i8253.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. /*
  2. * i8253.c 8253/PIT functions
  3. *
  4. */
  5. #include <linux/clockchips.h>
  6. #include <linux/init.h>
  7. #include <linux/interrupt.h>
  8. #include <linux/jiffies.h>
  9. #include <linux/module.h>
  10. #include <linux/spinlock.h>
  11. #include <asm/smp.h>
  12. #include <asm/delay.h>
  13. #include <asm/i8253.h>
  14. #include <asm/io.h>
  15. #include <asm/timer.h>
  16. DEFINE_SPINLOCK(i8253_lock);
  17. EXPORT_SYMBOL(i8253_lock);
  18. /*
  19. * HPET replaces the PIT, when enabled. So we need to know, which of
  20. * the two timers is used
  21. */
  22. struct clock_event_device *global_clock_event;
  23. /*
  24. * Initialize the PIT timer.
  25. *
  26. * This is also called after resume to bring the PIT into operation again.
  27. */
  28. static void init_pit_timer(enum clock_event_mode mode,
  29. struct clock_event_device *evt)
  30. {
  31. unsigned long flags;
  32. spin_lock_irqsave(&i8253_lock, flags);
  33. switch(mode) {
  34. case CLOCK_EVT_MODE_PERIODIC:
  35. /* binary, mode 2, LSB/MSB, ch 0 */
  36. outb_p(0x34, PIT_MODE);
  37. outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
  38. outb(LATCH >> 8 , PIT_CH0); /* MSB */
  39. break;
  40. case CLOCK_EVT_MODE_SHUTDOWN:
  41. case CLOCK_EVT_MODE_UNUSED:
  42. if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
  43. evt->mode == CLOCK_EVT_MODE_ONESHOT) {
  44. outb_p(0x30, PIT_MODE);
  45. outb_p(0, PIT_CH0);
  46. outb_p(0, PIT_CH0);
  47. }
  48. break;
  49. case CLOCK_EVT_MODE_ONESHOT:
  50. /* One shot setup */
  51. outb_p(0x38, PIT_MODE);
  52. break;
  53. case CLOCK_EVT_MODE_RESUME:
  54. /* Nothing to do here */
  55. break;
  56. }
  57. spin_unlock_irqrestore(&i8253_lock, flags);
  58. }
  59. /*
  60. * Program the next event in oneshot mode
  61. *
  62. * Delta is given in PIT ticks
  63. */
  64. static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
  65. {
  66. unsigned long flags;
  67. spin_lock_irqsave(&i8253_lock, flags);
  68. outb_p(delta & 0xff , PIT_CH0); /* LSB */
  69. outb(delta >> 8 , PIT_CH0); /* MSB */
  70. spin_unlock_irqrestore(&i8253_lock, flags);
  71. return 0;
  72. }
  73. /*
  74. * On UP the PIT can serve all of the possible timer functions. On SMP systems
  75. * it can be solely used for the global tick.
  76. *
  77. * The profiling and update capabilites are switched off once the local apic is
  78. * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
  79. * !using_apic_timer decisions in do_timer_interrupt_hook()
  80. */
  81. struct clock_event_device pit_clockevent = {
  82. .name = "pit",
  83. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  84. .set_mode = init_pit_timer,
  85. .set_next_event = pit_next_event,
  86. .shift = 32,
  87. .irq = 0,
  88. };
  89. /*
  90. * Initialize the conversion factor and the min/max deltas of the clock event
  91. * structure and register the clock event source with the framework.
  92. */
  93. void __init setup_pit_timer(void)
  94. {
  95. /*
  96. * Start pit with the boot cpu mask and make it global after the
  97. * IO_APIC has been initialized.
  98. */
  99. pit_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
  100. pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, 32);
  101. pit_clockevent.max_delta_ns =
  102. clockevent_delta2ns(0x7FFF, &pit_clockevent);
  103. pit_clockevent.min_delta_ns =
  104. clockevent_delta2ns(0xF, &pit_clockevent);
  105. clockevents_register_device(&pit_clockevent);
  106. global_clock_event = &pit_clockevent;
  107. }
  108. /*
  109. * Since the PIT overflows every tick, its not very useful
  110. * to just read by itself. So use jiffies to emulate a free
  111. * running counter:
  112. */
  113. static cycle_t pit_read(void)
  114. {
  115. unsigned long flags;
  116. int count;
  117. u32 jifs;
  118. static int old_count;
  119. static u32 old_jifs;
  120. spin_lock_irqsave(&i8253_lock, flags);
  121. /*
  122. * Although our caller may have the read side of xtime_lock,
  123. * this is now a seqlock, and we are cheating in this routine
  124. * by having side effects on state that we cannot undo if
  125. * there is a collision on the seqlock and our caller has to
  126. * retry. (Namely, old_jifs and old_count.) So we must treat
  127. * jiffies as volatile despite the lock. We read jiffies
  128. * before latching the timer count to guarantee that although
  129. * the jiffies value might be older than the count (that is,
  130. * the counter may underflow between the last point where
  131. * jiffies was incremented and the point where we latch the
  132. * count), it cannot be newer.
  133. */
  134. jifs = jiffies;
  135. outb_p(0x00, PIT_MODE); /* latch the count ASAP */
  136. count = inb_p(PIT_CH0); /* read the latched count */
  137. count |= inb_p(PIT_CH0) << 8;
  138. /* VIA686a test code... reset the latch if count > max + 1 */
  139. if (count > LATCH) {
  140. outb_p(0x34, PIT_MODE);
  141. outb_p(LATCH & 0xff, PIT_CH0);
  142. outb(LATCH >> 8, PIT_CH0);
  143. count = LATCH - 1;
  144. }
  145. /*
  146. * It's possible for count to appear to go the wrong way for a
  147. * couple of reasons:
  148. *
  149. * 1. The timer counter underflows, but we haven't handled the
  150. * resulting interrupt and incremented jiffies yet.
  151. * 2. Hardware problem with the timer, not giving us continuous time,
  152. * the counter does small "jumps" upwards on some Pentium systems,
  153. * (see c't 95/10 page 335 for Neptun bug.)
  154. *
  155. * Previous attempts to handle these cases intelligently were
  156. * buggy, so we just do the simple thing now.
  157. */
  158. if (count > old_count && jifs == old_jifs) {
  159. count = old_count;
  160. }
  161. old_count = count;
  162. old_jifs = jifs;
  163. spin_unlock_irqrestore(&i8253_lock, flags);
  164. count = (LATCH - 1) - count;
  165. return (cycle_t)(jifs * LATCH) + count;
  166. }
  167. static struct clocksource clocksource_pit = {
  168. .name = "pit",
  169. .rating = 110,
  170. .read = pit_read,
  171. .mask = CLOCKSOURCE_MASK(32),
  172. .mult = 0,
  173. .shift = 20,
  174. };
  175. static int __init init_pit_clocksource(void)
  176. {
  177. if (num_possible_cpus() > 1) /* PIT does not scale! */
  178. return 0;
  179. clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
  180. return clocksource_register(&clocksource_pit);
  181. }
  182. arch_initcall(init_pit_clocksource);