setup.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. * Copyright (C) 1995 Waldorf Electronics
  8. * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
  9. * Copyright (C) 1996 Stoned Elipot
  10. * Copyright (C) 1999 Silicon Graphics, Inc.
  11. * Copyright (C) 2000 2001, 2002 Maciej W. Rozycki
  12. */
  13. #include <linux/init.h>
  14. #include <linux/ioport.h>
  15. #include <linux/module.h>
  16. #include <linux/screen_info.h>
  17. #include <linux/bootmem.h>
  18. #include <linux/initrd.h>
  19. #include <linux/root_dev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/console.h>
  22. #include <linux/pfn.h>
  23. #include <linux/debugfs.h>
  24. #include <asm/addrspace.h>
  25. #include <asm/bootinfo.h>
  26. #include <asm/cache.h>
  27. #include <asm/cpu.h>
  28. #include <asm/sections.h>
  29. #include <asm/setup.h>
  30. #include <asm/system.h>
  31. struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  32. EXPORT_SYMBOL(cpu_data);
  33. #ifdef CONFIG_VT
  34. struct screen_info screen_info;
  35. #endif
  36. /*
  37. * Despite it's name this variable is even if we don't have PCI
  38. */
  39. unsigned int PCI_DMA_BUS_IS_PHYS;
  40. EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
  41. /*
  42. * Setup information
  43. *
  44. * These are initialized so they are in the .data section
  45. */
  46. unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  47. unsigned long mips_machgroup __read_mostly = MACH_GROUP_UNKNOWN;
  48. EXPORT_SYMBOL(mips_machtype);
  49. EXPORT_SYMBOL(mips_machgroup);
  50. struct boot_mem_map boot_mem_map;
  51. static char command_line[CL_SIZE];
  52. char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
  53. /*
  54. * mips_io_port_base is the begin of the address space to which x86 style
  55. * I/O ports are mapped.
  56. */
  57. const unsigned long mips_io_port_base __read_mostly = -1;
  58. EXPORT_SYMBOL(mips_io_port_base);
  59. /*
  60. * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
  61. * for the processor.
  62. */
  63. unsigned long isa_slot_offset;
  64. EXPORT_SYMBOL(isa_slot_offset);
  65. static struct resource code_resource = { .name = "Kernel code", };
  66. static struct resource data_resource = { .name = "Kernel data", };
  67. void __init add_memory_region(phys_t start, phys_t size, long type)
  68. {
  69. int x = boot_mem_map.nr_map;
  70. struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
  71. /* Sanity check */
  72. if (start + size < start) {
  73. printk("Trying to add an invalid memory region, skipped\n");
  74. return;
  75. }
  76. /*
  77. * Try to merge with previous entry if any. This is far less than
  78. * perfect but is sufficient for most real world cases.
  79. */
  80. if (x && prev->addr + prev->size == start && prev->type == type) {
  81. prev->size += size;
  82. return;
  83. }
  84. if (x == BOOT_MEM_MAP_MAX) {
  85. printk("Ooops! Too many entries in the memory map!\n");
  86. return;
  87. }
  88. boot_mem_map.map[x].addr = start;
  89. boot_mem_map.map[x].size = size;
  90. boot_mem_map.map[x].type = type;
  91. boot_mem_map.nr_map++;
  92. }
  93. static void __init print_memory_map(void)
  94. {
  95. int i;
  96. const int field = 2 * sizeof(unsigned long);
  97. for (i = 0; i < boot_mem_map.nr_map; i++) {
  98. printk(" memory: %0*Lx @ %0*Lx ",
  99. field, (unsigned long long) boot_mem_map.map[i].size,
  100. field, (unsigned long long) boot_mem_map.map[i].addr);
  101. switch (boot_mem_map.map[i].type) {
  102. case BOOT_MEM_RAM:
  103. printk("(usable)\n");
  104. break;
  105. case BOOT_MEM_ROM_DATA:
  106. printk("(ROM data)\n");
  107. break;
  108. case BOOT_MEM_RESERVED:
  109. printk("(reserved)\n");
  110. break;
  111. default:
  112. printk("type %lu\n", boot_mem_map.map[i].type);
  113. break;
  114. }
  115. }
  116. }
  117. /*
  118. * Manage initrd
  119. */
  120. #ifdef CONFIG_BLK_DEV_INITRD
  121. static int __init rd_start_early(char *p)
  122. {
  123. unsigned long start = memparse(p, &p);
  124. #ifdef CONFIG_64BIT
  125. /* Guess if the sign extension was forgotten by bootloader */
  126. if (start < XKPHYS)
  127. start = (int)start;
  128. #endif
  129. initrd_start = start;
  130. initrd_end += start;
  131. return 0;
  132. }
  133. early_param("rd_start", rd_start_early);
  134. static int __init rd_size_early(char *p)
  135. {
  136. initrd_end += memparse(p, &p);
  137. return 0;
  138. }
  139. early_param("rd_size", rd_size_early);
  140. /* it returns the next free pfn after initrd */
  141. static unsigned long __init init_initrd(void)
  142. {
  143. unsigned long end;
  144. u32 *initrd_header;
  145. /*
  146. * Board specific code or command line parser should have
  147. * already set up initrd_start and initrd_end. In these cases
  148. * perfom sanity checks and use them if all looks good.
  149. */
  150. if (initrd_start && initrd_end > initrd_start)
  151. goto sanitize;
  152. /*
  153. * See if initrd has been added to the kernel image by
  154. * arch/mips/boot/addinitrd.c. In that case a header is
  155. * prepended to initrd and is made up by 8 bytes. The fisrt
  156. * word is a magic number and the second one is the size of
  157. * initrd. Initrd start must be page aligned in any cases.
  158. */
  159. initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
  160. if (initrd_header[0] != 0x494E5244)
  161. goto disable;
  162. initrd_start = (unsigned long)(initrd_header + 2);
  163. initrd_end = initrd_start + initrd_header[1];
  164. sanitize:
  165. if (initrd_start & ~PAGE_MASK) {
  166. printk(KERN_ERR "initrd start must be page aligned\n");
  167. goto disable;
  168. }
  169. if (initrd_start < PAGE_OFFSET) {
  170. printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
  171. goto disable;
  172. }
  173. /*
  174. * Sanitize initrd addresses. For example firmware
  175. * can't guess if they need to pass them through
  176. * 64-bits values if the kernel has been built in pure
  177. * 32-bit. We need also to switch from KSEG0 to XKPHYS
  178. * addresses now, so the code can now safely use __pa().
  179. */
  180. end = __pa(initrd_end);
  181. initrd_end = (unsigned long)__va(end);
  182. initrd_start = (unsigned long)__va(__pa(initrd_start));
  183. ROOT_DEV = Root_RAM0;
  184. return PFN_UP(end);
  185. disable:
  186. initrd_start = 0;
  187. initrd_end = 0;
  188. return 0;
  189. }
  190. static void __init finalize_initrd(void)
  191. {
  192. unsigned long size = initrd_end - initrd_start;
  193. if (size == 0) {
  194. printk(KERN_INFO "Initrd not found or empty");
  195. goto disable;
  196. }
  197. if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
  198. printk("Initrd extends beyond end of memory");
  199. goto disable;
  200. }
  201. reserve_bootmem(__pa(initrd_start), size);
  202. initrd_below_start_ok = 1;
  203. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
  204. initrd_start, size);
  205. return;
  206. disable:
  207. printk(" - disabling initrd\n");
  208. initrd_start = 0;
  209. initrd_end = 0;
  210. }
  211. #else /* !CONFIG_BLK_DEV_INITRD */
  212. static unsigned long __init init_initrd(void)
  213. {
  214. return 0;
  215. }
  216. #define finalize_initrd() do {} while (0)
  217. #endif
  218. /*
  219. * Initialize the bootmem allocator. It also setup initrd related data
  220. * if needed.
  221. */
  222. #ifdef CONFIG_SGI_IP27
  223. static void __init bootmem_init(void)
  224. {
  225. init_initrd();
  226. finalize_initrd();
  227. }
  228. #else /* !CONFIG_SGI_IP27 */
  229. static void __init bootmem_init(void)
  230. {
  231. unsigned long reserved_end;
  232. unsigned long mapstart = ~0UL;
  233. unsigned long bootmap_size;
  234. int i;
  235. /*
  236. * Init any data related to initrd. It's a nop if INITRD is
  237. * not selected. Once that done we can determine the low bound
  238. * of usable memory.
  239. */
  240. reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
  241. /*
  242. * max_low_pfn is not a number of pages. The number of pages
  243. * of the system is given by 'max_low_pfn - min_low_pfn'.
  244. */
  245. min_low_pfn = ~0UL;
  246. max_low_pfn = 0;
  247. /*
  248. * Find the highest page frame number we have available.
  249. */
  250. for (i = 0; i < boot_mem_map.nr_map; i++) {
  251. unsigned long start, end;
  252. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  253. continue;
  254. start = PFN_UP(boot_mem_map.map[i].addr);
  255. end = PFN_DOWN(boot_mem_map.map[i].addr
  256. + boot_mem_map.map[i].size);
  257. if (end > max_low_pfn)
  258. max_low_pfn = end;
  259. if (start < min_low_pfn)
  260. min_low_pfn = start;
  261. if (end <= reserved_end)
  262. continue;
  263. if (start >= mapstart)
  264. continue;
  265. mapstart = max(reserved_end, start);
  266. }
  267. if (min_low_pfn >= max_low_pfn)
  268. panic("Incorrect memory mapping !!!");
  269. if (min_low_pfn > ARCH_PFN_OFFSET) {
  270. printk(KERN_INFO
  271. "Wasting %lu bytes for tracking %lu unused pages\n",
  272. (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
  273. min_low_pfn - ARCH_PFN_OFFSET);
  274. } else if (min_low_pfn < ARCH_PFN_OFFSET) {
  275. printk(KERN_INFO
  276. "%lu free pages won't be used\n",
  277. ARCH_PFN_OFFSET - min_low_pfn);
  278. }
  279. min_low_pfn = ARCH_PFN_OFFSET;
  280. /*
  281. * Determine low and high memory ranges
  282. */
  283. if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
  284. #ifdef CONFIG_HIGHMEM
  285. highstart_pfn = PFN_DOWN(HIGHMEM_START);
  286. highend_pfn = max_low_pfn;
  287. #endif
  288. max_low_pfn = PFN_DOWN(HIGHMEM_START);
  289. }
  290. /*
  291. * Initialize the boot-time allocator with low memory only.
  292. */
  293. bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
  294. min_low_pfn, max_low_pfn);
  295. /*
  296. * Register fully available low RAM pages with the bootmem allocator.
  297. */
  298. for (i = 0; i < boot_mem_map.nr_map; i++) {
  299. unsigned long start, end, size;
  300. /*
  301. * Reserve usable memory.
  302. */
  303. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  304. continue;
  305. start = PFN_UP(boot_mem_map.map[i].addr);
  306. end = PFN_DOWN(boot_mem_map.map[i].addr
  307. + boot_mem_map.map[i].size);
  308. /*
  309. * We are rounding up the start address of usable memory
  310. * and at the end of the usable range downwards.
  311. */
  312. if (start >= max_low_pfn)
  313. continue;
  314. if (start < reserved_end)
  315. start = reserved_end;
  316. if (end > max_low_pfn)
  317. end = max_low_pfn;
  318. /*
  319. * ... finally, is the area going away?
  320. */
  321. if (end <= start)
  322. continue;
  323. size = end - start;
  324. /* Register lowmem ranges */
  325. free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
  326. memory_present(0, start, end);
  327. }
  328. /*
  329. * Reserve the bootmap memory.
  330. */
  331. reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
  332. /*
  333. * Reserve initrd memory if needed.
  334. */
  335. finalize_initrd();
  336. }
  337. #endif /* CONFIG_SGI_IP27 */
  338. /*
  339. * arch_mem_init - initialize memory managment subsystem
  340. *
  341. * o plat_mem_setup() detects the memory configuration and will record detected
  342. * memory areas using add_memory_region.
  343. *
  344. * At this stage the memory configuration of the system is known to the
  345. * kernel but generic memory managment system is still entirely uninitialized.
  346. *
  347. * o bootmem_init()
  348. * o sparse_init()
  349. * o paging_init()
  350. *
  351. * At this stage the bootmem allocator is ready to use.
  352. *
  353. * NOTE: historically plat_mem_setup did the entire platform initialization.
  354. * This was rather impractical because it meant plat_mem_setup had to
  355. * get away without any kind of memory allocator. To keep old code from
  356. * breaking plat_setup was just renamed to plat_setup and a second platform
  357. * initialization hook for anything else was introduced.
  358. */
  359. static int usermem __initdata = 0;
  360. static int __init early_parse_mem(char *p)
  361. {
  362. unsigned long start, size;
  363. /*
  364. * If a user specifies memory size, we
  365. * blow away any automatically generated
  366. * size.
  367. */
  368. if (usermem == 0) {
  369. boot_mem_map.nr_map = 0;
  370. usermem = 1;
  371. }
  372. start = 0;
  373. size = memparse(p, &p);
  374. if (*p == '@')
  375. start = memparse(p + 1, &p);
  376. add_memory_region(start, size, BOOT_MEM_RAM);
  377. return 0;
  378. }
  379. early_param("mem", early_parse_mem);
  380. static void __init arch_mem_init(char **cmdline_p)
  381. {
  382. extern void plat_mem_setup(void);
  383. /* call board setup routine */
  384. plat_mem_setup();
  385. printk("Determined physical RAM map:\n");
  386. print_memory_map();
  387. strlcpy(command_line, arcs_cmdline, sizeof(command_line));
  388. strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  389. *cmdline_p = command_line;
  390. parse_early_param();
  391. if (usermem) {
  392. printk("User-defined physical RAM map:\n");
  393. print_memory_map();
  394. }
  395. bootmem_init();
  396. sparse_init();
  397. paging_init();
  398. }
  399. static void __init resource_init(void)
  400. {
  401. int i;
  402. if (UNCAC_BASE != IO_BASE)
  403. return;
  404. code_resource.start = __pa_symbol(&_text);
  405. code_resource.end = __pa_symbol(&_etext) - 1;
  406. data_resource.start = __pa_symbol(&_etext);
  407. data_resource.end = __pa_symbol(&_edata) - 1;
  408. /*
  409. * Request address space for all standard RAM.
  410. */
  411. for (i = 0; i < boot_mem_map.nr_map; i++) {
  412. struct resource *res;
  413. unsigned long start, end;
  414. start = boot_mem_map.map[i].addr;
  415. end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
  416. if (start >= HIGHMEM_START)
  417. continue;
  418. if (end >= HIGHMEM_START)
  419. end = HIGHMEM_START - 1;
  420. res = alloc_bootmem(sizeof(struct resource));
  421. switch (boot_mem_map.map[i].type) {
  422. case BOOT_MEM_RAM:
  423. case BOOT_MEM_ROM_DATA:
  424. res->name = "System RAM";
  425. break;
  426. case BOOT_MEM_RESERVED:
  427. default:
  428. res->name = "reserved";
  429. }
  430. res->start = start;
  431. res->end = end;
  432. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  433. request_resource(&iomem_resource, res);
  434. /*
  435. * We don't know which RAM region contains kernel data,
  436. * so we try it repeatedly and let the resource manager
  437. * test it.
  438. */
  439. request_resource(res, &code_resource);
  440. request_resource(res, &data_resource);
  441. }
  442. }
  443. void __init setup_arch(char **cmdline_p)
  444. {
  445. cpu_probe();
  446. prom_init();
  447. #ifdef CONFIG_EARLY_PRINTK
  448. {
  449. extern void setup_early_printk(void);
  450. setup_early_printk();
  451. }
  452. #endif
  453. cpu_report();
  454. #if defined(CONFIG_VT)
  455. #if defined(CONFIG_VGA_CONSOLE)
  456. conswitchp = &vga_con;
  457. #elif defined(CONFIG_DUMMY_CONSOLE)
  458. conswitchp = &dummy_con;
  459. #endif
  460. #endif
  461. arch_mem_init(cmdline_p);
  462. resource_init();
  463. #ifdef CONFIG_SMP
  464. plat_smp_setup();
  465. #endif
  466. }
  467. static int __init fpu_disable(char *s)
  468. {
  469. int i;
  470. for (i = 0; i < NR_CPUS; i++)
  471. cpu_data[i].options &= ~MIPS_CPU_FPU;
  472. return 1;
  473. }
  474. __setup("nofpu", fpu_disable);
  475. static int __init dsp_disable(char *s)
  476. {
  477. cpu_data[0].ases &= ~MIPS_ASE_DSP;
  478. return 1;
  479. }
  480. __setup("nodsp", dsp_disable);
  481. unsigned long kernelsp[NR_CPUS];
  482. unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
  483. #ifdef CONFIG_DEBUG_FS
  484. struct dentry *mips_debugfs_dir;
  485. static int __init debugfs_mips(void)
  486. {
  487. struct dentry *d;
  488. d = debugfs_create_dir("mips", NULL);
  489. if (IS_ERR(d))
  490. return PTR_ERR(d);
  491. mips_debugfs_dir = d;
  492. return 0;
  493. }
  494. arch_initcall(debugfs_mips);
  495. #endif