irq.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506
  1. /*
  2. * Platform dependent support for SGI SN
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2000-2006 Silicon Graphics, Inc. All Rights Reserved.
  9. */
  10. #include <linux/irq.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/init.h>
  13. #include <asm/sn/addrs.h>
  14. #include <asm/sn/arch.h>
  15. #include <asm/sn/intr.h>
  16. #include <asm/sn/pcibr_provider.h>
  17. #include <asm/sn/pcibus_provider_defs.h>
  18. #include <asm/sn/pcidev.h>
  19. #include <asm/sn/shub_mmr.h>
  20. #include <asm/sn/sn_sal.h>
  21. static void force_interrupt(int irq);
  22. static void register_intr_pda(struct sn_irq_info *sn_irq_info);
  23. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
  24. int sn_force_interrupt_flag = 1;
  25. extern int sn_ioif_inited;
  26. struct list_head **sn_irq_lh;
  27. static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
  28. u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
  29. struct sn_irq_info *sn_irq_info,
  30. int req_irq, nasid_t req_nasid,
  31. int req_slice)
  32. {
  33. struct ia64_sal_retval ret_stuff;
  34. ret_stuff.status = 0;
  35. ret_stuff.v0 = 0;
  36. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  37. (u64) SAL_INTR_ALLOC, (u64) local_nasid,
  38. (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
  39. (u64) req_nasid, (u64) req_slice);
  40. return ret_stuff.status;
  41. }
  42. void sn_intr_free(nasid_t local_nasid, int local_widget,
  43. struct sn_irq_info *sn_irq_info)
  44. {
  45. struct ia64_sal_retval ret_stuff;
  46. ret_stuff.status = 0;
  47. ret_stuff.v0 = 0;
  48. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  49. (u64) SAL_INTR_FREE, (u64) local_nasid,
  50. (u64) local_widget, (u64) sn_irq_info->irq_irq,
  51. (u64) sn_irq_info->irq_cookie, 0, 0);
  52. }
  53. u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
  54. struct sn_irq_info *sn_irq_info,
  55. nasid_t req_nasid, int req_slice)
  56. {
  57. struct ia64_sal_retval ret_stuff;
  58. ret_stuff.status = 0;
  59. ret_stuff.v0 = 0;
  60. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  61. (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
  62. (u64) local_widget, __pa(sn_irq_info),
  63. (u64) req_nasid, (u64) req_slice, 0);
  64. return ret_stuff.status;
  65. }
  66. static unsigned int sn_startup_irq(unsigned int irq)
  67. {
  68. return 0;
  69. }
  70. static void sn_shutdown_irq(unsigned int irq)
  71. {
  72. }
  73. static void sn_disable_irq(unsigned int irq)
  74. {
  75. }
  76. static void sn_enable_irq(unsigned int irq)
  77. {
  78. }
  79. static void sn_ack_irq(unsigned int irq)
  80. {
  81. u64 event_occurred, mask;
  82. irq = irq & 0xff;
  83. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
  84. mask = event_occurred & SH_ALL_INT_MASK;
  85. HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
  86. __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
  87. move_native_irq(irq);
  88. }
  89. static void sn_end_irq(unsigned int irq)
  90. {
  91. int ivec;
  92. u64 event_occurred;
  93. ivec = irq & 0xff;
  94. if (ivec == SGI_UART_VECTOR) {
  95. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED));
  96. /* If the UART bit is set here, we may have received an
  97. * interrupt from the UART that the driver missed. To
  98. * make sure, we IPI ourselves to force us to look again.
  99. */
  100. if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
  101. platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
  102. IA64_IPI_DM_INT, 0);
  103. }
  104. }
  105. __clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
  106. if (sn_force_interrupt_flag)
  107. force_interrupt(irq);
  108. }
  109. static void sn_irq_info_free(struct rcu_head *head);
  110. struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
  111. nasid_t nasid, int slice)
  112. {
  113. int vector;
  114. int cpuid;
  115. #ifdef CONFIG_SMP
  116. int cpuphys;
  117. #endif
  118. int64_t bridge;
  119. int local_widget, status;
  120. nasid_t local_nasid;
  121. struct sn_irq_info *new_irq_info;
  122. struct sn_pcibus_provider *pci_provider;
  123. bridge = (u64) sn_irq_info->irq_bridge;
  124. if (!bridge) {
  125. return NULL; /* irq is not a device interrupt */
  126. }
  127. local_nasid = NASID_GET(bridge);
  128. if (local_nasid & 1)
  129. local_widget = TIO_SWIN_WIDGETNUM(bridge);
  130. else
  131. local_widget = SWIN_WIDGETNUM(bridge);
  132. vector = sn_irq_info->irq_irq;
  133. /* Make use of SAL_INTR_REDIRECT if PROM supports it */
  134. status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
  135. if (!status) {
  136. new_irq_info = sn_irq_info;
  137. goto finish_up;
  138. }
  139. /*
  140. * PROM does not support SAL_INTR_REDIRECT, or it failed.
  141. * Revert to old method.
  142. */
  143. new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
  144. if (new_irq_info == NULL)
  145. return NULL;
  146. memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
  147. /* Free the old PROM new_irq_info structure */
  148. sn_intr_free(local_nasid, local_widget, new_irq_info);
  149. unregister_intr_pda(new_irq_info);
  150. /* allocate a new PROM new_irq_info struct */
  151. status = sn_intr_alloc(local_nasid, local_widget,
  152. new_irq_info, vector,
  153. nasid, slice);
  154. /* SAL call failed */
  155. if (status) {
  156. kfree(new_irq_info);
  157. return NULL;
  158. }
  159. register_intr_pda(new_irq_info);
  160. spin_lock(&sn_irq_info_lock);
  161. list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
  162. spin_unlock(&sn_irq_info_lock);
  163. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  164. finish_up:
  165. /* Update kernels new_irq_info with new target info */
  166. cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
  167. new_irq_info->irq_slice);
  168. new_irq_info->irq_cpuid = cpuid;
  169. pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
  170. /*
  171. * If this represents a line interrupt, target it. If it's
  172. * an msi (irq_int_bit < 0), it's already targeted.
  173. */
  174. if (new_irq_info->irq_int_bit >= 0 &&
  175. pci_provider && pci_provider->target_interrupt)
  176. (pci_provider->target_interrupt)(new_irq_info);
  177. #ifdef CONFIG_SMP
  178. cpuphys = cpu_physical_id(cpuid);
  179. set_irq_affinity_info((vector & 0xff), cpuphys, 0);
  180. #endif
  181. return new_irq_info;
  182. }
  183. static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
  184. {
  185. struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
  186. nasid_t nasid;
  187. int slice;
  188. nasid = cpuid_to_nasid(first_cpu(mask));
  189. slice = cpuid_to_slice(first_cpu(mask));
  190. list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
  191. sn_irq_lh[irq], list)
  192. (void)sn_retarget_vector(sn_irq_info, nasid, slice);
  193. }
  194. static void
  195. sn_mask_irq(unsigned int irq)
  196. {
  197. }
  198. static void
  199. sn_unmask_irq(unsigned int irq)
  200. {
  201. }
  202. struct irq_chip irq_type_sn = {
  203. .name = "SN hub",
  204. .startup = sn_startup_irq,
  205. .shutdown = sn_shutdown_irq,
  206. .enable = sn_enable_irq,
  207. .disable = sn_disable_irq,
  208. .ack = sn_ack_irq,
  209. .end = sn_end_irq,
  210. .mask = sn_mask_irq,
  211. .unmask = sn_unmask_irq,
  212. .set_affinity = sn_set_affinity_irq
  213. };
  214. ia64_vector sn_irq_to_vector(int irq)
  215. {
  216. if (irq >= IA64_NUM_VECTORS)
  217. return 0;
  218. return (ia64_vector)irq;
  219. }
  220. unsigned int sn_local_vector_to_irq(u8 vector)
  221. {
  222. return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
  223. }
  224. void sn_irq_init(void)
  225. {
  226. int i;
  227. irq_desc_t *base_desc = irq_desc;
  228. ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
  229. ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
  230. for (i = 0; i < NR_IRQS; i++) {
  231. if (base_desc[i].chip == &no_irq_type) {
  232. base_desc[i].chip = &irq_type_sn;
  233. }
  234. }
  235. }
  236. static void register_intr_pda(struct sn_irq_info *sn_irq_info)
  237. {
  238. int irq = sn_irq_info->irq_irq;
  239. int cpu = sn_irq_info->irq_cpuid;
  240. if (pdacpu(cpu)->sn_last_irq < irq) {
  241. pdacpu(cpu)->sn_last_irq = irq;
  242. }
  243. if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
  244. pdacpu(cpu)->sn_first_irq = irq;
  245. }
  246. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
  247. {
  248. int irq = sn_irq_info->irq_irq;
  249. int cpu = sn_irq_info->irq_cpuid;
  250. struct sn_irq_info *tmp_irq_info;
  251. int i, foundmatch;
  252. rcu_read_lock();
  253. if (pdacpu(cpu)->sn_last_irq == irq) {
  254. foundmatch = 0;
  255. for (i = pdacpu(cpu)->sn_last_irq - 1;
  256. i && !foundmatch; i--) {
  257. list_for_each_entry_rcu(tmp_irq_info,
  258. sn_irq_lh[i],
  259. list) {
  260. if (tmp_irq_info->irq_cpuid == cpu) {
  261. foundmatch = 1;
  262. break;
  263. }
  264. }
  265. }
  266. pdacpu(cpu)->sn_last_irq = i;
  267. }
  268. if (pdacpu(cpu)->sn_first_irq == irq) {
  269. foundmatch = 0;
  270. for (i = pdacpu(cpu)->sn_first_irq + 1;
  271. i < NR_IRQS && !foundmatch; i++) {
  272. list_for_each_entry_rcu(tmp_irq_info,
  273. sn_irq_lh[i],
  274. list) {
  275. if (tmp_irq_info->irq_cpuid == cpu) {
  276. foundmatch = 1;
  277. break;
  278. }
  279. }
  280. }
  281. pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
  282. }
  283. rcu_read_unlock();
  284. }
  285. static void sn_irq_info_free(struct rcu_head *head)
  286. {
  287. struct sn_irq_info *sn_irq_info;
  288. sn_irq_info = container_of(head, struct sn_irq_info, rcu);
  289. kfree(sn_irq_info);
  290. }
  291. void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
  292. {
  293. nasid_t nasid = sn_irq_info->irq_nasid;
  294. int slice = sn_irq_info->irq_slice;
  295. int cpu = nasid_slice_to_cpuid(nasid, slice);
  296. #ifdef CONFIG_SMP
  297. int cpuphys;
  298. #endif
  299. pci_dev_get(pci_dev);
  300. sn_irq_info->irq_cpuid = cpu;
  301. sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
  302. /* link it into the sn_irq[irq] list */
  303. spin_lock(&sn_irq_info_lock);
  304. list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
  305. reserve_irq_vector(sn_irq_info->irq_irq);
  306. spin_unlock(&sn_irq_info_lock);
  307. register_intr_pda(sn_irq_info);
  308. #ifdef CONFIG_SMP
  309. cpuphys = cpu_physical_id(cpu);
  310. set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
  311. #endif
  312. }
  313. void sn_irq_unfixup(struct pci_dev *pci_dev)
  314. {
  315. struct sn_irq_info *sn_irq_info;
  316. /* Only cleanup IRQ stuff if this device has a host bus context */
  317. if (!SN_PCIDEV_BUSSOFT(pci_dev))
  318. return;
  319. sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
  320. if (!sn_irq_info)
  321. return;
  322. if (!sn_irq_info->irq_irq) {
  323. kfree(sn_irq_info);
  324. return;
  325. }
  326. unregister_intr_pda(sn_irq_info);
  327. spin_lock(&sn_irq_info_lock);
  328. list_del_rcu(&sn_irq_info->list);
  329. spin_unlock(&sn_irq_info_lock);
  330. if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
  331. free_irq_vector(sn_irq_info->irq_irq);
  332. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  333. pci_dev_put(pci_dev);
  334. }
  335. static inline void
  336. sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
  337. {
  338. struct sn_pcibus_provider *pci_provider;
  339. pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
  340. /* Don't force an interrupt if the irq has been disabled */
  341. if (!(irq_desc[sn_irq_info->irq_irq].status & IRQ_DISABLED) &&
  342. pci_provider && pci_provider->force_interrupt)
  343. (*pci_provider->force_interrupt)(sn_irq_info);
  344. }
  345. static void force_interrupt(int irq)
  346. {
  347. struct sn_irq_info *sn_irq_info;
  348. if (!sn_ioif_inited)
  349. return;
  350. rcu_read_lock();
  351. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
  352. sn_call_force_intr_provider(sn_irq_info);
  353. rcu_read_unlock();
  354. }
  355. /*
  356. * Check for lost interrupts. If the PIC int_status reg. says that
  357. * an interrupt has been sent, but not handled, and the interrupt
  358. * is not pending in either the cpu irr regs or in the soft irr regs,
  359. * and the interrupt is not in service, then the interrupt may have
  360. * been lost. Force an interrupt on that pin. It is possible that
  361. * the interrupt is in flight, so we may generate a spurious interrupt,
  362. * but we should never miss a real lost interrupt.
  363. */
  364. static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
  365. {
  366. u64 regval;
  367. struct pcidev_info *pcidev_info;
  368. struct pcibus_info *pcibus_info;
  369. /*
  370. * Bridge types attached to TIO (anything but PIC) do not need this WAR
  371. * since they do not target Shub II interrupt registers. If that
  372. * ever changes, this check needs to accomodate.
  373. */
  374. if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
  375. return;
  376. pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  377. if (!pcidev_info)
  378. return;
  379. pcibus_info =
  380. (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
  381. pdi_pcibus_info;
  382. regval = pcireg_intr_status_get(pcibus_info);
  383. if (!ia64_get_irr(irq_to_vector(irq))) {
  384. if (!test_bit(irq, pda->sn_in_service_ivecs)) {
  385. regval &= 0xff;
  386. if (sn_irq_info->irq_int_bit & regval &
  387. sn_irq_info->irq_last_intr) {
  388. regval &= ~(sn_irq_info->irq_int_bit & regval);
  389. sn_call_force_intr_provider(sn_irq_info);
  390. }
  391. }
  392. }
  393. sn_irq_info->irq_last_intr = regval;
  394. }
  395. void sn_lb_int_war_check(void)
  396. {
  397. struct sn_irq_info *sn_irq_info;
  398. int i;
  399. if (!sn_ioif_inited || pda->sn_first_irq == 0)
  400. return;
  401. rcu_read_lock();
  402. for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
  403. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
  404. sn_check_intr(i, sn_irq_info);
  405. }
  406. }
  407. rcu_read_unlock();
  408. }
  409. void __init sn_irq_lh_init(void)
  410. {
  411. int i;
  412. sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
  413. if (!sn_irq_lh)
  414. panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
  415. for (i = 0; i < NR_IRQS; i++) {
  416. sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
  417. if (!sn_irq_lh[i])
  418. panic("SN PCI INIT: Failed IRQ memory allocation\n");
  419. INIT_LIST_HEAD(sn_irq_lh[i]);
  420. }
  421. }