smp.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523
  1. /*
  2. * Intel SMP support routines.
  3. *
  4. * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
  5. * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
  6. * (c) 2002,2003 Andi Kleen, SuSE Labs.
  7. *
  8. * This code is released under the GNU General Public License version 2 or
  9. * later.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/mm.h>
  13. #include <linux/delay.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/smp.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/mc146818rtc.h>
  18. #include <linux/interrupt.h>
  19. #include <asm/mtrr.h>
  20. #include <asm/pgalloc.h>
  21. #include <asm/tlbflush.h>
  22. #include <asm/mach_apic.h>
  23. #include <asm/mmu_context.h>
  24. #include <asm/proto.h>
  25. #include <asm/apicdef.h>
  26. #include <asm/idle.h>
  27. /*
  28. * Smarter SMP flushing macros.
  29. * c/o Linus Torvalds.
  30. *
  31. * These mean you can really definitely utterly forget about
  32. * writing to user space from interrupts. (Its not allowed anyway).
  33. *
  34. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  35. *
  36. * More scalable flush, from Andi Kleen
  37. *
  38. * To avoid global state use 8 different call vectors.
  39. * Each CPU uses a specific vector to trigger flushes on other
  40. * CPUs. Depending on the received vector the target CPUs look into
  41. * the right per cpu variable for the flush data.
  42. *
  43. * With more than 8 CPUs they are hashed to the 8 available
  44. * vectors. The limited global vector space forces us to this right now.
  45. * In future when interrupts are split into per CPU domains this could be
  46. * fixed, at the cost of triggering multiple IPIs in some cases.
  47. */
  48. union smp_flush_state {
  49. struct {
  50. cpumask_t flush_cpumask;
  51. struct mm_struct *flush_mm;
  52. unsigned long flush_va;
  53. #define FLUSH_ALL -1ULL
  54. spinlock_t tlbstate_lock;
  55. };
  56. char pad[SMP_CACHE_BYTES];
  57. } ____cacheline_aligned;
  58. /* State is put into the per CPU data section, but padded
  59. to a full cache line because other CPUs can access it and we don't
  60. want false sharing in the per cpu data segment. */
  61. static DEFINE_PER_CPU(union smp_flush_state, flush_state);
  62. /*
  63. * We cannot call mmdrop() because we are in interrupt context,
  64. * instead update mm->cpu_vm_mask.
  65. */
  66. static inline void leave_mm(int cpu)
  67. {
  68. if (read_pda(mmu_state) == TLBSTATE_OK)
  69. BUG();
  70. cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
  71. load_cr3(swapper_pg_dir);
  72. }
  73. /*
  74. *
  75. * The flush IPI assumes that a thread switch happens in this order:
  76. * [cpu0: the cpu that switches]
  77. * 1) switch_mm() either 1a) or 1b)
  78. * 1a) thread switch to a different mm
  79. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  80. * Stop ipi delivery for the old mm. This is not synchronized with
  81. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  82. * for the wrong mm, and in the worst case we perform a superfluous
  83. * tlb flush.
  84. * 1a2) set cpu mmu_state to TLBSTATE_OK
  85. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  86. * was in lazy tlb mode.
  87. * 1a3) update cpu active_mm
  88. * Now cpu0 accepts tlb flushes for the new mm.
  89. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  90. * Now the other cpus will send tlb flush ipis.
  91. * 1a4) change cr3.
  92. * 1b) thread switch without mm change
  93. * cpu active_mm is correct, cpu0 already handles
  94. * flush ipis.
  95. * 1b1) set cpu mmu_state to TLBSTATE_OK
  96. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  97. * Atomically set the bit [other cpus will start sending flush ipis],
  98. * and test the bit.
  99. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  100. * 2) switch %%esp, ie current
  101. *
  102. * The interrupt must handle 2 special cases:
  103. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  104. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  105. * runs in kernel space, the cpu could load tlb entries for user space
  106. * pages.
  107. *
  108. * The good news is that cpu mmu_state is local to each cpu, no
  109. * write/read ordering problems.
  110. */
  111. /*
  112. * TLB flush IPI:
  113. *
  114. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  115. * 2) Leave the mm if we are in the lazy tlb mode.
  116. *
  117. * Interrupts are disabled.
  118. */
  119. asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
  120. {
  121. int cpu;
  122. int sender;
  123. union smp_flush_state *f;
  124. cpu = smp_processor_id();
  125. /*
  126. * orig_rax contains the negated interrupt vector.
  127. * Use that to determine where the sender put the data.
  128. */
  129. sender = ~regs->orig_rax - INVALIDATE_TLB_VECTOR_START;
  130. f = &per_cpu(flush_state, sender);
  131. if (!cpu_isset(cpu, f->flush_cpumask))
  132. goto out;
  133. /*
  134. * This was a BUG() but until someone can quote me the
  135. * line from the intel manual that guarantees an IPI to
  136. * multiple CPUs is retried _only_ on the erroring CPUs
  137. * its staying as a return
  138. *
  139. * BUG();
  140. */
  141. if (f->flush_mm == read_pda(active_mm)) {
  142. if (read_pda(mmu_state) == TLBSTATE_OK) {
  143. if (f->flush_va == FLUSH_ALL)
  144. local_flush_tlb();
  145. else
  146. __flush_tlb_one(f->flush_va);
  147. } else
  148. leave_mm(cpu);
  149. }
  150. out:
  151. ack_APIC_irq();
  152. cpu_clear(cpu, f->flush_cpumask);
  153. }
  154. static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
  155. unsigned long va)
  156. {
  157. int sender;
  158. union smp_flush_state *f;
  159. /* Caller has disabled preemption */
  160. sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
  161. f = &per_cpu(flush_state, sender);
  162. /* Could avoid this lock when
  163. num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
  164. probably not worth checking this for a cache-hot lock. */
  165. spin_lock(&f->tlbstate_lock);
  166. f->flush_mm = mm;
  167. f->flush_va = va;
  168. cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
  169. /*
  170. * We have to send the IPI only to
  171. * CPUs affected.
  172. */
  173. send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
  174. while (!cpus_empty(f->flush_cpumask))
  175. cpu_relax();
  176. f->flush_mm = NULL;
  177. f->flush_va = 0;
  178. spin_unlock(&f->tlbstate_lock);
  179. }
  180. int __cpuinit init_smp_flush(void)
  181. {
  182. int i;
  183. for_each_cpu_mask(i, cpu_possible_map) {
  184. spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
  185. }
  186. return 0;
  187. }
  188. core_initcall(init_smp_flush);
  189. void flush_tlb_current_task(void)
  190. {
  191. struct mm_struct *mm = current->mm;
  192. cpumask_t cpu_mask;
  193. preempt_disable();
  194. cpu_mask = mm->cpu_vm_mask;
  195. cpu_clear(smp_processor_id(), cpu_mask);
  196. local_flush_tlb();
  197. if (!cpus_empty(cpu_mask))
  198. flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
  199. preempt_enable();
  200. }
  201. EXPORT_SYMBOL(flush_tlb_current_task);
  202. void flush_tlb_mm (struct mm_struct * mm)
  203. {
  204. cpumask_t cpu_mask;
  205. preempt_disable();
  206. cpu_mask = mm->cpu_vm_mask;
  207. cpu_clear(smp_processor_id(), cpu_mask);
  208. if (current->active_mm == mm) {
  209. if (current->mm)
  210. local_flush_tlb();
  211. else
  212. leave_mm(smp_processor_id());
  213. }
  214. if (!cpus_empty(cpu_mask))
  215. flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
  216. check_pgt_cache();
  217. preempt_enable();
  218. }
  219. EXPORT_SYMBOL(flush_tlb_mm);
  220. void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
  221. {
  222. struct mm_struct *mm = vma->vm_mm;
  223. cpumask_t cpu_mask;
  224. preempt_disable();
  225. cpu_mask = mm->cpu_vm_mask;
  226. cpu_clear(smp_processor_id(), cpu_mask);
  227. if (current->active_mm == mm) {
  228. if(current->mm)
  229. __flush_tlb_one(va);
  230. else
  231. leave_mm(smp_processor_id());
  232. }
  233. if (!cpus_empty(cpu_mask))
  234. flush_tlb_others(cpu_mask, mm, va);
  235. preempt_enable();
  236. }
  237. EXPORT_SYMBOL(flush_tlb_page);
  238. static void do_flush_tlb_all(void* info)
  239. {
  240. unsigned long cpu = smp_processor_id();
  241. __flush_tlb_all();
  242. if (read_pda(mmu_state) == TLBSTATE_LAZY)
  243. leave_mm(cpu);
  244. }
  245. void flush_tlb_all(void)
  246. {
  247. on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
  248. }
  249. /*
  250. * this function sends a 'reschedule' IPI to another CPU.
  251. * it goes straight through and wastes no time serializing
  252. * anything. Worst case is that we lose a reschedule ...
  253. */
  254. void smp_send_reschedule(int cpu)
  255. {
  256. send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
  257. }
  258. /*
  259. * Structure and data for smp_call_function(). This is designed to minimise
  260. * static memory requirements. It also looks cleaner.
  261. */
  262. static DEFINE_SPINLOCK(call_lock);
  263. struct call_data_struct {
  264. void (*func) (void *info);
  265. void *info;
  266. atomic_t started;
  267. atomic_t finished;
  268. int wait;
  269. };
  270. static struct call_data_struct * call_data;
  271. void lock_ipi_call_lock(void)
  272. {
  273. spin_lock_irq(&call_lock);
  274. }
  275. void unlock_ipi_call_lock(void)
  276. {
  277. spin_unlock_irq(&call_lock);
  278. }
  279. /*
  280. * this function sends a 'generic call function' IPI to one other CPU
  281. * in the system.
  282. *
  283. * cpu is a standard Linux logical CPU number.
  284. */
  285. static void
  286. __smp_call_function_single(int cpu, void (*func) (void *info), void *info,
  287. int nonatomic, int wait)
  288. {
  289. struct call_data_struct data;
  290. int cpus = 1;
  291. data.func = func;
  292. data.info = info;
  293. atomic_set(&data.started, 0);
  294. data.wait = wait;
  295. if (wait)
  296. atomic_set(&data.finished, 0);
  297. call_data = &data;
  298. wmb();
  299. /* Send a message to all other CPUs and wait for them to respond */
  300. send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
  301. /* Wait for response */
  302. while (atomic_read(&data.started) != cpus)
  303. cpu_relax();
  304. if (!wait)
  305. return;
  306. while (atomic_read(&data.finished) != cpus)
  307. cpu_relax();
  308. }
  309. /*
  310. * smp_call_function_single - Run a function on a specific CPU
  311. * @func: The function to run. This must be fast and non-blocking.
  312. * @info: An arbitrary pointer to pass to the function.
  313. * @nonatomic: Currently unused.
  314. * @wait: If true, wait until function has completed on other CPUs.
  315. *
  316. * Retrurns 0 on success, else a negative status code.
  317. *
  318. * Does not return until the remote CPU is nearly ready to execute <func>
  319. * or is or has executed.
  320. */
  321. int smp_call_function_single (int cpu, void (*func) (void *info), void *info,
  322. int nonatomic, int wait)
  323. {
  324. /* prevent preemption and reschedule on another processor */
  325. int me = get_cpu();
  326. /* Can deadlock when called with interrupts disabled */
  327. WARN_ON(irqs_disabled());
  328. if (cpu == me) {
  329. local_irq_disable();
  330. func(info);
  331. local_irq_enable();
  332. put_cpu();
  333. return 0;
  334. }
  335. spin_lock(&call_lock);
  336. __smp_call_function_single(cpu, func, info, nonatomic, wait);
  337. spin_unlock(&call_lock);
  338. put_cpu();
  339. return 0;
  340. }
  341. EXPORT_SYMBOL(smp_call_function_single);
  342. /*
  343. * this function sends a 'generic call function' IPI to all other CPUs
  344. * in the system.
  345. */
  346. static void __smp_call_function (void (*func) (void *info), void *info,
  347. int nonatomic, int wait)
  348. {
  349. struct call_data_struct data;
  350. int cpus = num_online_cpus()-1;
  351. if (!cpus)
  352. return;
  353. data.func = func;
  354. data.info = info;
  355. atomic_set(&data.started, 0);
  356. data.wait = wait;
  357. if (wait)
  358. atomic_set(&data.finished, 0);
  359. call_data = &data;
  360. wmb();
  361. /* Send a message to all other CPUs and wait for them to respond */
  362. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  363. /* Wait for response */
  364. while (atomic_read(&data.started) != cpus)
  365. cpu_relax();
  366. if (!wait)
  367. return;
  368. while (atomic_read(&data.finished) != cpus)
  369. cpu_relax();
  370. }
  371. /*
  372. * smp_call_function - run a function on all other CPUs.
  373. * @func: The function to run. This must be fast and non-blocking.
  374. * @info: An arbitrary pointer to pass to the function.
  375. * @nonatomic: currently unused.
  376. * @wait: If true, wait (atomically) until function has completed on other
  377. * CPUs.
  378. *
  379. * Returns 0 on success, else a negative status code. Does not return until
  380. * remote CPUs are nearly ready to execute func or are or have executed.
  381. *
  382. * You must not call this function with disabled interrupts or from a
  383. * hardware interrupt handler or from a bottom half handler.
  384. * Actually there are a few legal cases, like panic.
  385. */
  386. int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
  387. int wait)
  388. {
  389. spin_lock(&call_lock);
  390. __smp_call_function(func,info,nonatomic,wait);
  391. spin_unlock(&call_lock);
  392. return 0;
  393. }
  394. EXPORT_SYMBOL(smp_call_function);
  395. static void stop_this_cpu(void *dummy)
  396. {
  397. local_irq_disable();
  398. /*
  399. * Remove this CPU:
  400. */
  401. cpu_clear(smp_processor_id(), cpu_online_map);
  402. disable_local_APIC();
  403. for (;;)
  404. halt();
  405. }
  406. void smp_send_stop(void)
  407. {
  408. int nolock;
  409. unsigned long flags;
  410. if (reboot_force)
  411. return;
  412. /* Don't deadlock on the call lock in panic */
  413. nolock = !spin_trylock(&call_lock);
  414. local_irq_save(flags);
  415. __smp_call_function(stop_this_cpu, NULL, 0, 0);
  416. if (!nolock)
  417. spin_unlock(&call_lock);
  418. disable_local_APIC();
  419. local_irq_restore(flags);
  420. }
  421. /*
  422. * Reschedule call back. Nothing to do,
  423. * all the work is done automatically when
  424. * we return from the interrupt.
  425. */
  426. asmlinkage void smp_reschedule_interrupt(void)
  427. {
  428. ack_APIC_irq();
  429. }
  430. asmlinkage void smp_call_function_interrupt(void)
  431. {
  432. void (*func) (void *info) = call_data->func;
  433. void *info = call_data->info;
  434. int wait = call_data->wait;
  435. ack_APIC_irq();
  436. /*
  437. * Notify initiating CPU that I've grabbed the data and am
  438. * about to execute the function
  439. */
  440. mb();
  441. atomic_inc(&call_data->started);
  442. /*
  443. * At this point the info structure may be out of scope unless wait==1
  444. */
  445. exit_idle();
  446. irq_enter();
  447. (*func)(info);
  448. irq_exit();
  449. if (wait) {
  450. mb();
  451. atomic_inc(&call_data->finished);
  452. }
  453. }