kprobes.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. /*
  2. * Kernel Probes (KProbes)
  3. * arch/i386/kernel/kprobes.c
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. * Copyright (C) IBM Corporation, 2002, 2004
  20. *
  21. * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22. * Probes initial implementation ( includes contributions from
  23. * Rusty Russell).
  24. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  25. * interface to access function arguments.
  26. * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  27. * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  28. * <prasanna@in.ibm.com> added function-return probes.
  29. */
  30. #include <linux/kprobes.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/preempt.h>
  33. #include <linux/kdebug.h>
  34. #include <asm/cacheflush.h>
  35. #include <asm/desc.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/alternative.h>
  38. void jprobe_return_end(void);
  39. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  40. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  41. /* insert a jmp code */
  42. static __always_inline void set_jmp_op(void *from, void *to)
  43. {
  44. struct __arch_jmp_op {
  45. char op;
  46. long raddr;
  47. } __attribute__((packed)) *jop;
  48. jop = (struct __arch_jmp_op *)from;
  49. jop->raddr = (long)(to) - ((long)(from) + 5);
  50. jop->op = RELATIVEJUMP_INSTRUCTION;
  51. }
  52. /*
  53. * returns non-zero if opcodes can be boosted.
  54. */
  55. static __always_inline int can_boost(kprobe_opcode_t *opcodes)
  56. {
  57. #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
  58. (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
  59. (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
  60. (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
  61. (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
  62. << (row % 32))
  63. /*
  64. * Undefined/reserved opcodes, conditional jump, Opcode Extension
  65. * Groups, and some special opcodes can not be boost.
  66. */
  67. static const unsigned long twobyte_is_boostable[256 / 32] = {
  68. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  69. /* ------------------------------- */
  70. W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
  71. W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
  72. W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
  73. W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
  74. W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
  75. W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
  76. W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
  77. W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
  78. W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
  79. W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
  80. W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
  81. W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
  82. W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
  83. W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
  84. W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
  85. W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0) /* f0 */
  86. /* ------------------------------- */
  87. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  88. };
  89. #undef W
  90. kprobe_opcode_t opcode;
  91. kprobe_opcode_t *orig_opcodes = opcodes;
  92. retry:
  93. if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
  94. return 0;
  95. opcode = *(opcodes++);
  96. /* 2nd-byte opcode */
  97. if (opcode == 0x0f) {
  98. if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
  99. return 0;
  100. return test_bit(*opcodes, twobyte_is_boostable);
  101. }
  102. switch (opcode & 0xf0) {
  103. case 0x60:
  104. if (0x63 < opcode && opcode < 0x67)
  105. goto retry; /* prefixes */
  106. /* can't boost Address-size override and bound */
  107. return (opcode != 0x62 && opcode != 0x67);
  108. case 0x70:
  109. return 0; /* can't boost conditional jump */
  110. case 0xc0:
  111. /* can't boost software-interruptions */
  112. return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
  113. case 0xd0:
  114. /* can boost AA* and XLAT */
  115. return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
  116. case 0xe0:
  117. /* can boost in/out and absolute jmps */
  118. return ((opcode & 0x04) || opcode == 0xea);
  119. case 0xf0:
  120. if ((opcode & 0x0c) == 0 && opcode != 0xf1)
  121. goto retry; /* lock/rep(ne) prefix */
  122. /* clear and set flags can be boost */
  123. return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
  124. default:
  125. if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
  126. goto retry; /* prefixes */
  127. /* can't boost CS override and call */
  128. return (opcode != 0x2e && opcode != 0x9a);
  129. }
  130. }
  131. /*
  132. * returns non-zero if opcode modifies the interrupt flag.
  133. */
  134. static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
  135. {
  136. switch (opcode) {
  137. case 0xfa: /* cli */
  138. case 0xfb: /* sti */
  139. case 0xcf: /* iret/iretd */
  140. case 0x9d: /* popf/popfd */
  141. return 1;
  142. }
  143. return 0;
  144. }
  145. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  146. {
  147. /* insn: must be on special executable page on i386. */
  148. p->ainsn.insn = get_insn_slot();
  149. if (!p->ainsn.insn)
  150. return -ENOMEM;
  151. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
  152. p->opcode = *p->addr;
  153. if (can_boost(p->addr)) {
  154. p->ainsn.boostable = 0;
  155. } else {
  156. p->ainsn.boostable = -1;
  157. }
  158. return 0;
  159. }
  160. void __kprobes arch_arm_kprobe(struct kprobe *p)
  161. {
  162. text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
  163. }
  164. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  165. {
  166. text_poke(p->addr, &p->opcode, 1);
  167. }
  168. void __kprobes arch_remove_kprobe(struct kprobe *p)
  169. {
  170. mutex_lock(&kprobe_mutex);
  171. free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
  172. mutex_unlock(&kprobe_mutex);
  173. }
  174. static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  175. {
  176. kcb->prev_kprobe.kp = kprobe_running();
  177. kcb->prev_kprobe.status = kcb->kprobe_status;
  178. kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
  179. kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
  180. }
  181. static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  182. {
  183. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  184. kcb->kprobe_status = kcb->prev_kprobe.status;
  185. kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
  186. kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
  187. }
  188. static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  189. struct kprobe_ctlblk *kcb)
  190. {
  191. __get_cpu_var(current_kprobe) = p;
  192. kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
  193. = (regs->eflags & (TF_MASK | IF_MASK));
  194. if (is_IF_modifier(p->opcode))
  195. kcb->kprobe_saved_eflags &= ~IF_MASK;
  196. }
  197. static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  198. {
  199. regs->eflags |= TF_MASK;
  200. regs->eflags &= ~IF_MASK;
  201. /*single step inline if the instruction is an int3*/
  202. if (p->opcode == BREAKPOINT_INSTRUCTION)
  203. regs->eip = (unsigned long)p->addr;
  204. else
  205. regs->eip = (unsigned long)p->ainsn.insn;
  206. }
  207. /* Called with kretprobe_lock held */
  208. void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
  209. struct pt_regs *regs)
  210. {
  211. unsigned long *sara = (unsigned long *)&regs->esp;
  212. ri->ret_addr = (kprobe_opcode_t *) *sara;
  213. /* Replace the return addr with trampoline addr */
  214. *sara = (unsigned long) &kretprobe_trampoline;
  215. }
  216. /*
  217. * Interrupts are disabled on entry as trap3 is an interrupt gate and they
  218. * remain disabled thorough out this function.
  219. */
  220. static int __kprobes kprobe_handler(struct pt_regs *regs)
  221. {
  222. struct kprobe *p;
  223. int ret = 0;
  224. kprobe_opcode_t *addr;
  225. struct kprobe_ctlblk *kcb;
  226. addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
  227. /*
  228. * We don't want to be preempted for the entire
  229. * duration of kprobe processing
  230. */
  231. preempt_disable();
  232. kcb = get_kprobe_ctlblk();
  233. /* Check we're not actually recursing */
  234. if (kprobe_running()) {
  235. p = get_kprobe(addr);
  236. if (p) {
  237. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  238. *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
  239. regs->eflags &= ~TF_MASK;
  240. regs->eflags |= kcb->kprobe_saved_eflags;
  241. goto no_kprobe;
  242. }
  243. /* We have reentered the kprobe_handler(), since
  244. * another probe was hit while within the handler.
  245. * We here save the original kprobes variables and
  246. * just single step on the instruction of the new probe
  247. * without calling any user handlers.
  248. */
  249. save_previous_kprobe(kcb);
  250. set_current_kprobe(p, regs, kcb);
  251. kprobes_inc_nmissed_count(p);
  252. prepare_singlestep(p, regs);
  253. kcb->kprobe_status = KPROBE_REENTER;
  254. return 1;
  255. } else {
  256. if (*addr != BREAKPOINT_INSTRUCTION) {
  257. /* The breakpoint instruction was removed by
  258. * another cpu right after we hit, no further
  259. * handling of this interrupt is appropriate
  260. */
  261. regs->eip -= sizeof(kprobe_opcode_t);
  262. ret = 1;
  263. goto no_kprobe;
  264. }
  265. p = __get_cpu_var(current_kprobe);
  266. if (p->break_handler && p->break_handler(p, regs)) {
  267. goto ss_probe;
  268. }
  269. }
  270. goto no_kprobe;
  271. }
  272. p = get_kprobe(addr);
  273. if (!p) {
  274. if (*addr != BREAKPOINT_INSTRUCTION) {
  275. /*
  276. * The breakpoint instruction was removed right
  277. * after we hit it. Another cpu has removed
  278. * either a probepoint or a debugger breakpoint
  279. * at this address. In either case, no further
  280. * handling of this interrupt is appropriate.
  281. * Back up over the (now missing) int3 and run
  282. * the original instruction.
  283. */
  284. regs->eip -= sizeof(kprobe_opcode_t);
  285. ret = 1;
  286. }
  287. /* Not one of ours: let kernel handle it */
  288. goto no_kprobe;
  289. }
  290. set_current_kprobe(p, regs, kcb);
  291. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  292. if (p->pre_handler && p->pre_handler(p, regs))
  293. /* handler has already set things up, so skip ss setup */
  294. return 1;
  295. ss_probe:
  296. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
  297. if (p->ainsn.boostable == 1 && !p->post_handler){
  298. /* Boost up -- we can execute copied instructions directly */
  299. reset_current_kprobe();
  300. regs->eip = (unsigned long)p->ainsn.insn;
  301. preempt_enable_no_resched();
  302. return 1;
  303. }
  304. #endif
  305. prepare_singlestep(p, regs);
  306. kcb->kprobe_status = KPROBE_HIT_SS;
  307. return 1;
  308. no_kprobe:
  309. preempt_enable_no_resched();
  310. return ret;
  311. }
  312. /*
  313. * For function-return probes, init_kprobes() establishes a probepoint
  314. * here. When a retprobed function returns, this probe is hit and
  315. * trampoline_probe_handler() runs, calling the kretprobe's handler.
  316. */
  317. void __kprobes kretprobe_trampoline_holder(void)
  318. {
  319. asm volatile ( ".global kretprobe_trampoline\n"
  320. "kretprobe_trampoline: \n"
  321. " pushf\n"
  322. /* skip cs, eip, orig_eax */
  323. " subl $12, %esp\n"
  324. " pushl %fs\n"
  325. " pushl %ds\n"
  326. " pushl %es\n"
  327. " pushl %eax\n"
  328. " pushl %ebp\n"
  329. " pushl %edi\n"
  330. " pushl %esi\n"
  331. " pushl %edx\n"
  332. " pushl %ecx\n"
  333. " pushl %ebx\n"
  334. " movl %esp, %eax\n"
  335. " call trampoline_handler\n"
  336. /* move eflags to cs */
  337. " movl 52(%esp), %edx\n"
  338. " movl %edx, 48(%esp)\n"
  339. /* save true return address on eflags */
  340. " movl %eax, 52(%esp)\n"
  341. " popl %ebx\n"
  342. " popl %ecx\n"
  343. " popl %edx\n"
  344. " popl %esi\n"
  345. " popl %edi\n"
  346. " popl %ebp\n"
  347. " popl %eax\n"
  348. /* skip eip, orig_eax, es, ds, fs */
  349. " addl $20, %esp\n"
  350. " popf\n"
  351. " ret\n");
  352. }
  353. /*
  354. * Called from kretprobe_trampoline
  355. */
  356. fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
  357. {
  358. struct kretprobe_instance *ri = NULL;
  359. struct hlist_head *head, empty_rp;
  360. struct hlist_node *node, *tmp;
  361. unsigned long flags, orig_ret_address = 0;
  362. unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
  363. INIT_HLIST_HEAD(&empty_rp);
  364. spin_lock_irqsave(&kretprobe_lock, flags);
  365. head = kretprobe_inst_table_head(current);
  366. /* fixup registers */
  367. regs->xcs = __KERNEL_CS | get_kernel_rpl();
  368. regs->eip = trampoline_address;
  369. regs->orig_eax = 0xffffffff;
  370. /*
  371. * It is possible to have multiple instances associated with a given
  372. * task either because an multiple functions in the call path
  373. * have a return probe installed on them, and/or more then one return
  374. * return probe was registered for a target function.
  375. *
  376. * We can handle this because:
  377. * - instances are always inserted at the head of the list
  378. * - when multiple return probes are registered for the same
  379. * function, the first instance's ret_addr will point to the
  380. * real return address, and all the rest will point to
  381. * kretprobe_trampoline
  382. */
  383. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  384. if (ri->task != current)
  385. /* another task is sharing our hash bucket */
  386. continue;
  387. if (ri->rp && ri->rp->handler){
  388. __get_cpu_var(current_kprobe) = &ri->rp->kp;
  389. get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
  390. ri->rp->handler(ri, regs);
  391. __get_cpu_var(current_kprobe) = NULL;
  392. }
  393. orig_ret_address = (unsigned long)ri->ret_addr;
  394. recycle_rp_inst(ri, &empty_rp);
  395. if (orig_ret_address != trampoline_address)
  396. /*
  397. * This is the real return address. Any other
  398. * instances associated with this task are for
  399. * other calls deeper on the call stack
  400. */
  401. break;
  402. }
  403. kretprobe_assert(ri, orig_ret_address, trampoline_address);
  404. spin_unlock_irqrestore(&kretprobe_lock, flags);
  405. hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
  406. hlist_del(&ri->hlist);
  407. kfree(ri);
  408. }
  409. return (void*)orig_ret_address;
  410. }
  411. /*
  412. * Called after single-stepping. p->addr is the address of the
  413. * instruction whose first byte has been replaced by the "int 3"
  414. * instruction. To avoid the SMP problems that can occur when we
  415. * temporarily put back the original opcode to single-step, we
  416. * single-stepped a copy of the instruction. The address of this
  417. * copy is p->ainsn.insn.
  418. *
  419. * This function prepares to return from the post-single-step
  420. * interrupt. We have to fix up the stack as follows:
  421. *
  422. * 0) Except in the case of absolute or indirect jump or call instructions,
  423. * the new eip is relative to the copied instruction. We need to make
  424. * it relative to the original instruction.
  425. *
  426. * 1) If the single-stepped instruction was pushfl, then the TF and IF
  427. * flags are set in the just-pushed eflags, and may need to be cleared.
  428. *
  429. * 2) If the single-stepped instruction was a call, the return address
  430. * that is atop the stack is the address following the copied instruction.
  431. * We need to make it the address following the original instruction.
  432. *
  433. * This function also checks instruction size for preparing direct execution.
  434. */
  435. static void __kprobes resume_execution(struct kprobe *p,
  436. struct pt_regs *regs, struct kprobe_ctlblk *kcb)
  437. {
  438. unsigned long *tos = (unsigned long *)&regs->esp;
  439. unsigned long copy_eip = (unsigned long)p->ainsn.insn;
  440. unsigned long orig_eip = (unsigned long)p->addr;
  441. regs->eflags &= ~TF_MASK;
  442. switch (p->ainsn.insn[0]) {
  443. case 0x9c: /* pushfl */
  444. *tos &= ~(TF_MASK | IF_MASK);
  445. *tos |= kcb->kprobe_old_eflags;
  446. break;
  447. case 0xc2: /* iret/ret/lret */
  448. case 0xc3:
  449. case 0xca:
  450. case 0xcb:
  451. case 0xcf:
  452. case 0xea: /* jmp absolute -- eip is correct */
  453. /* eip is already adjusted, no more changes required */
  454. p->ainsn.boostable = 1;
  455. goto no_change;
  456. case 0xe8: /* call relative - Fix return addr */
  457. *tos = orig_eip + (*tos - copy_eip);
  458. break;
  459. case 0x9a: /* call absolute -- same as call absolute, indirect */
  460. *tos = orig_eip + (*tos - copy_eip);
  461. goto no_change;
  462. case 0xff:
  463. if ((p->ainsn.insn[1] & 0x30) == 0x10) {
  464. /*
  465. * call absolute, indirect
  466. * Fix return addr; eip is correct.
  467. * But this is not boostable
  468. */
  469. *tos = orig_eip + (*tos - copy_eip);
  470. goto no_change;
  471. } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
  472. ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
  473. /* eip is correct. And this is boostable */
  474. p->ainsn.boostable = 1;
  475. goto no_change;
  476. }
  477. default:
  478. break;
  479. }
  480. if (p->ainsn.boostable == 0) {
  481. if ((regs->eip > copy_eip) &&
  482. (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
  483. /*
  484. * These instructions can be executed directly if it
  485. * jumps back to correct address.
  486. */
  487. set_jmp_op((void *)regs->eip,
  488. (void *)orig_eip + (regs->eip - copy_eip));
  489. p->ainsn.boostable = 1;
  490. } else {
  491. p->ainsn.boostable = -1;
  492. }
  493. }
  494. regs->eip = orig_eip + (regs->eip - copy_eip);
  495. no_change:
  496. return;
  497. }
  498. /*
  499. * Interrupts are disabled on entry as trap1 is an interrupt gate and they
  500. * remain disabled thoroughout this function.
  501. */
  502. static int __kprobes post_kprobe_handler(struct pt_regs *regs)
  503. {
  504. struct kprobe *cur = kprobe_running();
  505. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  506. if (!cur)
  507. return 0;
  508. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  509. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  510. cur->post_handler(cur, regs, 0);
  511. }
  512. resume_execution(cur, regs, kcb);
  513. regs->eflags |= kcb->kprobe_saved_eflags;
  514. /*Restore back the original saved kprobes variables and continue. */
  515. if (kcb->kprobe_status == KPROBE_REENTER) {
  516. restore_previous_kprobe(kcb);
  517. goto out;
  518. }
  519. reset_current_kprobe();
  520. out:
  521. preempt_enable_no_resched();
  522. /*
  523. * if somebody else is singlestepping across a probe point, eflags
  524. * will have TF set, in which case, continue the remaining processing
  525. * of do_debug, as if this is not a probe hit.
  526. */
  527. if (regs->eflags & TF_MASK)
  528. return 0;
  529. return 1;
  530. }
  531. static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  532. {
  533. struct kprobe *cur = kprobe_running();
  534. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  535. switch(kcb->kprobe_status) {
  536. case KPROBE_HIT_SS:
  537. case KPROBE_REENTER:
  538. /*
  539. * We are here because the instruction being single
  540. * stepped caused a page fault. We reset the current
  541. * kprobe and the eip points back to the probe address
  542. * and allow the page fault handler to continue as a
  543. * normal page fault.
  544. */
  545. regs->eip = (unsigned long)cur->addr;
  546. regs->eflags |= kcb->kprobe_old_eflags;
  547. if (kcb->kprobe_status == KPROBE_REENTER)
  548. restore_previous_kprobe(kcb);
  549. else
  550. reset_current_kprobe();
  551. preempt_enable_no_resched();
  552. break;
  553. case KPROBE_HIT_ACTIVE:
  554. case KPROBE_HIT_SSDONE:
  555. /*
  556. * We increment the nmissed count for accounting,
  557. * we can also use npre/npostfault count for accouting
  558. * these specific fault cases.
  559. */
  560. kprobes_inc_nmissed_count(cur);
  561. /*
  562. * We come here because instructions in the pre/post
  563. * handler caused the page_fault, this could happen
  564. * if handler tries to access user space by
  565. * copy_from_user(), get_user() etc. Let the
  566. * user-specified handler try to fix it first.
  567. */
  568. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  569. return 1;
  570. /*
  571. * In case the user-specified fault handler returned
  572. * zero, try to fix up.
  573. */
  574. if (fixup_exception(regs))
  575. return 1;
  576. /*
  577. * fixup_exception() could not handle it,
  578. * Let do_page_fault() fix it.
  579. */
  580. break;
  581. default:
  582. break;
  583. }
  584. return 0;
  585. }
  586. /*
  587. * Wrapper routine to for handling exceptions.
  588. */
  589. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  590. unsigned long val, void *data)
  591. {
  592. struct die_args *args = (struct die_args *)data;
  593. int ret = NOTIFY_DONE;
  594. if (args->regs && user_mode_vm(args->regs))
  595. return ret;
  596. switch (val) {
  597. case DIE_INT3:
  598. if (kprobe_handler(args->regs))
  599. ret = NOTIFY_STOP;
  600. break;
  601. case DIE_DEBUG:
  602. if (post_kprobe_handler(args->regs))
  603. ret = NOTIFY_STOP;
  604. break;
  605. case DIE_GPF:
  606. case DIE_PAGE_FAULT:
  607. /* kprobe_running() needs smp_processor_id() */
  608. preempt_disable();
  609. if (kprobe_running() &&
  610. kprobe_fault_handler(args->regs, args->trapnr))
  611. ret = NOTIFY_STOP;
  612. preempt_enable();
  613. break;
  614. default:
  615. break;
  616. }
  617. return ret;
  618. }
  619. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  620. {
  621. struct jprobe *jp = container_of(p, struct jprobe, kp);
  622. unsigned long addr;
  623. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  624. kcb->jprobe_saved_regs = *regs;
  625. kcb->jprobe_saved_esp = &regs->esp;
  626. addr = (unsigned long)(kcb->jprobe_saved_esp);
  627. /*
  628. * TBD: As Linus pointed out, gcc assumes that the callee
  629. * owns the argument space and could overwrite it, e.g.
  630. * tailcall optimization. So, to be absolutely safe
  631. * we also save and restore enough stack bytes to cover
  632. * the argument area.
  633. */
  634. memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
  635. MIN_STACK_SIZE(addr));
  636. regs->eflags &= ~IF_MASK;
  637. regs->eip = (unsigned long)(jp->entry);
  638. return 1;
  639. }
  640. void __kprobes jprobe_return(void)
  641. {
  642. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  643. asm volatile (" xchgl %%ebx,%%esp \n"
  644. " int3 \n"
  645. " .globl jprobe_return_end \n"
  646. " jprobe_return_end: \n"
  647. " nop \n"::"b"
  648. (kcb->jprobe_saved_esp):"memory");
  649. }
  650. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  651. {
  652. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  653. u8 *addr = (u8 *) (regs->eip - 1);
  654. unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
  655. struct jprobe *jp = container_of(p, struct jprobe, kp);
  656. if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
  657. if (&regs->esp != kcb->jprobe_saved_esp) {
  658. struct pt_regs *saved_regs =
  659. container_of(kcb->jprobe_saved_esp,
  660. struct pt_regs, esp);
  661. printk("current esp %p does not match saved esp %p\n",
  662. &regs->esp, kcb->jprobe_saved_esp);
  663. printk("Saved registers for jprobe %p\n", jp);
  664. show_registers(saved_regs);
  665. printk("Current registers\n");
  666. show_registers(regs);
  667. BUG();
  668. }
  669. *regs = kcb->jprobe_saved_regs;
  670. memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
  671. MIN_STACK_SIZE(stack_addr));
  672. preempt_enable_no_resched();
  673. return 1;
  674. }
  675. return 0;
  676. }
  677. int __kprobes arch_trampoline_kprobe(struct kprobe *p)
  678. {
  679. return 0;
  680. }
  681. int __init arch_init_kprobes(void)
  682. {
  683. return 0;
  684. }