wl.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12. * the GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
  19. */
  20. /*
  21. * UBI wear-leveling unit.
  22. *
  23. * This unit is responsible for wear-leveling. It works in terms of physical
  24. * eraseblocks and erase counters and knows nothing about logical eraseblocks,
  25. * volumes, etc. From this unit's perspective all physical eraseblocks are of
  26. * two types - used and free. Used physical eraseblocks are those that were
  27. * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
  28. * those that were put by the 'ubi_wl_put_peb()' function.
  29. *
  30. * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  31. * header. The rest of the physical eraseblock contains only 0xFF bytes.
  32. *
  33. * When physical eraseblocks are returned to the WL unit by means of the
  34. * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  35. * done asynchronously in context of the per-UBI device background thread,
  36. * which is also managed by the WL unit.
  37. *
  38. * The wear-leveling is ensured by means of moving the contents of used
  39. * physical eraseblocks with low erase counter to free physical eraseblocks
  40. * with high erase counter.
  41. *
  42. * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
  43. * an "optimal" physical eraseblock. For example, when it is known that the
  44. * physical eraseblock will be "put" soon because it contains short-term data,
  45. * the WL unit may pick a free physical eraseblock with low erase counter, and
  46. * so forth.
  47. *
  48. * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
  49. *
  50. * This unit is also responsible for scrubbing. If a bit-flip is detected in a
  51. * physical eraseblock, it has to be moved. Technically this is the same as
  52. * moving it for wear-leveling reasons.
  53. *
  54. * As it was said, for the UBI unit all physical eraseblocks are either "free"
  55. * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
  56. * eraseblocks are kept in a set of different RB-trees: @wl->used,
  57. * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
  58. *
  59. * Note, in this implementation, we keep a small in-RAM object for each physical
  60. * eraseblock. This is surely not a scalable solution. But it appears to be good
  61. * enough for moderately large flashes and it is simple. In future, one may
  62. * re-work this unit and make it more scalable.
  63. *
  64. * At the moment this unit does not utilize the sequence number, which was
  65. * introduced relatively recently. But it would be wise to do this because the
  66. * sequence number of a logical eraseblock characterizes how old is it. For
  67. * example, when we move a PEB with low erase counter, and we need to pick the
  68. * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  69. * pick target PEB with an average EC if our PEB is not very "old". This is a
  70. * room for future re-works of the WL unit.
  71. *
  72. * FIXME: looks too complex, should be simplified (later).
  73. */
  74. #include <linux/slab.h>
  75. #include <linux/crc32.h>
  76. #include <linux/freezer.h>
  77. #include <linux/kthread.h>
  78. #include "ubi.h"
  79. /* Number of physical eraseblocks reserved for wear-leveling purposes */
  80. #define WL_RESERVED_PEBS 1
  81. /*
  82. * How many erase cycles are short term, unknown, and long term physical
  83. * eraseblocks protected.
  84. */
  85. #define ST_PROTECTION 16
  86. #define U_PROTECTION 10
  87. #define LT_PROTECTION 4
  88. /*
  89. * Maximum difference between two erase counters. If this threshold is
  90. * exceeded, the WL unit starts moving data from used physical eraseblocks with
  91. * low erase counter to free physical eraseblocks with high erase counter.
  92. */
  93. #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
  94. /*
  95. * When a physical eraseblock is moved, the WL unit has to pick the target
  96. * physical eraseblock to move to. The simplest way would be just to pick the
  97. * one with the highest erase counter. But in certain workloads this could lead
  98. * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
  99. * situation when the picked physical eraseblock is constantly erased after the
  100. * data is written to it. So, we have a constant which limits the highest erase
  101. * counter of the free physical eraseblock to pick. Namely, the WL unit does
  102. * not pick eraseblocks with erase counter greater then the lowest erase
  103. * counter plus %WL_FREE_MAX_DIFF.
  104. */
  105. #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
  106. /*
  107. * Maximum number of consecutive background thread failures which is enough to
  108. * switch to read-only mode.
  109. */
  110. #define WL_MAX_FAILURES 32
  111. /**
  112. * struct ubi_wl_entry - wear-leveling entry.
  113. * @rb: link in the corresponding RB-tree
  114. * @ec: erase counter
  115. * @pnum: physical eraseblock number
  116. *
  117. * Each physical eraseblock has a corresponding &struct wl_entry object which
  118. * may be kept in different RB-trees.
  119. */
  120. struct ubi_wl_entry {
  121. struct rb_node rb;
  122. int ec;
  123. int pnum;
  124. };
  125. /**
  126. * struct ubi_wl_prot_entry - PEB protection entry.
  127. * @rb_pnum: link in the @wl->prot.pnum RB-tree
  128. * @rb_aec: link in the @wl->prot.aec RB-tree
  129. * @abs_ec: the absolute erase counter value when the protection ends
  130. * @e: the wear-leveling entry of the physical eraseblock under protection
  131. *
  132. * When the WL unit returns a physical eraseblock, the physical eraseblock is
  133. * protected from being moved for some "time". For this reason, the physical
  134. * eraseblock is not directly moved from the @wl->free tree to the @wl->used
  135. * tree. There is one more tree in between where this physical eraseblock is
  136. * temporarily stored (@wl->prot).
  137. *
  138. * All this protection stuff is needed because:
  139. * o we don't want to move physical eraseblocks just after we have given them
  140. * to the user; instead, we first want to let users fill them up with data;
  141. *
  142. * o there is a chance that the user will put the physical eraseblock very
  143. * soon, so it makes sense not to move it for some time, but wait; this is
  144. * especially important in case of "short term" physical eraseblocks.
  145. *
  146. * Physical eraseblocks stay protected only for limited time. But the "time" is
  147. * measured in erase cycles in this case. This is implemented with help of the
  148. * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
  149. * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
  150. * the @wl->used tree.
  151. *
  152. * Protected physical eraseblocks are searched by physical eraseblock number
  153. * (when they are put) and by the absolute erase counter (to check if it is
  154. * time to move them to the @wl->used tree). So there are actually 2 RB-trees
  155. * storing the protected physical eraseblocks: @wl->prot.pnum and
  156. * @wl->prot.aec. They are referred to as the "protection" trees. The
  157. * first one is indexed by the physical eraseblock number. The second one is
  158. * indexed by the absolute erase counter. Both trees store
  159. * &struct ubi_wl_prot_entry objects.
  160. *
  161. * Each physical eraseblock has 2 main states: free and used. The former state
  162. * corresponds to the @wl->free tree. The latter state is split up on several
  163. * sub-states:
  164. * o the WL movement is allowed (@wl->used tree);
  165. * o the WL movement is temporarily prohibited (@wl->prot.pnum and
  166. * @wl->prot.aec trees);
  167. * o scrubbing is needed (@wl->scrub tree).
  168. *
  169. * Depending on the sub-state, wear-leveling entries of the used physical
  170. * eraseblocks may be kept in one of those trees.
  171. */
  172. struct ubi_wl_prot_entry {
  173. struct rb_node rb_pnum;
  174. struct rb_node rb_aec;
  175. unsigned long long abs_ec;
  176. struct ubi_wl_entry *e;
  177. };
  178. /**
  179. * struct ubi_work - UBI work description data structure.
  180. * @list: a link in the list of pending works
  181. * @func: worker function
  182. * @priv: private data of the worker function
  183. *
  184. * @e: physical eraseblock to erase
  185. * @torture: if the physical eraseblock has to be tortured
  186. *
  187. * The @func pointer points to the worker function. If the @cancel argument is
  188. * not zero, the worker has to free the resources and exit immediately. The
  189. * worker has to return zero in case of success and a negative error code in
  190. * case of failure.
  191. */
  192. struct ubi_work {
  193. struct list_head list;
  194. int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
  195. /* The below fields are only relevant to erasure works */
  196. struct ubi_wl_entry *e;
  197. int torture;
  198. };
  199. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  200. static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec);
  201. static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
  202. struct rb_root *root);
  203. #else
  204. #define paranoid_check_ec(ubi, pnum, ec) 0
  205. #define paranoid_check_in_wl_tree(e, root)
  206. #endif
  207. /* Slab cache for wear-leveling entries */
  208. static struct kmem_cache *wl_entries_slab;
  209. /**
  210. * tree_empty - a helper function to check if an RB-tree is empty.
  211. * @root: the root of the tree
  212. *
  213. * This function returns non-zero if the RB-tree is empty and zero if not.
  214. */
  215. static inline int tree_empty(struct rb_root *root)
  216. {
  217. return root->rb_node == NULL;
  218. }
  219. /**
  220. * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
  221. * @e: the wear-leveling entry to add
  222. * @root: the root of the tree
  223. *
  224. * Note, we use (erase counter, physical eraseblock number) pairs as keys in
  225. * the @ubi->used and @ubi->free RB-trees.
  226. */
  227. static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
  228. {
  229. struct rb_node **p, *parent = NULL;
  230. p = &root->rb_node;
  231. while (*p) {
  232. struct ubi_wl_entry *e1;
  233. parent = *p;
  234. e1 = rb_entry(parent, struct ubi_wl_entry, rb);
  235. if (e->ec < e1->ec)
  236. p = &(*p)->rb_left;
  237. else if (e->ec > e1->ec)
  238. p = &(*p)->rb_right;
  239. else {
  240. ubi_assert(e->pnum != e1->pnum);
  241. if (e->pnum < e1->pnum)
  242. p = &(*p)->rb_left;
  243. else
  244. p = &(*p)->rb_right;
  245. }
  246. }
  247. rb_link_node(&e->rb, parent, p);
  248. rb_insert_color(&e->rb, root);
  249. }
  250. /*
  251. * Helper functions to add and delete wear-leveling entries from different
  252. * trees.
  253. */
  254. static void free_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
  255. {
  256. wl_tree_add(e, &ubi->free);
  257. }
  258. static inline void used_tree_add(struct ubi_device *ubi,
  259. struct ubi_wl_entry *e)
  260. {
  261. wl_tree_add(e, &ubi->used);
  262. }
  263. static inline void scrub_tree_add(struct ubi_device *ubi,
  264. struct ubi_wl_entry *e)
  265. {
  266. wl_tree_add(e, &ubi->scrub);
  267. }
  268. static inline void free_tree_del(struct ubi_device *ubi,
  269. struct ubi_wl_entry *e)
  270. {
  271. paranoid_check_in_wl_tree(e, &ubi->free);
  272. rb_erase(&e->rb, &ubi->free);
  273. }
  274. static inline void used_tree_del(struct ubi_device *ubi,
  275. struct ubi_wl_entry *e)
  276. {
  277. paranoid_check_in_wl_tree(e, &ubi->used);
  278. rb_erase(&e->rb, &ubi->used);
  279. }
  280. static inline void scrub_tree_del(struct ubi_device *ubi,
  281. struct ubi_wl_entry *e)
  282. {
  283. paranoid_check_in_wl_tree(e, &ubi->scrub);
  284. rb_erase(&e->rb, &ubi->scrub);
  285. }
  286. /**
  287. * do_work - do one pending work.
  288. * @ubi: UBI device description object
  289. *
  290. * This function returns zero in case of success and a negative error code in
  291. * case of failure.
  292. */
  293. static int do_work(struct ubi_device *ubi)
  294. {
  295. int err;
  296. struct ubi_work *wrk;
  297. spin_lock(&ubi->wl_lock);
  298. if (list_empty(&ubi->works)) {
  299. spin_unlock(&ubi->wl_lock);
  300. return 0;
  301. }
  302. wrk = list_entry(ubi->works.next, struct ubi_work, list);
  303. list_del(&wrk->list);
  304. spin_unlock(&ubi->wl_lock);
  305. /*
  306. * Call the worker function. Do not touch the work structure
  307. * after this call as it will have been freed or reused by that
  308. * time by the worker function.
  309. */
  310. err = wrk->func(ubi, wrk, 0);
  311. if (err)
  312. ubi_err("work failed with error code %d", err);
  313. spin_lock(&ubi->wl_lock);
  314. ubi->works_count -= 1;
  315. ubi_assert(ubi->works_count >= 0);
  316. spin_unlock(&ubi->wl_lock);
  317. return err;
  318. }
  319. /**
  320. * produce_free_peb - produce a free physical eraseblock.
  321. * @ubi: UBI device description object
  322. *
  323. * This function tries to make a free PEB by means of synchronous execution of
  324. * pending works. This may be needed if, for example the background thread is
  325. * disabled. Returns zero in case of success and a negative error code in case
  326. * of failure.
  327. */
  328. static int produce_free_peb(struct ubi_device *ubi)
  329. {
  330. int err;
  331. spin_lock(&ubi->wl_lock);
  332. while (tree_empty(&ubi->free)) {
  333. spin_unlock(&ubi->wl_lock);
  334. dbg_wl("do one work synchronously");
  335. err = do_work(ubi);
  336. if (err)
  337. return err;
  338. spin_lock(&ubi->wl_lock);
  339. }
  340. spin_unlock(&ubi->wl_lock);
  341. return 0;
  342. }
  343. /**
  344. * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
  345. * @e: the wear-leveling entry to check
  346. * @root: the root of the tree
  347. *
  348. * This function returns non-zero if @e is in the @root RB-tree and zero if it
  349. * is not.
  350. */
  351. static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
  352. {
  353. struct rb_node *p;
  354. p = root->rb_node;
  355. while (p) {
  356. struct ubi_wl_entry *e1;
  357. e1 = rb_entry(p, struct ubi_wl_entry, rb);
  358. if (e->pnum == e1->pnum) {
  359. ubi_assert(e == e1);
  360. return 1;
  361. }
  362. if (e->ec < e1->ec)
  363. p = p->rb_left;
  364. else if (e->ec > e1->ec)
  365. p = p->rb_right;
  366. else {
  367. ubi_assert(e->pnum != e1->pnum);
  368. if (e->pnum < e1->pnum)
  369. p = p->rb_left;
  370. else
  371. p = p->rb_right;
  372. }
  373. }
  374. return 0;
  375. }
  376. /**
  377. * prot_tree_add - add physical eraseblock to protection trees.
  378. * @ubi: UBI device description object
  379. * @e: the physical eraseblock to add
  380. * @pe: protection entry object to use
  381. * @abs_ec: absolute erase counter value when this physical eraseblock has
  382. * to be removed from the protection trees.
  383. *
  384. * @wl->lock has to be locked.
  385. */
  386. static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
  387. struct ubi_wl_prot_entry *pe, int abs_ec)
  388. {
  389. struct rb_node **p, *parent = NULL;
  390. struct ubi_wl_prot_entry *pe1;
  391. pe->e = e;
  392. pe->abs_ec = ubi->abs_ec + abs_ec;
  393. p = &ubi->prot.pnum.rb_node;
  394. while (*p) {
  395. parent = *p;
  396. pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
  397. if (e->pnum < pe1->e->pnum)
  398. p = &(*p)->rb_left;
  399. else
  400. p = &(*p)->rb_right;
  401. }
  402. rb_link_node(&pe->rb_pnum, parent, p);
  403. rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
  404. p = &ubi->prot.aec.rb_node;
  405. parent = NULL;
  406. while (*p) {
  407. parent = *p;
  408. pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
  409. if (pe->abs_ec < pe1->abs_ec)
  410. p = &(*p)->rb_left;
  411. else
  412. p = &(*p)->rb_right;
  413. }
  414. rb_link_node(&pe->rb_aec, parent, p);
  415. rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
  416. }
  417. /**
  418. * find_wl_entry - find wear-leveling entry closest to certain erase counter.
  419. * @root: the RB-tree where to look for
  420. * @max: highest possible erase counter
  421. *
  422. * This function looks for a wear leveling entry with erase counter closest to
  423. * @max and less then @max.
  424. */
  425. static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
  426. {
  427. struct rb_node *p;
  428. struct ubi_wl_entry *e;
  429. e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
  430. max += e->ec;
  431. p = root->rb_node;
  432. while (p) {
  433. struct ubi_wl_entry *e1;
  434. e1 = rb_entry(p, struct ubi_wl_entry, rb);
  435. if (e1->ec >= max)
  436. p = p->rb_left;
  437. else {
  438. p = p->rb_right;
  439. e = e1;
  440. }
  441. }
  442. return e;
  443. }
  444. /**
  445. * ubi_wl_get_peb - get a physical eraseblock.
  446. * @ubi: UBI device description object
  447. * @dtype: type of data which will be stored in this physical eraseblock
  448. *
  449. * This function returns a physical eraseblock in case of success and a
  450. * negative error code in case of failure. Might sleep.
  451. */
  452. int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
  453. {
  454. int err, protect, medium_ec;
  455. struct ubi_wl_entry *e, *first, *last;
  456. struct ubi_wl_prot_entry *pe;
  457. ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
  458. dtype == UBI_UNKNOWN);
  459. pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_KERNEL);
  460. if (!pe)
  461. return -ENOMEM;
  462. retry:
  463. spin_lock(&ubi->wl_lock);
  464. if (tree_empty(&ubi->free)) {
  465. if (ubi->works_count == 0) {
  466. ubi_assert(list_empty(&ubi->works));
  467. ubi_err("no free eraseblocks");
  468. spin_unlock(&ubi->wl_lock);
  469. kfree(pe);
  470. return -ENOSPC;
  471. }
  472. spin_unlock(&ubi->wl_lock);
  473. err = produce_free_peb(ubi);
  474. if (err < 0) {
  475. kfree(pe);
  476. return err;
  477. }
  478. goto retry;
  479. }
  480. switch (dtype) {
  481. case UBI_LONGTERM:
  482. /*
  483. * For long term data we pick a physical eraseblock
  484. * with high erase counter. But the highest erase
  485. * counter we can pick is bounded by the the lowest
  486. * erase counter plus %WL_FREE_MAX_DIFF.
  487. */
  488. e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
  489. protect = LT_PROTECTION;
  490. break;
  491. case UBI_UNKNOWN:
  492. /*
  493. * For unknown data we pick a physical eraseblock with
  494. * medium erase counter. But we by no means can pick a
  495. * physical eraseblock with erase counter greater or
  496. * equivalent than the lowest erase counter plus
  497. * %WL_FREE_MAX_DIFF.
  498. */
  499. first = rb_entry(rb_first(&ubi->free),
  500. struct ubi_wl_entry, rb);
  501. last = rb_entry(rb_last(&ubi->free),
  502. struct ubi_wl_entry, rb);
  503. if (last->ec - first->ec < WL_FREE_MAX_DIFF)
  504. e = rb_entry(ubi->free.rb_node,
  505. struct ubi_wl_entry, rb);
  506. else {
  507. medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
  508. e = find_wl_entry(&ubi->free, medium_ec);
  509. }
  510. protect = U_PROTECTION;
  511. break;
  512. case UBI_SHORTTERM:
  513. /*
  514. * For short term data we pick a physical eraseblock
  515. * with the lowest erase counter as we expect it will
  516. * be erased soon.
  517. */
  518. e = rb_entry(rb_first(&ubi->free),
  519. struct ubi_wl_entry, rb);
  520. protect = ST_PROTECTION;
  521. break;
  522. default:
  523. protect = 0;
  524. e = NULL;
  525. BUG();
  526. }
  527. /*
  528. * Move the physical eraseblock to the protection trees where it will
  529. * be protected from being moved for some time.
  530. */
  531. free_tree_del(ubi, e);
  532. prot_tree_add(ubi, e, pe, protect);
  533. dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
  534. spin_unlock(&ubi->wl_lock);
  535. return e->pnum;
  536. }
  537. /**
  538. * prot_tree_del - remove a physical eraseblock from the protection trees
  539. * @ubi: UBI device description object
  540. * @pnum: the physical eraseblock to remove
  541. */
  542. static void prot_tree_del(struct ubi_device *ubi, int pnum)
  543. {
  544. struct rb_node *p;
  545. struct ubi_wl_prot_entry *pe = NULL;
  546. p = ubi->prot.pnum.rb_node;
  547. while (p) {
  548. pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
  549. if (pnum == pe->e->pnum)
  550. break;
  551. if (pnum < pe->e->pnum)
  552. p = p->rb_left;
  553. else
  554. p = p->rb_right;
  555. }
  556. ubi_assert(pe->e->pnum == pnum);
  557. rb_erase(&pe->rb_aec, &ubi->prot.aec);
  558. rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
  559. kfree(pe);
  560. }
  561. /**
  562. * sync_erase - synchronously erase a physical eraseblock.
  563. * @ubi: UBI device description object
  564. * @e: the the physical eraseblock to erase
  565. * @torture: if the physical eraseblock has to be tortured
  566. *
  567. * This function returns zero in case of success and a negative error code in
  568. * case of failure.
  569. */
  570. static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
  571. {
  572. int err;
  573. struct ubi_ec_hdr *ec_hdr;
  574. unsigned long long ec = e->ec;
  575. dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
  576. err = paranoid_check_ec(ubi, e->pnum, e->ec);
  577. if (err > 0)
  578. return -EINVAL;
  579. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
  580. if (!ec_hdr)
  581. return -ENOMEM;
  582. err = ubi_io_sync_erase(ubi, e->pnum, torture);
  583. if (err < 0)
  584. goto out_free;
  585. ec += err;
  586. if (ec > UBI_MAX_ERASECOUNTER) {
  587. /*
  588. * Erase counter overflow. Upgrade UBI and use 64-bit
  589. * erase counters internally.
  590. */
  591. ubi_err("erase counter overflow at PEB %d, EC %llu",
  592. e->pnum, ec);
  593. err = -EINVAL;
  594. goto out_free;
  595. }
  596. dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
  597. ec_hdr->ec = cpu_to_be64(ec);
  598. err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
  599. if (err)
  600. goto out_free;
  601. e->ec = ec;
  602. spin_lock(&ubi->wl_lock);
  603. if (e->ec > ubi->max_ec)
  604. ubi->max_ec = e->ec;
  605. spin_unlock(&ubi->wl_lock);
  606. out_free:
  607. kfree(ec_hdr);
  608. return err;
  609. }
  610. /**
  611. * check_protection_over - check if it is time to stop protecting some
  612. * physical eraseblocks.
  613. * @ubi: UBI device description object
  614. *
  615. * This function is called after each erase operation, when the absolute erase
  616. * counter is incremented, to check if some physical eraseblock have not to be
  617. * protected any longer. These physical eraseblocks are moved from the
  618. * protection trees to the used tree.
  619. */
  620. static void check_protection_over(struct ubi_device *ubi)
  621. {
  622. struct ubi_wl_prot_entry *pe;
  623. /*
  624. * There may be several protected physical eraseblock to remove,
  625. * process them all.
  626. */
  627. while (1) {
  628. spin_lock(&ubi->wl_lock);
  629. if (tree_empty(&ubi->prot.aec)) {
  630. spin_unlock(&ubi->wl_lock);
  631. break;
  632. }
  633. pe = rb_entry(rb_first(&ubi->prot.aec),
  634. struct ubi_wl_prot_entry, rb_aec);
  635. if (pe->abs_ec > ubi->abs_ec) {
  636. spin_unlock(&ubi->wl_lock);
  637. break;
  638. }
  639. dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
  640. pe->e->pnum, ubi->abs_ec, pe->abs_ec);
  641. rb_erase(&pe->rb_aec, &ubi->prot.aec);
  642. rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
  643. used_tree_add(ubi, pe->e);
  644. spin_unlock(&ubi->wl_lock);
  645. kfree(pe);
  646. cond_resched();
  647. }
  648. }
  649. /**
  650. * schedule_ubi_work - schedule a work.
  651. * @ubi: UBI device description object
  652. * @wrk: the work to schedule
  653. *
  654. * This function enqueues a work defined by @wrk to the tail of the pending
  655. * works list.
  656. */
  657. static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
  658. {
  659. spin_lock(&ubi->wl_lock);
  660. list_add_tail(&wrk->list, &ubi->works);
  661. ubi_assert(ubi->works_count >= 0);
  662. ubi->works_count += 1;
  663. if (ubi->thread_enabled)
  664. wake_up_process(ubi->bgt_thread);
  665. spin_unlock(&ubi->wl_lock);
  666. }
  667. static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
  668. int cancel);
  669. /**
  670. * schedule_erase - schedule an erase work.
  671. * @ubi: UBI device description object
  672. * @e: the WL entry of the physical eraseblock to erase
  673. * @torture: if the physical eraseblock has to be tortured
  674. *
  675. * This function returns zero in case of success and a %-ENOMEM in case of
  676. * failure.
  677. */
  678. static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
  679. int torture)
  680. {
  681. struct ubi_work *wl_wrk;
  682. dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
  683. e->pnum, e->ec, torture);
  684. wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL);
  685. if (!wl_wrk)
  686. return -ENOMEM;
  687. wl_wrk->func = &erase_worker;
  688. wl_wrk->e = e;
  689. wl_wrk->torture = torture;
  690. schedule_ubi_work(ubi, wl_wrk);
  691. return 0;
  692. }
  693. /**
  694. * wear_leveling_worker - wear-leveling worker function.
  695. * @ubi: UBI device description object
  696. * @wrk: the work object
  697. * @cancel: non-zero if the worker has to free memory and exit
  698. *
  699. * This function copies a more worn out physical eraseblock to a less worn out
  700. * one. Returns zero in case of success and a negative error code in case of
  701. * failure.
  702. */
  703. static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
  704. int cancel)
  705. {
  706. int err, put = 0;
  707. struct ubi_wl_entry *e1, *e2;
  708. struct ubi_vid_hdr *vid_hdr;
  709. kfree(wrk);
  710. if (cancel)
  711. return 0;
  712. vid_hdr = ubi_zalloc_vid_hdr(ubi);
  713. if (!vid_hdr)
  714. return -ENOMEM;
  715. spin_lock(&ubi->wl_lock);
  716. /*
  717. * Only one WL worker at a time is supported at this implementation, so
  718. * make sure a PEB is not being moved already.
  719. */
  720. if (ubi->move_to || tree_empty(&ubi->free) ||
  721. (tree_empty(&ubi->used) && tree_empty(&ubi->scrub))) {
  722. /*
  723. * Only one WL worker at a time is supported at this
  724. * implementation, so if a LEB is already being moved, cancel.
  725. *
  726. * No free physical eraseblocks? Well, we cancel wear-leveling
  727. * then. It will be triggered again when a free physical
  728. * eraseblock appears.
  729. *
  730. * No used physical eraseblocks? They must be temporarily
  731. * protected from being moved. They will be moved to the
  732. * @ubi->used tree later and the wear-leveling will be
  733. * triggered again.
  734. */
  735. dbg_wl("cancel WL, a list is empty: free %d, used %d",
  736. tree_empty(&ubi->free), tree_empty(&ubi->used));
  737. ubi->wl_scheduled = 0;
  738. spin_unlock(&ubi->wl_lock);
  739. ubi_free_vid_hdr(ubi, vid_hdr);
  740. return 0;
  741. }
  742. if (tree_empty(&ubi->scrub)) {
  743. /*
  744. * Now pick the least worn-out used physical eraseblock and a
  745. * highly worn-out free physical eraseblock. If the erase
  746. * counters differ much enough, start wear-leveling.
  747. */
  748. e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
  749. e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
  750. if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
  751. dbg_wl("no WL needed: min used EC %d, max free EC %d",
  752. e1->ec, e2->ec);
  753. ubi->wl_scheduled = 0;
  754. spin_unlock(&ubi->wl_lock);
  755. ubi_free_vid_hdr(ubi, vid_hdr);
  756. return 0;
  757. }
  758. used_tree_del(ubi, e1);
  759. dbg_wl("move PEB %d EC %d to PEB %d EC %d",
  760. e1->pnum, e1->ec, e2->pnum, e2->ec);
  761. } else {
  762. e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
  763. e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
  764. scrub_tree_del(ubi, e1);
  765. dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
  766. }
  767. free_tree_del(ubi, e2);
  768. ubi_assert(!ubi->move_from && !ubi->move_to);
  769. ubi_assert(!ubi->move_to_put && !ubi->move_from_put);
  770. ubi->move_from = e1;
  771. ubi->move_to = e2;
  772. spin_unlock(&ubi->wl_lock);
  773. /*
  774. * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
  775. * We so far do not know which logical eraseblock our physical
  776. * eraseblock (@e1) belongs to. We have to read the volume identifier
  777. * header first.
  778. */
  779. err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
  780. if (err && err != UBI_IO_BITFLIPS) {
  781. if (err == UBI_IO_PEB_FREE) {
  782. /*
  783. * We are trying to move PEB without a VID header. UBI
  784. * always write VID headers shortly after the PEB was
  785. * given, so we have a situation when it did not have
  786. * chance to write it down because it was preempted.
  787. * Just re-schedule the work, so that next time it will
  788. * likely have the VID header in place.
  789. */
  790. dbg_wl("PEB %d has no VID header", e1->pnum);
  791. err = 0;
  792. } else {
  793. ubi_err("error %d while reading VID header from PEB %d",
  794. err, e1->pnum);
  795. if (err > 0)
  796. err = -EIO;
  797. }
  798. goto error;
  799. }
  800. err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
  801. if (err) {
  802. if (err == UBI_IO_BITFLIPS)
  803. err = 0;
  804. goto error;
  805. }
  806. ubi_free_vid_hdr(ubi, vid_hdr);
  807. spin_lock(&ubi->wl_lock);
  808. if (!ubi->move_to_put)
  809. used_tree_add(ubi, e2);
  810. else
  811. put = 1;
  812. ubi->move_from = ubi->move_to = NULL;
  813. ubi->move_from_put = ubi->move_to_put = 0;
  814. ubi->wl_scheduled = 0;
  815. spin_unlock(&ubi->wl_lock);
  816. if (put) {
  817. /*
  818. * Well, the target PEB was put meanwhile, schedule it for
  819. * erasure.
  820. */
  821. dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
  822. err = schedule_erase(ubi, e2, 0);
  823. if (err) {
  824. kmem_cache_free(wl_entries_slab, e2);
  825. ubi_ro_mode(ubi);
  826. }
  827. }
  828. err = schedule_erase(ubi, e1, 0);
  829. if (err) {
  830. kmem_cache_free(wl_entries_slab, e1);
  831. ubi_ro_mode(ubi);
  832. }
  833. dbg_wl("done");
  834. return err;
  835. /*
  836. * Some error occurred. @e1 was not changed, so return it back. @e2
  837. * might be changed, schedule it for erasure.
  838. */
  839. error:
  840. if (err)
  841. dbg_wl("error %d occurred, cancel operation", err);
  842. ubi_assert(err <= 0);
  843. ubi_free_vid_hdr(ubi, vid_hdr);
  844. spin_lock(&ubi->wl_lock);
  845. ubi->wl_scheduled = 0;
  846. if (ubi->move_from_put)
  847. put = 1;
  848. else
  849. used_tree_add(ubi, e1);
  850. ubi->move_from = ubi->move_to = NULL;
  851. ubi->move_from_put = ubi->move_to_put = 0;
  852. spin_unlock(&ubi->wl_lock);
  853. if (put) {
  854. /*
  855. * Well, the target PEB was put meanwhile, schedule it for
  856. * erasure.
  857. */
  858. dbg_wl("PEB %d was put meanwhile, erase", e1->pnum);
  859. err = schedule_erase(ubi, e1, 0);
  860. if (err) {
  861. kmem_cache_free(wl_entries_slab, e1);
  862. ubi_ro_mode(ubi);
  863. }
  864. }
  865. err = schedule_erase(ubi, e2, 0);
  866. if (err) {
  867. kmem_cache_free(wl_entries_slab, e2);
  868. ubi_ro_mode(ubi);
  869. }
  870. yield();
  871. return err;
  872. }
  873. /**
  874. * ensure_wear_leveling - schedule wear-leveling if it is needed.
  875. * @ubi: UBI device description object
  876. *
  877. * This function checks if it is time to start wear-leveling and schedules it
  878. * if yes. This function returns zero in case of success and a negative error
  879. * code in case of failure.
  880. */
  881. static int ensure_wear_leveling(struct ubi_device *ubi)
  882. {
  883. int err = 0;
  884. struct ubi_wl_entry *e1;
  885. struct ubi_wl_entry *e2;
  886. struct ubi_work *wrk;
  887. spin_lock(&ubi->wl_lock);
  888. if (ubi->wl_scheduled)
  889. /* Wear-leveling is already in the work queue */
  890. goto out_unlock;
  891. /*
  892. * If the ubi->scrub tree is not empty, scrubbing is needed, and the
  893. * the WL worker has to be scheduled anyway.
  894. */
  895. if (tree_empty(&ubi->scrub)) {
  896. if (tree_empty(&ubi->used) || tree_empty(&ubi->free))
  897. /* No physical eraseblocks - no deal */
  898. goto out_unlock;
  899. /*
  900. * We schedule wear-leveling only if the difference between the
  901. * lowest erase counter of used physical eraseblocks and a high
  902. * erase counter of free physical eraseblocks is greater then
  903. * %UBI_WL_THRESHOLD.
  904. */
  905. e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
  906. e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
  907. if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
  908. goto out_unlock;
  909. dbg_wl("schedule wear-leveling");
  910. } else
  911. dbg_wl("schedule scrubbing");
  912. ubi->wl_scheduled = 1;
  913. spin_unlock(&ubi->wl_lock);
  914. wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL);
  915. if (!wrk) {
  916. err = -ENOMEM;
  917. goto out_cancel;
  918. }
  919. wrk->func = &wear_leveling_worker;
  920. schedule_ubi_work(ubi, wrk);
  921. return err;
  922. out_cancel:
  923. spin_lock(&ubi->wl_lock);
  924. ubi->wl_scheduled = 0;
  925. out_unlock:
  926. spin_unlock(&ubi->wl_lock);
  927. return err;
  928. }
  929. /**
  930. * erase_worker - physical eraseblock erase worker function.
  931. * @ubi: UBI device description object
  932. * @wl_wrk: the work object
  933. * @cancel: non-zero if the worker has to free memory and exit
  934. *
  935. * This function erases a physical eraseblock and perform torture testing if
  936. * needed. It also takes care about marking the physical eraseblock bad if
  937. * needed. Returns zero in case of success and a negative error code in case of
  938. * failure.
  939. */
  940. static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
  941. int cancel)
  942. {
  943. struct ubi_wl_entry *e = wl_wrk->e;
  944. int pnum = e->pnum, err, need;
  945. if (cancel) {
  946. dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
  947. kfree(wl_wrk);
  948. kmem_cache_free(wl_entries_slab, e);
  949. return 0;
  950. }
  951. dbg_wl("erase PEB %d EC %d", pnum, e->ec);
  952. err = sync_erase(ubi, e, wl_wrk->torture);
  953. if (!err) {
  954. /* Fine, we've erased it successfully */
  955. kfree(wl_wrk);
  956. spin_lock(&ubi->wl_lock);
  957. ubi->abs_ec += 1;
  958. free_tree_add(ubi, e);
  959. spin_unlock(&ubi->wl_lock);
  960. /*
  961. * One more erase operation has happened, take care about protected
  962. * physical eraseblocks.
  963. */
  964. check_protection_over(ubi);
  965. /* And take care about wear-leveling */
  966. err = ensure_wear_leveling(ubi);
  967. return err;
  968. }
  969. kfree(wl_wrk);
  970. kmem_cache_free(wl_entries_slab, e);
  971. if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
  972. err == -EBUSY) {
  973. int err1;
  974. /* Re-schedule the LEB for erasure */
  975. err1 = schedule_erase(ubi, e, 0);
  976. if (err1) {
  977. err = err1;
  978. goto out_ro;
  979. }
  980. return err;
  981. } else if (err != -EIO) {
  982. /*
  983. * If this is not %-EIO, we have no idea what to do. Scheduling
  984. * this physical eraseblock for erasure again would cause
  985. * errors again and again. Well, lets switch to RO mode.
  986. */
  987. goto out_ro;
  988. }
  989. /* It is %-EIO, the PEB went bad */
  990. if (!ubi->bad_allowed) {
  991. ubi_err("bad physical eraseblock %d detected", pnum);
  992. goto out_ro;
  993. }
  994. spin_lock(&ubi->volumes_lock);
  995. need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
  996. if (need > 0) {
  997. need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
  998. ubi->avail_pebs -= need;
  999. ubi->rsvd_pebs += need;
  1000. ubi->beb_rsvd_pebs += need;
  1001. if (need > 0)
  1002. ubi_msg("reserve more %d PEBs", need);
  1003. }
  1004. if (ubi->beb_rsvd_pebs == 0) {
  1005. spin_unlock(&ubi->volumes_lock);
  1006. ubi_err("no reserved physical eraseblocks");
  1007. goto out_ro;
  1008. }
  1009. spin_unlock(&ubi->volumes_lock);
  1010. ubi_msg("mark PEB %d as bad", pnum);
  1011. err = ubi_io_mark_bad(ubi, pnum);
  1012. if (err)
  1013. goto out_ro;
  1014. spin_lock(&ubi->volumes_lock);
  1015. ubi->beb_rsvd_pebs -= 1;
  1016. ubi->bad_peb_count += 1;
  1017. ubi->good_peb_count -= 1;
  1018. ubi_calculate_reserved(ubi);
  1019. if (ubi->beb_rsvd_pebs == 0)
  1020. ubi_warn("last PEB from the reserved pool was used");
  1021. spin_unlock(&ubi->volumes_lock);
  1022. return err;
  1023. out_ro:
  1024. ubi_ro_mode(ubi);
  1025. return err;
  1026. }
  1027. /**
  1028. * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling
  1029. * unit.
  1030. * @ubi: UBI device description object
  1031. * @pnum: physical eraseblock to return
  1032. * @torture: if this physical eraseblock has to be tortured
  1033. *
  1034. * This function is called to return physical eraseblock @pnum to the pool of
  1035. * free physical eraseblocks. The @torture flag has to be set if an I/O error
  1036. * occurred to this @pnum and it has to be tested. This function returns zero
  1037. * in case of success and a negative error code in case of failure.
  1038. */
  1039. int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
  1040. {
  1041. int err;
  1042. struct ubi_wl_entry *e;
  1043. dbg_wl("PEB %d", pnum);
  1044. ubi_assert(pnum >= 0);
  1045. ubi_assert(pnum < ubi->peb_count);
  1046. spin_lock(&ubi->wl_lock);
  1047. e = ubi->lookuptbl[pnum];
  1048. if (e == ubi->move_from) {
  1049. /*
  1050. * User is putting the physical eraseblock which was selected to
  1051. * be moved. It will be scheduled for erasure in the
  1052. * wear-leveling worker.
  1053. */
  1054. dbg_wl("PEB %d is being moved", pnum);
  1055. ubi_assert(!ubi->move_from_put);
  1056. ubi->move_from_put = 1;
  1057. spin_unlock(&ubi->wl_lock);
  1058. return 0;
  1059. } else if (e == ubi->move_to) {
  1060. /*
  1061. * User is putting the physical eraseblock which was selected
  1062. * as the target the data is moved to. It may happen if the EBA
  1063. * unit already re-mapped the LEB but the WL unit did has not
  1064. * put the PEB to the "used" tree.
  1065. */
  1066. dbg_wl("PEB %d is the target of data moving", pnum);
  1067. ubi_assert(!ubi->move_to_put);
  1068. ubi->move_to_put = 1;
  1069. spin_unlock(&ubi->wl_lock);
  1070. return 0;
  1071. } else {
  1072. if (in_wl_tree(e, &ubi->used))
  1073. used_tree_del(ubi, e);
  1074. else if (in_wl_tree(e, &ubi->scrub))
  1075. scrub_tree_del(ubi, e);
  1076. else
  1077. prot_tree_del(ubi, e->pnum);
  1078. }
  1079. spin_unlock(&ubi->wl_lock);
  1080. err = schedule_erase(ubi, e, torture);
  1081. if (err) {
  1082. spin_lock(&ubi->wl_lock);
  1083. used_tree_add(ubi, e);
  1084. spin_unlock(&ubi->wl_lock);
  1085. }
  1086. return err;
  1087. }
  1088. /**
  1089. * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
  1090. * @ubi: UBI device description object
  1091. * @pnum: the physical eraseblock to schedule
  1092. *
  1093. * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
  1094. * needs scrubbing. This function schedules a physical eraseblock for
  1095. * scrubbing which is done in background. This function returns zero in case of
  1096. * success and a negative error code in case of failure.
  1097. */
  1098. int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
  1099. {
  1100. struct ubi_wl_entry *e;
  1101. ubi_msg("schedule PEB %d for scrubbing", pnum);
  1102. retry:
  1103. spin_lock(&ubi->wl_lock);
  1104. e = ubi->lookuptbl[pnum];
  1105. if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
  1106. spin_unlock(&ubi->wl_lock);
  1107. return 0;
  1108. }
  1109. if (e == ubi->move_to) {
  1110. /*
  1111. * This physical eraseblock was used to move data to. The data
  1112. * was moved but the PEB was not yet inserted to the proper
  1113. * tree. We should just wait a little and let the WL worker
  1114. * proceed.
  1115. */
  1116. spin_unlock(&ubi->wl_lock);
  1117. dbg_wl("the PEB %d is not in proper tree, retry", pnum);
  1118. yield();
  1119. goto retry;
  1120. }
  1121. if (in_wl_tree(e, &ubi->used))
  1122. used_tree_del(ubi, e);
  1123. else
  1124. prot_tree_del(ubi, pnum);
  1125. scrub_tree_add(ubi, e);
  1126. spin_unlock(&ubi->wl_lock);
  1127. /*
  1128. * Technically scrubbing is the same as wear-leveling, so it is done
  1129. * by the WL worker.
  1130. */
  1131. return ensure_wear_leveling(ubi);
  1132. }
  1133. /**
  1134. * ubi_wl_flush - flush all pending works.
  1135. * @ubi: UBI device description object
  1136. *
  1137. * This function returns zero in case of success and a negative error code in
  1138. * case of failure.
  1139. */
  1140. int ubi_wl_flush(struct ubi_device *ubi)
  1141. {
  1142. int err, pending_count;
  1143. pending_count = ubi->works_count;
  1144. dbg_wl("flush (%d pending works)", pending_count);
  1145. /*
  1146. * Erase while the pending works queue is not empty, but not more then
  1147. * the number of currently pending works.
  1148. */
  1149. while (pending_count-- > 0) {
  1150. err = do_work(ubi);
  1151. if (err)
  1152. return err;
  1153. }
  1154. return 0;
  1155. }
  1156. /**
  1157. * tree_destroy - destroy an RB-tree.
  1158. * @root: the root of the tree to destroy
  1159. */
  1160. static void tree_destroy(struct rb_root *root)
  1161. {
  1162. struct rb_node *rb;
  1163. struct ubi_wl_entry *e;
  1164. rb = root->rb_node;
  1165. while (rb) {
  1166. if (rb->rb_left)
  1167. rb = rb->rb_left;
  1168. else if (rb->rb_right)
  1169. rb = rb->rb_right;
  1170. else {
  1171. e = rb_entry(rb, struct ubi_wl_entry, rb);
  1172. rb = rb_parent(rb);
  1173. if (rb) {
  1174. if (rb->rb_left == &e->rb)
  1175. rb->rb_left = NULL;
  1176. else
  1177. rb->rb_right = NULL;
  1178. }
  1179. kmem_cache_free(wl_entries_slab, e);
  1180. }
  1181. }
  1182. }
  1183. /**
  1184. * ubi_thread - UBI background thread.
  1185. * @u: the UBI device description object pointer
  1186. */
  1187. static int ubi_thread(void *u)
  1188. {
  1189. int failures = 0;
  1190. struct ubi_device *ubi = u;
  1191. ubi_msg("background thread \"%s\" started, PID %d",
  1192. ubi->bgt_name, current->pid);
  1193. set_freezable();
  1194. for (;;) {
  1195. int err;
  1196. if (kthread_should_stop())
  1197. goto out;
  1198. if (try_to_freeze())
  1199. continue;
  1200. spin_lock(&ubi->wl_lock);
  1201. if (list_empty(&ubi->works) || ubi->ro_mode ||
  1202. !ubi->thread_enabled) {
  1203. set_current_state(TASK_INTERRUPTIBLE);
  1204. spin_unlock(&ubi->wl_lock);
  1205. schedule();
  1206. continue;
  1207. }
  1208. spin_unlock(&ubi->wl_lock);
  1209. err = do_work(ubi);
  1210. if (err) {
  1211. ubi_err("%s: work failed with error code %d",
  1212. ubi->bgt_name, err);
  1213. if (failures++ > WL_MAX_FAILURES) {
  1214. /*
  1215. * Too many failures, disable the thread and
  1216. * switch to read-only mode.
  1217. */
  1218. ubi_msg("%s: %d consecutive failures",
  1219. ubi->bgt_name, WL_MAX_FAILURES);
  1220. ubi_ro_mode(ubi);
  1221. break;
  1222. }
  1223. } else
  1224. failures = 0;
  1225. cond_resched();
  1226. }
  1227. out:
  1228. dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
  1229. return 0;
  1230. }
  1231. /**
  1232. * cancel_pending - cancel all pending works.
  1233. * @ubi: UBI device description object
  1234. */
  1235. static void cancel_pending(struct ubi_device *ubi)
  1236. {
  1237. while (!list_empty(&ubi->works)) {
  1238. struct ubi_work *wrk;
  1239. wrk = list_entry(ubi->works.next, struct ubi_work, list);
  1240. list_del(&wrk->list);
  1241. wrk->func(ubi, wrk, 1);
  1242. ubi->works_count -= 1;
  1243. ubi_assert(ubi->works_count >= 0);
  1244. }
  1245. }
  1246. /**
  1247. * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
  1248. * information.
  1249. * @ubi: UBI device description object
  1250. * @si: scanning information
  1251. *
  1252. * This function returns zero in case of success, and a negative error code in
  1253. * case of failure.
  1254. */
  1255. int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
  1256. {
  1257. int err;
  1258. struct rb_node *rb1, *rb2;
  1259. struct ubi_scan_volume *sv;
  1260. struct ubi_scan_leb *seb, *tmp;
  1261. struct ubi_wl_entry *e;
  1262. ubi->used = ubi->free = ubi->scrub = RB_ROOT;
  1263. ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
  1264. spin_lock_init(&ubi->wl_lock);
  1265. ubi->max_ec = si->max_ec;
  1266. INIT_LIST_HEAD(&ubi->works);
  1267. sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
  1268. ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
  1269. if (IS_ERR(ubi->bgt_thread)) {
  1270. err = PTR_ERR(ubi->bgt_thread);
  1271. ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
  1272. err);
  1273. return err;
  1274. }
  1275. if (ubi_devices_cnt == 0) {
  1276. wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab",
  1277. sizeof(struct ubi_wl_entry),
  1278. 0, 0, NULL);
  1279. if (!wl_entries_slab)
  1280. return -ENOMEM;
  1281. }
  1282. err = -ENOMEM;
  1283. ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
  1284. if (!ubi->lookuptbl)
  1285. goto out_free;
  1286. list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
  1287. cond_resched();
  1288. e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
  1289. if (!e)
  1290. goto out_free;
  1291. e->pnum = seb->pnum;
  1292. e->ec = seb->ec;
  1293. ubi->lookuptbl[e->pnum] = e;
  1294. if (schedule_erase(ubi, e, 0)) {
  1295. kmem_cache_free(wl_entries_slab, e);
  1296. goto out_free;
  1297. }
  1298. }
  1299. list_for_each_entry(seb, &si->free, u.list) {
  1300. cond_resched();
  1301. e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
  1302. if (!e)
  1303. goto out_free;
  1304. e->pnum = seb->pnum;
  1305. e->ec = seb->ec;
  1306. ubi_assert(e->ec >= 0);
  1307. free_tree_add(ubi, e);
  1308. ubi->lookuptbl[e->pnum] = e;
  1309. }
  1310. list_for_each_entry(seb, &si->corr, u.list) {
  1311. cond_resched();
  1312. e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
  1313. if (!e)
  1314. goto out_free;
  1315. e->pnum = seb->pnum;
  1316. e->ec = seb->ec;
  1317. ubi->lookuptbl[e->pnum] = e;
  1318. if (schedule_erase(ubi, e, 0)) {
  1319. kmem_cache_free(wl_entries_slab, e);
  1320. goto out_free;
  1321. }
  1322. }
  1323. ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
  1324. ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
  1325. cond_resched();
  1326. e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
  1327. if (!e)
  1328. goto out_free;
  1329. e->pnum = seb->pnum;
  1330. e->ec = seb->ec;
  1331. ubi->lookuptbl[e->pnum] = e;
  1332. if (!seb->scrub) {
  1333. dbg_wl("add PEB %d EC %d to the used tree",
  1334. e->pnum, e->ec);
  1335. used_tree_add(ubi, e);
  1336. } else {
  1337. dbg_wl("add PEB %d EC %d to the scrub tree",
  1338. e->pnum, e->ec);
  1339. scrub_tree_add(ubi, e);
  1340. }
  1341. }
  1342. }
  1343. if (WL_RESERVED_PEBS > ubi->avail_pebs) {
  1344. ubi_err("no enough physical eraseblocks (%d, need %d)",
  1345. ubi->avail_pebs, WL_RESERVED_PEBS);
  1346. goto out_free;
  1347. }
  1348. ubi->avail_pebs -= WL_RESERVED_PEBS;
  1349. ubi->rsvd_pebs += WL_RESERVED_PEBS;
  1350. /* Schedule wear-leveling if needed */
  1351. err = ensure_wear_leveling(ubi);
  1352. if (err)
  1353. goto out_free;
  1354. return 0;
  1355. out_free:
  1356. cancel_pending(ubi);
  1357. tree_destroy(&ubi->used);
  1358. tree_destroy(&ubi->free);
  1359. tree_destroy(&ubi->scrub);
  1360. kfree(ubi->lookuptbl);
  1361. if (ubi_devices_cnt == 0)
  1362. kmem_cache_destroy(wl_entries_slab);
  1363. return err;
  1364. }
  1365. /**
  1366. * protection_trees_destroy - destroy the protection RB-trees.
  1367. * @ubi: UBI device description object
  1368. */
  1369. static void protection_trees_destroy(struct ubi_device *ubi)
  1370. {
  1371. struct rb_node *rb;
  1372. struct ubi_wl_prot_entry *pe;
  1373. rb = ubi->prot.aec.rb_node;
  1374. while (rb) {
  1375. if (rb->rb_left)
  1376. rb = rb->rb_left;
  1377. else if (rb->rb_right)
  1378. rb = rb->rb_right;
  1379. else {
  1380. pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
  1381. rb = rb_parent(rb);
  1382. if (rb) {
  1383. if (rb->rb_left == &pe->rb_aec)
  1384. rb->rb_left = NULL;
  1385. else
  1386. rb->rb_right = NULL;
  1387. }
  1388. kmem_cache_free(wl_entries_slab, pe->e);
  1389. kfree(pe);
  1390. }
  1391. }
  1392. }
  1393. /**
  1394. * ubi_wl_close - close the wear-leveling unit.
  1395. * @ubi: UBI device description object
  1396. */
  1397. void ubi_wl_close(struct ubi_device *ubi)
  1398. {
  1399. dbg_wl("disable \"%s\"", ubi->bgt_name);
  1400. if (ubi->bgt_thread)
  1401. kthread_stop(ubi->bgt_thread);
  1402. dbg_wl("close the UBI wear-leveling unit");
  1403. cancel_pending(ubi);
  1404. protection_trees_destroy(ubi);
  1405. tree_destroy(&ubi->used);
  1406. tree_destroy(&ubi->free);
  1407. tree_destroy(&ubi->scrub);
  1408. kfree(ubi->lookuptbl);
  1409. if (ubi_devices_cnt == 1)
  1410. kmem_cache_destroy(wl_entries_slab);
  1411. }
  1412. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  1413. /**
  1414. * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
  1415. * is correct.
  1416. * @ubi: UBI device description object
  1417. * @pnum: the physical eraseblock number to check
  1418. * @ec: the erase counter to check
  1419. *
  1420. * This function returns zero if the erase counter of physical eraseblock @pnum
  1421. * is equivalent to @ec, %1 if not, and a negative error code if an error
  1422. * occurred.
  1423. */
  1424. static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec)
  1425. {
  1426. int err;
  1427. long long read_ec;
  1428. struct ubi_ec_hdr *ec_hdr;
  1429. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
  1430. if (!ec_hdr)
  1431. return -ENOMEM;
  1432. err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
  1433. if (err && err != UBI_IO_BITFLIPS) {
  1434. /* The header does not have to exist */
  1435. err = 0;
  1436. goto out_free;
  1437. }
  1438. read_ec = be64_to_cpu(ec_hdr->ec);
  1439. if (ec != read_ec) {
  1440. ubi_err("paranoid check failed for PEB %d", pnum);
  1441. ubi_err("read EC is %lld, should be %d", read_ec, ec);
  1442. ubi_dbg_dump_stack();
  1443. err = 1;
  1444. } else
  1445. err = 0;
  1446. out_free:
  1447. kfree(ec_hdr);
  1448. return err;
  1449. }
  1450. /**
  1451. * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
  1452. * in a WL RB-tree.
  1453. * @e: the wear-leveling entry to check
  1454. * @root: the root of the tree
  1455. *
  1456. * This function returns zero if @e is in the @root RB-tree and %1 if it
  1457. * is not.
  1458. */
  1459. static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
  1460. struct rb_root *root)
  1461. {
  1462. if (in_wl_tree(e, root))
  1463. return 0;
  1464. ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
  1465. e->pnum, e->ec, root);
  1466. ubi_dbg_dump_stack();
  1467. return 1;
  1468. }
  1469. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */