAddr[qdev->mac_index]);
  1281. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1282. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1283. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1284. PHYAddr[qdev->mac_index]);
  1285. }
  1286. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1287. {
  1288. ql_phy_reset_ex(qdev);
  1289. PHY_Setup(qdev);
  1290. ql_phy_start_neg_ex(qdev);
  1291. }
  1292. /*
  1293. * Caller holds hw_lock.
  1294. */
  1295. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1296. {
  1297. struct ql3xxx_port_registers __iomem *port_regs =
  1298. qdev->mem_map_registers;
  1299. u32 bitToCheck = 0;
  1300. u32 temp, linkState;
  1301. switch (qdev->mac_index) {
  1302. case 0:
  1303. bitToCheck = PORT_STATUS_UP0;
  1304. break;
  1305. case 1:
  1306. bitToCheck = PORT_STATUS_UP1;
  1307. break;
  1308. }
  1309. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1310. if (temp & bitToCheck) {
  1311. linkState = LS_UP;
  1312. } else {
  1313. linkState = LS_DOWN;
  1314. if (netif_msg_link(qdev))
  1315. printk(KERN_WARNING PFX
  1316. "%s: Link is down.\n", qdev->ndev->name);
  1317. }
  1318. return linkState;
  1319. }
  1320. static int ql_port_start(struct ql3_adapter *qdev)
  1321. {
  1322. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1323. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1324. 2) << 7)) {
  1325. printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
  1326. qdev->ndev->name);
  1327. return -1;
  1328. }
  1329. if (ql_is_fiber(qdev)) {
  1330. ql_petbi_init(qdev);
  1331. } else {
  1332. /* Copper port */
  1333. ql_phy_init_ex(qdev);
  1334. }
  1335. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1336. return 0;
  1337. }
  1338. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1339. {
  1340. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1341. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1342. 2) << 7))
  1343. return -1;
  1344. if (!ql_auto_neg_error(qdev)) {
  1345. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1346. /* configure the MAC */
  1347. if (netif_msg_link(qdev))
  1348. printk(KERN_DEBUG PFX
  1349. "%s: Configuring link.\n",
  1350. qdev->ndev->
  1351. name);
  1352. ql_mac_cfg_soft_reset(qdev, 1);
  1353. ql_mac_cfg_gig(qdev,
  1354. (ql_get_link_speed
  1355. (qdev) ==
  1356. SPEED_1000));
  1357. ql_mac_cfg_full_dup(qdev,
  1358. ql_is_link_full_dup
  1359. (qdev));
  1360. ql_mac_cfg_pause(qdev,
  1361. ql_is_neg_pause
  1362. (qdev));
  1363. ql_mac_cfg_soft_reset(qdev, 0);
  1364. /* enable the MAC */
  1365. if (netif_msg_link(qdev))
  1366. printk(KERN_DEBUG PFX
  1367. "%s: Enabling mac.\n",
  1368. qdev->ndev->
  1369. name);
  1370. ql_mac_enable(qdev, 1);
  1371. }
  1372. if (netif_msg_link(qdev))
  1373. printk(KERN_DEBUG PFX
  1374. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1375. qdev->ndev->name);
  1376. qdev->port_link_state = LS_UP;
  1377. netif_start_queue(qdev->ndev);
  1378. netif_carrier_on(qdev->ndev);
  1379. if (netif_msg_link(qdev))
  1380. printk(KERN_INFO PFX
  1381. "%s: Link is up at %d Mbps, %s duplex.\n",
  1382. qdev->ndev->name,
  1383. ql_get_link_speed(qdev),
  1384. ql_is_link_full_dup(qdev)
  1385. ? "full" : "half");
  1386. } else { /* Remote error detected */
  1387. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1388. if (netif_msg_link(qdev))
  1389. printk(KERN_DEBUG PFX
  1390. "%s: Remote error detected. "
  1391. "Calling ql_port_start().\n",
  1392. qdev->ndev->
  1393. name);
  1394. /*
  1395. * ql_port_start() is shared code and needs
  1396. * to lock the PHY on it's own.
  1397. */
  1398. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1399. if(ql_port_start(qdev)) {/* Restart port */
  1400. return -1;
  1401. } else
  1402. return 0;
  1403. }
  1404. }
  1405. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1406. return 0;
  1407. }
  1408. static void ql_link_state_machine(struct ql3_adapter *qdev)
  1409. {
  1410. u32 curr_link_state;
  1411. unsigned long hw_flags;
  1412. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1413. curr_link_state = ql_get_link_state(qdev);
  1414. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1415. if (netif_msg_link(qdev))
  1416. printk(KERN_INFO PFX
  1417. "%s: Reset in progress, skip processing link "
  1418. "state.\n", qdev->ndev->name);
  1419. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1420. return;
  1421. }
  1422. switch (qdev->port_link_state) {
  1423. default:
  1424. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1425. ql_port_start(qdev);
  1426. }
  1427. qdev->port_link_state = LS_DOWN;
  1428. /* Fall Through */
  1429. case LS_DOWN:
  1430. if (netif_msg_link(qdev))
  1431. printk(KERN_DEBUG PFX
  1432. "%s: port_link_state = LS_DOWN.\n",
  1433. qdev->ndev->name);
  1434. if (curr_link_state == LS_UP) {
  1435. if (netif_msg_link(qdev))
  1436. printk(KERN_DEBUG PFX
  1437. "%s: curr_link_state = LS_UP.\n",
  1438. qdev->ndev->name);
  1439. if (ql_is_auto_neg_complete(qdev))
  1440. ql_finish_auto_neg(qdev);
  1441. if (qdev->port_link_state == LS_UP)
  1442. ql_link_down_detect_clear(qdev);
  1443. }
  1444. break;
  1445. case LS_UP:
  1446. /*
  1447. * See if the link is currently down or went down and came
  1448. * back up
  1449. */
  1450. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1451. if (netif_msg_link(qdev))
  1452. printk(KERN_INFO PFX "%s: Link is down.\n",
  1453. qdev->ndev->name);
  1454. qdev->port_link_state = LS_DOWN;
  1455. }
  1456. break;
  1457. }
  1458. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1459. }
  1460. /*
  1461. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1462. */
  1463. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1464. {
  1465. if (ql_this_adapter_controls_port(qdev))
  1466. set_bit(QL_LINK_MASTER,&qdev->flags);
  1467. else
  1468. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1469. }
  1470. /*
  1471. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1472. */
  1473. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1474. {
  1475. ql_mii_enable_scan_mode(qdev);
  1476. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1477. if (ql_this_adapter_controls_port(qdev))
  1478. ql_petbi_init_ex(qdev);
  1479. } else {
  1480. if (ql_this_adapter_controls_port(qdev))
  1481. ql_phy_init_ex(qdev);
  1482. }
  1483. }
  1484. /*
  1485. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1486. * management interface clock speed can be set properly. It would be better if
  1487. * we had a way to disable MDC until after the PHY is out of reset, but we
  1488. * don't have that capability.
  1489. */
  1490. static int ql_mii_setup(struct ql3_adapter *qdev)
  1491. {
  1492. u32 reg;
  1493. struct ql3xxx_port_registers __iomem *port_regs =
  1494. qdev->mem_map_registers;
  1495. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1496. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1497. 2) << 7))
  1498. return -1;
  1499. if (qdev->device_id == QL3032_DEVICE_ID)
  1500. ql_write_page0_reg(qdev,
  1501. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1502. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1503. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1504. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1505. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1506. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1507. return 0;
  1508. }
  1509. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1510. {
  1511. u32 supported;
  1512. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1513. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1514. | SUPPORTED_Autoneg;
  1515. } else {
  1516. supported = SUPPORTED_10baseT_Half
  1517. | SUPPORTED_10baseT_Full
  1518. | SUPPORTED_100baseT_Half
  1519. | SUPPORTED_100baseT_Full
  1520. | SUPPORTED_1000baseT_Half
  1521. | SUPPORTED_1000baseT_Full
  1522. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1523. }
  1524. return supported;
  1525. }
  1526. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1527. {
  1528. int status;
  1529. unsigned long hw_flags;
  1530. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1531. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1532. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1533. 2) << 7)) {
  1534. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1535. return 0;
  1536. }
  1537. status = ql_is_auto_cfg(qdev);
  1538. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1539. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1540. return status;
  1541. }
  1542. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1543. {
  1544. u32 status;
  1545. unsigned long hw_flags;
  1546. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1547. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1548. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1549. 2) << 7)) {
  1550. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1551. return 0;
  1552. }
  1553. status = ql_get_link_speed(qdev);
  1554. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1555. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1556. return status;
  1557. }
  1558. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1559. {
  1560. int status;
  1561. unsigned long hw_flags;
  1562. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1563. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1564. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1565. 2) << 7)) {
  1566. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1567. return 0;
  1568. }
  1569. status = ql_is_link_full_dup(qdev);
  1570. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1571. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1572. return status;
  1573. }
  1574. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1575. {
  1576. struct ql3_adapter *qdev = netdev_priv(ndev);
  1577. ecmd->transceiver = XCVR_INTERNAL;
  1578. ecmd->supported = ql_supported_modes(qdev);
  1579. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1580. ecmd->port = PORT_FIBRE;
  1581. } else {
  1582. ecmd->port = PORT_TP;
  1583. ecmd->phy_address = qdev->PHYAddr;
  1584. }
  1585. ecmd->advertising = ql_supported_modes(qdev);
  1586. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1587. ecmd->speed = ql_get_speed(qdev);
  1588. ecmd->duplex = ql_get_full_dup(qdev);
  1589. return 0;
  1590. }
  1591. static void ql_get_drvinfo(struct net_device *ndev,
  1592. struct ethtool_drvinfo *drvinfo)
  1593. {
  1594. struct ql3_adapter *qdev = netdev_priv(ndev);
  1595. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1596. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1597. strncpy(drvinfo->fw_version, "N/A", 32);
  1598. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1599. drvinfo->n_stats = 0;
  1600. drvinfo->testinfo_len = 0;
  1601. drvinfo->regdump_len = 0;
  1602. drvinfo->eedump_len = 0;
  1603. }
  1604. static u32 ql_get_msglevel(struct net_device *ndev)
  1605. {
  1606. struct ql3_adapter *qdev = netdev_priv(ndev);
  1607. return qdev->msg_enable;
  1608. }
  1609. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1610. {
  1611. struct ql3_adapter *qdev = netdev_priv(ndev);
  1612. qdev->msg_enable = value;
  1613. }
  1614. static void ql_get_pauseparam(struct net_device *ndev,
  1615. struct ethtool_pauseparam *pause)
  1616. {
  1617. struct ql3_adapter *qdev = netdev_priv(ndev);
  1618. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1619. u32 reg;
  1620. if(qdev->mac_index == 0)
  1621. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1622. else
  1623. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1624. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1625. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1626. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1627. }
  1628. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1629. .get_settings = ql_get_settings,
  1630. .get_drvinfo = ql_get_drvinfo,
  1631. .get_link = ethtool_op_get_link,
  1632. .get_msglevel = ql_get_msglevel,
  1633. .set_msglevel = ql_set_msglevel,
  1634. .get_pauseparam = ql_get_pauseparam,
  1635. };
  1636. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1637. {
  1638. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1639. dma_addr_t map;
  1640. int err;
  1641. while (lrg_buf_cb) {
  1642. if (!lrg_buf_cb->skb) {
  1643. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1644. qdev->lrg_buffer_len);
  1645. if (unlikely(!lrg_buf_cb->skb)) {
  1646. printk(KERN_DEBUG PFX
  1647. "%s: Failed netdev_alloc_skb().\n",
  1648. qdev->ndev->name);
  1649. break;
  1650. } else {
  1651. /*
  1652. * We save some space to copy the ethhdr from
  1653. * first buffer
  1654. */
  1655. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1656. map = pci_map_single(qdev->pdev,
  1657. lrg_buf_cb->skb->data,
  1658. qdev->lrg_buffer_len -
  1659. QL_HEADER_SPACE,
  1660. PCI_DMA_FROMDEVICE);
  1661. err = pci_dma_mapping_error(map);
  1662. if(err) {
  1663. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1664. qdev->ndev->name, err);
  1665. dev_kfree_skb(lrg_buf_cb->skb);
  1666. lrg_buf_cb->skb = NULL;
  1667. break;
  1668. }
  1669. lrg_buf_cb->buf_phy_addr_low =
  1670. cpu_to_le32(LS_64BITS(map));
  1671. lrg_buf_cb->buf_phy_addr_high =
  1672. cpu_to_le32(MS_64BITS(map));
  1673. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1674. pci_unmap_len_set(lrg_buf_cb, maplen,
  1675. qdev->lrg_buffer_len -
  1676. QL_HEADER_SPACE);
  1677. --qdev->lrg_buf_skb_check;
  1678. if (!qdev->lrg_buf_skb_check)
  1679. return 1;
  1680. }
  1681. }
  1682. lrg_buf_cb = lrg_buf_cb->next;
  1683. }
  1684. return 0;
  1685. }
  1686. /*
  1687. * Caller holds hw_lock.
  1688. */
  1689. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1690. {
  1691. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1692. if (qdev->small_buf_release_cnt >= 16) {
  1693. while (qdev->small_buf_release_cnt >= 16) {
  1694. qdev->small_buf_q_producer_index++;
  1695. if (qdev->small_buf_q_producer_index ==
  1696. NUM_SBUFQ_ENTRIES)
  1697. qdev->small_buf_q_producer_index = 0;
  1698. qdev->small_buf_release_cnt -= 8;
  1699. }
  1700. wmb();
  1701. writel(qdev->small_buf_q_producer_index,
  1702. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1703. }
  1704. }
  1705. /*
  1706. * Caller holds hw_lock.
  1707. */
  1708. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1709. {
  1710. struct bufq_addr_element *lrg_buf_q_ele;
  1711. int i;
  1712. struct ql_rcv_buf_cb *lrg_buf_cb;
  1713. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1714. if ((qdev->lrg_buf_free_count >= 8)
  1715. && (qdev->lrg_buf_release_cnt >= 16)) {
  1716. if (qdev->lrg_buf_skb_check)
  1717. if (!ql_populate_free_queue(qdev))
  1718. return;
  1719. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1720. while ((qdev->lrg_buf_release_cnt >= 16)
  1721. && (qdev->lrg_buf_free_count >= 8)) {
  1722. for (i = 0; i < 8; i++) {
  1723. lrg_buf_cb =
  1724. ql_get_from_lrg_buf_free_list(qdev);
  1725. lrg_buf_q_ele->addr_high =
  1726. lrg_buf_cb->buf_phy_addr_high;
  1727. lrg_buf_q_ele->addr_low =
  1728. lrg_buf_cb->buf_phy_addr_low;
  1729. lrg_buf_q_ele++;
  1730. qdev->lrg_buf_release_cnt--;
  1731. }
  1732. qdev->lrg_buf_q_producer_index++;
  1733. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1734. qdev->lrg_buf_q_producer_index = 0;
  1735. if (qdev->lrg_buf_q_producer_index ==
  1736. (qdev->num_lbufq_entries - 1)) {
  1737. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1738. }
  1739. }
  1740. wmb();
  1741. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1742. writel(qdev->lrg_buf_q_producer_index,
  1743. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1744. }
  1745. }
  1746. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1747. struct ob_mac_iocb_rsp *mac_rsp)
  1748. {
  1749. struct ql_tx_buf_cb *tx_cb;
  1750. int i;
  1751. int retval = 0;
  1752. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1753. printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
  1754. }
  1755. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1756. /* Check the transmit response flags for any errors */
  1757. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1758. printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
  1759. qdev->stats.tx_errors++;
  1760. retval = -EIO;
  1761. goto frame_not_sent;
  1762. }
  1763. if(tx_cb->seg_count == 0) {
  1764. printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
  1765. qdev->stats.tx_errors++;
  1766. retval = -EIO;
  1767. goto invalid_seg_count;
  1768. }
  1769. pci_unmap_single(qdev->pdev,
  1770. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1771. pci_unmap_len(&tx_cb->map[0], maplen),
  1772. PCI_DMA_TODEVICE);
  1773. tx_cb->seg_count--;
  1774. if (tx_cb->seg_count) {
  1775. for (i = 1; i < tx_cb->seg_count; i++) {
  1776. pci_unmap_page(qdev->pdev,
  1777. pci_unmap_addr(&tx_cb->map[i],
  1778. mapaddr),
  1779. pci_unmap_len(&tx_cb->map[i], maplen),
  1780. PCI_DMA_TODEVICE);
  1781. }
  1782. }
  1783. qdev->stats.tx_packets++;
  1784. qdev->stats.tx_bytes += tx_cb->skb->len;
  1785. frame_not_sent:
  1786. dev_kfree_skb_irq(tx_cb->skb);
  1787. tx_cb->skb = NULL;
  1788. invalid_seg_count:
  1789. atomic_inc(&qdev->tx_count);
  1790. }
  1791. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1792. {
  1793. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1794. qdev->small_buf_index = 0;
  1795. qdev->small_buf_release_cnt++;
  1796. }
  1797. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1798. {
  1799. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1800. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1801. qdev->lrg_buf_release_cnt++;
  1802. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1803. qdev->lrg_buf_index = 0;
  1804. return(lrg_buf_cb);
  1805. }
  1806. /*
  1807. * The difference between 3022 and 3032 for inbound completions:
  1808. * 3022 uses two buffers per completion. The first buffer contains
  1809. * (some) header info, the second the remainder of the headers plus
  1810. * the data. For this chip we reserve some space at the top of the
  1811. * receive buffer so that the header info in buffer one can be
  1812. * prepended to the buffer two. Buffer two is the sent up while
  1813. * buffer one is returned to the hardware to be reused.
  1814. * 3032 receives all of it's data and headers in one buffer for a
  1815. * simpler process. 3032 also supports checksum verification as
  1816. * can be seen in ql_process_macip_rx_intr().
  1817. */
  1818. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1819. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1820. {
  1821. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1822. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1823. struct sk_buff *skb;
  1824. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1825. /*
  1826. * Get the inbound address list (small buffer).
  1827. */
  1828. ql_get_sbuf(qdev);
  1829. if (qdev->device_id == QL3022_DEVICE_ID)
  1830. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1831. /* start of second buffer */
  1832. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1833. skb = lrg_buf_cb2->skb;
  1834. qdev->stats.rx_packets++;
  1835. qdev->stats.rx_bytes += length;
  1836. skb_put(skb, length);
  1837. pci_unmap_single(qdev->pdev,
  1838. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1839. pci_unmap_len(lrg_buf_cb2, maplen),
  1840. PCI_DMA_FROMDEVICE);
  1841. prefetch(skb->data);
  1842. skb->ip_summed = CHECKSUM_NONE;
  1843. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1844. netif_receive_skb(skb);
  1845. qdev->ndev->last_rx = jiffies;
  1846. lrg_buf_cb2->skb = NULL;
  1847. if (qdev->device_id == QL3022_DEVICE_ID)
  1848. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1849. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1850. }
  1851. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1852. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1853. {
  1854. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1855. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1856. struct sk_buff *skb1 = NULL, *skb2;
  1857. struct net_device *ndev = qdev->ndev;
  1858. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1859. u16 size = 0;
  1860. /*
  1861. * Get the inbound address list (small buffer).
  1862. */
  1863. ql_get_sbuf(qdev);
  1864. if (qdev->device_id == QL3022_DEVICE_ID) {
  1865. /* start of first buffer on 3022 */
  1866. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1867. skb1 = lrg_buf_cb1->skb;
  1868. size = ETH_HLEN;
  1869. if (*((u16 *) skb1->data) != 0xFFFF)
  1870. size += VLAN_ETH_HLEN - ETH_HLEN;
  1871. }
  1872. /* start of second buffer */
  1873. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1874. skb2 = lrg_buf_cb2->skb;
  1875. skb_put(skb2, length); /* Just the second buffer length here. */
  1876. pci_unmap_single(qdev->pdev,
  1877. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1878. pci_unmap_len(lrg_buf_cb2, maplen),
  1879. PCI_DMA_FROMDEVICE);
  1880. prefetch(skb2->data);
  1881. skb2->ip_summed = CHECKSUM_NONE;
  1882. if (qdev->device_id == QL3022_DEVICE_ID) {
  1883. /*
  1884. * Copy the ethhdr from first buffer to second. This
  1885. * is necessary for 3022 IP completions.
  1886. */
  1887. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1888. skb_push(skb2, size), size);
  1889. } else {
  1890. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1891. if (checksum &
  1892. (IB_IP_IOCB_RSP_3032_ICE |
  1893. IB_IP_IOCB_RSP_3032_CE)) {
  1894. printk(KERN_ERR
  1895. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1896. __func__,
  1897. ((checksum &
  1898. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1899. "UDP"),checksum);
  1900. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1901. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1902. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1903. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1904. }
  1905. }
  1906. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1907. netif_receive_skb(skb2);
  1908. qdev->stats.rx_packets++;
  1909. qdev->stats.rx_bytes += length;
  1910. ndev->last_rx = jiffies;
  1911. lrg_buf_cb2->skb = NULL;
  1912. if (qdev->device_id == QL3022_DEVICE_ID)
  1913. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1914. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1915. }
  1916. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1917. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1918. {
  1919. struct net_rsp_iocb *net_rsp;
  1920. struct net_device *ndev = qdev->ndev;
  1921. int work_done = 0;
  1922. /* While there are entries in the completion queue. */
  1923. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1924. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1925. net_rsp = qdev->rsp_current;
  1926. switch (net_rsp->opcode) {
  1927. case OPCODE_OB_MAC_IOCB_FN0:
  1928. case OPCODE_OB_MAC_IOCB_FN2:
  1929. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1930. net_rsp);
  1931. (*tx_cleaned)++;
  1932. break;
  1933. case OPCODE_IB_MAC_IOCB:
  1934. case OPCODE_IB_3032_MAC_IOCB:
  1935. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1936. net_rsp);
  1937. (*rx_cleaned)++;
  1938. break;
  1939. case OPCODE_IB_IP_IOCB:
  1940. case OPCODE_IB_3032_IP_IOCB:
  1941. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1942. net_rsp);
  1943. (*rx_cleaned)++;
  1944. break;
  1945. default:
  1946. {
  1947. u32 *tmp = (u32 *) net_rsp;
  1948. printk(KERN_ERR PFX
  1949. "%s: Hit default case, not "
  1950. "handled!\n"
  1951. " dropping the packet, opcode = "
  1952. "%x.\n",
  1953. ndev->name, net_rsp->opcode);
  1954. printk(KERN_ERR PFX
  1955. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1956. (unsigned long int)tmp[0],
  1957. (unsigned long int)tmp[1],
  1958. (unsigned long int)tmp[2],
  1959. (unsigned long int)tmp[3]);
  1960. }
  1961. }
  1962. qdev->rsp_consumer_index++;
  1963. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1964. qdev->rsp_consumer_index = 0;
  1965. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1966. } else {
  1967. qdev->rsp_current++;
  1968. }
  1969. work_done = *tx_cleaned + *rx_cleaned;
  1970. }
  1971. return work_done;
  1972. }
  1973. static int ql_poll(struct net_device *ndev, int *budget)
  1974. {
  1975. struct ql3_adapter *qdev = netdev_priv(ndev);
  1976. int work_to_do = min(*budget, ndev->quota);
  1977. int rx_cleaned = 0, tx_cleaned = 0;
  1978. unsigned long hw_flags;
  1979. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1980. if (!netif_carrier_ok(ndev))
  1981. goto quit_polling;
  1982. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, work_to_do);
  1983. *budget -= rx_cleaned;
  1984. ndev->quota -= rx_cleaned;
  1985. if( tx_cleaned + rx_cleaned != work_to_do ||
  1986. !netif_running(ndev)) {
  1987. quit_polling:
  1988. netif_rx_complete(ndev);
  1989. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1990. ql_update_small_bufq_prod_index(qdev);
  1991. ql_update_lrg_bufq_prod_index(qdev);
  1992. writel(qdev->rsp_consumer_index,
  1993. &port_regs->CommonRegs.rspQConsumerIndex);
  1994. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1995. ql_enable_interrupts(qdev);
  1996. return 0;
  1997. }
  1998. return 1;
  1999. }
  2000. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  2001. {
  2002. struct net_device *ndev = dev_id;
  2003. struct ql3_adapter *qdev = netdev_priv(ndev);
  2004. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2005. u32 value;
  2006. int handled = 1;
  2007. u32 var;
  2008. port_regs = qdev->mem_map_registers;
  2009. value =
  2010. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2011. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  2012. spin_lock(&qdev->adapter_lock);
  2013. netif_stop_queue(qdev->ndev);
  2014. netif_carrier_off(qdev->ndev);
  2015. ql_disable_interrupts(qdev);
  2016. qdev->port_link_state = LS_DOWN;
  2017. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  2018. if (value & ISP_CONTROL_FE) {
  2019. /*
  2020. * Chip Fatal Error.
  2021. */
  2022. var =
  2023. ql_read_page0_reg_l(qdev,
  2024. &port_regs->PortFatalErrStatus);
  2025. printk(KERN_WARNING PFX
  2026. "%s: Resetting chip. PortFatalErrStatus "
  2027. "register = 0x%x\n", ndev->name, var);
  2028. set_bit(QL_RESET_START,&qdev->flags) ;
  2029. } else {
  2030. /*
  2031. * Soft Reset Requested.
  2032. */
  2033. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  2034. printk(KERN_ERR PFX
  2035. "%s: Another function issued a reset to the "
  2036. "chip. ISR value = %x.\n", ndev->name, value);
  2037. }
  2038. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  2039. spin_unlock(&qdev->adapter_lock);
  2040. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  2041. ql_disable_interrupts(qdev);
  2042. if (likely(netif_rx_schedule_prep(ndev))) {
  2043. __netif_rx_schedule(ndev);
  2044. }
  2045. } else {
  2046. return IRQ_NONE;
  2047. }
  2048. return IRQ_RETVAL(handled);
  2049. }
  2050. /*
  2051. * Get the total number of segments needed for the
  2052. * given number of fragments. This is necessary because
  2053. * outbound address lists (OAL) will be used when more than
  2054. * two frags are given. Each address list has 5 addr/len
  2055. * pairs. The 5th pair in each AOL is used to point to
  2056. * the next AOL if more frags are coming.
  2057. * That is why the frags:segment count ratio is not linear.
  2058. */
  2059. static int ql_get_seg_count(struct ql3_adapter *qdev,
  2060. unsigned short frags)
  2061. {
  2062. if (qdev->device_id == QL3022_DEVICE_ID)
  2063. return 1;
  2064. switch(frags) {
  2065. case 0: return 1; /* just the skb->data seg */
  2066. case 1: return 2; /* skb->data + 1 frag */
  2067. case 2: return 3; /* skb->data + 2 frags */
  2068. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  2069. case 4: return 6;
  2070. case 5: return 7;
  2071. case 6: return 8;
  2072. case 7: return 10;
  2073. case 8: return 11;
  2074. case 9: return 12;
  2075. case 10: return 13;
  2076. case 11: return 15;
  2077. case 12: return 16;
  2078. case 13: return 17;
  2079. case 14: return 18;
  2080. case 15: return 20;
  2081. case 16: return 21;
  2082. case 17: return 22;
  2083. case 18: return 23;
  2084. }
  2085. return -1;
  2086. }
  2087. static void ql_hw_csum_setup(const struct sk_buff *skb,
  2088. struct ob_mac_iocb_req *mac_iocb_ptr)
  2089. {
  2090. const struct iphdr *ip = ip_hdr(skb);
  2091. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  2092. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  2093. if (ip->protocol == IPPROTO_TCP) {
  2094. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  2095. OB_3032MAC_IOCB_REQ_IC;
  2096. } else {
  2097. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  2098. OB_3032MAC_IOCB_REQ_IC;
  2099. }
  2100. }
  2101. /*
  2102. * Map the buffers for this transmit. This will return
  2103. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  2104. */
  2105. static int ql_send_map(struct ql3_adapter *qdev,
  2106. struct ob_mac_iocb_req *mac_iocb_ptr,
  2107. struct ql_tx_buf_cb *tx_cb,
  2108. struct sk_buff *skb)
  2109. {
  2110. struct oal *oal;
  2111. struct oal_entry *oal_entry;
  2112. int len = skb_headlen(skb);
  2113. dma_addr_t map;
  2114. int err;
  2115. int completed_segs, i;
  2116. int seg_cnt, seg = 0;
  2117. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  2118. seg_cnt = tx_cb->seg_count;
  2119. /*
  2120. * Map the skb buffer first.
  2121. */
  2122. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2123. err = pci_dma_mapping_error(map);
  2124. if(err) {
  2125. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2126. qdev->ndev->name, err);
  2127. return NETDEV_TX_BUSY;
  2128. }
  2129. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2130. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2131. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2132. oal_entry->len = cpu_to_le32(len);
  2133. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2134. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  2135. seg++;
  2136. if (seg_cnt == 1) {
  2137. /* Terminate the last segment. */
  2138. oal_entry->len =
  2139. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2140. } else {
  2141. oal = tx_cb->oal;
  2142. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  2143. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  2144. oal_entry++;
  2145. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2146. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2147. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2148. (seg == 17 && seg_cnt > 18)) {
  2149. /* Continuation entry points to outbound address list. */
  2150. map = pci_map_single(qdev->pdev, oal,
  2151. sizeof(struct oal),
  2152. PCI_DMA_TODEVICE);
  2153. err = pci_dma_mapping_error(map);
  2154. if(err) {
  2155. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  2156. qdev->ndev->name, err);
  2157. goto map_error;
  2158. }
  2159. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2160. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2161. oal_entry->len =
  2162. cpu_to_le32(sizeof(struct oal) |
  2163. OAL_CONT_ENTRY);
  2164. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  2165. map);
  2166. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2167. sizeof(struct oal));
  2168. oal_entry = (struct oal_entry *)oal;
  2169. oal++;
  2170. seg++;
  2171. }
  2172. map =
  2173. pci_map_page(qdev->pdev, frag->page,
  2174. frag->page_offset, frag->size,
  2175. PCI_DMA_TODEVICE);
  2176. err = pci_dma_mapping_error(map);
  2177. if(err) {
  2178. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  2179. qdev->ndev->name, err);
  2180. goto map_error;
  2181. }
  2182. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2183. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2184. oal_entry->len = cpu_to_le32(frag->size);
  2185. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2186. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2187. frag->size);
  2188. }
  2189. /* Terminate the last segment. */
  2190. oal_entry->len =
  2191. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2192. }
  2193. return NETDEV_TX_OK;
  2194. map_error:
  2195. /* A PCI mapping failed and now we will need to back out
  2196. * We need to traverse through the oal's and associated pages which
  2197. * have been mapped and now we must unmap them to clean up properly
  2198. */
  2199. seg = 1;
  2200. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2201. oal = tx_cb->oal;
  2202. for (i=0; i<completed_segs; i++,seg++) {
  2203. oal_entry++;
  2204. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2205. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2206. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2207. (seg == 17 && seg_cnt > 18)) {
  2208. pci_unmap_single(qdev->pdev,
  2209. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2210. pci_unmap_len(&tx_cb->map[seg], maplen),
  2211. PCI_DMA_TODEVICE);
  2212. oal++;
  2213. seg++;
  2214. }
  2215. pci_unmap_page(qdev->pdev,
  2216. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2217. pci_unmap_len(&tx_cb->map[seg], maplen),
  2218. PCI_DMA_TODEVICE);
  2219. }
  2220. pci_unmap_single(qdev->pdev,
  2221. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  2222. pci_unmap_addr(&tx_cb->map[0], maplen),
  2223. PCI_DMA_TODEVICE);
  2224. return NETDEV_TX_BUSY;
  2225. }
  2226. /*
  2227. * The difference between 3022 and 3032 sends:
  2228. * 3022 only supports a simple single segment transmission.
  2229. * 3032 supports checksumming and scatter/gather lists (fragments).
  2230. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2231. * in the IOCB plus a chain of outbound address lists (OAL) that
  2232. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2233. * will used to point to an OAL when more ALP entries are required.
  2234. * The IOCB is always the top of the chain followed by one or more
  2235. * OALs (when necessary).
  2236. */
  2237. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  2238. {
  2239. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2240. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2241. struct ql_tx_buf_cb *tx_cb;
  2242. u32 tot_len = skb->len;
  2243. struct ob_mac_iocb_req *mac_iocb_ptr;
  2244. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2245. return NETDEV_TX_BUSY;
  2246. }
  2247. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2248. if((tx_cb->seg_count = ql_get_seg_count(qdev,
  2249. (skb_shinfo(skb)->nr_frags))) == -1) {
  2250. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2251. return NETDEV_TX_OK;
  2252. }
  2253. mac_iocb_ptr = tx_cb->queue_entry;
  2254. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2255. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2256. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2257. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2258. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2259. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2260. tx_cb->skb = skb;
  2261. if (qdev->device_id == QL3032_DEVICE_ID &&
  2262. skb->ip_summed == CHECKSUM_PARTIAL)
  2263. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2264. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2265. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2266. return NETDEV_TX_BUSY;
  2267. }
  2268. wmb();
  2269. qdev->req_producer_index++;
  2270. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2271. qdev->req_producer_index = 0;
  2272. wmb();
  2273. ql_write_common_reg_l(qdev,
  2274. &port_regs->CommonRegs.reqQProducerIndex,
  2275. qdev->req_producer_index);
  2276. ndev->trans_start = jiffies;
  2277. if (netif_msg_tx_queued(qdev))
  2278. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2279. ndev->name, qdev->req_producer_index, skb->len);
  2280. atomic_dec(&qdev->tx_count);
  2281. return NETDEV_TX_OK;
  2282. }
  2283. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2284. {
  2285. qdev->req_q_size =
  2286. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2287. qdev->req_q_virt_addr =
  2288. pci_alloc_consistent(qdev->pdev,
  2289. (size_t) qdev->req_q_size,
  2290. &qdev->req_q_phy_addr);
  2291. if ((qdev->req_q_virt_addr == NULL) ||
  2292. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2293. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2294. qdev->ndev->name);
  2295. return -ENOMEM;
  2296. }
  2297. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2298. qdev->rsp_q_virt_addr =
  2299. pci_alloc_consistent(qdev->pdev,
  2300. (size_t) qdev->rsp_q_size,
  2301. &qdev->rsp_q_phy_addr);
  2302. if ((qdev->rsp_q_virt_addr == NULL) ||
  2303. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2304. printk(KERN_ERR PFX
  2305. "%s: rspQ allocation failed\n",
  2306. qdev->ndev->name);
  2307. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2308. qdev->req_q_virt_addr,
  2309. qdev->req_q_phy_addr);
  2310. return -ENOMEM;
  2311. }
  2312. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2313. return 0;
  2314. }
  2315. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2316. {
  2317. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2318. printk(KERN_INFO PFX
  2319. "%s: Already done.\n", qdev->ndev->name);
  2320. return;
  2321. }
  2322. pci_free_consistent(qdev->pdev,
  2323. qdev->req_q_size,
  2324. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2325. qdev->req_q_virt_addr = NULL;
  2326. pci_free_consistent(qdev->pdev,
  2327. qdev->rsp_q_size,
  2328. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2329. qdev->rsp_q_virt_addr = NULL;
  2330. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2331. }
  2332. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2333. {
  2334. /* Create Large Buffer Queue */
  2335. qdev->lrg_buf_q_size =
  2336. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2337. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2338. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2339. else
  2340. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2341. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2342. if (qdev->lrg_buf == NULL) {
  2343. printk(KERN_ERR PFX
  2344. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2345. return -ENOMEM;
  2346. }
  2347. qdev->lrg_buf_q_alloc_virt_addr =
  2348. pci_alloc_consistent(qdev->pdev,
  2349. qdev->lrg_buf_q_alloc_size,
  2350. &qdev->lrg_buf_q_alloc_phy_addr);
  2351. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2352. printk(KERN_ERR PFX
  2353. "%s: lBufQ failed\n", qdev->ndev->name);
  2354. return -ENOMEM;
  2355. }
  2356. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2357. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2358. /* Create Small Buffer Queue */
  2359. qdev->small_buf_q_size =
  2360. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2361. if (qdev->small_buf_q_size < PAGE_SIZE)
  2362. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2363. else
  2364. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2365. qdev->small_buf_q_alloc_virt_addr =
  2366. pci_alloc_consistent(qdev->pdev,
  2367. qdev->small_buf_q_alloc_size,
  2368. &qdev->small_buf_q_alloc_phy_addr);
  2369. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2370. printk(KERN_ERR PFX
  2371. "%s: Small Buffer Queue allocation failed.\n",
  2372. qdev->ndev->name);
  2373. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2374. qdev->lrg_buf_q_alloc_virt_addr,
  2375. qdev->lrg_buf_q_alloc_phy_addr);
  2376. return -ENOMEM;
  2377. }
  2378. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2379. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2380. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2381. return 0;
  2382. }
  2383. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2384. {
  2385. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2386. printk(KERN_INFO PFX
  2387. "%s: Already done.\n", qdev->ndev->name);
  2388. return;
  2389. }
  2390. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2391. pci_free_consistent(qdev->pdev,
  2392. qdev->lrg_buf_q_alloc_size,
  2393. qdev->lrg_buf_q_alloc_virt_addr,
  2394. qdev->lrg_buf_q_alloc_phy_addr);
  2395. qdev->lrg_buf_q_virt_addr = NULL;
  2396. pci_free_consistent(qdev->pdev,
  2397. qdev->small_buf_q_alloc_size,
  2398. qdev->small_buf_q_alloc_virt_addr,
  2399. qdev->small_buf_q_alloc_phy_addr);
  2400. qdev->small_buf_q_virt_addr = NULL;
  2401. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2402. }
  2403. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2404. {
  2405. int i;
  2406. struct bufq_addr_element *small_buf_q_entry;
  2407. /* Currently we allocate on one of memory and use it for smallbuffers */
  2408. qdev->small_buf_total_size =
  2409. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2410. QL_SMALL_BUFFER_SIZE);
  2411. qdev->small_buf_virt_addr =
  2412. pci_alloc_consistent(qdev->pdev,
  2413. qdev->small_buf_total_size,
  2414. &qdev->small_buf_phy_addr);
  2415. if (qdev->small_buf_virt_addr == NULL) {
  2416. printk(KERN_ERR PFX
  2417. "%s: Failed to get small buffer memory.\n",
  2418. qdev->ndev->name);
  2419. return -ENOMEM;
  2420. }
  2421. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2422. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2423. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2424. /* Initialize the small buffer queue. */
  2425. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2426. small_buf_q_entry->addr_high =
  2427. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2428. small_buf_q_entry->addr_low =
  2429. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2430. (i * QL_SMALL_BUFFER_SIZE));
  2431. small_buf_q_entry++;
  2432. }
  2433. qdev->small_buf_index = 0;
  2434. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2435. return 0;
  2436. }
  2437. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2438. {
  2439. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2440. printk(KERN_INFO PFX
  2441. "%s: Already done.\n", qdev->ndev->name);
  2442. return;
  2443. }
  2444. if (qdev->small_buf_virt_addr != NULL) {
  2445. pci_free_consistent(qdev->pdev,
  2446. qdev->small_buf_total_size,
  2447. qdev->small_buf_virt_addr,
  2448. qdev->small_buf_phy_addr);
  2449. qdev->small_buf_virt_addr = NULL;
  2450. }
  2451. }
  2452. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2453. {
  2454. int i = 0;
  2455. struct ql_rcv_buf_cb *lrg_buf_cb;
  2456. for (i = 0; i < qdev->num_large_buffers; i++) {
  2457. lrg_buf_cb = &qdev->lrg_buf[i];
  2458. if (lrg_buf_cb->skb) {
  2459. dev_kfree_skb(lrg_buf_cb->skb);
  2460. pci_unmap_single(qdev->pdev,
  2461. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2462. pci_unmap_len(lrg_buf_cb, maplen),
  2463. PCI_DMA_FROMDEVICE);
  2464. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2465. } else {
  2466. break;
  2467. }
  2468. }
  2469. }
  2470. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2471. {
  2472. int i;
  2473. struct ql_rcv_buf_cb *lrg_buf_cb;
  2474. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2475. for (i = 0; i < qdev->num_large_buffers; i++) {
  2476. lrg_buf_cb = &qdev->lrg_buf[i];
  2477. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2478. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2479. buf_addr_ele++;
  2480. }
  2481. qdev->lrg_buf_index = 0;
  2482. qdev->lrg_buf_skb_check = 0;
  2483. }
  2484. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2485. {
  2486. int i;
  2487. struct ql_rcv_buf_cb *lrg_buf_cb;
  2488. struct sk_buff *skb;
  2489. dma_addr_t map;
  2490. int err;
  2491. for (i = 0; i < qdev->num_large_buffers; i++) {
  2492. skb = netdev_alloc_skb(qdev->ndev,
  2493. qdev->lrg_buffer_len);
  2494. if (unlikely(!skb)) {
  2495. /* Better luck next round */
  2496. printk(KERN_ERR PFX
  2497. "%s: large buff alloc failed, "
  2498. "for %d bytes at index %d.\n",
  2499. qdev->ndev->name,
  2500. qdev->lrg_buffer_len * 2, i);
  2501. ql_free_large_buffers(qdev);
  2502. return -ENOMEM;
  2503. } else {
  2504. lrg_buf_cb = &qdev->lrg_buf[i];
  2505. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2506. lrg_buf_cb->index = i;
  2507. lrg_buf_cb->skb = skb;
  2508. /*
  2509. * We save some space to copy the ethhdr from first
  2510. * buffer
  2511. */
  2512. skb_reserve(skb, QL_HEADER_SPACE);
  2513. map = pci_map_single(qdev->pdev,
  2514. skb->data,
  2515. qdev->lrg_buffer_len -
  2516. QL_HEADER_SPACE,
  2517. PCI_DMA_FROMDEVICE);
  2518. err = pci_dma_mapping_error(map);
  2519. if(err) {
  2520. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2521. qdev->ndev->name, err);
  2522. ql_free_large_buffers(qdev);
  2523. return -ENOMEM;
  2524. }
  2525. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2526. pci_unmap_len_set(lrg_buf_cb, maplen,
  2527. qdev->lrg_buffer_len -
  2528. QL_HEADER_SPACE);
  2529. lrg_buf_cb->buf_phy_addr_low =
  2530. cpu_to_le32(LS_64BITS(map));
  2531. lrg_buf_cb->buf_phy_addr_high =
  2532. cpu_to_le32(MS_64BITS(map));
  2533. }
  2534. }
  2535. return 0;
  2536. }
  2537. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2538. {
  2539. struct ql_tx_buf_cb *tx_cb;
  2540. int i;
  2541. tx_cb = &qdev->tx_buf[0];
  2542. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2543. if (tx_cb->oal) {
  2544. kfree(tx_cb->oal);
  2545. tx_cb->oal = NULL;
  2546. }
  2547. tx_cb++;
  2548. }
  2549. }
  2550. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2551. {
  2552. struct ql_tx_buf_cb *tx_cb;
  2553. int i;
  2554. struct ob_mac_iocb_req *req_q_curr =
  2555. qdev->req_q_virt_addr;
  2556. /* Create free list of transmit buffers */
  2557. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2558. tx_cb = &qdev->tx_buf[i];
  2559. tx_cb->skb = NULL;
  2560. tx_cb->queue_entry = req_q_curr;
  2561. req_q_curr++;
  2562. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2563. if (tx_cb->oal == NULL)
  2564. return -1;
  2565. }
  2566. return 0;
  2567. }
  2568. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2569. {
  2570. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2571. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2572. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2573. }
  2574. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2575. /*
  2576. * Bigger buffers, so less of them.
  2577. */
  2578. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2579. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2580. } else {
  2581. printk(KERN_ERR PFX
  2582. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2583. qdev->ndev->name);
  2584. return -ENOMEM;
  2585. }
  2586. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2587. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2588. qdev->max_frame_size =
  2589. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2590. /*
  2591. * First allocate a page of shared memory and use it for shadow
  2592. * locations of Network Request Queue Consumer Address Register and
  2593. * Network Completion Queue Producer Index Register
  2594. */
  2595. qdev->shadow_reg_virt_addr =
  2596. pci_alloc_consistent(qdev->pdev,
  2597. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2598. if (qdev->shadow_reg_virt_addr != NULL) {
  2599. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2600. qdev->req_consumer_index_phy_addr_high =
  2601. MS_64BITS(qdev->shadow_reg_phy_addr);
  2602. qdev->req_consumer_index_phy_addr_low =
  2603. LS_64BITS(qdev->shadow_reg_phy_addr);
  2604. qdev->prsp_producer_index =
  2605. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2606. qdev->rsp_producer_index_phy_addr_high =
  2607. qdev->req_consumer_index_phy_addr_high;
  2608. qdev->rsp_producer_index_phy_addr_low =
  2609. qdev->req_consumer_index_phy_addr_low + 8;
  2610. } else {
  2611. printk(KERN_ERR PFX
  2612. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2613. return -ENOMEM;
  2614. }
  2615. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2616. printk(KERN_ERR PFX
  2617. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2618. qdev->ndev->name);
  2619. goto err_req_rsp;
  2620. }
  2621. if (ql_alloc_buffer_queues(qdev) != 0) {
  2622. printk(KERN_ERR PFX
  2623. "%s: ql_alloc_buffer_queues failed.\n",
  2624. qdev->ndev->name);
  2625. goto err_buffer_queues;
  2626. }
  2627. if (ql_alloc_small_buffers(qdev) != 0) {
  2628. printk(KERN_ERR PFX
  2629. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2630. goto err_small_buffers;
  2631. }
  2632. if (ql_alloc_large_buffers(qdev) != 0) {
  2633. printk(KERN_ERR PFX
  2634. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2635. goto err_small_buffers;
  2636. }
  2637. /* Initialize the large buffer queue. */
  2638. ql_init_large_buffers(qdev);
  2639. if (ql_create_send_free_list(qdev))
  2640. goto err_free_list;
  2641. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2642. return 0;
  2643. err_free_list:
  2644. ql_free_send_free_list(qdev);
  2645. err_small_buffers:
  2646. ql_free_buffer_queues(qdev);
  2647. err_buffer_queues:
  2648. ql_free_net_req_rsp_queues(qdev);
  2649. err_req_rsp:
  2650. pci_free_consistent(qdev->pdev,
  2651. PAGE_SIZE,
  2652. qdev->shadow_reg_virt_addr,
  2653. qdev->shadow_reg_phy_addr);
  2654. return -ENOMEM;
  2655. }
  2656. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2657. {
  2658. ql_free_send_free_list(qdev);
  2659. ql_free_large_buffers(qdev);
  2660. ql_free_small_buffers(qdev);
  2661. ql_free_buffer_queues(qdev);
  2662. ql_free_net_req_rsp_queues(qdev);
  2663. if (qdev->shadow_reg_virt_addr != NULL) {
  2664. pci_free_consistent(qdev->pdev,
  2665. PAGE_SIZE,
  2666. qdev->shadow_reg_virt_addr,
  2667. qdev->shadow_reg_phy_addr);
  2668. qdev->shadow_reg_virt_addr = NULL;
  2669. }
  2670. }
  2671. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2672. {
  2673. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2674. (void __iomem *)qdev->mem_map_registers;
  2675. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2676. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2677. 2) << 4))
  2678. return -1;
  2679. ql_write_page2_reg(qdev,
  2680. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2681. ql_write_page2_reg(qdev,
  2682. &local_ram->maxBufletCount,
  2683. qdev->nvram_data.bufletCount);
  2684. ql_write_page2_reg(qdev,
  2685. &local_ram->freeBufletThresholdLow,
  2686. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2687. (qdev->nvram_data.tcpWindowThreshold0));
  2688. ql_write_page2_reg(qdev,
  2689. &local_ram->freeBufletThresholdHigh,
  2690. qdev->nvram_data.tcpWindowThreshold50);
  2691. ql_write_page2_reg(qdev,
  2692. &local_ram->ipHashTableBase,
  2693. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2694. qdev->nvram_data.ipHashTableBaseLo);
  2695. ql_write_page2_reg(qdev,
  2696. &local_ram->ipHashTableCount,
  2697. qdev->nvram_data.ipHashTableSize);
  2698. ql_write_page2_reg(qdev,
  2699. &local_ram->tcpHashTableBase,
  2700. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2701. qdev->nvram_data.tcpHashTableBaseLo);
  2702. ql_write_page2_reg(qdev,
  2703. &local_ram->tcpHashTableCount,
  2704. qdev->nvram_data.tcpHashTableSize);
  2705. ql_write_page2_reg(qdev,
  2706. &local_ram->ncbBase,
  2707. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2708. qdev->nvram_data.ncbTableBaseLo);
  2709. ql_write_page2_reg(qdev,
  2710. &local_ram->maxNcbCount,
  2711. qdev->nvram_data.ncbTableSize);
  2712. ql_write_page2_reg(qdev,
  2713. &local_ram->drbBase,
  2714. (qdev->nvram_data.drbTableBaseHi << 16) |
  2715. qdev->nvram_data.drbTableBaseLo);
  2716. ql_write_page2_reg(qdev,
  2717. &local_ram->maxDrbCount,
  2718. qdev->nvram_data.drbTableSize);
  2719. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2720. return 0;
  2721. }
  2722. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2723. {
  2724. u32 value;
  2725. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2726. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2727. (void __iomem *)port_regs;
  2728. u32 delay = 10;
  2729. int status = 0;
  2730. if(ql_mii_setup(qdev))
  2731. return -1;
  2732. /* Bring out PHY out of reset */
  2733. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2734. (ISP_SERIAL_PORT_IF_WE |
  2735. (ISP_SERIAL_PORT_IF_WE << 16)));
  2736. qdev->port_link_state = LS_DOWN;
  2737. netif_carrier_off(qdev->ndev);
  2738. /* V2 chip fix for ARS-39168. */
  2739. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2740. (ISP_SERIAL_PORT_IF_SDE |
  2741. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2742. /* Request Queue Registers */
  2743. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2744. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2745. qdev->req_producer_index = 0;
  2746. ql_write_page1_reg(qdev,
  2747. &hmem_regs->reqConsumerIndexAddrHigh,
  2748. qdev->req_consumer_index_phy_addr_high);
  2749. ql_write_page1_reg(qdev,
  2750. &hmem_regs->reqConsumerIndexAddrLow,
  2751. qdev->req_consumer_index_phy_addr_low);
  2752. ql_write_page1_reg(qdev,
  2753. &hmem_regs->reqBaseAddrHigh,
  2754. MS_64BITS(qdev->req_q_phy_addr));
  2755. ql_write_page1_reg(qdev,
  2756. &hmem_regs->reqBaseAddrLow,
  2757. LS_64BITS(qdev->req_q_phy_addr));
  2758. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2759. /* Response Queue Registers */
  2760. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2761. qdev->rsp_consumer_index = 0;
  2762. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2763. ql_write_page1_reg(qdev,
  2764. &hmem_regs->rspProducerIndexAddrHigh,
  2765. qdev->rsp_producer_index_phy_addr_high);
  2766. ql_write_page1_reg(qdev,
  2767. &hmem_regs->rspProducerIndexAddrLow,
  2768. qdev->rsp_producer_index_phy_addr_low);
  2769. ql_write_page1_reg(qdev,
  2770. &hmem_regs->rspBaseAddrHigh,
  2771. MS_64BITS(qdev->rsp_q_phy_addr));
  2772. ql_write_page1_reg(qdev,
  2773. &hmem_regs->rspBaseAddrLow,
  2774. LS_64BITS(qdev->rsp_q_phy_addr));
  2775. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2776. /* Large Buffer Queue */
  2777. ql_write_page1_reg(qdev,
  2778. &hmem_regs->rxLargeQBaseAddrHigh,
  2779. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2780. ql_write_page1_reg(qdev,
  2781. &hmem_regs->rxLargeQBaseAddrLow,
  2782. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2783. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2784. ql_write_page1_reg(qdev,
  2785. &hmem_regs->rxLargeBufferLength,
  2786. qdev->lrg_buffer_len);
  2787. /* Small Buffer Queue */
  2788. ql_write_page1_reg(qdev,
  2789. &hmem_regs->rxSmallQBaseAddrHigh,
  2790. MS_64BITS(qdev->small_buf_q_phy_addr));
  2791. ql_write_page1_reg(qdev,
  2792. &hmem_regs->rxSmallQBaseAddrLow,
  2793. LS_64BITS(qdev->small_buf_q_phy_addr));
  2794. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2795. ql_write_page1_reg(qdev,
  2796. &hmem_regs->rxSmallBufferLength,
  2797. QL_SMALL_BUFFER_SIZE);
  2798. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2799. qdev->small_buf_release_cnt = 8;
  2800. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2801. qdev->lrg_buf_release_cnt = 8;
  2802. qdev->lrg_buf_next_free =
  2803. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2804. qdev->small_buf_index = 0;
  2805. qdev->lrg_buf_index = 0;
  2806. qdev->lrg_buf_free_count = 0;
  2807. qdev->lrg_buf_free_head = NULL;
  2808. qdev->lrg_buf_free_tail = NULL;
  2809. ql_write_common_reg(qdev,
  2810. &port_regs->CommonRegs.
  2811. rxSmallQProducerIndex,
  2812. qdev->small_buf_q_producer_index);
  2813. ql_write_common_reg(qdev,
  2814. &port_regs->CommonRegs.
  2815. rxLargeQProducerIndex,
  2816. qdev->lrg_buf_q_producer_index);
  2817. /*
  2818. * Find out if the chip has already been initialized. If it has, then
  2819. * we skip some of the initialization.
  2820. */
  2821. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2822. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2823. if ((value & PORT_STATUS_IC) == 0) {
  2824. /* Chip has not been configured yet, so let it rip. */
  2825. if(ql_init_misc_registers(qdev)) {
  2826. status = -1;
  2827. goto out;
  2828. }
  2829. value = qdev->nvram_data.tcpMaxWindowSize;
  2830. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2831. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2832. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2833. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2834. * 2) << 13)) {
  2835. status = -1;
  2836. goto out;
  2837. }
  2838. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2839. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2840. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2841. 16) | (INTERNAL_CHIP_SD |
  2842. INTERNAL_CHIP_WE)));
  2843. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2844. }
  2845. if (qdev->mac_index)
  2846. ql_write_page0_reg(qdev,
  2847. &port_regs->mac1MaxFrameLengthReg,
  2848. qdev->max_frame_size);
  2849. else
  2850. ql_write_page0_reg(qdev,
  2851. &port_regs->mac0MaxFrameLengthReg,
  2852. qdev->max_frame_size);
  2853. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2854. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2855. 2) << 7)) {
  2856. status = -1;
  2857. goto out;
  2858. }
  2859. PHY_Setup(qdev);
  2860. ql_init_scan_mode(qdev);
  2861. ql_get_phy_owner(qdev);
  2862. /* Load the MAC Configuration */
  2863. /* Program lower 32 bits of the MAC address */
  2864. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2865. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2866. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2867. ((qdev->ndev->dev_addr[2] << 24)
  2868. | (qdev->ndev->dev_addr[3] << 16)
  2869. | (qdev->ndev->dev_addr[4] << 8)
  2870. | qdev->ndev->dev_addr[5]));
  2871. /* Program top 16 bits of the MAC address */
  2872. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2873. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2874. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2875. ((qdev->ndev->dev_addr[0] << 8)
  2876. | qdev->ndev->dev_addr[1]));
  2877. /* Enable Primary MAC */
  2878. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2879. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2880. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2881. /* Clear Primary and Secondary IP addresses */
  2882. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2883. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2884. (qdev->mac_index << 2)));
  2885. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2886. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2887. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2888. ((qdev->mac_index << 2) + 1)));
  2889. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2890. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2891. /* Indicate Configuration Complete */
  2892. ql_write_page0_reg(qdev,
  2893. &port_regs->portControl,
  2894. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2895. do {
  2896. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2897. if (value & PORT_STATUS_IC)
  2898. break;
  2899. msleep(500);
  2900. } while (--delay);
  2901. if (delay == 0) {
  2902. printk(KERN_ERR PFX
  2903. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2904. status = -1;
  2905. goto out;
  2906. }
  2907. /* Enable Ethernet Function */
  2908. if (qdev->device_id == QL3032_DEVICE_ID) {
  2909. value =
  2910. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2911. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2912. QL3032_PORT_CONTROL_ET);
  2913. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2914. ((value << 16) | value));
  2915. } else {
  2916. value =
  2917. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2918. PORT_CONTROL_HH);
  2919. ql_write_page0_reg(qdev, &port_regs->portControl,
  2920. ((value << 16) | value));
  2921. }
  2922. out:
  2923. return status;
  2924. }
  2925. /*
  2926. * Caller holds hw_lock.
  2927. */
  2928. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2929. {
  2930. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2931. int status = 0;
  2932. u16 value;
  2933. int max_wait_time;
  2934. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2935. clear_bit(QL_RESET_DONE, &qdev->flags);
  2936. /*
  2937. * Issue soft reset to chip.
  2938. */
  2939. printk(KERN_DEBUG PFX
  2940. "%s: Issue soft reset to chip.\n",
  2941. qdev->ndev->name);
  2942. ql_write_common_reg(qdev,
  2943. &port_regs->CommonRegs.ispControlStatus,
  2944. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2945. /* Wait 3 seconds for reset to complete. */
  2946. printk(KERN_DEBUG PFX
  2947. "%s: Wait 10 milliseconds for reset to complete.\n",
  2948. qdev->ndev->name);
  2949. /* Wait until the firmware tells us the Soft Reset is done */
  2950. max_wait_time = 5;
  2951. do {
  2952. value =
  2953. ql_read_common_reg(qdev,
  2954. &port_regs->CommonRegs.ispControlStatus);
  2955. if ((value & ISP_CONTROL_SR) == 0)
  2956. break;
  2957. ssleep(1);
  2958. } while ((--max_wait_time));
  2959. /*
  2960. * Also, make sure that the Network Reset Interrupt bit has been
  2961. * cleared after the soft reset has taken place.
  2962. */
  2963. value =
  2964. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2965. if (value & ISP_CONTROL_RI) {
  2966. printk(KERN_DEBUG PFX
  2967. "ql_adapter_reset: clearing RI after reset.\n");
  2968. ql_write_common_reg(qdev,
  2969. &port_regs->CommonRegs.
  2970. ispControlStatus,
  2971. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2972. }
  2973. if (max_wait_time == 0) {
  2974. /* Issue Force Soft Reset */
  2975. ql_write_common_reg(qdev,
  2976. &port_regs->CommonRegs.
  2977. ispControlStatus,
  2978. ((ISP_CONTROL_FSR << 16) |
  2979. ISP_CONTROL_FSR));
  2980. /*
  2981. * Wait until the firmware tells us the Force Soft Reset is
  2982. * done
  2983. */
  2984. max_wait_time = 5;
  2985. do {
  2986. value =
  2987. ql_read_common_reg(qdev,
  2988. &port_regs->CommonRegs.
  2989. ispControlStatus);
  2990. if ((value & ISP_CONTROL_FSR) == 0) {
  2991. break;
  2992. }
  2993. ssleep(1);
  2994. } while ((--max_wait_time));
  2995. }
  2996. if (max_wait_time == 0)
  2997. status = 1;
  2998. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2999. set_bit(QL_RESET_DONE, &qdev->flags);
  3000. return status;
  3001. }
  3002. static void ql_set_mac_info(struct ql3_adapter *qdev)
  3003. {
  3004. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3005. u32 value, port_status;
  3006. u8 func_number;
  3007. /* Get the function number */
  3008. value =
  3009. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  3010. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  3011. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  3012. switch (value & ISP_CONTROL_FN_MASK) {
  3013. case ISP_CONTROL_FN0_NET:
  3014. qdev->mac_index = 0;
  3015. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3016. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3017. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3018. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  3019. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  3020. if (port_status & PORT_STATUS_SM0)
  3021. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3022. else
  3023. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3024. break;
  3025. case ISP_CONTROL_FN1_NET:
  3026. qdev->mac_index = 1;
  3027. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3028. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3029. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3030. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  3031. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  3032. if (port_status & PORT_STATUS_SM1)
  3033. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3034. else
  3035. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3036. break;
  3037. case ISP_CONTROL_FN0_SCSI:
  3038. case ISP_CONTROL_FN1_SCSI:
  3039. default:
  3040. printk(KERN_DEBUG PFX
  3041. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  3042. qdev->ndev->name,value);
  3043. break;
  3044. }
  3045. qdev->numPorts = qdev->nvram_data.numPorts;
  3046. }
  3047. static void ql_display_dev_info(struct net_device *ndev)
  3048. {
  3049. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3050. struct pci_dev *pdev = qdev->pdev;
  3051. printk(KERN_INFO PFX
  3052. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  3053. DRV_NAME, qdev->index, qdev->chip_rev_id,
  3054. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  3055. qdev->pci_slot);
  3056. printk(KERN_INFO PFX
  3057. "%s Interface.\n",
  3058. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  3059. /*
  3060. * Print PCI bus width/type.
  3061. */
  3062. printk(KERN_INFO PFX
  3063. "Bus interface is %s %s.\n",
  3064. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  3065. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  3066. printk(KERN_INFO PFX
  3067. "mem IO base address adjusted = 0x%p\n",
  3068. qdev->mem_map_registers);
  3069. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  3070. if (netif_msg_probe(qdev))
  3071. printk(KERN_INFO PFX
  3072. "%s: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
  3073. ndev->name, ndev->dev_addr[0], ndev->dev_addr[1],
  3074. ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
  3075. ndev->dev_addr[5]);
  3076. }
  3077. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  3078. {
  3079. struct net_device *ndev = qdev->ndev;
  3080. int retval = 0;
  3081. netif_stop_queue(ndev);
  3082. netif_carrier_off(ndev);
  3083. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  3084. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3085. ql_disable_interrupts(qdev);
  3086. free_irq(qdev->pdev->irq, ndev);
  3087. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3088. printk(KERN_INFO PFX
  3089. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  3090. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3091. pci_disable_msi(qdev->pdev);
  3092. }
  3093. del_timer_sync(&qdev->adapter_timer);
  3094. netif_poll_disable(ndev);
  3095. if (do_reset) {
  3096. int soft_reset;
  3097. unsigned long hw_flags;
  3098. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3099. if (ql_wait_for_drvr_lock(qdev)) {
  3100. if ((soft_reset = ql_adapter_reset(qdev))) {
  3101. printk(KERN_ERR PFX
  3102. "%s: ql_adapter_reset(%d) FAILED!\n",
  3103. ndev->name, qdev->index);
  3104. }
  3105. printk(KERN_ERR PFX
  3106. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  3107. } else {
  3108. printk(KERN_ERR PFX
  3109. "%s: Could not acquire driver lock to do "
  3110. "reset!\n", ndev->name);
  3111. retval = -1;
  3112. }
  3113. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3114. }
  3115. ql_free_mem_resources(qdev);
  3116. return retval;
  3117. }
  3118. static int ql_adapter_up(struct ql3_adapter *qdev)
  3119. {
  3120. struct net_device *ndev = qdev->ndev;
  3121. int err;
  3122. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  3123. unsigned long hw_flags;
  3124. if (ql_alloc_mem_resources(qdev)) {
  3125. printk(KERN_ERR PFX
  3126. "%s Unable to allocate buffers.\n", ndev->name);
  3127. return -ENOMEM;
  3128. }
  3129. if (qdev->msi) {
  3130. if (pci_enable_msi(qdev->pdev)) {
  3131. printk(KERN_ERR PFX
  3132. "%s: User requested MSI, but MSI failed to "
  3133. "initialize. Continuing without MSI.\n",
  3134. qdev->ndev->name);
  3135. qdev->msi = 0;
  3136. } else {
  3137. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  3138. set_bit(QL_MSI_ENABLED,&qdev->flags);
  3139. irq_flags &= ~IRQF_SHARED;
  3140. }
  3141. }
  3142. if ((err = request_irq(qdev->pdev->irq,
  3143. ql3xxx_isr,
  3144. irq_flags, ndev->name, ndev))) {
  3145. printk(KERN_ERR PFX
  3146. "%s: Failed to reserve interrupt %d already in use.\n",
  3147. ndev->name, qdev->pdev->irq);
  3148. goto err_irq;
  3149. }
  3150. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3151. if ((err = ql_wait_for_drvr_lock(qdev))) {
  3152. if ((err = ql_adapter_initialize(qdev))) {
  3153. printk(KERN_ERR PFX
  3154. "%s: Unable to initialize adapter.\n",
  3155. ndev->name);
  3156. goto err_init;
  3157. }
  3158. printk(KERN_ERR PFX
  3159. "%s: Releaseing driver lock.\n",ndev->name);
  3160. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3161. } else {
  3162. printk(KERN_ERR PFX
  3163. "%s: Could not aquire driver lock.\n",
  3164. ndev->name);
  3165. goto err_lock;
  3166. }
  3167. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3168. set_bit(QL_ADAPTER_UP,&qdev->flags);
  3169. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3170. netif_poll_enable(ndev);
  3171. ql_enable_interrupts(qdev);
  3172. return 0;
  3173. err_init:
  3174. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3175. err_lock:
  3176. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3177. free_irq(qdev->pdev->irq, ndev);
  3178. err_irq:
  3179. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3180. printk(KERN_INFO PFX
  3181. "%s: calling pci_disable_msi().\n",
  3182. qdev->ndev->name);
  3183. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3184. pci_disable_msi(qdev->pdev);
  3185. }
  3186. return err;
  3187. }
  3188. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3189. {
  3190. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  3191. printk(KERN_ERR PFX
  3192. "%s: Driver up/down cycle failed, "
  3193. "closing device\n",qdev->ndev->name);
  3194. dev_close(qdev->ndev);
  3195. return -1;
  3196. }
  3197. return 0;
  3198. }
  3199. static int ql3xxx_close(struct net_device *ndev)
  3200. {
  3201. struct ql3_adapter *qdev = netdev_priv(ndev);
  3202. /*
  3203. * Wait for device to recover from a reset.
  3204. * (Rarely happens, but possible.)
  3205. */
  3206. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  3207. msleep(50);
  3208. ql_adapter_down(qdev,QL_DO_RESET);
  3209. return 0;
  3210. }
  3211. static int ql3xxx_open(struct net_device *ndev)
  3212. {
  3213. struct ql3_adapter *qdev = netdev_priv(ndev);
  3214. return (ql_adapter_up(qdev));
  3215. }
  3216. static struct net_device_stats *ql3xxx_get_stats(struct net_device *dev)
  3217. {
  3218. struct ql3_adapter *qdev = (struct ql3_adapter *)dev->priv;
  3219. return &qdev->stats;
  3220. }
  3221. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  3222. {
  3223. /*
  3224. * We are manually parsing the list in the net_device structure.
  3225. */
  3226. return;
  3227. }
  3228. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3229. {
  3230. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3231. struct ql3xxx_port_registers __iomem *port_regs =
  3232. qdev->mem_map_registers;
  3233. struct sockaddr *addr = p;
  3234. unsigned long hw_flags;
  3235. if (netif_running(ndev))
  3236. return -EBUSY;
  3237. if (!is_valid_ether_addr(addr->sa_data))
  3238. return -EADDRNOTAVAIL;
  3239. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3240. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3241. /* Program lower 32 bits of the MAC address */
  3242. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3243. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3244. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3245. ((ndev->dev_addr[2] << 24) | (ndev->
  3246. dev_addr[3] << 16) |
  3247. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3248. /* Program top 16 bits of the MAC address */
  3249. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3250. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3251. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3252. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3253. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3254. return 0;
  3255. }
  3256. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3257. {
  3258. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3259. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3260. /*
  3261. * Stop the queues, we've got a problem.
  3262. */
  3263. netif_stop_queue(ndev);
  3264. /*
  3265. * Wake up the worker to process this event.
  3266. */
  3267. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3268. }
  3269. static void ql_reset_work(struct work_struct *work)
  3270. {
  3271. struct ql3_adapter *qdev =
  3272. container_of(work, struct ql3_adapter, reset_work.work);
  3273. struct net_device *ndev = qdev->ndev;
  3274. u32 value;
  3275. struct ql_tx_buf_cb *tx_cb;
  3276. int max_wait_time, i;
  3277. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3278. unsigned long hw_flags;
  3279. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3280. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3281. /*
  3282. * Loop through the active list and return the skb.
  3283. */
  3284. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3285. int j;
  3286. tx_cb = &qdev->tx_buf[i];
  3287. if (tx_cb->skb) {
  3288. printk(KERN_DEBUG PFX
  3289. "%s: Freeing lost SKB.\n",
  3290. qdev->ndev->name);
  3291. pci_unmap_single(qdev->pdev,
  3292. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  3293. pci_unmap_len(&tx_cb->map[0], maplen),
  3294. PCI_DMA_TODEVICE);
  3295. for(j=1;j<tx_cb->seg_count;j++) {
  3296. pci_unmap_page(qdev->pdev,
  3297. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  3298. pci_unmap_len(&tx_cb->map[j],maplen),
  3299. PCI_DMA_TODEVICE);
  3300. }
  3301. dev_kfree_skb(tx_cb->skb);
  3302. tx_cb->skb = NULL;
  3303. }
  3304. }
  3305. printk(KERN_ERR PFX
  3306. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3307. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3308. ql_write_common_reg(qdev,
  3309. &port_regs->CommonRegs.
  3310. ispControlStatus,
  3311. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3312. /*
  3313. * Wait the for Soft Reset to Complete.
  3314. */
  3315. max_wait_time = 10;
  3316. do {
  3317. value = ql_read_common_reg(qdev,
  3318. &port_regs->CommonRegs.
  3319. ispControlStatus);
  3320. if ((value & ISP_CONTROL_SR) == 0) {
  3321. printk(KERN_DEBUG PFX
  3322. "%s: reset completed.\n",
  3323. qdev->ndev->name);
  3324. break;
  3325. }
  3326. if (value & ISP_CONTROL_RI) {
  3327. printk(KERN_DEBUG PFX
  3328. "%s: clearing NRI after reset.\n",
  3329. qdev->ndev->name);
  3330. ql_write_common_reg(qdev,
  3331. &port_regs->
  3332. CommonRegs.
  3333. ispControlStatus,
  3334. ((ISP_CONTROL_RI <<
  3335. 16) | ISP_CONTROL_RI));
  3336. }
  3337. ssleep(1);
  3338. } while (--max_wait_time);
  3339. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3340. if (value & ISP_CONTROL_SR) {
  3341. /*
  3342. * Set the reset flags and clear the board again.
  3343. * Nothing else to do...
  3344. */
  3345. printk(KERN_ERR PFX
  3346. "%s: Timed out waiting for reset to "
  3347. "complete.\n", ndev->name);
  3348. printk(KERN_ERR PFX
  3349. "%s: Do a reset.\n", ndev->name);
  3350. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3351. clear_bit(QL_RESET_START,&qdev->flags);
  3352. ql_cycle_adapter(qdev,QL_DO_RESET);
  3353. return;
  3354. }
  3355. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3356. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3357. clear_bit(QL_RESET_START,&qdev->flags);
  3358. ql_cycle_adapter(qdev,QL_NO_RESET);
  3359. }
  3360. }
  3361. static void ql_tx_timeout_work(struct work_struct *work)
  3362. {
  3363. struct ql3_adapter *qdev =
  3364. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3365. ql_cycle_adapter(qdev, QL_DO_RESET);
  3366. }
  3367. static void ql_get_board_info(struct ql3_adapter *qdev)
  3368. {
  3369. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3370. u32 value;
  3371. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3372. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3373. if (value & PORT_STATUS_64)
  3374. qdev->pci_width = 64;
  3375. else
  3376. qdev->pci_width = 32;
  3377. if (value & PORT_STATUS_X)
  3378. qdev->pci_x = 1;
  3379. else
  3380. qdev->pci_x = 0;
  3381. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3382. }
  3383. static void ql3xxx_timer(unsigned long ptr)
  3384. {
  3385. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3386. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  3387. printk(KERN_DEBUG PFX
  3388. "%s: Reset in progress.\n",
  3389. qdev->ndev->name);
  3390. goto end;
  3391. }
  3392. ql_link_state_machine(qdev);
  3393. /* Restart timer on 2 second interval. */
  3394. end:
  3395. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3396. }
  3397. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3398. const struct pci_device_id *pci_entry)
  3399. {
  3400. struct net_device *ndev = NULL;
  3401. struct ql3_adapter *qdev = NULL;
  3402. static int cards_found = 0;
  3403. int pci_using_dac, err;
  3404. err = pci_enable_device(pdev);
  3405. if (err) {
  3406. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3407. pci_name(pdev));
  3408. goto err_out;
  3409. }
  3410. err = pci_request_regions(pdev, DRV_NAME);
  3411. if (err) {
  3412. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3413. pci_name(pdev));
  3414. goto err_out_disable_pdev;
  3415. }
  3416. pci_set_master(pdev);
  3417. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3418. pci_using_dac = 1;
  3419. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3420. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3421. pci_using_dac = 0;
  3422. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3423. }
  3424. if (err) {
  3425. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3426. pci_name(pdev));
  3427. goto err_out_free_regions;
  3428. }
  3429. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3430. if (!ndev) {
  3431. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3432. pci_name(pdev));
  3433. err = -ENOMEM;
  3434. goto err_out_free_regions;
  3435. }
  3436. SET_MODULE_OWNER(ndev);
  3437. SET_NETDEV_DEV(ndev, &pdev->dev);
  3438. pci_set_drvdata(pdev, ndev);
  3439. qdev = netdev_priv(ndev);
  3440. qdev->index = cards_found;
  3441. qdev->ndev = ndev;
  3442. qdev->pdev = pdev;
  3443. qdev->device_id = pci_entry->device;
  3444. qdev->port_link_state = LS_DOWN;
  3445. if (msi)
  3446. qdev->msi = 1;
  3447. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3448. if (pci_using_dac)
  3449. ndev->features |= NETIF_F_HIGHDMA;
  3450. if (qdev->device_id == QL3032_DEVICE_ID)
  3451. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3452. qdev->mem_map_registers =
  3453. ioremap_nocache(pci_resource_start(pdev, 1),
  3454. pci_resource_len(qdev->pdev, 1));
  3455. if (!qdev->mem_map_registers) {
  3456. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3457. pci_name(pdev));
  3458. err = -EIO;
  3459. goto err_out_free_ndev;
  3460. }
  3461. spin_lock_init(&qdev->adapter_lock);
  3462. spin_lock_init(&qdev->hw_lock);
  3463. /* Set driver entry points */
  3464. ndev->open = ql3xxx_open;
  3465. ndev->hard_start_xmit = ql3xxx_send;
  3466. ndev->stop = ql3xxx_close;
  3467. ndev->get_stats = ql3xxx_get_stats;
  3468. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3469. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3470. ndev->set_mac_address = ql3xxx_set_mac_address;
  3471. ndev->tx_timeout = ql3xxx_tx_timeout;
  3472. ndev->watchdog_timeo = 5 * HZ;
  3473. ndev->poll = &ql_poll;
  3474. ndev->weight = 64;
  3475. ndev->irq = pdev->irq;
  3476. /* make sure the EEPROM is good */
  3477. if (ql_get_nvram_params(qdev)) {
  3478. printk(KERN_ALERT PFX
  3479. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3480. qdev->index);
  3481. err = -EIO;
  3482. goto err_out_iounmap;
  3483. }
  3484. ql_set_mac_info(qdev);
  3485. /* Validate and set parameters */
  3486. if (qdev->mac_index) {
  3487. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3488. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3489. ETH_ALEN);
  3490. } else {
  3491. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3492. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3493. ETH_ALEN);
  3494. }
  3495. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3496. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3497. /* Turn off support for multicasting */
  3498. ndev->flags &= ~IFF_MULTICAST;
  3499. /* Record PCI bus information. */
  3500. ql_get_board_info(qdev);
  3501. /*
  3502. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3503. * jumbo frames.
  3504. */
  3505. if (qdev->pci_x) {
  3506. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3507. }
  3508. err = register_netdev(ndev);
  3509. if (err) {
  3510. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3511. pci_name(pdev));
  3512. goto err_out_iounmap;
  3513. }
  3514. /* we're going to reset, so assume we have no link for now */
  3515. netif_carrier_off(ndev);
  3516. netif_stop_queue(ndev);
  3517. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3518. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3519. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3520. init_timer(&qdev->adapter_timer);
  3521. qdev->adapter_timer.function = ql3xxx_timer;
  3522. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3523. qdev->adapter_timer.data = (unsigned long)qdev;
  3524. if(!cards_found) {
  3525. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3526. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3527. DRV_NAME, DRV_VERSION);
  3528. }
  3529. ql_display_dev_info(ndev);
  3530. cards_found++;
  3531. return 0;
  3532. err_out_iounmap:
  3533. iounmap(qdev->mem_map_registers);
  3534. err_out_free_ndev:
  3535. free_netdev(ndev);
  3536. err_out_free_regions:
  3537. pci_release_regions(pdev);
  3538. err_out_disable_pdev:
  3539. pci_disable_device(pdev);
  3540. pci_set_drvdata(pdev, NULL);
  3541. err_out:
  3542. return err;
  3543. }
  3544. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3545. {
  3546. struct net_device *ndev = pci_get_drvdata(pdev);
  3547. struct ql3_adapter *qdev = netdev_priv(ndev);
  3548. unregister_netdev(ndev);
  3549. qdev = netdev_priv(ndev);
  3550. ql_disable_interrupts(qdev);
  3551. if (qdev->workqueue) {
  3552. cancel_delayed_work(&qdev->reset_work);
  3553. cancel_delayed_work(&qdev->tx_timeout_work);
  3554. destroy_workqueue(qdev->workqueue);
  3555. qdev->workqueue = NULL;
  3556. }
  3557. iounmap(qdev->mem_map_registers);
  3558. pci_release_regions(pdev);
  3559. pci_set_drvdata(pdev, NULL);
  3560. free_netdev(ndev);
  3561. }
  3562. static struct pci_driver ql3xxx_driver = {
  3563. .name = DRV_NAME,
  3564. .id_table = ql3xxx_pci_tbl,
  3565. .probe = ql3xxx_probe,
  3566. .remove = __devexit_p(ql3xxx_remove),
  3567. };
  3568. static int __init ql3xxx_init_module(void)
  3569. {
  3570. return pci_register_driver(&ql3xxx_driver);
  3571. }
  3572. static void __exit ql3xxx_exit(void)
  3573. {
  3574. pci_unregister_driver(&ql3xxx_driver);
  3575. }
  3576. module_init(ql3xxx_init_module);
  3577. module_exit(ql3xxx_exit);