md.c 127 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/poll.h>
  37. #include <linux/mutex.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. /*
  56. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  57. * is 1000 KB/sec, so the extra system load does not show up that much.
  58. * Increase it if you want to have more _guaranteed_ speed. Note that
  59. * the RAID driver will use the maximum available bandwidth if the IO
  60. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  61. * speed limit - in case reconstruction slows down your system despite
  62. * idle IO detection.
  63. *
  64. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  65. * or /sys/block/mdX/md/sync_speed_{min,max}
  66. */
  67. static int sysctl_speed_limit_min = 1000;
  68. static int sysctl_speed_limit_max = 200000;
  69. static inline int speed_min(mddev_t *mddev)
  70. {
  71. return mddev->sync_speed_min ?
  72. mddev->sync_speed_min : sysctl_speed_limit_min;
  73. }
  74. static inline int speed_max(mddev_t *mddev)
  75. {
  76. return mddev->sync_speed_max ?
  77. mddev->sync_speed_max : sysctl_speed_limit_max;
  78. }
  79. static struct ctl_table_header *raid_table_header;
  80. static ctl_table raid_table[] = {
  81. {
  82. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  83. .procname = "speed_limit_min",
  84. .data = &sysctl_speed_limit_min,
  85. .maxlen = sizeof(int),
  86. .mode = 0644,
  87. .proc_handler = &proc_dointvec,
  88. },
  89. {
  90. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  91. .procname = "speed_limit_max",
  92. .data = &sysctl_speed_limit_max,
  93. .maxlen = sizeof(int),
  94. .mode = 0644,
  95. .proc_handler = &proc_dointvec,
  96. },
  97. { .ctl_name = 0 }
  98. };
  99. static ctl_table raid_dir_table[] = {
  100. {
  101. .ctl_name = DEV_RAID,
  102. .procname = "raid",
  103. .maxlen = 0,
  104. .mode = 0555,
  105. .child = raid_table,
  106. },
  107. { .ctl_name = 0 }
  108. };
  109. static ctl_table raid_root_table[] = {
  110. {
  111. .ctl_name = CTL_DEV,
  112. .procname = "dev",
  113. .maxlen = 0,
  114. .mode = 0555,
  115. .child = raid_dir_table,
  116. },
  117. { .ctl_name = 0 }
  118. };
  119. static struct block_device_operations md_fops;
  120. static int start_readonly;
  121. /*
  122. * We have a system wide 'event count' that is incremented
  123. * on any 'interesting' event, and readers of /proc/mdstat
  124. * can use 'poll' or 'select' to find out when the event
  125. * count increases.
  126. *
  127. * Events are:
  128. * start array, stop array, error, add device, remove device,
  129. * start build, activate spare
  130. */
  131. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  132. static atomic_t md_event_count;
  133. void md_new_event(mddev_t *mddev)
  134. {
  135. atomic_inc(&md_event_count);
  136. wake_up(&md_event_waiters);
  137. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  138. }
  139. EXPORT_SYMBOL_GPL(md_new_event);
  140. /* Alternate version that can be called from interrupts
  141. * when calling sysfs_notify isn't needed.
  142. */
  143. void md_new_event_inintr(mddev_t *mddev)
  144. {
  145. atomic_inc(&md_event_count);
  146. wake_up(&md_event_waiters);
  147. }
  148. /*
  149. * Enables to iterate over all existing md arrays
  150. * all_mddevs_lock protects this list.
  151. */
  152. static LIST_HEAD(all_mddevs);
  153. static DEFINE_SPINLOCK(all_mddevs_lock);
  154. /*
  155. * iterates through all used mddevs in the system.
  156. * We take care to grab the all_mddevs_lock whenever navigating
  157. * the list, and to always hold a refcount when unlocked.
  158. * Any code which breaks out of this loop while own
  159. * a reference to the current mddev and must mddev_put it.
  160. */
  161. #define ITERATE_MDDEV(mddev,tmp) \
  162. \
  163. for (({ spin_lock(&all_mddevs_lock); \
  164. tmp = all_mddevs.next; \
  165. mddev = NULL;}); \
  166. ({ if (tmp != &all_mddevs) \
  167. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  168. spin_unlock(&all_mddevs_lock); \
  169. if (mddev) mddev_put(mddev); \
  170. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  171. tmp != &all_mddevs;}); \
  172. ({ spin_lock(&all_mddevs_lock); \
  173. tmp = tmp->next;}) \
  174. )
  175. static int md_fail_request (request_queue_t *q, struct bio *bio)
  176. {
  177. bio_io_error(bio, bio->bi_size);
  178. return 0;
  179. }
  180. static inline mddev_t *mddev_get(mddev_t *mddev)
  181. {
  182. atomic_inc(&mddev->active);
  183. return mddev;
  184. }
  185. static void mddev_put(mddev_t *mddev)
  186. {
  187. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  188. return;
  189. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  190. list_del(&mddev->all_mddevs);
  191. spin_unlock(&all_mddevs_lock);
  192. blk_cleanup_queue(mddev->queue);
  193. kobject_unregister(&mddev->kobj);
  194. } else
  195. spin_unlock(&all_mddevs_lock);
  196. }
  197. static mddev_t * mddev_find(dev_t unit)
  198. {
  199. mddev_t *mddev, *new = NULL;
  200. retry:
  201. spin_lock(&all_mddevs_lock);
  202. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  203. if (mddev->unit == unit) {
  204. mddev_get(mddev);
  205. spin_unlock(&all_mddevs_lock);
  206. kfree(new);
  207. return mddev;
  208. }
  209. if (new) {
  210. list_add(&new->all_mddevs, &all_mddevs);
  211. spin_unlock(&all_mddevs_lock);
  212. return new;
  213. }
  214. spin_unlock(&all_mddevs_lock);
  215. new = kzalloc(sizeof(*new), GFP_KERNEL);
  216. if (!new)
  217. return NULL;
  218. new->unit = unit;
  219. if (MAJOR(unit) == MD_MAJOR)
  220. new->md_minor = MINOR(unit);
  221. else
  222. new->md_minor = MINOR(unit) >> MdpMinorShift;
  223. mutex_init(&new->reconfig_mutex);
  224. INIT_LIST_HEAD(&new->disks);
  225. INIT_LIST_HEAD(&new->all_mddevs);
  226. init_timer(&new->safemode_timer);
  227. atomic_set(&new->active, 1);
  228. spin_lock_init(&new->write_lock);
  229. init_waitqueue_head(&new->sb_wait);
  230. new->queue = blk_alloc_queue(GFP_KERNEL);
  231. if (!new->queue) {
  232. kfree(new);
  233. return NULL;
  234. }
  235. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  236. blk_queue_make_request(new->queue, md_fail_request);
  237. goto retry;
  238. }
  239. static inline int mddev_lock(mddev_t * mddev)
  240. {
  241. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  242. }
  243. static inline int mddev_trylock(mddev_t * mddev)
  244. {
  245. return mutex_trylock(&mddev->reconfig_mutex);
  246. }
  247. static inline void mddev_unlock(mddev_t * mddev)
  248. {
  249. mutex_unlock(&mddev->reconfig_mutex);
  250. md_wakeup_thread(mddev->thread);
  251. }
  252. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  253. {
  254. mdk_rdev_t * rdev;
  255. struct list_head *tmp;
  256. ITERATE_RDEV(mddev,rdev,tmp) {
  257. if (rdev->desc_nr == nr)
  258. return rdev;
  259. }
  260. return NULL;
  261. }
  262. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  263. {
  264. struct list_head *tmp;
  265. mdk_rdev_t *rdev;
  266. ITERATE_RDEV(mddev,rdev,tmp) {
  267. if (rdev->bdev->bd_dev == dev)
  268. return rdev;
  269. }
  270. return NULL;
  271. }
  272. static struct mdk_personality *find_pers(int level, char *clevel)
  273. {
  274. struct mdk_personality *pers;
  275. list_for_each_entry(pers, &pers_list, list) {
  276. if (level != LEVEL_NONE && pers->level == level)
  277. return pers;
  278. if (strcmp(pers->name, clevel)==0)
  279. return pers;
  280. }
  281. return NULL;
  282. }
  283. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  284. {
  285. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  286. return MD_NEW_SIZE_BLOCKS(size);
  287. }
  288. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  289. {
  290. sector_t size;
  291. size = rdev->sb_offset;
  292. if (chunk_size)
  293. size &= ~((sector_t)chunk_size/1024 - 1);
  294. return size;
  295. }
  296. static int alloc_disk_sb(mdk_rdev_t * rdev)
  297. {
  298. if (rdev->sb_page)
  299. MD_BUG();
  300. rdev->sb_page = alloc_page(GFP_KERNEL);
  301. if (!rdev->sb_page) {
  302. printk(KERN_ALERT "md: out of memory.\n");
  303. return -EINVAL;
  304. }
  305. return 0;
  306. }
  307. static void free_disk_sb(mdk_rdev_t * rdev)
  308. {
  309. if (rdev->sb_page) {
  310. put_page(rdev->sb_page);
  311. rdev->sb_loaded = 0;
  312. rdev->sb_page = NULL;
  313. rdev->sb_offset = 0;
  314. rdev->size = 0;
  315. }
  316. }
  317. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  318. {
  319. mdk_rdev_t *rdev = bio->bi_private;
  320. mddev_t *mddev = rdev->mddev;
  321. if (bio->bi_size)
  322. return 1;
  323. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  324. md_error(mddev, rdev);
  325. if (atomic_dec_and_test(&mddev->pending_writes))
  326. wake_up(&mddev->sb_wait);
  327. bio_put(bio);
  328. return 0;
  329. }
  330. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  331. {
  332. struct bio *bio2 = bio->bi_private;
  333. mdk_rdev_t *rdev = bio2->bi_private;
  334. mddev_t *mddev = rdev->mddev;
  335. if (bio->bi_size)
  336. return 1;
  337. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  338. error == -EOPNOTSUPP) {
  339. unsigned long flags;
  340. /* barriers don't appear to be supported :-( */
  341. set_bit(BarriersNotsupp, &rdev->flags);
  342. mddev->barriers_work = 0;
  343. spin_lock_irqsave(&mddev->write_lock, flags);
  344. bio2->bi_next = mddev->biolist;
  345. mddev->biolist = bio2;
  346. spin_unlock_irqrestore(&mddev->write_lock, flags);
  347. wake_up(&mddev->sb_wait);
  348. bio_put(bio);
  349. return 0;
  350. }
  351. bio_put(bio2);
  352. bio->bi_private = rdev;
  353. return super_written(bio, bytes_done, error);
  354. }
  355. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  356. sector_t sector, int size, struct page *page)
  357. {
  358. /* write first size bytes of page to sector of rdev
  359. * Increment mddev->pending_writes before returning
  360. * and decrement it on completion, waking up sb_wait
  361. * if zero is reached.
  362. * If an error occurred, call md_error
  363. *
  364. * As we might need to resubmit the request if BIO_RW_BARRIER
  365. * causes ENOTSUPP, we allocate a spare bio...
  366. */
  367. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  368. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  369. bio->bi_bdev = rdev->bdev;
  370. bio->bi_sector = sector;
  371. bio_add_page(bio, page, size, 0);
  372. bio->bi_private = rdev;
  373. bio->bi_end_io = super_written;
  374. bio->bi_rw = rw;
  375. atomic_inc(&mddev->pending_writes);
  376. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  377. struct bio *rbio;
  378. rw |= (1<<BIO_RW_BARRIER);
  379. rbio = bio_clone(bio, GFP_NOIO);
  380. rbio->bi_private = bio;
  381. rbio->bi_end_io = super_written_barrier;
  382. submit_bio(rw, rbio);
  383. } else
  384. submit_bio(rw, bio);
  385. }
  386. void md_super_wait(mddev_t *mddev)
  387. {
  388. /* wait for all superblock writes that were scheduled to complete.
  389. * if any had to be retried (due to BARRIER problems), retry them
  390. */
  391. DEFINE_WAIT(wq);
  392. for(;;) {
  393. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  394. if (atomic_read(&mddev->pending_writes)==0)
  395. break;
  396. while (mddev->biolist) {
  397. struct bio *bio;
  398. spin_lock_irq(&mddev->write_lock);
  399. bio = mddev->biolist;
  400. mddev->biolist = bio->bi_next ;
  401. bio->bi_next = NULL;
  402. spin_unlock_irq(&mddev->write_lock);
  403. submit_bio(bio->bi_rw, bio);
  404. }
  405. schedule();
  406. }
  407. finish_wait(&mddev->sb_wait, &wq);
  408. }
  409. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  410. {
  411. if (bio->bi_size)
  412. return 1;
  413. complete((struct completion*)bio->bi_private);
  414. return 0;
  415. }
  416. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  417. struct page *page, int rw)
  418. {
  419. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  420. struct completion event;
  421. int ret;
  422. rw |= (1 << BIO_RW_SYNC);
  423. bio->bi_bdev = bdev;
  424. bio->bi_sector = sector;
  425. bio_add_page(bio, page, size, 0);
  426. init_completion(&event);
  427. bio->bi_private = &event;
  428. bio->bi_end_io = bi_complete;
  429. submit_bio(rw, bio);
  430. wait_for_completion(&event);
  431. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  432. bio_put(bio);
  433. return ret;
  434. }
  435. EXPORT_SYMBOL_GPL(sync_page_io);
  436. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  437. {
  438. char b[BDEVNAME_SIZE];
  439. if (!rdev->sb_page) {
  440. MD_BUG();
  441. return -EINVAL;
  442. }
  443. if (rdev->sb_loaded)
  444. return 0;
  445. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  446. goto fail;
  447. rdev->sb_loaded = 1;
  448. return 0;
  449. fail:
  450. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  451. bdevname(rdev->bdev,b));
  452. return -EINVAL;
  453. }
  454. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  455. {
  456. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  457. (sb1->set_uuid1 == sb2->set_uuid1) &&
  458. (sb1->set_uuid2 == sb2->set_uuid2) &&
  459. (sb1->set_uuid3 == sb2->set_uuid3))
  460. return 1;
  461. return 0;
  462. }
  463. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  464. {
  465. int ret;
  466. mdp_super_t *tmp1, *tmp2;
  467. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  468. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  469. if (!tmp1 || !tmp2) {
  470. ret = 0;
  471. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  472. goto abort;
  473. }
  474. *tmp1 = *sb1;
  475. *tmp2 = *sb2;
  476. /*
  477. * nr_disks is not constant
  478. */
  479. tmp1->nr_disks = 0;
  480. tmp2->nr_disks = 0;
  481. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  482. ret = 0;
  483. else
  484. ret = 1;
  485. abort:
  486. kfree(tmp1);
  487. kfree(tmp2);
  488. return ret;
  489. }
  490. static unsigned int calc_sb_csum(mdp_super_t * sb)
  491. {
  492. unsigned int disk_csum, csum;
  493. disk_csum = sb->sb_csum;
  494. sb->sb_csum = 0;
  495. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  496. sb->sb_csum = disk_csum;
  497. return csum;
  498. }
  499. /*
  500. * Handle superblock details.
  501. * We want to be able to handle multiple superblock formats
  502. * so we have a common interface to them all, and an array of
  503. * different handlers.
  504. * We rely on user-space to write the initial superblock, and support
  505. * reading and updating of superblocks.
  506. * Interface methods are:
  507. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  508. * loads and validates a superblock on dev.
  509. * if refdev != NULL, compare superblocks on both devices
  510. * Return:
  511. * 0 - dev has a superblock that is compatible with refdev
  512. * 1 - dev has a superblock that is compatible and newer than refdev
  513. * so dev should be used as the refdev in future
  514. * -EINVAL superblock incompatible or invalid
  515. * -othererror e.g. -EIO
  516. *
  517. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  518. * Verify that dev is acceptable into mddev.
  519. * The first time, mddev->raid_disks will be 0, and data from
  520. * dev should be merged in. Subsequent calls check that dev
  521. * is new enough. Return 0 or -EINVAL
  522. *
  523. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  524. * Update the superblock for rdev with data in mddev
  525. * This does not write to disc.
  526. *
  527. */
  528. struct super_type {
  529. char *name;
  530. struct module *owner;
  531. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  532. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  533. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  534. };
  535. /*
  536. * load_super for 0.90.0
  537. */
  538. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  539. {
  540. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  541. mdp_super_t *sb;
  542. int ret;
  543. sector_t sb_offset;
  544. /*
  545. * Calculate the position of the superblock,
  546. * it's at the end of the disk.
  547. *
  548. * It also happens to be a multiple of 4Kb.
  549. */
  550. sb_offset = calc_dev_sboffset(rdev->bdev);
  551. rdev->sb_offset = sb_offset;
  552. ret = read_disk_sb(rdev, MD_SB_BYTES);
  553. if (ret) return ret;
  554. ret = -EINVAL;
  555. bdevname(rdev->bdev, b);
  556. sb = (mdp_super_t*)page_address(rdev->sb_page);
  557. if (sb->md_magic != MD_SB_MAGIC) {
  558. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  559. b);
  560. goto abort;
  561. }
  562. if (sb->major_version != 0 ||
  563. sb->minor_version < 90 ||
  564. sb->minor_version > 91) {
  565. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  566. sb->major_version, sb->minor_version,
  567. b);
  568. goto abort;
  569. }
  570. if (sb->raid_disks <= 0)
  571. goto abort;
  572. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  573. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  574. b);
  575. goto abort;
  576. }
  577. rdev->preferred_minor = sb->md_minor;
  578. rdev->data_offset = 0;
  579. rdev->sb_size = MD_SB_BYTES;
  580. if (sb->level == LEVEL_MULTIPATH)
  581. rdev->desc_nr = -1;
  582. else
  583. rdev->desc_nr = sb->this_disk.number;
  584. if (refdev == 0)
  585. ret = 1;
  586. else {
  587. __u64 ev1, ev2;
  588. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  589. if (!uuid_equal(refsb, sb)) {
  590. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  591. b, bdevname(refdev->bdev,b2));
  592. goto abort;
  593. }
  594. if (!sb_equal(refsb, sb)) {
  595. printk(KERN_WARNING "md: %s has same UUID"
  596. " but different superblock to %s\n",
  597. b, bdevname(refdev->bdev, b2));
  598. goto abort;
  599. }
  600. ev1 = md_event(sb);
  601. ev2 = md_event(refsb);
  602. if (ev1 > ev2)
  603. ret = 1;
  604. else
  605. ret = 0;
  606. }
  607. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  608. if (rdev->size < sb->size && sb->level > 1)
  609. /* "this cannot possibly happen" ... */
  610. ret = -EINVAL;
  611. abort:
  612. return ret;
  613. }
  614. /*
  615. * validate_super for 0.90.0
  616. */
  617. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  618. {
  619. mdp_disk_t *desc;
  620. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  621. rdev->raid_disk = -1;
  622. rdev->flags = 0;
  623. if (mddev->raid_disks == 0) {
  624. mddev->major_version = 0;
  625. mddev->minor_version = sb->minor_version;
  626. mddev->patch_version = sb->patch_version;
  627. mddev->persistent = ! sb->not_persistent;
  628. mddev->chunk_size = sb->chunk_size;
  629. mddev->ctime = sb->ctime;
  630. mddev->utime = sb->utime;
  631. mddev->level = sb->level;
  632. mddev->clevel[0] = 0;
  633. mddev->layout = sb->layout;
  634. mddev->raid_disks = sb->raid_disks;
  635. mddev->size = sb->size;
  636. mddev->events = md_event(sb);
  637. mddev->bitmap_offset = 0;
  638. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  639. if (mddev->minor_version >= 91) {
  640. mddev->reshape_position = sb->reshape_position;
  641. mddev->delta_disks = sb->delta_disks;
  642. mddev->new_level = sb->new_level;
  643. mddev->new_layout = sb->new_layout;
  644. mddev->new_chunk = sb->new_chunk;
  645. } else {
  646. mddev->reshape_position = MaxSector;
  647. mddev->delta_disks = 0;
  648. mddev->new_level = mddev->level;
  649. mddev->new_layout = mddev->layout;
  650. mddev->new_chunk = mddev->chunk_size;
  651. }
  652. if (sb->state & (1<<MD_SB_CLEAN))
  653. mddev->recovery_cp = MaxSector;
  654. else {
  655. if (sb->events_hi == sb->cp_events_hi &&
  656. sb->events_lo == sb->cp_events_lo) {
  657. mddev->recovery_cp = sb->recovery_cp;
  658. } else
  659. mddev->recovery_cp = 0;
  660. }
  661. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  662. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  663. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  664. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  665. mddev->max_disks = MD_SB_DISKS;
  666. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  667. mddev->bitmap_file == NULL) {
  668. if (mddev->level != 1 && mddev->level != 4
  669. && mddev->level != 5 && mddev->level != 6
  670. && mddev->level != 10) {
  671. /* FIXME use a better test */
  672. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  673. return -EINVAL;
  674. }
  675. mddev->bitmap_offset = mddev->default_bitmap_offset;
  676. }
  677. } else if (mddev->pers == NULL) {
  678. /* Insist on good event counter while assembling */
  679. __u64 ev1 = md_event(sb);
  680. ++ev1;
  681. if (ev1 < mddev->events)
  682. return -EINVAL;
  683. } else if (mddev->bitmap) {
  684. /* if adding to array with a bitmap, then we can accept an
  685. * older device ... but not too old.
  686. */
  687. __u64 ev1 = md_event(sb);
  688. if (ev1 < mddev->bitmap->events_cleared)
  689. return 0;
  690. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  691. return 0;
  692. if (mddev->level != LEVEL_MULTIPATH) {
  693. desc = sb->disks + rdev->desc_nr;
  694. if (desc->state & (1<<MD_DISK_FAULTY))
  695. set_bit(Faulty, &rdev->flags);
  696. else if (desc->state & (1<<MD_DISK_SYNC) &&
  697. desc->raid_disk < mddev->raid_disks) {
  698. set_bit(In_sync, &rdev->flags);
  699. rdev->raid_disk = desc->raid_disk;
  700. }
  701. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  702. set_bit(WriteMostly, &rdev->flags);
  703. } else /* MULTIPATH are always insync */
  704. set_bit(In_sync, &rdev->flags);
  705. return 0;
  706. }
  707. /*
  708. * sync_super for 0.90.0
  709. */
  710. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  711. {
  712. mdp_super_t *sb;
  713. struct list_head *tmp;
  714. mdk_rdev_t *rdev2;
  715. int next_spare = mddev->raid_disks;
  716. /* make rdev->sb match mddev data..
  717. *
  718. * 1/ zero out disks
  719. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  720. * 3/ any empty disks < next_spare become removed
  721. *
  722. * disks[0] gets initialised to REMOVED because
  723. * we cannot be sure from other fields if it has
  724. * been initialised or not.
  725. */
  726. int i;
  727. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  728. rdev->sb_size = MD_SB_BYTES;
  729. sb = (mdp_super_t*)page_address(rdev->sb_page);
  730. memset(sb, 0, sizeof(*sb));
  731. sb->md_magic = MD_SB_MAGIC;
  732. sb->major_version = mddev->major_version;
  733. sb->patch_version = mddev->patch_version;
  734. sb->gvalid_words = 0; /* ignored */
  735. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  736. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  737. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  738. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  739. sb->ctime = mddev->ctime;
  740. sb->level = mddev->level;
  741. sb->size = mddev->size;
  742. sb->raid_disks = mddev->raid_disks;
  743. sb->md_minor = mddev->md_minor;
  744. sb->not_persistent = !mddev->persistent;
  745. sb->utime = mddev->utime;
  746. sb->state = 0;
  747. sb->events_hi = (mddev->events>>32);
  748. sb->events_lo = (u32)mddev->events;
  749. if (mddev->reshape_position == MaxSector)
  750. sb->minor_version = 90;
  751. else {
  752. sb->minor_version = 91;
  753. sb->reshape_position = mddev->reshape_position;
  754. sb->new_level = mddev->new_level;
  755. sb->delta_disks = mddev->delta_disks;
  756. sb->new_layout = mddev->new_layout;
  757. sb->new_chunk = mddev->new_chunk;
  758. }
  759. mddev->minor_version = sb->minor_version;
  760. if (mddev->in_sync)
  761. {
  762. sb->recovery_cp = mddev->recovery_cp;
  763. sb->cp_events_hi = (mddev->events>>32);
  764. sb->cp_events_lo = (u32)mddev->events;
  765. if (mddev->recovery_cp == MaxSector)
  766. sb->state = (1<< MD_SB_CLEAN);
  767. } else
  768. sb->recovery_cp = 0;
  769. sb->layout = mddev->layout;
  770. sb->chunk_size = mddev->chunk_size;
  771. if (mddev->bitmap && mddev->bitmap_file == NULL)
  772. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  773. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  774. ITERATE_RDEV(mddev,rdev2,tmp) {
  775. mdp_disk_t *d;
  776. int desc_nr;
  777. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  778. && !test_bit(Faulty, &rdev2->flags))
  779. desc_nr = rdev2->raid_disk;
  780. else
  781. desc_nr = next_spare++;
  782. rdev2->desc_nr = desc_nr;
  783. d = &sb->disks[rdev2->desc_nr];
  784. nr_disks++;
  785. d->number = rdev2->desc_nr;
  786. d->major = MAJOR(rdev2->bdev->bd_dev);
  787. d->minor = MINOR(rdev2->bdev->bd_dev);
  788. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  789. && !test_bit(Faulty, &rdev2->flags))
  790. d->raid_disk = rdev2->raid_disk;
  791. else
  792. d->raid_disk = rdev2->desc_nr; /* compatibility */
  793. if (test_bit(Faulty, &rdev2->flags))
  794. d->state = (1<<MD_DISK_FAULTY);
  795. else if (test_bit(In_sync, &rdev2->flags)) {
  796. d->state = (1<<MD_DISK_ACTIVE);
  797. d->state |= (1<<MD_DISK_SYNC);
  798. active++;
  799. working++;
  800. } else {
  801. d->state = 0;
  802. spare++;
  803. working++;
  804. }
  805. if (test_bit(WriteMostly, &rdev2->flags))
  806. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  807. }
  808. /* now set the "removed" and "faulty" bits on any missing devices */
  809. for (i=0 ; i < mddev->raid_disks ; i++) {
  810. mdp_disk_t *d = &sb->disks[i];
  811. if (d->state == 0 && d->number == 0) {
  812. d->number = i;
  813. d->raid_disk = i;
  814. d->state = (1<<MD_DISK_REMOVED);
  815. d->state |= (1<<MD_DISK_FAULTY);
  816. failed++;
  817. }
  818. }
  819. sb->nr_disks = nr_disks;
  820. sb->active_disks = active;
  821. sb->working_disks = working;
  822. sb->failed_disks = failed;
  823. sb->spare_disks = spare;
  824. sb->this_disk = sb->disks[rdev->desc_nr];
  825. sb->sb_csum = calc_sb_csum(sb);
  826. }
  827. /*
  828. * version 1 superblock
  829. */
  830. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  831. {
  832. unsigned int disk_csum, csum;
  833. unsigned long long newcsum;
  834. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  835. unsigned int *isuper = (unsigned int*)sb;
  836. int i;
  837. disk_csum = sb->sb_csum;
  838. sb->sb_csum = 0;
  839. newcsum = 0;
  840. for (i=0; size>=4; size -= 4 )
  841. newcsum += le32_to_cpu(*isuper++);
  842. if (size == 2)
  843. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  844. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  845. sb->sb_csum = disk_csum;
  846. return cpu_to_le32(csum);
  847. }
  848. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  849. {
  850. struct mdp_superblock_1 *sb;
  851. int ret;
  852. sector_t sb_offset;
  853. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  854. int bmask;
  855. /*
  856. * Calculate the position of the superblock.
  857. * It is always aligned to a 4K boundary and
  858. * depeding on minor_version, it can be:
  859. * 0: At least 8K, but less than 12K, from end of device
  860. * 1: At start of device
  861. * 2: 4K from start of device.
  862. */
  863. switch(minor_version) {
  864. case 0:
  865. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  866. sb_offset -= 8*2;
  867. sb_offset &= ~(sector_t)(4*2-1);
  868. /* convert from sectors to K */
  869. sb_offset /= 2;
  870. break;
  871. case 1:
  872. sb_offset = 0;
  873. break;
  874. case 2:
  875. sb_offset = 4;
  876. break;
  877. default:
  878. return -EINVAL;
  879. }
  880. rdev->sb_offset = sb_offset;
  881. /* superblock is rarely larger than 1K, but it can be larger,
  882. * and it is safe to read 4k, so we do that
  883. */
  884. ret = read_disk_sb(rdev, 4096);
  885. if (ret) return ret;
  886. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  887. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  888. sb->major_version != cpu_to_le32(1) ||
  889. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  890. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  891. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  892. return -EINVAL;
  893. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  894. printk("md: invalid superblock checksum on %s\n",
  895. bdevname(rdev->bdev,b));
  896. return -EINVAL;
  897. }
  898. if (le64_to_cpu(sb->data_size) < 10) {
  899. printk("md: data_size too small on %s\n",
  900. bdevname(rdev->bdev,b));
  901. return -EINVAL;
  902. }
  903. rdev->preferred_minor = 0xffff;
  904. rdev->data_offset = le64_to_cpu(sb->data_offset);
  905. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  906. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  907. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  908. if (rdev->sb_size & bmask)
  909. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  910. if (refdev == 0)
  911. ret = 1;
  912. else {
  913. __u64 ev1, ev2;
  914. struct mdp_superblock_1 *refsb =
  915. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  916. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  917. sb->level != refsb->level ||
  918. sb->layout != refsb->layout ||
  919. sb->chunksize != refsb->chunksize) {
  920. printk(KERN_WARNING "md: %s has strangely different"
  921. " superblock to %s\n",
  922. bdevname(rdev->bdev,b),
  923. bdevname(refdev->bdev,b2));
  924. return -EINVAL;
  925. }
  926. ev1 = le64_to_cpu(sb->events);
  927. ev2 = le64_to_cpu(refsb->events);
  928. if (ev1 > ev2)
  929. ret = 1;
  930. else
  931. ret = 0;
  932. }
  933. if (minor_version)
  934. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  935. else
  936. rdev->size = rdev->sb_offset;
  937. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  938. return -EINVAL;
  939. rdev->size = le64_to_cpu(sb->data_size)/2;
  940. if (le32_to_cpu(sb->chunksize))
  941. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  942. if (le32_to_cpu(sb->size) > rdev->size*2)
  943. return -EINVAL;
  944. return ret;
  945. }
  946. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  947. {
  948. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  949. rdev->raid_disk = -1;
  950. rdev->flags = 0;
  951. if (mddev->raid_disks == 0) {
  952. mddev->major_version = 1;
  953. mddev->patch_version = 0;
  954. mddev->persistent = 1;
  955. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  956. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  957. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  958. mddev->level = le32_to_cpu(sb->level);
  959. mddev->clevel[0] = 0;
  960. mddev->layout = le32_to_cpu(sb->layout);
  961. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  962. mddev->size = le64_to_cpu(sb->size)/2;
  963. mddev->events = le64_to_cpu(sb->events);
  964. mddev->bitmap_offset = 0;
  965. mddev->default_bitmap_offset = 1024 >> 9;
  966. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  967. memcpy(mddev->uuid, sb->set_uuid, 16);
  968. mddev->max_disks = (4096-256)/2;
  969. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  970. mddev->bitmap_file == NULL ) {
  971. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
  972. && mddev->level != 10) {
  973. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  974. return -EINVAL;
  975. }
  976. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  977. }
  978. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  979. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  980. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  981. mddev->new_level = le32_to_cpu(sb->new_level);
  982. mddev->new_layout = le32_to_cpu(sb->new_layout);
  983. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  984. } else {
  985. mddev->reshape_position = MaxSector;
  986. mddev->delta_disks = 0;
  987. mddev->new_level = mddev->level;
  988. mddev->new_layout = mddev->layout;
  989. mddev->new_chunk = mddev->chunk_size;
  990. }
  991. } else if (mddev->pers == NULL) {
  992. /* Insist of good event counter while assembling */
  993. __u64 ev1 = le64_to_cpu(sb->events);
  994. ++ev1;
  995. if (ev1 < mddev->events)
  996. return -EINVAL;
  997. } else if (mddev->bitmap) {
  998. /* If adding to array with a bitmap, then we can accept an
  999. * older device, but not too old.
  1000. */
  1001. __u64 ev1 = le64_to_cpu(sb->events);
  1002. if (ev1 < mddev->bitmap->events_cleared)
  1003. return 0;
  1004. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  1005. return 0;
  1006. if (mddev->level != LEVEL_MULTIPATH) {
  1007. int role;
  1008. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1009. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1010. switch(role) {
  1011. case 0xffff: /* spare */
  1012. break;
  1013. case 0xfffe: /* faulty */
  1014. set_bit(Faulty, &rdev->flags);
  1015. break;
  1016. default:
  1017. set_bit(In_sync, &rdev->flags);
  1018. rdev->raid_disk = role;
  1019. break;
  1020. }
  1021. if (sb->devflags & WriteMostly1)
  1022. set_bit(WriteMostly, &rdev->flags);
  1023. } else /* MULTIPATH are always insync */
  1024. set_bit(In_sync, &rdev->flags);
  1025. return 0;
  1026. }
  1027. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1028. {
  1029. struct mdp_superblock_1 *sb;
  1030. struct list_head *tmp;
  1031. mdk_rdev_t *rdev2;
  1032. int max_dev, i;
  1033. /* make rdev->sb match mddev and rdev data. */
  1034. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1035. sb->feature_map = 0;
  1036. sb->pad0 = 0;
  1037. memset(sb->pad1, 0, sizeof(sb->pad1));
  1038. memset(sb->pad2, 0, sizeof(sb->pad2));
  1039. memset(sb->pad3, 0, sizeof(sb->pad3));
  1040. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1041. sb->events = cpu_to_le64(mddev->events);
  1042. if (mddev->in_sync)
  1043. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1044. else
  1045. sb->resync_offset = cpu_to_le64(0);
  1046. sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
  1047. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1048. sb->size = cpu_to_le64(mddev->size<<1);
  1049. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1050. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1051. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1052. }
  1053. if (mddev->reshape_position != MaxSector) {
  1054. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1055. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1056. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1057. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1058. sb->new_level = cpu_to_le32(mddev->new_level);
  1059. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1060. }
  1061. max_dev = 0;
  1062. ITERATE_RDEV(mddev,rdev2,tmp)
  1063. if (rdev2->desc_nr+1 > max_dev)
  1064. max_dev = rdev2->desc_nr+1;
  1065. sb->max_dev = cpu_to_le32(max_dev);
  1066. for (i=0; i<max_dev;i++)
  1067. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1068. ITERATE_RDEV(mddev,rdev2,tmp) {
  1069. i = rdev2->desc_nr;
  1070. if (test_bit(Faulty, &rdev2->flags))
  1071. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1072. else if (test_bit(In_sync, &rdev2->flags))
  1073. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1074. else
  1075. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1076. }
  1077. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  1078. sb->sb_csum = calc_sb_1_csum(sb);
  1079. }
  1080. static struct super_type super_types[] = {
  1081. [0] = {
  1082. .name = "0.90.0",
  1083. .owner = THIS_MODULE,
  1084. .load_super = super_90_load,
  1085. .validate_super = super_90_validate,
  1086. .sync_super = super_90_sync,
  1087. },
  1088. [1] = {
  1089. .name = "md-1",
  1090. .owner = THIS_MODULE,
  1091. .load_super = super_1_load,
  1092. .validate_super = super_1_validate,
  1093. .sync_super = super_1_sync,
  1094. },
  1095. };
  1096. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  1097. {
  1098. struct list_head *tmp;
  1099. mdk_rdev_t *rdev;
  1100. ITERATE_RDEV(mddev,rdev,tmp)
  1101. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  1102. return rdev;
  1103. return NULL;
  1104. }
  1105. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1106. {
  1107. struct list_head *tmp;
  1108. mdk_rdev_t *rdev;
  1109. ITERATE_RDEV(mddev1,rdev,tmp)
  1110. if (match_dev_unit(mddev2, rdev))
  1111. return 1;
  1112. return 0;
  1113. }
  1114. static LIST_HEAD(pending_raid_disks);
  1115. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1116. {
  1117. mdk_rdev_t *same_pdev;
  1118. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1119. struct kobject *ko;
  1120. char *s;
  1121. if (rdev->mddev) {
  1122. MD_BUG();
  1123. return -EINVAL;
  1124. }
  1125. /* make sure rdev->size exceeds mddev->size */
  1126. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1127. if (mddev->pers)
  1128. /* Cannot change size, so fail */
  1129. return -ENOSPC;
  1130. else
  1131. mddev->size = rdev->size;
  1132. }
  1133. same_pdev = match_dev_unit(mddev, rdev);
  1134. if (same_pdev)
  1135. printk(KERN_WARNING
  1136. "%s: WARNING: %s appears to be on the same physical"
  1137. " disk as %s. True\n protection against single-disk"
  1138. " failure might be compromised.\n",
  1139. mdname(mddev), bdevname(rdev->bdev,b),
  1140. bdevname(same_pdev->bdev,b2));
  1141. /* Verify rdev->desc_nr is unique.
  1142. * If it is -1, assign a free number, else
  1143. * check number is not in use
  1144. */
  1145. if (rdev->desc_nr < 0) {
  1146. int choice = 0;
  1147. if (mddev->pers) choice = mddev->raid_disks;
  1148. while (find_rdev_nr(mddev, choice))
  1149. choice++;
  1150. rdev->desc_nr = choice;
  1151. } else {
  1152. if (find_rdev_nr(mddev, rdev->desc_nr))
  1153. return -EBUSY;
  1154. }
  1155. bdevname(rdev->bdev,b);
  1156. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1157. return -ENOMEM;
  1158. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1159. *s = '!';
  1160. list_add(&rdev->same_set, &mddev->disks);
  1161. rdev->mddev = mddev;
  1162. printk(KERN_INFO "md: bind<%s>\n", b);
  1163. rdev->kobj.parent = &mddev->kobj;
  1164. kobject_add(&rdev->kobj);
  1165. if (rdev->bdev->bd_part)
  1166. ko = &rdev->bdev->bd_part->kobj;
  1167. else
  1168. ko = &rdev->bdev->bd_disk->kobj;
  1169. sysfs_create_link(&rdev->kobj, ko, "block");
  1170. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1171. return 0;
  1172. }
  1173. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1174. {
  1175. char b[BDEVNAME_SIZE];
  1176. if (!rdev->mddev) {
  1177. MD_BUG();
  1178. return;
  1179. }
  1180. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1181. list_del_init(&rdev->same_set);
  1182. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1183. rdev->mddev = NULL;
  1184. sysfs_remove_link(&rdev->kobj, "block");
  1185. kobject_del(&rdev->kobj);
  1186. }
  1187. /*
  1188. * prevent the device from being mounted, repartitioned or
  1189. * otherwise reused by a RAID array (or any other kernel
  1190. * subsystem), by bd_claiming the device.
  1191. */
  1192. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1193. {
  1194. int err = 0;
  1195. struct block_device *bdev;
  1196. char b[BDEVNAME_SIZE];
  1197. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1198. if (IS_ERR(bdev)) {
  1199. printk(KERN_ERR "md: could not open %s.\n",
  1200. __bdevname(dev, b));
  1201. return PTR_ERR(bdev);
  1202. }
  1203. err = bd_claim(bdev, rdev);
  1204. if (err) {
  1205. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1206. bdevname(bdev, b));
  1207. blkdev_put(bdev);
  1208. return err;
  1209. }
  1210. rdev->bdev = bdev;
  1211. return err;
  1212. }
  1213. static void unlock_rdev(mdk_rdev_t *rdev)
  1214. {
  1215. struct block_device *bdev = rdev->bdev;
  1216. rdev->bdev = NULL;
  1217. if (!bdev)
  1218. MD_BUG();
  1219. bd_release(bdev);
  1220. blkdev_put(bdev);
  1221. }
  1222. void md_autodetect_dev(dev_t dev);
  1223. static void export_rdev(mdk_rdev_t * rdev)
  1224. {
  1225. char b[BDEVNAME_SIZE];
  1226. printk(KERN_INFO "md: export_rdev(%s)\n",
  1227. bdevname(rdev->bdev,b));
  1228. if (rdev->mddev)
  1229. MD_BUG();
  1230. free_disk_sb(rdev);
  1231. list_del_init(&rdev->same_set);
  1232. #ifndef MODULE
  1233. md_autodetect_dev(rdev->bdev->bd_dev);
  1234. #endif
  1235. unlock_rdev(rdev);
  1236. kobject_put(&rdev->kobj);
  1237. }
  1238. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1239. {
  1240. unbind_rdev_from_array(rdev);
  1241. export_rdev(rdev);
  1242. }
  1243. static void export_array(mddev_t *mddev)
  1244. {
  1245. struct list_head *tmp;
  1246. mdk_rdev_t *rdev;
  1247. ITERATE_RDEV(mddev,rdev,tmp) {
  1248. if (!rdev->mddev) {
  1249. MD_BUG();
  1250. continue;
  1251. }
  1252. kick_rdev_from_array(rdev);
  1253. }
  1254. if (!list_empty(&mddev->disks))
  1255. MD_BUG();
  1256. mddev->raid_disks = 0;
  1257. mddev->major_version = 0;
  1258. }
  1259. static void print_desc(mdp_disk_t *desc)
  1260. {
  1261. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1262. desc->major,desc->minor,desc->raid_disk,desc->state);
  1263. }
  1264. static void print_sb(mdp_super_t *sb)
  1265. {
  1266. int i;
  1267. printk(KERN_INFO
  1268. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1269. sb->major_version, sb->minor_version, sb->patch_version,
  1270. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1271. sb->ctime);
  1272. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1273. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1274. sb->md_minor, sb->layout, sb->chunk_size);
  1275. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1276. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1277. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1278. sb->failed_disks, sb->spare_disks,
  1279. sb->sb_csum, (unsigned long)sb->events_lo);
  1280. printk(KERN_INFO);
  1281. for (i = 0; i < MD_SB_DISKS; i++) {
  1282. mdp_disk_t *desc;
  1283. desc = sb->disks + i;
  1284. if (desc->number || desc->major || desc->minor ||
  1285. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1286. printk(" D %2d: ", i);
  1287. print_desc(desc);
  1288. }
  1289. }
  1290. printk(KERN_INFO "md: THIS: ");
  1291. print_desc(&sb->this_disk);
  1292. }
  1293. static void print_rdev(mdk_rdev_t *rdev)
  1294. {
  1295. char b[BDEVNAME_SIZE];
  1296. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1297. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1298. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1299. rdev->desc_nr);
  1300. if (rdev->sb_loaded) {
  1301. printk(KERN_INFO "md: rdev superblock:\n");
  1302. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1303. } else
  1304. printk(KERN_INFO "md: no rdev superblock!\n");
  1305. }
  1306. void md_print_devices(void)
  1307. {
  1308. struct list_head *tmp, *tmp2;
  1309. mdk_rdev_t *rdev;
  1310. mddev_t *mddev;
  1311. char b[BDEVNAME_SIZE];
  1312. printk("\n");
  1313. printk("md: **********************************\n");
  1314. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1315. printk("md: **********************************\n");
  1316. ITERATE_MDDEV(mddev,tmp) {
  1317. if (mddev->bitmap)
  1318. bitmap_print_sb(mddev->bitmap);
  1319. else
  1320. printk("%s: ", mdname(mddev));
  1321. ITERATE_RDEV(mddev,rdev,tmp2)
  1322. printk("<%s>", bdevname(rdev->bdev,b));
  1323. printk("\n");
  1324. ITERATE_RDEV(mddev,rdev,tmp2)
  1325. print_rdev(rdev);
  1326. }
  1327. printk("md: **********************************\n");
  1328. printk("\n");
  1329. }
  1330. static void sync_sbs(mddev_t * mddev)
  1331. {
  1332. mdk_rdev_t *rdev;
  1333. struct list_head *tmp;
  1334. ITERATE_RDEV(mddev,rdev,tmp) {
  1335. super_types[mddev->major_version].
  1336. sync_super(mddev, rdev);
  1337. rdev->sb_loaded = 1;
  1338. }
  1339. }
  1340. void md_update_sb(mddev_t * mddev)
  1341. {
  1342. int err;
  1343. struct list_head *tmp;
  1344. mdk_rdev_t *rdev;
  1345. int sync_req;
  1346. repeat:
  1347. spin_lock_irq(&mddev->write_lock);
  1348. sync_req = mddev->in_sync;
  1349. mddev->utime = get_seconds();
  1350. mddev->events ++;
  1351. if (!mddev->events) {
  1352. /*
  1353. * oops, this 64-bit counter should never wrap.
  1354. * Either we are in around ~1 trillion A.C., assuming
  1355. * 1 reboot per second, or we have a bug:
  1356. */
  1357. MD_BUG();
  1358. mddev->events --;
  1359. }
  1360. mddev->sb_dirty = 2;
  1361. sync_sbs(mddev);
  1362. /*
  1363. * do not write anything to disk if using
  1364. * nonpersistent superblocks
  1365. */
  1366. if (!mddev->persistent) {
  1367. mddev->sb_dirty = 0;
  1368. spin_unlock_irq(&mddev->write_lock);
  1369. wake_up(&mddev->sb_wait);
  1370. return;
  1371. }
  1372. spin_unlock_irq(&mddev->write_lock);
  1373. dprintk(KERN_INFO
  1374. "md: updating %s RAID superblock on device (in sync %d)\n",
  1375. mdname(mddev),mddev->in_sync);
  1376. err = bitmap_update_sb(mddev->bitmap);
  1377. ITERATE_RDEV(mddev,rdev,tmp) {
  1378. char b[BDEVNAME_SIZE];
  1379. dprintk(KERN_INFO "md: ");
  1380. if (test_bit(Faulty, &rdev->flags))
  1381. dprintk("(skipping faulty ");
  1382. dprintk("%s ", bdevname(rdev->bdev,b));
  1383. if (!test_bit(Faulty, &rdev->flags)) {
  1384. md_super_write(mddev,rdev,
  1385. rdev->sb_offset<<1, rdev->sb_size,
  1386. rdev->sb_page);
  1387. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1388. bdevname(rdev->bdev,b),
  1389. (unsigned long long)rdev->sb_offset);
  1390. } else
  1391. dprintk(")\n");
  1392. if (mddev->level == LEVEL_MULTIPATH)
  1393. /* only need to write one superblock... */
  1394. break;
  1395. }
  1396. md_super_wait(mddev);
  1397. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1398. spin_lock_irq(&mddev->write_lock);
  1399. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1400. /* have to write it out again */
  1401. spin_unlock_irq(&mddev->write_lock);
  1402. goto repeat;
  1403. }
  1404. mddev->sb_dirty = 0;
  1405. spin_unlock_irq(&mddev->write_lock);
  1406. wake_up(&mddev->sb_wait);
  1407. }
  1408. EXPORT_SYMBOL_GPL(md_update_sb);
  1409. /* words written to sysfs files may, or my not, be \n terminated.
  1410. * We want to accept with case. For this we use cmd_match.
  1411. */
  1412. static int cmd_match(const char *cmd, const char *str)
  1413. {
  1414. /* See if cmd, written into a sysfs file, matches
  1415. * str. They must either be the same, or cmd can
  1416. * have a trailing newline
  1417. */
  1418. while (*cmd && *str && *cmd == *str) {
  1419. cmd++;
  1420. str++;
  1421. }
  1422. if (*cmd == '\n')
  1423. cmd++;
  1424. if (*str || *cmd)
  1425. return 0;
  1426. return 1;
  1427. }
  1428. struct rdev_sysfs_entry {
  1429. struct attribute attr;
  1430. ssize_t (*show)(mdk_rdev_t *, char *);
  1431. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1432. };
  1433. static ssize_t
  1434. state_show(mdk_rdev_t *rdev, char *page)
  1435. {
  1436. char *sep = "";
  1437. int len=0;
  1438. if (test_bit(Faulty, &rdev->flags)) {
  1439. len+= sprintf(page+len, "%sfaulty",sep);
  1440. sep = ",";
  1441. }
  1442. if (test_bit(In_sync, &rdev->flags)) {
  1443. len += sprintf(page+len, "%sin_sync",sep);
  1444. sep = ",";
  1445. }
  1446. if (!test_bit(Faulty, &rdev->flags) &&
  1447. !test_bit(In_sync, &rdev->flags)) {
  1448. len += sprintf(page+len, "%sspare", sep);
  1449. sep = ",";
  1450. }
  1451. return len+sprintf(page+len, "\n");
  1452. }
  1453. static struct rdev_sysfs_entry
  1454. rdev_state = __ATTR_RO(state);
  1455. static ssize_t
  1456. super_show(mdk_rdev_t *rdev, char *page)
  1457. {
  1458. if (rdev->sb_loaded && rdev->sb_size) {
  1459. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1460. return rdev->sb_size;
  1461. } else
  1462. return 0;
  1463. }
  1464. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1465. static ssize_t
  1466. errors_show(mdk_rdev_t *rdev, char *page)
  1467. {
  1468. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1469. }
  1470. static ssize_t
  1471. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1472. {
  1473. char *e;
  1474. unsigned long n = simple_strtoul(buf, &e, 10);
  1475. if (*buf && (*e == 0 || *e == '\n')) {
  1476. atomic_set(&rdev->corrected_errors, n);
  1477. return len;
  1478. }
  1479. return -EINVAL;
  1480. }
  1481. static struct rdev_sysfs_entry rdev_errors =
  1482. __ATTR(errors, 0644, errors_show, errors_store);
  1483. static ssize_t
  1484. slot_show(mdk_rdev_t *rdev, char *page)
  1485. {
  1486. if (rdev->raid_disk < 0)
  1487. return sprintf(page, "none\n");
  1488. else
  1489. return sprintf(page, "%d\n", rdev->raid_disk);
  1490. }
  1491. static ssize_t
  1492. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1493. {
  1494. char *e;
  1495. int slot = simple_strtoul(buf, &e, 10);
  1496. if (strncmp(buf, "none", 4)==0)
  1497. slot = -1;
  1498. else if (e==buf || (*e && *e!= '\n'))
  1499. return -EINVAL;
  1500. if (rdev->mddev->pers)
  1501. /* Cannot set slot in active array (yet) */
  1502. return -EBUSY;
  1503. if (slot >= rdev->mddev->raid_disks)
  1504. return -ENOSPC;
  1505. rdev->raid_disk = slot;
  1506. /* assume it is working */
  1507. rdev->flags = 0;
  1508. set_bit(In_sync, &rdev->flags);
  1509. return len;
  1510. }
  1511. static struct rdev_sysfs_entry rdev_slot =
  1512. __ATTR(slot, 0644, slot_show, slot_store);
  1513. static ssize_t
  1514. offset_show(mdk_rdev_t *rdev, char *page)
  1515. {
  1516. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1517. }
  1518. static ssize_t
  1519. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1520. {
  1521. char *e;
  1522. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1523. if (e==buf || (*e && *e != '\n'))
  1524. return -EINVAL;
  1525. if (rdev->mddev->pers)
  1526. return -EBUSY;
  1527. rdev->data_offset = offset;
  1528. return len;
  1529. }
  1530. static struct rdev_sysfs_entry rdev_offset =
  1531. __ATTR(offset, 0644, offset_show, offset_store);
  1532. static ssize_t
  1533. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1534. {
  1535. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1536. }
  1537. static ssize_t
  1538. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1539. {
  1540. char *e;
  1541. unsigned long long size = simple_strtoull(buf, &e, 10);
  1542. if (e==buf || (*e && *e != '\n'))
  1543. return -EINVAL;
  1544. if (rdev->mddev->pers)
  1545. return -EBUSY;
  1546. rdev->size = size;
  1547. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1548. rdev->mddev->size = size;
  1549. return len;
  1550. }
  1551. static struct rdev_sysfs_entry rdev_size =
  1552. __ATTR(size, 0644, rdev_size_show, rdev_size_store);
  1553. static struct attribute *rdev_default_attrs[] = {
  1554. &rdev_state.attr,
  1555. &rdev_super.attr,
  1556. &rdev_errors.attr,
  1557. &rdev_slot.attr,
  1558. &rdev_offset.attr,
  1559. &rdev_size.attr,
  1560. NULL,
  1561. };
  1562. static ssize_t
  1563. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1564. {
  1565. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1566. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1567. if (!entry->show)
  1568. return -EIO;
  1569. return entry->show(rdev, page);
  1570. }
  1571. static ssize_t
  1572. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1573. const char *page, size_t length)
  1574. {
  1575. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1576. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1577. if (!entry->store)
  1578. return -EIO;
  1579. return entry->store(rdev, page, length);
  1580. }
  1581. static void rdev_free(struct kobject *ko)
  1582. {
  1583. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1584. kfree(rdev);
  1585. }
  1586. static struct sysfs_ops rdev_sysfs_ops = {
  1587. .show = rdev_attr_show,
  1588. .store = rdev_attr_store,
  1589. };
  1590. static struct kobj_type rdev_ktype = {
  1591. .release = rdev_free,
  1592. .sysfs_ops = &rdev_sysfs_ops,
  1593. .default_attrs = rdev_default_attrs,
  1594. };
  1595. /*
  1596. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1597. *
  1598. * mark the device faulty if:
  1599. *
  1600. * - the device is nonexistent (zero size)
  1601. * - the device has no valid superblock
  1602. *
  1603. * a faulty rdev _never_ has rdev->sb set.
  1604. */
  1605. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1606. {
  1607. char b[BDEVNAME_SIZE];
  1608. int err;
  1609. mdk_rdev_t *rdev;
  1610. sector_t size;
  1611. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1612. if (!rdev) {
  1613. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1614. return ERR_PTR(-ENOMEM);
  1615. }
  1616. if ((err = alloc_disk_sb(rdev)))
  1617. goto abort_free;
  1618. err = lock_rdev(rdev, newdev);
  1619. if (err)
  1620. goto abort_free;
  1621. rdev->kobj.parent = NULL;
  1622. rdev->kobj.ktype = &rdev_ktype;
  1623. kobject_init(&rdev->kobj);
  1624. rdev->desc_nr = -1;
  1625. rdev->flags = 0;
  1626. rdev->data_offset = 0;
  1627. atomic_set(&rdev->nr_pending, 0);
  1628. atomic_set(&rdev->read_errors, 0);
  1629. atomic_set(&rdev->corrected_errors, 0);
  1630. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1631. if (!size) {
  1632. printk(KERN_WARNING
  1633. "md: %s has zero or unknown size, marking faulty!\n",
  1634. bdevname(rdev->bdev,b));
  1635. err = -EINVAL;
  1636. goto abort_free;
  1637. }
  1638. if (super_format >= 0) {
  1639. err = super_types[super_format].
  1640. load_super(rdev, NULL, super_minor);
  1641. if (err == -EINVAL) {
  1642. printk(KERN_WARNING
  1643. "md: %s has invalid sb, not importing!\n",
  1644. bdevname(rdev->bdev,b));
  1645. goto abort_free;
  1646. }
  1647. if (err < 0) {
  1648. printk(KERN_WARNING
  1649. "md: could not read %s's sb, not importing!\n",
  1650. bdevname(rdev->bdev,b));
  1651. goto abort_free;
  1652. }
  1653. }
  1654. INIT_LIST_HEAD(&rdev->same_set);
  1655. return rdev;
  1656. abort_free:
  1657. if (rdev->sb_page) {
  1658. if (rdev->bdev)
  1659. unlock_rdev(rdev);
  1660. free_disk_sb(rdev);
  1661. }
  1662. kfree(rdev);
  1663. return ERR_PTR(err);
  1664. }
  1665. /*
  1666. * Check a full RAID array for plausibility
  1667. */
  1668. static void analyze_sbs(mddev_t * mddev)
  1669. {
  1670. int i;
  1671. struct list_head *tmp;
  1672. mdk_rdev_t *rdev, *freshest;
  1673. char b[BDEVNAME_SIZE];
  1674. freshest = NULL;
  1675. ITERATE_RDEV(mddev,rdev,tmp)
  1676. switch (super_types[mddev->major_version].
  1677. load_super(rdev, freshest, mddev->minor_version)) {
  1678. case 1:
  1679. freshest = rdev;
  1680. break;
  1681. case 0:
  1682. break;
  1683. default:
  1684. printk( KERN_ERR \
  1685. "md: fatal superblock inconsistency in %s"
  1686. " -- removing from array\n",
  1687. bdevname(rdev->bdev,b));
  1688. kick_rdev_from_array(rdev);
  1689. }
  1690. super_types[mddev->major_version].
  1691. validate_super(mddev, freshest);
  1692. i = 0;
  1693. ITERATE_RDEV(mddev,rdev,tmp) {
  1694. if (rdev != freshest)
  1695. if (super_types[mddev->major_version].
  1696. validate_super(mddev, rdev)) {
  1697. printk(KERN_WARNING "md: kicking non-fresh %s"
  1698. " from array!\n",
  1699. bdevname(rdev->bdev,b));
  1700. kick_rdev_from_array(rdev);
  1701. continue;
  1702. }
  1703. if (mddev->level == LEVEL_MULTIPATH) {
  1704. rdev->desc_nr = i++;
  1705. rdev->raid_disk = rdev->desc_nr;
  1706. set_bit(In_sync, &rdev->flags);
  1707. }
  1708. }
  1709. if (mddev->recovery_cp != MaxSector &&
  1710. mddev->level >= 1)
  1711. printk(KERN_ERR "md: %s: raid array is not clean"
  1712. " -- starting background reconstruction\n",
  1713. mdname(mddev));
  1714. }
  1715. static ssize_t
  1716. level_show(mddev_t *mddev, char *page)
  1717. {
  1718. struct mdk_personality *p = mddev->pers;
  1719. if (p)
  1720. return sprintf(page, "%s\n", p->name);
  1721. else if (mddev->clevel[0])
  1722. return sprintf(page, "%s\n", mddev->clevel);
  1723. else if (mddev->level != LEVEL_NONE)
  1724. return sprintf(page, "%d\n", mddev->level);
  1725. else
  1726. return 0;
  1727. }
  1728. static ssize_t
  1729. level_store(mddev_t *mddev, const char *buf, size_t len)
  1730. {
  1731. int rv = len;
  1732. if (mddev->pers)
  1733. return -EBUSY;
  1734. if (len == 0)
  1735. return 0;
  1736. if (len >= sizeof(mddev->clevel))
  1737. return -ENOSPC;
  1738. strncpy(mddev->clevel, buf, len);
  1739. if (mddev->clevel[len-1] == '\n')
  1740. len--;
  1741. mddev->clevel[len] = 0;
  1742. mddev->level = LEVEL_NONE;
  1743. return rv;
  1744. }
  1745. static struct md_sysfs_entry md_level =
  1746. __ATTR(level, 0644, level_show, level_store);
  1747. static ssize_t
  1748. raid_disks_show(mddev_t *mddev, char *page)
  1749. {
  1750. if (mddev->raid_disks == 0)
  1751. return 0;
  1752. return sprintf(page, "%d\n", mddev->raid_disks);
  1753. }
  1754. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1755. static ssize_t
  1756. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1757. {
  1758. /* can only set raid_disks if array is not yet active */
  1759. char *e;
  1760. int rv = 0;
  1761. unsigned long n = simple_strtoul(buf, &e, 10);
  1762. if (!*buf || (*e && *e != '\n'))
  1763. return -EINVAL;
  1764. if (mddev->pers)
  1765. rv = update_raid_disks(mddev, n);
  1766. else
  1767. mddev->raid_disks = n;
  1768. return rv ? rv : len;
  1769. }
  1770. static struct md_sysfs_entry md_raid_disks =
  1771. __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
  1772. static ssize_t
  1773. chunk_size_show(mddev_t *mddev, char *page)
  1774. {
  1775. return sprintf(page, "%d\n", mddev->chunk_size);
  1776. }
  1777. static ssize_t
  1778. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  1779. {
  1780. /* can only set chunk_size if array is not yet active */
  1781. char *e;
  1782. unsigned long n = simple_strtoul(buf, &e, 10);
  1783. if (mddev->pers)
  1784. return -EBUSY;
  1785. if (!*buf || (*e && *e != '\n'))
  1786. return -EINVAL;
  1787. mddev->chunk_size = n;
  1788. return len;
  1789. }
  1790. static struct md_sysfs_entry md_chunk_size =
  1791. __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
  1792. static ssize_t
  1793. null_show(mddev_t *mddev, char *page)
  1794. {
  1795. return -EINVAL;
  1796. }
  1797. static ssize_t
  1798. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  1799. {
  1800. /* buf must be %d:%d\n? giving major and minor numbers */
  1801. /* The new device is added to the array.
  1802. * If the array has a persistent superblock, we read the
  1803. * superblock to initialise info and check validity.
  1804. * Otherwise, only checking done is that in bind_rdev_to_array,
  1805. * which mainly checks size.
  1806. */
  1807. char *e;
  1808. int major = simple_strtoul(buf, &e, 10);
  1809. int minor;
  1810. dev_t dev;
  1811. mdk_rdev_t *rdev;
  1812. int err;
  1813. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  1814. return -EINVAL;
  1815. minor = simple_strtoul(e+1, &e, 10);
  1816. if (*e && *e != '\n')
  1817. return -EINVAL;
  1818. dev = MKDEV(major, minor);
  1819. if (major != MAJOR(dev) ||
  1820. minor != MINOR(dev))
  1821. return -EOVERFLOW;
  1822. if (mddev->persistent) {
  1823. rdev = md_import_device(dev, mddev->major_version,
  1824. mddev->minor_version);
  1825. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  1826. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1827. mdk_rdev_t, same_set);
  1828. err = super_types[mddev->major_version]
  1829. .load_super(rdev, rdev0, mddev->minor_version);
  1830. if (err < 0)
  1831. goto out;
  1832. }
  1833. } else
  1834. rdev = md_import_device(dev, -1, -1);
  1835. if (IS_ERR(rdev))
  1836. return PTR_ERR(rdev);
  1837. err = bind_rdev_to_array(rdev, mddev);
  1838. out:
  1839. if (err)
  1840. export_rdev(rdev);
  1841. return err ? err : len;
  1842. }
  1843. static struct md_sysfs_entry md_new_device =
  1844. __ATTR(new_dev, 0200, null_show, new_dev_store);
  1845. static ssize_t
  1846. size_show(mddev_t *mddev, char *page)
  1847. {
  1848. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  1849. }
  1850. static int update_size(mddev_t *mddev, unsigned long size);
  1851. static ssize_t
  1852. size_store(mddev_t *mddev, const char *buf, size_t len)
  1853. {
  1854. /* If array is inactive, we can reduce the component size, but
  1855. * not increase it (except from 0).
  1856. * If array is active, we can try an on-line resize
  1857. */
  1858. char *e;
  1859. int err = 0;
  1860. unsigned long long size = simple_strtoull(buf, &e, 10);
  1861. if (!*buf || *buf == '\n' ||
  1862. (*e && *e != '\n'))
  1863. return -EINVAL;
  1864. if (mddev->pers) {
  1865. err = update_size(mddev, size);
  1866. md_update_sb(mddev);
  1867. } else {
  1868. if (mddev->size == 0 ||
  1869. mddev->size > size)
  1870. mddev->size = size;
  1871. else
  1872. err = -ENOSPC;
  1873. }
  1874. return err ? err : len;
  1875. }
  1876. static struct md_sysfs_entry md_size =
  1877. __ATTR(component_size, 0644, size_show, size_store);
  1878. /* Metdata version.
  1879. * This is either 'none' for arrays with externally managed metadata,
  1880. * or N.M for internally known formats
  1881. */
  1882. static ssize_t
  1883. metadata_show(mddev_t *mddev, char *page)
  1884. {
  1885. if (mddev->persistent)
  1886. return sprintf(page, "%d.%d\n",
  1887. mddev->major_version, mddev->minor_version);
  1888. else
  1889. return sprintf(page, "none\n");
  1890. }
  1891. static ssize_t
  1892. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  1893. {
  1894. int major, minor;
  1895. char *e;
  1896. if (!list_empty(&mddev->disks))
  1897. return -EBUSY;
  1898. if (cmd_match(buf, "none")) {
  1899. mddev->persistent = 0;
  1900. mddev->major_version = 0;
  1901. mddev->minor_version = 90;
  1902. return len;
  1903. }
  1904. major = simple_strtoul(buf, &e, 10);
  1905. if (e==buf || *e != '.')
  1906. return -EINVAL;
  1907. buf = e+1;
  1908. minor = simple_strtoul(buf, &e, 10);
  1909. if (e==buf || *e != '\n')
  1910. return -EINVAL;
  1911. if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
  1912. super_types[major].name == NULL)
  1913. return -ENOENT;
  1914. mddev->major_version = major;
  1915. mddev->minor_version = minor;
  1916. mddev->persistent = 1;
  1917. return len;
  1918. }
  1919. static struct md_sysfs_entry md_metadata =
  1920. __ATTR(metadata_version, 0644, metadata_show, metadata_store);
  1921. static ssize_t
  1922. action_show(mddev_t *mddev, char *page)
  1923. {
  1924. char *type = "idle";
  1925. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1926. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  1927. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  1928. type = "reshape";
  1929. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1930. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1931. type = "resync";
  1932. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1933. type = "check";
  1934. else
  1935. type = "repair";
  1936. } else
  1937. type = "recover";
  1938. }
  1939. return sprintf(page, "%s\n", type);
  1940. }
  1941. static ssize_t
  1942. action_store(mddev_t *mddev, const char *page, size_t len)
  1943. {
  1944. if (!mddev->pers || !mddev->pers->sync_request)
  1945. return -EINVAL;
  1946. if (cmd_match(page, "idle")) {
  1947. if (mddev->sync_thread) {
  1948. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1949. md_unregister_thread(mddev->sync_thread);
  1950. mddev->sync_thread = NULL;
  1951. mddev->recovery = 0;
  1952. }
  1953. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1954. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  1955. return -EBUSY;
  1956. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  1957. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1958. else if (cmd_match(page, "reshape")) {
  1959. int err;
  1960. if (mddev->pers->start_reshape == NULL)
  1961. return -EINVAL;
  1962. err = mddev->pers->start_reshape(mddev);
  1963. if (err)
  1964. return err;
  1965. } else {
  1966. if (cmd_match(page, "check"))
  1967. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  1968. else if (!cmd_match(page, "repair"))
  1969. return -EINVAL;
  1970. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  1971. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  1972. }
  1973. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1974. md_wakeup_thread(mddev->thread);
  1975. return len;
  1976. }
  1977. static ssize_t
  1978. mismatch_cnt_show(mddev_t *mddev, char *page)
  1979. {
  1980. return sprintf(page, "%llu\n",
  1981. (unsigned long long) mddev->resync_mismatches);
  1982. }
  1983. static struct md_sysfs_entry
  1984. md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  1985. static struct md_sysfs_entry
  1986. md_mismatches = __ATTR_RO(mismatch_cnt);
  1987. static ssize_t
  1988. sync_min_show(mddev_t *mddev, char *page)
  1989. {
  1990. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  1991. mddev->sync_speed_min ? "local": "system");
  1992. }
  1993. static ssize_t
  1994. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  1995. {
  1996. int min;
  1997. char *e;
  1998. if (strncmp(buf, "system", 6)==0) {
  1999. mddev->sync_speed_min = 0;
  2000. return len;
  2001. }
  2002. min = simple_strtoul(buf, &e, 10);
  2003. if (buf == e || (*e && *e != '\n') || min <= 0)
  2004. return -EINVAL;
  2005. mddev->sync_speed_min = min;
  2006. return len;
  2007. }
  2008. static struct md_sysfs_entry md_sync_min =
  2009. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2010. static ssize_t
  2011. sync_max_show(mddev_t *mddev, char *page)
  2012. {
  2013. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2014. mddev->sync_speed_max ? "local": "system");
  2015. }
  2016. static ssize_t
  2017. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2018. {
  2019. int max;
  2020. char *e;
  2021. if (strncmp(buf, "system", 6)==0) {
  2022. mddev->sync_speed_max = 0;
  2023. return len;
  2024. }
  2025. max = simple_strtoul(buf, &e, 10);
  2026. if (buf == e || (*e && *e != '\n') || max <= 0)
  2027. return -EINVAL;
  2028. mddev->sync_speed_max = max;
  2029. return len;
  2030. }
  2031. static struct md_sysfs_entry md_sync_max =
  2032. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2033. static ssize_t
  2034. sync_speed_show(mddev_t *mddev, char *page)
  2035. {
  2036. unsigned long resync, dt, db;
  2037. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2038. dt = ((jiffies - mddev->resync_mark) / HZ);
  2039. if (!dt) dt++;
  2040. db = resync - (mddev->resync_mark_cnt);
  2041. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2042. }
  2043. static struct md_sysfs_entry
  2044. md_sync_speed = __ATTR_RO(sync_speed);
  2045. static ssize_t
  2046. sync_completed_show(mddev_t *mddev, char *page)
  2047. {
  2048. unsigned long max_blocks, resync;
  2049. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2050. max_blocks = mddev->resync_max_sectors;
  2051. else
  2052. max_blocks = mddev->size << 1;
  2053. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2054. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2055. }
  2056. static struct md_sysfs_entry
  2057. md_sync_completed = __ATTR_RO(sync_completed);
  2058. static ssize_t
  2059. suspend_lo_show(mddev_t *mddev, char *page)
  2060. {
  2061. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2062. }
  2063. static ssize_t
  2064. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2065. {
  2066. char *e;
  2067. unsigned long long new = simple_strtoull(buf, &e, 10);
  2068. if (mddev->pers->quiesce == NULL)
  2069. return -EINVAL;
  2070. if (buf == e || (*e && *e != '\n'))
  2071. return -EINVAL;
  2072. if (new >= mddev->suspend_hi ||
  2073. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2074. mddev->suspend_lo = new;
  2075. mddev->pers->quiesce(mddev, 2);
  2076. return len;
  2077. } else
  2078. return -EINVAL;
  2079. }
  2080. static struct md_sysfs_entry md_suspend_lo =
  2081. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2082. static ssize_t
  2083. suspend_hi_show(mddev_t *mddev, char *page)
  2084. {
  2085. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2086. }
  2087. static ssize_t
  2088. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2089. {
  2090. char *e;
  2091. unsigned long long new = simple_strtoull(buf, &e, 10);
  2092. if (mddev->pers->quiesce == NULL)
  2093. return -EINVAL;
  2094. if (buf == e || (*e && *e != '\n'))
  2095. return -EINVAL;
  2096. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2097. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2098. mddev->suspend_hi = new;
  2099. mddev->pers->quiesce(mddev, 1);
  2100. mddev->pers->quiesce(mddev, 0);
  2101. return len;
  2102. } else
  2103. return -EINVAL;
  2104. }
  2105. static struct md_sysfs_entry md_suspend_hi =
  2106. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2107. static struct attribute *md_default_attrs[] = {
  2108. &md_level.attr,
  2109. &md_raid_disks.attr,
  2110. &md_chunk_size.attr,
  2111. &md_size.attr,
  2112. &md_metadata.attr,
  2113. &md_new_device.attr,
  2114. NULL,
  2115. };
  2116. static struct attribute *md_redundancy_attrs[] = {
  2117. &md_scan_mode.attr,
  2118. &md_mismatches.attr,
  2119. &md_sync_min.attr,
  2120. &md_sync_max.attr,
  2121. &md_sync_speed.attr,
  2122. &md_sync_completed.attr,
  2123. &md_suspend_lo.attr,
  2124. &md_suspend_hi.attr,
  2125. NULL,
  2126. };
  2127. static struct attribute_group md_redundancy_group = {
  2128. .name = NULL,
  2129. .attrs = md_redundancy_attrs,
  2130. };
  2131. static ssize_t
  2132. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2133. {
  2134. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2135. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2136. ssize_t rv;
  2137. if (!entry->show)
  2138. return -EIO;
  2139. rv = mddev_lock(mddev);
  2140. if (!rv) {
  2141. rv = entry->show(mddev, page);
  2142. mddev_unlock(mddev);
  2143. }
  2144. return rv;
  2145. }
  2146. static ssize_t
  2147. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2148. const char *page, size_t length)
  2149. {
  2150. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2151. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2152. ssize_t rv;
  2153. if (!entry->store)
  2154. return -EIO;
  2155. rv = mddev_lock(mddev);
  2156. if (!rv) {
  2157. rv = entry->store(mddev, page, length);
  2158. mddev_unlock(mddev);
  2159. }
  2160. return rv;
  2161. }
  2162. static void md_free(struct kobject *ko)
  2163. {
  2164. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2165. kfree(mddev);
  2166. }
  2167. static struct sysfs_ops md_sysfs_ops = {
  2168. .show = md_attr_show,
  2169. .store = md_attr_store,
  2170. };
  2171. static struct kobj_type md_ktype = {
  2172. .release = md_free,
  2173. .sysfs_ops = &md_sysfs_ops,
  2174. .default_attrs = md_default_attrs,
  2175. };
  2176. int mdp_major = 0;
  2177. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2178. {
  2179. static DEFINE_MUTEX(disks_mutex);
  2180. mddev_t *mddev = mddev_find(dev);
  2181. struct gendisk *disk;
  2182. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2183. int shift = partitioned ? MdpMinorShift : 0;
  2184. int unit = MINOR(dev) >> shift;
  2185. if (!mddev)
  2186. return NULL;
  2187. mutex_lock(&disks_mutex);
  2188. if (mddev->gendisk) {
  2189. mutex_unlock(&disks_mutex);
  2190. mddev_put(mddev);
  2191. return NULL;
  2192. }
  2193. disk = alloc_disk(1 << shift);
  2194. if (!disk) {
  2195. mutex_unlock(&disks_mutex);
  2196. mddev_put(mddev);
  2197. return NULL;
  2198. }
  2199. disk->major = MAJOR(dev);
  2200. disk->first_minor = unit << shift;
  2201. if (partitioned) {
  2202. sprintf(disk->disk_name, "md_d%d", unit);
  2203. sprintf(disk->devfs_name, "md/d%d", unit);
  2204. } else {
  2205. sprintf(disk->disk_name, "md%d", unit);
  2206. sprintf(disk->devfs_name, "md/%d", unit);
  2207. }
  2208. disk->fops = &md_fops;
  2209. disk->private_data = mddev;
  2210. disk->queue = mddev->queue;
  2211. add_disk(disk);
  2212. mddev->gendisk = disk;
  2213. mutex_unlock(&disks_mutex);
  2214. mddev->kobj.parent = &disk->kobj;
  2215. mddev->kobj.k_name = NULL;
  2216. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  2217. mddev->kobj.ktype = &md_ktype;
  2218. kobject_register(&mddev->kobj);
  2219. return NULL;
  2220. }
  2221. void md_wakeup_thread(mdk_thread_t *thread);
  2222. static void md_safemode_timeout(unsigned long data)
  2223. {
  2224. mddev_t *mddev = (mddev_t *) data;
  2225. mddev->safemode = 1;
  2226. md_wakeup_thread(mddev->thread);
  2227. }
  2228. static int start_dirty_degraded;
  2229. static int do_md_run(mddev_t * mddev)
  2230. {
  2231. int err;
  2232. int chunk_size;
  2233. struct list_head *tmp;
  2234. mdk_rdev_t *rdev;
  2235. struct gendisk *disk;
  2236. struct mdk_personality *pers;
  2237. char b[BDEVNAME_SIZE];
  2238. if (list_empty(&mddev->disks))
  2239. /* cannot run an array with no devices.. */
  2240. return -EINVAL;
  2241. if (mddev->pers)
  2242. return -EBUSY;
  2243. /*
  2244. * Analyze all RAID superblock(s)
  2245. */
  2246. if (!mddev->raid_disks)
  2247. analyze_sbs(mddev);
  2248. chunk_size = mddev->chunk_size;
  2249. if (chunk_size) {
  2250. if (chunk_size > MAX_CHUNK_SIZE) {
  2251. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2252. chunk_size, MAX_CHUNK_SIZE);
  2253. return -EINVAL;
  2254. }
  2255. /*
  2256. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2257. */
  2258. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2259. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2260. return -EINVAL;
  2261. }
  2262. if (chunk_size < PAGE_SIZE) {
  2263. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2264. chunk_size, PAGE_SIZE);
  2265. return -EINVAL;
  2266. }
  2267. /* devices must have minimum size of one chunk */
  2268. ITERATE_RDEV(mddev,rdev,tmp) {
  2269. if (test_bit(Faulty, &rdev->flags))
  2270. continue;
  2271. if (rdev->size < chunk_size / 1024) {
  2272. printk(KERN_WARNING
  2273. "md: Dev %s smaller than chunk_size:"
  2274. " %lluk < %dk\n",
  2275. bdevname(rdev->bdev,b),
  2276. (unsigned long long)rdev->size,
  2277. chunk_size / 1024);
  2278. return -EINVAL;
  2279. }
  2280. }
  2281. }
  2282. #ifdef CONFIG_KMOD
  2283. if (mddev->level != LEVEL_NONE)
  2284. request_module("md-level-%d", mddev->level);
  2285. else if (mddev->clevel[0])
  2286. request_module("md-%s", mddev->clevel);
  2287. #endif
  2288. /*
  2289. * Drop all container device buffers, from now on
  2290. * the only valid external interface is through the md
  2291. * device.
  2292. * Also find largest hardsector size
  2293. */
  2294. ITERATE_RDEV(mddev,rdev,tmp) {
  2295. if (test_bit(Faulty, &rdev->flags))
  2296. continue;
  2297. sync_blockdev(rdev->bdev);
  2298. invalidate_bdev(rdev->bdev, 0);
  2299. }
  2300. md_probe(mddev->unit, NULL, NULL);
  2301. disk = mddev->gendisk;
  2302. if (!disk)
  2303. return -ENOMEM;
  2304. spin_lock(&pers_lock);
  2305. pers = find_pers(mddev->level, mddev->clevel);
  2306. if (!pers || !try_module_get(pers->owner)) {
  2307. spin_unlock(&pers_lock);
  2308. if (mddev->level != LEVEL_NONE)
  2309. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2310. mddev->level);
  2311. else
  2312. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2313. mddev->clevel);
  2314. return -EINVAL;
  2315. }
  2316. mddev->pers = pers;
  2317. spin_unlock(&pers_lock);
  2318. mddev->level = pers->level;
  2319. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2320. if (mddev->reshape_position != MaxSector &&
  2321. pers->start_reshape == NULL) {
  2322. /* This personality cannot handle reshaping... */
  2323. mddev->pers = NULL;
  2324. module_put(pers->owner);
  2325. return -EINVAL;
  2326. }
  2327. mddev->recovery = 0;
  2328. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2329. mddev->barriers_work = 1;
  2330. mddev->ok_start_degraded = start_dirty_degraded;
  2331. if (start_readonly)
  2332. mddev->ro = 2; /* read-only, but switch on first write */
  2333. err = mddev->pers->run(mddev);
  2334. if (!err && mddev->pers->sync_request) {
  2335. err = bitmap_create(mddev);
  2336. if (err) {
  2337. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2338. mdname(mddev), err);
  2339. mddev->pers->stop(mddev);
  2340. }
  2341. }
  2342. if (err) {
  2343. printk(KERN_ERR "md: pers->run() failed ...\n");
  2344. module_put(mddev->pers->owner);
  2345. mddev->pers = NULL;
  2346. bitmap_destroy(mddev);
  2347. return err;
  2348. }
  2349. if (mddev->pers->sync_request)
  2350. sysfs_create_group(&mddev->kobj, &md_redundancy_group);
  2351. else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2352. mddev->ro = 0;
  2353. atomic_set(&mddev->writes_pending,0);
  2354. mddev->safemode = 0;
  2355. mddev->safemode_timer.function = md_safemode_timeout;
  2356. mddev->safemode_timer.data = (unsigned long) mddev;
  2357. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  2358. mddev->in_sync = 1;
  2359. ITERATE_RDEV(mddev,rdev,tmp)
  2360. if (rdev->raid_disk >= 0) {
  2361. char nm[20];
  2362. sprintf(nm, "rd%d", rdev->raid_disk);
  2363. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  2364. }
  2365. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2366. md_wakeup_thread(mddev->thread);
  2367. if (mddev->sb_dirty)
  2368. md_update_sb(mddev);
  2369. set_capacity(disk, mddev->array_size<<1);
  2370. /* If we call blk_queue_make_request here, it will
  2371. * re-initialise max_sectors etc which may have been
  2372. * refined inside -> run. So just set the bits we need to set.
  2373. * Most initialisation happended when we called
  2374. * blk_queue_make_request(..., md_fail_request)
  2375. * earlier.
  2376. */
  2377. mddev->queue->queuedata = mddev;
  2378. mddev->queue->make_request_fn = mddev->pers->make_request;
  2379. mddev->changed = 1;
  2380. md_new_event(mddev);
  2381. return 0;
  2382. }
  2383. static int restart_array(mddev_t *mddev)
  2384. {
  2385. struct gendisk *disk = mddev->gendisk;
  2386. int err;
  2387. /*
  2388. * Complain if it has no devices
  2389. */
  2390. err = -ENXIO;
  2391. if (list_empty(&mddev->disks))
  2392. goto out;
  2393. if (mddev->pers) {
  2394. err = -EBUSY;
  2395. if (!mddev->ro)
  2396. goto out;
  2397. mddev->safemode = 0;
  2398. mddev->ro = 0;
  2399. set_disk_ro(disk, 0);
  2400. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2401. mdname(mddev));
  2402. /*
  2403. * Kick recovery or resync if necessary
  2404. */
  2405. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2406. md_wakeup_thread(mddev->thread);
  2407. err = 0;
  2408. } else {
  2409. printk(KERN_ERR "md: %s has no personality assigned.\n",
  2410. mdname(mddev));
  2411. err = -EINVAL;
  2412. }
  2413. out:
  2414. return err;
  2415. }
  2416. static int do_md_stop(mddev_t * mddev, int ro)
  2417. {
  2418. int err = 0;
  2419. struct gendisk *disk = mddev->gendisk;
  2420. if (mddev->pers) {
  2421. if (atomic_read(&mddev->active)>2) {
  2422. printk("md: %s still in use.\n",mdname(mddev));
  2423. return -EBUSY;
  2424. }
  2425. if (mddev->sync_thread) {
  2426. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2427. md_unregister_thread(mddev->sync_thread);
  2428. mddev->sync_thread = NULL;
  2429. }
  2430. del_timer_sync(&mddev->safemode_timer);
  2431. invalidate_partition(disk, 0);
  2432. if (ro) {
  2433. err = -ENXIO;
  2434. if (mddev->ro==1)
  2435. goto out;
  2436. mddev->ro = 1;
  2437. } else {
  2438. bitmap_flush(mddev);
  2439. md_super_wait(mddev);
  2440. if (mddev->ro)
  2441. set_disk_ro(disk, 0);
  2442. blk_queue_make_request(mddev->queue, md_fail_request);
  2443. mddev->pers->stop(mddev);
  2444. if (mddev->pers->sync_request)
  2445. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  2446. module_put(mddev->pers->owner);
  2447. mddev->pers = NULL;
  2448. if (mddev->ro)
  2449. mddev->ro = 0;
  2450. }
  2451. if (!mddev->in_sync) {
  2452. /* mark array as shutdown cleanly */
  2453. mddev->in_sync = 1;
  2454. md_update_sb(mddev);
  2455. }
  2456. if (ro)
  2457. set_disk_ro(disk, 1);
  2458. }
  2459. /*
  2460. * Free resources if final stop
  2461. */
  2462. if (!ro) {
  2463. mdk_rdev_t *rdev;
  2464. struct list_head *tmp;
  2465. struct gendisk *disk;
  2466. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  2467. bitmap_destroy(mddev);
  2468. if (mddev->bitmap_file) {
  2469. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  2470. fput(mddev->bitmap_file);
  2471. mddev->bitmap_file = NULL;
  2472. }
  2473. mddev->bitmap_offset = 0;
  2474. ITERATE_RDEV(mddev,rdev,tmp)
  2475. if (rdev->raid_disk >= 0) {
  2476. char nm[20];
  2477. sprintf(nm, "rd%d", rdev->raid_disk);
  2478. sysfs_remove_link(&mddev->kobj, nm);
  2479. }
  2480. export_array(mddev);
  2481. mddev->array_size = 0;
  2482. disk = mddev->gendisk;
  2483. if (disk)
  2484. set_capacity(disk, 0);
  2485. mddev->changed = 1;
  2486. } else
  2487. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  2488. mdname(mddev));
  2489. err = 0;
  2490. md_new_event(mddev);
  2491. out:
  2492. return err;
  2493. }
  2494. static void autorun_array(mddev_t *mddev)
  2495. {
  2496. mdk_rdev_t *rdev;
  2497. struct list_head *tmp;
  2498. int err;
  2499. if (list_empty(&mddev->disks))
  2500. return;
  2501. printk(KERN_INFO "md: running: ");
  2502. ITERATE_RDEV(mddev,rdev,tmp) {
  2503. char b[BDEVNAME_SIZE];
  2504. printk("<%s>", bdevname(rdev->bdev,b));
  2505. }
  2506. printk("\n");
  2507. err = do_md_run (mddev);
  2508. if (err) {
  2509. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  2510. do_md_stop (mddev, 0);
  2511. }
  2512. }
  2513. /*
  2514. * lets try to run arrays based on all disks that have arrived
  2515. * until now. (those are in pending_raid_disks)
  2516. *
  2517. * the method: pick the first pending disk, collect all disks with
  2518. * the same UUID, remove all from the pending list and put them into
  2519. * the 'same_array' list. Then order this list based on superblock
  2520. * update time (freshest comes first), kick out 'old' disks and
  2521. * compare superblocks. If everything's fine then run it.
  2522. *
  2523. * If "unit" is allocated, then bump its reference count
  2524. */
  2525. static void autorun_devices(int part)
  2526. {
  2527. struct list_head *tmp;
  2528. mdk_rdev_t *rdev0, *rdev;
  2529. mddev_t *mddev;
  2530. char b[BDEVNAME_SIZE];
  2531. printk(KERN_INFO "md: autorun ...\n");
  2532. while (!list_empty(&pending_raid_disks)) {
  2533. dev_t dev;
  2534. LIST_HEAD(candidates);
  2535. rdev0 = list_entry(pending_raid_disks.next,
  2536. mdk_rdev_t, same_set);
  2537. printk(KERN_INFO "md: considering %s ...\n",
  2538. bdevname(rdev0->bdev,b));
  2539. INIT_LIST_HEAD(&candidates);
  2540. ITERATE_RDEV_PENDING(rdev,tmp)
  2541. if (super_90_load(rdev, rdev0, 0) >= 0) {
  2542. printk(KERN_INFO "md: adding %s ...\n",
  2543. bdevname(rdev->bdev,b));
  2544. list_move(&rdev->same_set, &candidates);
  2545. }
  2546. /*
  2547. * now we have a set of devices, with all of them having
  2548. * mostly sane superblocks. It's time to allocate the
  2549. * mddev.
  2550. */
  2551. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  2552. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  2553. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  2554. break;
  2555. }
  2556. if (part)
  2557. dev = MKDEV(mdp_major,
  2558. rdev0->preferred_minor << MdpMinorShift);
  2559. else
  2560. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  2561. md_probe(dev, NULL, NULL);
  2562. mddev = mddev_find(dev);
  2563. if (!mddev) {
  2564. printk(KERN_ERR
  2565. "md: cannot allocate memory for md drive.\n");
  2566. break;
  2567. }
  2568. if (mddev_lock(mddev))
  2569. printk(KERN_WARNING "md: %s locked, cannot run\n",
  2570. mdname(mddev));
  2571. else if (mddev->raid_disks || mddev->major_version
  2572. || !list_empty(&mddev->disks)) {
  2573. printk(KERN_WARNING
  2574. "md: %s already running, cannot run %s\n",
  2575. mdname(mddev), bdevname(rdev0->bdev,b));
  2576. mddev_unlock(mddev);
  2577. } else {
  2578. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  2579. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  2580. list_del_init(&rdev->same_set);
  2581. if (bind_rdev_to_array(rdev, mddev))
  2582. export_rdev(rdev);
  2583. }
  2584. autorun_array(mddev);
  2585. mddev_unlock(mddev);
  2586. }
  2587. /* on success, candidates will be empty, on error
  2588. * it won't...
  2589. */
  2590. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  2591. export_rdev(rdev);
  2592. mddev_put(mddev);
  2593. }
  2594. printk(KERN_INFO "md: ... autorun DONE.\n");
  2595. }
  2596. /*
  2597. * import RAID devices based on one partition
  2598. * if possible, the array gets run as well.
  2599. */
  2600. static int autostart_array(dev_t startdev)
  2601. {
  2602. char b[BDEVNAME_SIZE];
  2603. int err = -EINVAL, i;
  2604. mdp_super_t *sb = NULL;
  2605. mdk_rdev_t *start_rdev = NULL, *rdev;
  2606. start_rdev = md_import_device(startdev, 0, 0);
  2607. if (IS_ERR(start_rdev))
  2608. return err;
  2609. /* NOTE: this can only work for 0.90.0 superblocks */
  2610. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  2611. if (sb->major_version != 0 ||
  2612. sb->minor_version != 90 ) {
  2613. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  2614. export_rdev(start_rdev);
  2615. return err;
  2616. }
  2617. if (test_bit(Faulty, &start_rdev->flags)) {
  2618. printk(KERN_WARNING
  2619. "md: can not autostart based on faulty %s!\n",
  2620. bdevname(start_rdev->bdev,b));
  2621. export_rdev(start_rdev);
  2622. return err;
  2623. }
  2624. list_add(&start_rdev->same_set, &pending_raid_disks);
  2625. for (i = 0; i < MD_SB_DISKS; i++) {
  2626. mdp_disk_t *desc = sb->disks + i;
  2627. dev_t dev = MKDEV(desc->major, desc->minor);
  2628. if (!dev)
  2629. continue;
  2630. if (dev == startdev)
  2631. continue;
  2632. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  2633. continue;
  2634. rdev = md_import_device(dev, 0, 0);
  2635. if (IS_ERR(rdev))
  2636. continue;
  2637. list_add(&rdev->same_set, &pending_raid_disks);
  2638. }
  2639. /*
  2640. * possibly return codes
  2641. */
  2642. autorun_devices(0);
  2643. return 0;
  2644. }
  2645. static int get_version(void __user * arg)
  2646. {
  2647. mdu_version_t ver;
  2648. ver.major = MD_MAJOR_VERSION;
  2649. ver.minor = MD_MINOR_VERSION;
  2650. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  2651. if (copy_to_user(arg, &ver, sizeof(ver)))
  2652. return -EFAULT;
  2653. return 0;
  2654. }
  2655. static int get_array_info(mddev_t * mddev, void __user * arg)
  2656. {
  2657. mdu_array_info_t info;
  2658. int nr,working,active,failed,spare;
  2659. mdk_rdev_t *rdev;
  2660. struct list_head *tmp;
  2661. nr=working=active=failed=spare=0;
  2662. ITERATE_RDEV(mddev,rdev,tmp) {
  2663. nr++;
  2664. if (test_bit(Faulty, &rdev->flags))
  2665. failed++;
  2666. else {
  2667. working++;
  2668. if (test_bit(In_sync, &rdev->flags))
  2669. active++;
  2670. else
  2671. spare++;
  2672. }
  2673. }
  2674. info.major_version = mddev->major_version;
  2675. info.minor_version = mddev->minor_version;
  2676. info.patch_version = MD_PATCHLEVEL_VERSION;
  2677. info.ctime = mddev->ctime;
  2678. info.level = mddev->level;
  2679. info.size = mddev->size;
  2680. if (info.size != mddev->size) /* overflow */
  2681. info.size = -1;
  2682. info.nr_disks = nr;
  2683. info.raid_disks = mddev->raid_disks;
  2684. info.md_minor = mddev->md_minor;
  2685. info.not_persistent= !mddev->persistent;
  2686. info.utime = mddev->utime;
  2687. info.state = 0;
  2688. if (mddev->in_sync)
  2689. info.state = (1<<MD_SB_CLEAN);
  2690. if (mddev->bitmap && mddev->bitmap_offset)
  2691. info.state = (1<<MD_SB_BITMAP_PRESENT);
  2692. info.active_disks = active;
  2693. info.working_disks = working;
  2694. info.failed_disks = failed;
  2695. info.spare_disks = spare;
  2696. info.layout = mddev->layout;
  2697. info.chunk_size = mddev->chunk_size;
  2698. if (copy_to_user(arg, &info, sizeof(info)))
  2699. return -EFAULT;
  2700. return 0;
  2701. }
  2702. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  2703. {
  2704. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  2705. char *ptr, *buf = NULL;
  2706. int err = -ENOMEM;
  2707. file = kmalloc(sizeof(*file), GFP_KERNEL);
  2708. if (!file)
  2709. goto out;
  2710. /* bitmap disabled, zero the first byte and copy out */
  2711. if (!mddev->bitmap || !mddev->bitmap->file) {
  2712. file->pathname[0] = '\0';
  2713. goto copy_out;
  2714. }
  2715. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  2716. if (!buf)
  2717. goto out;
  2718. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  2719. if (!ptr)
  2720. goto out;
  2721. strcpy(file->pathname, ptr);
  2722. copy_out:
  2723. err = 0;
  2724. if (copy_to_user(arg, file, sizeof(*file)))
  2725. err = -EFAULT;
  2726. out:
  2727. kfree(buf);
  2728. kfree(file);
  2729. return err;
  2730. }
  2731. static int get_disk_info(mddev_t * mddev, void __user * arg)
  2732. {
  2733. mdu_disk_info_t info;
  2734. unsigned int nr;
  2735. mdk_rdev_t *rdev;
  2736. if (copy_from_user(&info, arg, sizeof(info)))
  2737. return -EFAULT;
  2738. nr = info.number;
  2739. rdev = find_rdev_nr(mddev, nr);
  2740. if (rdev) {
  2741. info.major = MAJOR(rdev->bdev->bd_dev);
  2742. info.minor = MINOR(rdev->bdev->bd_dev);
  2743. info.raid_disk = rdev->raid_disk;
  2744. info.state = 0;
  2745. if (test_bit(Faulty, &rdev->flags))
  2746. info.state |= (1<<MD_DISK_FAULTY);
  2747. else if (test_bit(In_sync, &rdev->flags)) {
  2748. info.state |= (1<<MD_DISK_ACTIVE);
  2749. info.state |= (1<<MD_DISK_SYNC);
  2750. }
  2751. if (test_bit(WriteMostly, &rdev->flags))
  2752. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  2753. } else {
  2754. info.major = info.minor = 0;
  2755. info.raid_disk = -1;
  2756. info.state = (1<<MD_DISK_REMOVED);
  2757. }
  2758. if (copy_to_user(arg, &info, sizeof(info)))
  2759. return -EFAULT;
  2760. return 0;
  2761. }
  2762. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  2763. {
  2764. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2765. mdk_rdev_t *rdev;
  2766. dev_t dev = MKDEV(info->major,info->minor);
  2767. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  2768. return -EOVERFLOW;
  2769. if (!mddev->raid_disks) {
  2770. int err;
  2771. /* expecting a device which has a superblock */
  2772. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  2773. if (IS_ERR(rdev)) {
  2774. printk(KERN_WARNING
  2775. "md: md_import_device returned %ld\n",
  2776. PTR_ERR(rdev));
  2777. return PTR_ERR(rdev);
  2778. }
  2779. if (!list_empty(&mddev->disks)) {
  2780. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2781. mdk_rdev_t, same_set);
  2782. int err = super_types[mddev->major_version]
  2783. .load_super(rdev, rdev0, mddev->minor_version);
  2784. if (err < 0) {
  2785. printk(KERN_WARNING
  2786. "md: %s has different UUID to %s\n",
  2787. bdevname(rdev->bdev,b),
  2788. bdevname(rdev0->bdev,b2));
  2789. export_rdev(rdev);
  2790. return -EINVAL;
  2791. }
  2792. }
  2793. err = bind_rdev_to_array(rdev, mddev);
  2794. if (err)
  2795. export_rdev(rdev);
  2796. return err;
  2797. }
  2798. /*
  2799. * add_new_disk can be used once the array is assembled
  2800. * to add "hot spares". They must already have a superblock
  2801. * written
  2802. */
  2803. if (mddev->pers) {
  2804. int err;
  2805. if (!mddev->pers->hot_add_disk) {
  2806. printk(KERN_WARNING
  2807. "%s: personality does not support diskops!\n",
  2808. mdname(mddev));
  2809. return -EINVAL;
  2810. }
  2811. if (mddev->persistent)
  2812. rdev = md_import_device(dev, mddev->major_version,
  2813. mddev->minor_version);
  2814. else
  2815. rdev = md_import_device(dev, -1, -1);
  2816. if (IS_ERR(rdev)) {
  2817. printk(KERN_WARNING
  2818. "md: md_import_device returned %ld\n",
  2819. PTR_ERR(rdev));
  2820. return PTR_ERR(rdev);
  2821. }
  2822. /* set save_raid_disk if appropriate */
  2823. if (!mddev->persistent) {
  2824. if (info->state & (1<<MD_DISK_SYNC) &&
  2825. info->raid_disk < mddev->raid_disks)
  2826. rdev->raid_disk = info->raid_disk;
  2827. else
  2828. rdev->raid_disk = -1;
  2829. } else
  2830. super_types[mddev->major_version].
  2831. validate_super(mddev, rdev);
  2832. rdev->saved_raid_disk = rdev->raid_disk;
  2833. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  2834. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2835. set_bit(WriteMostly, &rdev->flags);
  2836. rdev->raid_disk = -1;
  2837. err = bind_rdev_to_array(rdev, mddev);
  2838. if (err)
  2839. export_rdev(rdev);
  2840. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2841. md_wakeup_thread(mddev->thread);
  2842. return err;
  2843. }
  2844. /* otherwise, add_new_disk is only allowed
  2845. * for major_version==0 superblocks
  2846. */
  2847. if (mddev->major_version != 0) {
  2848. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  2849. mdname(mddev));
  2850. return -EINVAL;
  2851. }
  2852. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  2853. int err;
  2854. rdev = md_import_device (dev, -1, 0);
  2855. if (IS_ERR(rdev)) {
  2856. printk(KERN_WARNING
  2857. "md: error, md_import_device() returned %ld\n",
  2858. PTR_ERR(rdev));
  2859. return PTR_ERR(rdev);
  2860. }
  2861. rdev->desc_nr = info->number;
  2862. if (info->raid_disk < mddev->raid_disks)
  2863. rdev->raid_disk = info->raid_disk;
  2864. else
  2865. rdev->raid_disk = -1;
  2866. rdev->flags = 0;
  2867. if (rdev->raid_disk < mddev->raid_disks)
  2868. if (info->state & (1<<MD_DISK_SYNC))
  2869. set_bit(In_sync, &rdev->flags);
  2870. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2871. set_bit(WriteMostly, &rdev->flags);
  2872. if (!mddev->persistent) {
  2873. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  2874. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2875. } else
  2876. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2877. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  2878. err = bind_rdev_to_array(rdev, mddev);
  2879. if (err) {
  2880. export_rdev(rdev);
  2881. return err;
  2882. }
  2883. }
  2884. return 0;
  2885. }
  2886. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2887. {
  2888. char b[BDEVNAME_SIZE];
  2889. mdk_rdev_t *rdev;
  2890. if (!mddev->pers)
  2891. return -ENODEV;
  2892. rdev = find_rdev(mddev, dev);
  2893. if (!rdev)
  2894. return -ENXIO;
  2895. if (rdev->raid_disk >= 0)
  2896. goto busy;
  2897. kick_rdev_from_array(rdev);
  2898. md_update_sb(mddev);
  2899. md_new_event(mddev);
  2900. return 0;
  2901. busy:
  2902. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2903. bdevname(rdev->bdev,b), mdname(mddev));
  2904. return -EBUSY;
  2905. }
  2906. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2907. {
  2908. char b[BDEVNAME_SIZE];
  2909. int err;
  2910. unsigned int size;
  2911. mdk_rdev_t *rdev;
  2912. if (!mddev->pers)
  2913. return -ENODEV;
  2914. if (mddev->major_version != 0) {
  2915. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2916. " version-0 superblocks.\n",
  2917. mdname(mddev));
  2918. return -EINVAL;
  2919. }
  2920. if (!mddev->pers->hot_add_disk) {
  2921. printk(KERN_WARNING
  2922. "%s: personality does not support diskops!\n",
  2923. mdname(mddev));
  2924. return -EINVAL;
  2925. }
  2926. rdev = md_import_device (dev, -1, 0);
  2927. if (IS_ERR(rdev)) {
  2928. printk(KERN_WARNING
  2929. "md: error, md_import_device() returned %ld\n",
  2930. PTR_ERR(rdev));
  2931. return -EINVAL;
  2932. }
  2933. if (mddev->persistent)
  2934. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2935. else
  2936. rdev->sb_offset =
  2937. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2938. size = calc_dev_size(rdev, mddev->chunk_size);
  2939. rdev->size = size;
  2940. if (test_bit(Faulty, &rdev->flags)) {
  2941. printk(KERN_WARNING
  2942. "md: can not hot-add faulty %s disk to %s!\n",
  2943. bdevname(rdev->bdev,b), mdname(mddev));
  2944. err = -EINVAL;
  2945. goto abort_export;
  2946. }
  2947. clear_bit(In_sync, &rdev->flags);
  2948. rdev->desc_nr = -1;
  2949. err = bind_rdev_to_array(rdev, mddev);
  2950. if (err)
  2951. goto abort_export;
  2952. /*
  2953. * The rest should better be atomic, we can have disk failures
  2954. * noticed in interrupt contexts ...
  2955. */
  2956. if (rdev->desc_nr == mddev->max_disks) {
  2957. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2958. mdname(mddev));
  2959. err = -EBUSY;
  2960. goto abort_unbind_export;
  2961. }
  2962. rdev->raid_disk = -1;
  2963. md_update_sb(mddev);
  2964. /*
  2965. * Kick recovery, maybe this spare has to be added to the
  2966. * array immediately.
  2967. */
  2968. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2969. md_wakeup_thread(mddev->thread);
  2970. md_new_event(mddev);
  2971. return 0;
  2972. abort_unbind_export:
  2973. unbind_rdev_from_array(rdev);
  2974. abort_export:
  2975. export_rdev(rdev);
  2976. return err;
  2977. }
  2978. /* similar to deny_write_access, but accounts for our holding a reference
  2979. * to the file ourselves */
  2980. static int deny_bitmap_write_access(struct file * file)
  2981. {
  2982. struct inode *inode = file->f_mapping->host;
  2983. spin_lock(&inode->i_lock);
  2984. if (atomic_read(&inode->i_writecount) > 1) {
  2985. spin_unlock(&inode->i_lock);
  2986. return -ETXTBSY;
  2987. }
  2988. atomic_set(&inode->i_writecount, -1);
  2989. spin_unlock(&inode->i_lock);
  2990. return 0;
  2991. }
  2992. static int set_bitmap_file(mddev_t *mddev, int fd)
  2993. {
  2994. int err;
  2995. if (mddev->pers) {
  2996. if (!mddev->pers->quiesce)
  2997. return -EBUSY;
  2998. if (mddev->recovery || mddev->sync_thread)
  2999. return -EBUSY;
  3000. /* we should be able to change the bitmap.. */
  3001. }
  3002. if (fd >= 0) {
  3003. if (mddev->bitmap)
  3004. return -EEXIST; /* cannot add when bitmap is present */
  3005. mddev->bitmap_file = fget(fd);
  3006. if (mddev->bitmap_file == NULL) {
  3007. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3008. mdname(mddev));
  3009. return -EBADF;
  3010. }
  3011. err = deny_bitmap_write_access(mddev->bitmap_file);
  3012. if (err) {
  3013. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3014. mdname(mddev));
  3015. fput(mddev->bitmap_file);
  3016. mddev->bitmap_file = NULL;
  3017. return err;
  3018. }
  3019. mddev->bitmap_offset = 0; /* file overrides offset */
  3020. } else if (mddev->bitmap == NULL)
  3021. return -ENOENT; /* cannot remove what isn't there */
  3022. err = 0;
  3023. if (mddev->pers) {
  3024. mddev->pers->quiesce(mddev, 1);
  3025. if (fd >= 0)
  3026. err = bitmap_create(mddev);
  3027. if (fd < 0 || err)
  3028. bitmap_destroy(mddev);
  3029. mddev->pers->quiesce(mddev, 0);
  3030. } else if (fd < 0) {
  3031. if (mddev->bitmap_file)
  3032. fput(mddev->bitmap_file);
  3033. mddev->bitmap_file = NULL;
  3034. }
  3035. return err;
  3036. }
  3037. /*
  3038. * set_array_info is used two different ways
  3039. * The original usage is when creating a new array.
  3040. * In this usage, raid_disks is > 0 and it together with
  3041. * level, size, not_persistent,layout,chunksize determine the
  3042. * shape of the array.
  3043. * This will always create an array with a type-0.90.0 superblock.
  3044. * The newer usage is when assembling an array.
  3045. * In this case raid_disks will be 0, and the major_version field is
  3046. * use to determine which style super-blocks are to be found on the devices.
  3047. * The minor and patch _version numbers are also kept incase the
  3048. * super_block handler wishes to interpret them.
  3049. */
  3050. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3051. {
  3052. if (info->raid_disks == 0) {
  3053. /* just setting version number for superblock loading */
  3054. if (info->major_version < 0 ||
  3055. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  3056. super_types[info->major_version].name == NULL) {
  3057. /* maybe try to auto-load a module? */
  3058. printk(KERN_INFO
  3059. "md: superblock version %d not known\n",
  3060. info->major_version);
  3061. return -EINVAL;
  3062. }
  3063. mddev->major_version = info->major_version;
  3064. mddev->minor_version = info->minor_version;
  3065. mddev->patch_version = info->patch_version;
  3066. return 0;
  3067. }
  3068. mddev->major_version = MD_MAJOR_VERSION;
  3069. mddev->minor_version = MD_MINOR_VERSION;
  3070. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3071. mddev->ctime = get_seconds();
  3072. mddev->level = info->level;
  3073. mddev->clevel[0] = 0;
  3074. mddev->size = info->size;
  3075. mddev->raid_disks = info->raid_disks;
  3076. /* don't set md_minor, it is determined by which /dev/md* was
  3077. * openned
  3078. */
  3079. if (info->state & (1<<MD_SB_CLEAN))
  3080. mddev->recovery_cp = MaxSector;
  3081. else
  3082. mddev->recovery_cp = 0;
  3083. mddev->persistent = ! info->not_persistent;
  3084. mddev->layout = info->layout;
  3085. mddev->chunk_size = info->chunk_size;
  3086. mddev->max_disks = MD_SB_DISKS;
  3087. mddev->sb_dirty = 1;
  3088. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3089. mddev->bitmap_offset = 0;
  3090. mddev->reshape_position = MaxSector;
  3091. /*
  3092. * Generate a 128 bit UUID
  3093. */
  3094. get_random_bytes(mddev->uuid, 16);
  3095. mddev->new_level = mddev->level;
  3096. mddev->new_chunk = mddev->chunk_size;
  3097. mddev->new_layout = mddev->layout;
  3098. mddev->delta_disks = 0;
  3099. return 0;
  3100. }
  3101. static int update_size(mddev_t *mddev, unsigned long size)
  3102. {
  3103. mdk_rdev_t * rdev;
  3104. int rv;
  3105. struct list_head *tmp;
  3106. int fit = (size == 0);
  3107. if (mddev->pers->resize == NULL)
  3108. return -EINVAL;
  3109. /* The "size" is the amount of each device that is used.
  3110. * This can only make sense for arrays with redundancy.
  3111. * linear and raid0 always use whatever space is available
  3112. * We can only consider changing the size if no resync
  3113. * or reconstruction is happening, and if the new size
  3114. * is acceptable. It must fit before the sb_offset or,
  3115. * if that is <data_offset, it must fit before the
  3116. * size of each device.
  3117. * If size is zero, we find the largest size that fits.
  3118. */
  3119. if (mddev->sync_thread)
  3120. return -EBUSY;
  3121. ITERATE_RDEV(mddev,rdev,tmp) {
  3122. sector_t avail;
  3123. if (rdev->sb_offset > rdev->data_offset)
  3124. avail = (rdev->sb_offset*2) - rdev->data_offset;
  3125. else
  3126. avail = get_capacity(rdev->bdev->bd_disk)
  3127. - rdev->data_offset;
  3128. if (fit && (size == 0 || size > avail/2))
  3129. size = avail/2;
  3130. if (avail < ((sector_t)size << 1))
  3131. return -ENOSPC;
  3132. }
  3133. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3134. if (!rv) {
  3135. struct block_device *bdev;
  3136. bdev = bdget_disk(mddev->gendisk, 0);
  3137. if (bdev) {
  3138. mutex_lock(&bdev->bd_inode->i_mutex);
  3139. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3140. mutex_unlock(&bdev->bd_inode->i_mutex);
  3141. bdput(bdev);
  3142. }
  3143. }
  3144. return rv;
  3145. }
  3146. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3147. {
  3148. int rv;
  3149. /* change the number of raid disks */
  3150. if (mddev->pers->check_reshape == NULL)
  3151. return -EINVAL;
  3152. if (raid_disks <= 0 ||
  3153. raid_disks >= mddev->max_disks)
  3154. return -EINVAL;
  3155. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3156. return -EBUSY;
  3157. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3158. rv = mddev->pers->check_reshape(mddev);
  3159. return rv;
  3160. }
  3161. /*
  3162. * update_array_info is used to change the configuration of an
  3163. * on-line array.
  3164. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3165. * fields in the info are checked against the array.
  3166. * Any differences that cannot be handled will cause an error.
  3167. * Normally, only one change can be managed at a time.
  3168. */
  3169. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3170. {
  3171. int rv = 0;
  3172. int cnt = 0;
  3173. int state = 0;
  3174. /* calculate expected state,ignoring low bits */
  3175. if (mddev->bitmap && mddev->bitmap_offset)
  3176. state |= (1 << MD_SB_BITMAP_PRESENT);
  3177. if (mddev->major_version != info->major_version ||
  3178. mddev->minor_version != info->minor_version ||
  3179. /* mddev->patch_version != info->patch_version || */
  3180. mddev->ctime != info->ctime ||
  3181. mddev->level != info->level ||
  3182. /* mddev->layout != info->layout || */
  3183. !mddev->persistent != info->not_persistent||
  3184. mddev->chunk_size != info->chunk_size ||
  3185. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3186. ((state^info->state) & 0xfffffe00)
  3187. )
  3188. return -EINVAL;
  3189. /* Check there is only one change */
  3190. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3191. if (mddev->raid_disks != info->raid_disks) cnt++;
  3192. if (mddev->layout != info->layout) cnt++;
  3193. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3194. if (cnt == 0) return 0;
  3195. if (cnt > 1) return -EINVAL;
  3196. if (mddev->layout != info->layout) {
  3197. /* Change layout
  3198. * we don't need to do anything at the md level, the
  3199. * personality will take care of it all.
  3200. */
  3201. if (mddev->pers->reconfig == NULL)
  3202. return -EINVAL;
  3203. else
  3204. return mddev->pers->reconfig(mddev, info->layout, -1);
  3205. }
  3206. if (info->size >= 0 && mddev->size != info->size)
  3207. rv = update_size(mddev, info->size);
  3208. if (mddev->raid_disks != info->raid_disks)
  3209. rv = update_raid_disks(mddev, info->raid_disks);
  3210. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3211. if (mddev->pers->quiesce == NULL)
  3212. return -EINVAL;
  3213. if (mddev->recovery || mddev->sync_thread)
  3214. return -EBUSY;
  3215. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3216. /* add the bitmap */
  3217. if (mddev->bitmap)
  3218. return -EEXIST;
  3219. if (mddev->default_bitmap_offset == 0)
  3220. return -EINVAL;
  3221. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3222. mddev->pers->quiesce(mddev, 1);
  3223. rv = bitmap_create(mddev);
  3224. if (rv)
  3225. bitmap_destroy(mddev);
  3226. mddev->pers->quiesce(mddev, 0);
  3227. } else {
  3228. /* remove the bitmap */
  3229. if (!mddev->bitmap)
  3230. return -ENOENT;
  3231. if (mddev->bitmap->file)
  3232. return -EINVAL;
  3233. mddev->pers->quiesce(mddev, 1);
  3234. bitmap_destroy(mddev);
  3235. mddev->pers->quiesce(mddev, 0);
  3236. mddev->bitmap_offset = 0;
  3237. }
  3238. }
  3239. md_update_sb(mddev);
  3240. return rv;
  3241. }
  3242. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3243. {
  3244. mdk_rdev_t *rdev;
  3245. if (mddev->pers == NULL)
  3246. return -ENODEV;
  3247. rdev = find_rdev(mddev, dev);
  3248. if (!rdev)
  3249. return -ENODEV;
  3250. md_error(mddev, rdev);
  3251. return 0;
  3252. }
  3253. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3254. {
  3255. mddev_t *mddev = bdev->bd_disk->private_data;
  3256. geo->heads = 2;
  3257. geo->sectors = 4;
  3258. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3259. return 0;
  3260. }
  3261. static int md_ioctl(struct inode *inode, struct file *file,
  3262. unsigned int cmd, unsigned long arg)
  3263. {
  3264. int err = 0;
  3265. void __user *argp = (void __user *)arg;
  3266. mddev_t *mddev = NULL;
  3267. if (!capable(CAP_SYS_ADMIN))
  3268. return -EACCES;
  3269. /*
  3270. * Commands dealing with the RAID driver but not any
  3271. * particular array:
  3272. */
  3273. switch (cmd)
  3274. {
  3275. case RAID_VERSION:
  3276. err = get_version(argp);
  3277. goto done;
  3278. case PRINT_RAID_DEBUG:
  3279. err = 0;
  3280. md_print_devices();
  3281. goto done;
  3282. #ifndef MODULE
  3283. case RAID_AUTORUN:
  3284. err = 0;
  3285. autostart_arrays(arg);
  3286. goto done;
  3287. #endif
  3288. default:;
  3289. }
  3290. /*
  3291. * Commands creating/starting a new array:
  3292. */
  3293. mddev = inode->i_bdev->bd_disk->private_data;
  3294. if (!mddev) {
  3295. BUG();
  3296. goto abort;
  3297. }
  3298. if (cmd == START_ARRAY) {
  3299. /* START_ARRAY doesn't need to lock the array as autostart_array
  3300. * does the locking, and it could even be a different array
  3301. */
  3302. static int cnt = 3;
  3303. if (cnt > 0 ) {
  3304. printk(KERN_WARNING
  3305. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  3306. "This will not be supported beyond July 2006\n",
  3307. current->comm, current->pid);
  3308. cnt--;
  3309. }
  3310. err = autostart_array(new_decode_dev(arg));
  3311. if (err) {
  3312. printk(KERN_WARNING "md: autostart failed!\n");
  3313. goto abort;
  3314. }
  3315. goto done;
  3316. }
  3317. err = mddev_lock(mddev);
  3318. if (err) {
  3319. printk(KERN_INFO
  3320. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3321. err, cmd);
  3322. goto abort;
  3323. }
  3324. switch (cmd)
  3325. {
  3326. case SET_ARRAY_INFO:
  3327. {
  3328. mdu_array_info_t info;
  3329. if (!arg)
  3330. memset(&info, 0, sizeof(info));
  3331. else if (copy_from_user(&info, argp, sizeof(info))) {
  3332. err = -EFAULT;
  3333. goto abort_unlock;
  3334. }
  3335. if (mddev->pers) {
  3336. err = update_array_info(mddev, &info);
  3337. if (err) {
  3338. printk(KERN_WARNING "md: couldn't update"
  3339. " array info. %d\n", err);
  3340. goto abort_unlock;
  3341. }
  3342. goto done_unlock;
  3343. }
  3344. if (!list_empty(&mddev->disks)) {
  3345. printk(KERN_WARNING
  3346. "md: array %s already has disks!\n",
  3347. mdname(mddev));
  3348. err = -EBUSY;
  3349. goto abort_unlock;
  3350. }
  3351. if (mddev->raid_disks) {
  3352. printk(KERN_WARNING
  3353. "md: array %s already initialised!\n",
  3354. mdname(mddev));
  3355. err = -EBUSY;
  3356. goto abort_unlock;
  3357. }
  3358. err = set_array_info(mddev, &info);
  3359. if (err) {
  3360. printk(KERN_WARNING "md: couldn't set"
  3361. " array info. %d\n", err);
  3362. goto abort_unlock;
  3363. }
  3364. }
  3365. goto done_unlock;
  3366. default:;
  3367. }
  3368. /*
  3369. * Commands querying/configuring an existing array:
  3370. */
  3371. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3372. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  3373. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3374. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  3375. err = -ENODEV;
  3376. goto abort_unlock;
  3377. }
  3378. /*
  3379. * Commands even a read-only array can execute:
  3380. */
  3381. switch (cmd)
  3382. {
  3383. case GET_ARRAY_INFO:
  3384. err = get_array_info(mddev, argp);
  3385. goto done_unlock;
  3386. case GET_BITMAP_FILE:
  3387. err = get_bitmap_file(mddev, argp);
  3388. goto done_unlock;
  3389. case GET_DISK_INFO:
  3390. err = get_disk_info(mddev, argp);
  3391. goto done_unlock;
  3392. case RESTART_ARRAY_RW:
  3393. err = restart_array(mddev);
  3394. goto done_unlock;
  3395. case STOP_ARRAY:
  3396. err = do_md_stop (mddev, 0);
  3397. goto done_unlock;
  3398. case STOP_ARRAY_RO:
  3399. err = do_md_stop (mddev, 1);
  3400. goto done_unlock;
  3401. /*
  3402. * We have a problem here : there is no easy way to give a CHS
  3403. * virtual geometry. We currently pretend that we have a 2 heads
  3404. * 4 sectors (with a BIG number of cylinders...). This drives
  3405. * dosfs just mad... ;-)
  3406. */
  3407. }
  3408. /*
  3409. * The remaining ioctls are changing the state of the
  3410. * superblock, so we do not allow them on read-only arrays.
  3411. * However non-MD ioctls (e.g. get-size) will still come through
  3412. * here and hit the 'default' below, so only disallow
  3413. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3414. */
  3415. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3416. mddev->ro && mddev->pers) {
  3417. if (mddev->ro == 2) {
  3418. mddev->ro = 0;
  3419. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3420. md_wakeup_thread(mddev->thread);
  3421. } else {
  3422. err = -EROFS;
  3423. goto abort_unlock;
  3424. }
  3425. }
  3426. switch (cmd)
  3427. {
  3428. case ADD_NEW_DISK:
  3429. {
  3430. mdu_disk_info_t info;
  3431. if (copy_from_user(&info, argp, sizeof(info)))
  3432. err = -EFAULT;
  3433. else
  3434. err = add_new_disk(mddev, &info);
  3435. goto done_unlock;
  3436. }
  3437. case HOT_REMOVE_DISK:
  3438. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3439. goto done_unlock;
  3440. case HOT_ADD_DISK:
  3441. err = hot_add_disk(mddev, new_decode_dev(arg));
  3442. goto done_unlock;
  3443. case SET_DISK_FAULTY:
  3444. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3445. goto done_unlock;
  3446. case RUN_ARRAY:
  3447. err = do_md_run (mddev);
  3448. goto done_unlock;
  3449. case SET_BITMAP_FILE:
  3450. err = set_bitmap_file(mddev, (int)arg);
  3451. goto done_unlock;
  3452. default:
  3453. if (_IOC_TYPE(cmd) == MD_MAJOR)
  3454. printk(KERN_WARNING "md: %s(pid %d) used"
  3455. " obsolete MD ioctl, upgrade your"
  3456. " software to use new ictls.\n",
  3457. current->comm, current->pid);
  3458. err = -EINVAL;
  3459. goto abort_unlock;
  3460. }
  3461. done_unlock:
  3462. abort_unlock:
  3463. mddev_unlock(mddev);
  3464. return err;
  3465. done:
  3466. if (err)
  3467. MD_BUG();
  3468. abort:
  3469. return err;
  3470. }
  3471. static int md_open(struct inode *inode, struct file *file)
  3472. {
  3473. /*
  3474. * Succeed if we can lock the mddev, which confirms that
  3475. * it isn't being stopped right now.
  3476. */
  3477. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3478. int err;
  3479. if ((err = mddev_lock(mddev)))
  3480. goto out;
  3481. err = 0;
  3482. mddev_get(mddev);
  3483. mddev_unlock(mddev);
  3484. check_disk_change(inode->i_bdev);
  3485. out:
  3486. return err;
  3487. }
  3488. static int md_release(struct inode *inode, struct file * file)
  3489. {
  3490. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3491. if (!mddev)
  3492. BUG();
  3493. mddev_put(mddev);
  3494. return 0;
  3495. }
  3496. static int md_media_changed(struct gendisk *disk)
  3497. {
  3498. mddev_t *mddev = disk->private_data;
  3499. return mddev->changed;
  3500. }
  3501. static int md_revalidate(struct gendisk *disk)
  3502. {
  3503. mddev_t *mddev = disk->private_data;
  3504. mddev->changed = 0;
  3505. return 0;
  3506. }
  3507. static struct block_device_operations md_fops =
  3508. {
  3509. .owner = THIS_MODULE,
  3510. .open = md_open,
  3511. .release = md_release,
  3512. .ioctl = md_ioctl,
  3513. .getgeo = md_getgeo,
  3514. .media_changed = md_media_changed,
  3515. .revalidate_disk= md_revalidate,
  3516. };
  3517. static int md_thread(void * arg)
  3518. {
  3519. mdk_thread_t *thread = arg;
  3520. /*
  3521. * md_thread is a 'system-thread', it's priority should be very
  3522. * high. We avoid resource deadlocks individually in each
  3523. * raid personality. (RAID5 does preallocation) We also use RR and
  3524. * the very same RT priority as kswapd, thus we will never get
  3525. * into a priority inversion deadlock.
  3526. *
  3527. * we definitely have to have equal or higher priority than
  3528. * bdflush, otherwise bdflush will deadlock if there are too
  3529. * many dirty RAID5 blocks.
  3530. */
  3531. allow_signal(SIGKILL);
  3532. while (!kthread_should_stop()) {
  3533. /* We need to wait INTERRUPTIBLE so that
  3534. * we don't add to the load-average.
  3535. * That means we need to be sure no signals are
  3536. * pending
  3537. */
  3538. if (signal_pending(current))
  3539. flush_signals(current);
  3540. wait_event_interruptible_timeout
  3541. (thread->wqueue,
  3542. test_bit(THREAD_WAKEUP, &thread->flags)
  3543. || kthread_should_stop(),
  3544. thread->timeout);
  3545. try_to_freeze();
  3546. clear_bit(THREAD_WAKEUP, &thread->flags);
  3547. thread->run(thread->mddev);
  3548. }
  3549. return 0;
  3550. }
  3551. void md_wakeup_thread(mdk_thread_t *thread)
  3552. {
  3553. if (thread) {
  3554. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  3555. set_bit(THREAD_WAKEUP, &thread->flags);
  3556. wake_up(&thread->wqueue);
  3557. }
  3558. }
  3559. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  3560. const char *name)
  3561. {
  3562. mdk_thread_t *thread;
  3563. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  3564. if (!thread)
  3565. return NULL;
  3566. init_waitqueue_head(&thread->wqueue);
  3567. thread->run = run;
  3568. thread->mddev = mddev;
  3569. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  3570. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  3571. if (IS_ERR(thread->tsk)) {
  3572. kfree(thread);
  3573. return NULL;
  3574. }
  3575. return thread;
  3576. }
  3577. void md_unregister_thread(mdk_thread_t *thread)
  3578. {
  3579. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  3580. kthread_stop(thread->tsk);
  3581. kfree(thread);
  3582. }
  3583. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  3584. {
  3585. if (!mddev) {
  3586. MD_BUG();
  3587. return;
  3588. }
  3589. if (!rdev || test_bit(Faulty, &rdev->flags))
  3590. return;
  3591. /*
  3592. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  3593. mdname(mddev),
  3594. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  3595. __builtin_return_address(0),__builtin_return_address(1),
  3596. __builtin_return_address(2),__builtin_return_address(3));
  3597. */
  3598. if (!mddev->pers->error_handler)
  3599. return;
  3600. mddev->pers->error_handler(mddev,rdev);
  3601. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3602. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3603. md_wakeup_thread(mddev->thread);
  3604. md_new_event_inintr(mddev);
  3605. }
  3606. /* seq_file implementation /proc/mdstat */
  3607. static void status_unused(struct seq_file *seq)
  3608. {
  3609. int i = 0;
  3610. mdk_rdev_t *rdev;
  3611. struct list_head *tmp;
  3612. seq_printf(seq, "unused devices: ");
  3613. ITERATE_RDEV_PENDING(rdev,tmp) {
  3614. char b[BDEVNAME_SIZE];
  3615. i++;
  3616. seq_printf(seq, "%s ",
  3617. bdevname(rdev->bdev,b));
  3618. }
  3619. if (!i)
  3620. seq_printf(seq, "<none>");
  3621. seq_printf(seq, "\n");
  3622. }
  3623. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  3624. {
  3625. sector_t max_blocks, resync, res;
  3626. unsigned long dt, db, rt;
  3627. int scale;
  3628. unsigned int per_milli;
  3629. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  3630. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3631. max_blocks = mddev->resync_max_sectors >> 1;
  3632. else
  3633. max_blocks = mddev->size;
  3634. /*
  3635. * Should not happen.
  3636. */
  3637. if (!max_blocks) {
  3638. MD_BUG();
  3639. return;
  3640. }
  3641. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  3642. * in a sector_t, and (max_blocks>>scale) will fit in a
  3643. * u32, as those are the requirements for sector_div.
  3644. * Thus 'scale' must be at least 10
  3645. */
  3646. scale = 10;
  3647. if (sizeof(sector_t) > sizeof(unsigned long)) {
  3648. while ( max_blocks/2 > (1ULL<<(scale+32)))
  3649. scale++;
  3650. }
  3651. res = (resync>>scale)*1000;
  3652. sector_div(res, (u32)((max_blocks>>scale)+1));
  3653. per_milli = res;
  3654. {
  3655. int i, x = per_milli/50, y = 20-x;
  3656. seq_printf(seq, "[");
  3657. for (i = 0; i < x; i++)
  3658. seq_printf(seq, "=");
  3659. seq_printf(seq, ">");
  3660. for (i = 0; i < y; i++)
  3661. seq_printf(seq, ".");
  3662. seq_printf(seq, "] ");
  3663. }
  3664. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  3665. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  3666. "reshape" :
  3667. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  3668. "resync" : "recovery")),
  3669. per_milli/10, per_milli % 10,
  3670. (unsigned long long) resync,
  3671. (unsigned long long) max_blocks);
  3672. /*
  3673. * We do not want to overflow, so the order of operands and
  3674. * the * 100 / 100 trick are important. We do a +1 to be
  3675. * safe against division by zero. We only estimate anyway.
  3676. *
  3677. * dt: time from mark until now
  3678. * db: blocks written from mark until now
  3679. * rt: remaining time
  3680. */
  3681. dt = ((jiffies - mddev->resync_mark) / HZ);
  3682. if (!dt) dt++;
  3683. db = resync - (mddev->resync_mark_cnt/2);
  3684. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/100+1)))/100;
  3685. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  3686. seq_printf(seq, " speed=%ldK/sec", db/dt);
  3687. }
  3688. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  3689. {
  3690. struct list_head *tmp;
  3691. loff_t l = *pos;
  3692. mddev_t *mddev;
  3693. if (l >= 0x10000)
  3694. return NULL;
  3695. if (!l--)
  3696. /* header */
  3697. return (void*)1;
  3698. spin_lock(&all_mddevs_lock);
  3699. list_for_each(tmp,&all_mddevs)
  3700. if (!l--) {
  3701. mddev = list_entry(tmp, mddev_t, all_mddevs);
  3702. mddev_get(mddev);
  3703. spin_unlock(&all_mddevs_lock);
  3704. return mddev;
  3705. }
  3706. spin_unlock(&all_mddevs_lock);
  3707. if (!l--)
  3708. return (void*)2;/* tail */
  3709. return NULL;
  3710. }
  3711. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  3712. {
  3713. struct list_head *tmp;
  3714. mddev_t *next_mddev, *mddev = v;
  3715. ++*pos;
  3716. if (v == (void*)2)
  3717. return NULL;
  3718. spin_lock(&all_mddevs_lock);
  3719. if (v == (void*)1)
  3720. tmp = all_mddevs.next;
  3721. else
  3722. tmp = mddev->all_mddevs.next;
  3723. if (tmp != &all_mddevs)
  3724. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  3725. else {
  3726. next_mddev = (void*)2;
  3727. *pos = 0x10000;
  3728. }
  3729. spin_unlock(&all_mddevs_lock);
  3730. if (v != (void*)1)
  3731. mddev_put(mddev);
  3732. return next_mddev;
  3733. }
  3734. static void md_seq_stop(struct seq_file *seq, void *v)
  3735. {
  3736. mddev_t *mddev = v;
  3737. if (mddev && v != (void*)1 && v != (void*)2)
  3738. mddev_put(mddev);
  3739. }
  3740. struct mdstat_info {
  3741. int event;
  3742. };
  3743. static int md_seq_show(struct seq_file *seq, void *v)
  3744. {
  3745. mddev_t *mddev = v;
  3746. sector_t size;
  3747. struct list_head *tmp2;
  3748. mdk_rdev_t *rdev;
  3749. struct mdstat_info *mi = seq->private;
  3750. struct bitmap *bitmap;
  3751. if (v == (void*)1) {
  3752. struct mdk_personality *pers;
  3753. seq_printf(seq, "Personalities : ");
  3754. spin_lock(&pers_lock);
  3755. list_for_each_entry(pers, &pers_list, list)
  3756. seq_printf(seq, "[%s] ", pers->name);
  3757. spin_unlock(&pers_lock);
  3758. seq_printf(seq, "\n");
  3759. mi->event = atomic_read(&md_event_count);
  3760. return 0;
  3761. }
  3762. if (v == (void*)2) {
  3763. status_unused(seq);
  3764. return 0;
  3765. }
  3766. if (mddev_lock(mddev) < 0)
  3767. return -EINTR;
  3768. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  3769. seq_printf(seq, "%s : %sactive", mdname(mddev),
  3770. mddev->pers ? "" : "in");
  3771. if (mddev->pers) {
  3772. if (mddev->ro==1)
  3773. seq_printf(seq, " (read-only)");
  3774. if (mddev->ro==2)
  3775. seq_printf(seq, "(auto-read-only)");
  3776. seq_printf(seq, " %s", mddev->pers->name);
  3777. }
  3778. size = 0;
  3779. ITERATE_RDEV(mddev,rdev,tmp2) {
  3780. char b[BDEVNAME_SIZE];
  3781. seq_printf(seq, " %s[%d]",
  3782. bdevname(rdev->bdev,b), rdev->desc_nr);
  3783. if (test_bit(WriteMostly, &rdev->flags))
  3784. seq_printf(seq, "(W)");
  3785. if (test_bit(Faulty, &rdev->flags)) {
  3786. seq_printf(seq, "(F)");
  3787. continue;
  3788. } else if (rdev->raid_disk < 0)
  3789. seq_printf(seq, "(S)"); /* spare */
  3790. size += rdev->size;
  3791. }
  3792. if (!list_empty(&mddev->disks)) {
  3793. if (mddev->pers)
  3794. seq_printf(seq, "\n %llu blocks",
  3795. (unsigned long long)mddev->array_size);
  3796. else
  3797. seq_printf(seq, "\n %llu blocks",
  3798. (unsigned long long)size);
  3799. }
  3800. if (mddev->persistent) {
  3801. if (mddev->major_version != 0 ||
  3802. mddev->minor_version != 90) {
  3803. seq_printf(seq," super %d.%d",
  3804. mddev->major_version,
  3805. mddev->minor_version);
  3806. }
  3807. } else
  3808. seq_printf(seq, " super non-persistent");
  3809. if (mddev->pers) {
  3810. mddev->pers->status (seq, mddev);
  3811. seq_printf(seq, "\n ");
  3812. if (mddev->pers->sync_request) {
  3813. if (mddev->curr_resync > 2) {
  3814. status_resync (seq, mddev);
  3815. seq_printf(seq, "\n ");
  3816. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  3817. seq_printf(seq, "\tresync=DELAYED\n ");
  3818. else if (mddev->recovery_cp < MaxSector)
  3819. seq_printf(seq, "\tresync=PENDING\n ");
  3820. }
  3821. } else
  3822. seq_printf(seq, "\n ");
  3823. if ((bitmap = mddev->bitmap)) {
  3824. unsigned long chunk_kb;
  3825. unsigned long flags;
  3826. spin_lock_irqsave(&bitmap->lock, flags);
  3827. chunk_kb = bitmap->chunksize >> 10;
  3828. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  3829. "%lu%s chunk",
  3830. bitmap->pages - bitmap->missing_pages,
  3831. bitmap->pages,
  3832. (bitmap->pages - bitmap->missing_pages)
  3833. << (PAGE_SHIFT - 10),
  3834. chunk_kb ? chunk_kb : bitmap->chunksize,
  3835. chunk_kb ? "KB" : "B");
  3836. if (bitmap->file) {
  3837. seq_printf(seq, ", file: ");
  3838. seq_path(seq, bitmap->file->f_vfsmnt,
  3839. bitmap->file->f_dentry," \t\n");
  3840. }
  3841. seq_printf(seq, "\n");
  3842. spin_unlock_irqrestore(&bitmap->lock, flags);
  3843. }
  3844. seq_printf(seq, "\n");
  3845. }
  3846. mddev_unlock(mddev);
  3847. return 0;
  3848. }
  3849. static struct seq_operations md_seq_ops = {
  3850. .start = md_seq_start,
  3851. .next = md_seq_next,
  3852. .stop = md_seq_stop,
  3853. .show = md_seq_show,
  3854. };
  3855. static int md_seq_open(struct inode *inode, struct file *file)
  3856. {
  3857. int error;
  3858. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  3859. if (mi == NULL)
  3860. return -ENOMEM;
  3861. error = seq_open(file, &md_seq_ops);
  3862. if (error)
  3863. kfree(mi);
  3864. else {
  3865. struct seq_file *p = file->private_data;
  3866. p->private = mi;
  3867. mi->event = atomic_read(&md_event_count);
  3868. }
  3869. return error;
  3870. }
  3871. static int md_seq_release(struct inode *inode, struct file *file)
  3872. {
  3873. struct seq_file *m = file->private_data;
  3874. struct mdstat_info *mi = m->private;
  3875. m->private = NULL;
  3876. kfree(mi);
  3877. return seq_release(inode, file);
  3878. }
  3879. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  3880. {
  3881. struct seq_file *m = filp->private_data;
  3882. struct mdstat_info *mi = m->private;
  3883. int mask;
  3884. poll_wait(filp, &md_event_waiters, wait);
  3885. /* always allow read */
  3886. mask = POLLIN | POLLRDNORM;
  3887. if (mi->event != atomic_read(&md_event_count))
  3888. mask |= POLLERR | POLLPRI;
  3889. return mask;
  3890. }
  3891. static struct file_operations md_seq_fops = {
  3892. .open = md_seq_open,
  3893. .read = seq_read,
  3894. .llseek = seq_lseek,
  3895. .release = md_seq_release,
  3896. .poll = mdstat_poll,
  3897. };
  3898. int register_md_personality(struct mdk_personality *p)
  3899. {
  3900. spin_lock(&pers_lock);
  3901. list_add_tail(&p->list, &pers_list);
  3902. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  3903. spin_unlock(&pers_lock);
  3904. return 0;
  3905. }
  3906. int unregister_md_personality(struct mdk_personality *p)
  3907. {
  3908. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  3909. spin_lock(&pers_lock);
  3910. list_del_init(&p->list);
  3911. spin_unlock(&pers_lock);
  3912. return 0;
  3913. }
  3914. static int is_mddev_idle(mddev_t *mddev)
  3915. {
  3916. mdk_rdev_t * rdev;
  3917. struct list_head *tmp;
  3918. int idle;
  3919. unsigned long curr_events;
  3920. idle = 1;
  3921. ITERATE_RDEV(mddev,rdev,tmp) {
  3922. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  3923. curr_events = disk_stat_read(disk, sectors[0]) +
  3924. disk_stat_read(disk, sectors[1]) -
  3925. atomic_read(&disk->sync_io);
  3926. /* The difference between curr_events and last_events
  3927. * will be affected by any new non-sync IO (making
  3928. * curr_events bigger) and any difference in the amount of
  3929. * in-flight syncio (making current_events bigger or smaller)
  3930. * The amount in-flight is currently limited to
  3931. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  3932. * which is at most 4096 sectors.
  3933. * These numbers are fairly fragile and should be made
  3934. * more robust, probably by enforcing the
  3935. * 'window size' that md_do_sync sort-of uses.
  3936. *
  3937. * Note: the following is an unsigned comparison.
  3938. */
  3939. if ((curr_events - rdev->last_events + 4096) > 8192) {
  3940. rdev->last_events = curr_events;
  3941. idle = 0;
  3942. }
  3943. }
  3944. return idle;
  3945. }
  3946. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3947. {
  3948. /* another "blocks" (512byte) blocks have been synced */
  3949. atomic_sub(blocks, &mddev->recovery_active);
  3950. wake_up(&mddev->recovery_wait);
  3951. if (!ok) {
  3952. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3953. md_wakeup_thread(mddev->thread);
  3954. // stop recovery, signal do_sync ....
  3955. }
  3956. }
  3957. /* md_write_start(mddev, bi)
  3958. * If we need to update some array metadata (e.g. 'active' flag
  3959. * in superblock) before writing, schedule a superblock update
  3960. * and wait for it to complete.
  3961. */
  3962. void md_write_start(mddev_t *mddev, struct bio *bi)
  3963. {
  3964. if (bio_data_dir(bi) != WRITE)
  3965. return;
  3966. BUG_ON(mddev->ro == 1);
  3967. if (mddev->ro == 2) {
  3968. /* need to switch to read/write */
  3969. mddev->ro = 0;
  3970. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3971. md_wakeup_thread(mddev->thread);
  3972. }
  3973. atomic_inc(&mddev->writes_pending);
  3974. if (mddev->in_sync) {
  3975. spin_lock_irq(&mddev->write_lock);
  3976. if (mddev->in_sync) {
  3977. mddev->in_sync = 0;
  3978. mddev->sb_dirty = 1;
  3979. md_wakeup_thread(mddev->thread);
  3980. }
  3981. spin_unlock_irq(&mddev->write_lock);
  3982. }
  3983. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3984. }
  3985. void md_write_end(mddev_t *mddev)
  3986. {
  3987. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3988. if (mddev->safemode == 2)
  3989. md_wakeup_thread(mddev->thread);
  3990. else
  3991. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3992. }
  3993. }
  3994. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3995. #define SYNC_MARKS 10
  3996. #define SYNC_MARK_STEP (3*HZ)
  3997. void md_do_sync(mddev_t *mddev)
  3998. {
  3999. mddev_t *mddev2;
  4000. unsigned int currspeed = 0,
  4001. window;
  4002. sector_t max_sectors,j, io_sectors;
  4003. unsigned long mark[SYNC_MARKS];
  4004. sector_t mark_cnt[SYNC_MARKS];
  4005. int last_mark,m;
  4006. struct list_head *tmp;
  4007. sector_t last_check;
  4008. int skipped = 0;
  4009. /* just incase thread restarts... */
  4010. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4011. return;
  4012. /* we overload curr_resync somewhat here.
  4013. * 0 == not engaged in resync at all
  4014. * 2 == checking that there is no conflict with another sync
  4015. * 1 == like 2, but have yielded to allow conflicting resync to
  4016. * commense
  4017. * other == active in resync - this many blocks
  4018. *
  4019. * Before starting a resync we must have set curr_resync to
  4020. * 2, and then checked that every "conflicting" array has curr_resync
  4021. * less than ours. When we find one that is the same or higher
  4022. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4023. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4024. * This will mean we have to start checking from the beginning again.
  4025. *
  4026. */
  4027. do {
  4028. mddev->curr_resync = 2;
  4029. try_again:
  4030. if (kthread_should_stop()) {
  4031. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4032. goto skip;
  4033. }
  4034. ITERATE_MDDEV(mddev2,tmp) {
  4035. if (mddev2 == mddev)
  4036. continue;
  4037. if (mddev2->curr_resync &&
  4038. match_mddev_units(mddev,mddev2)) {
  4039. DEFINE_WAIT(wq);
  4040. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4041. /* arbitrarily yield */
  4042. mddev->curr_resync = 1;
  4043. wake_up(&resync_wait);
  4044. }
  4045. if (mddev > mddev2 && mddev->curr_resync == 1)
  4046. /* no need to wait here, we can wait the next
  4047. * time 'round when curr_resync == 2
  4048. */
  4049. continue;
  4050. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4051. if (!kthread_should_stop() &&
  4052. mddev2->curr_resync >= mddev->curr_resync) {
  4053. printk(KERN_INFO "md: delaying resync of %s"
  4054. " until %s has finished resync (they"
  4055. " share one or more physical units)\n",
  4056. mdname(mddev), mdname(mddev2));
  4057. mddev_put(mddev2);
  4058. schedule();
  4059. finish_wait(&resync_wait, &wq);
  4060. goto try_again;
  4061. }
  4062. finish_wait(&resync_wait, &wq);
  4063. }
  4064. }
  4065. } while (mddev->curr_resync < 2);
  4066. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4067. /* resync follows the size requested by the personality,
  4068. * which defaults to physical size, but can be virtual size
  4069. */
  4070. max_sectors = mddev->resync_max_sectors;
  4071. mddev->resync_mismatches = 0;
  4072. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4073. max_sectors = mddev->size << 1;
  4074. else
  4075. /* recovery follows the physical size of devices */
  4076. max_sectors = mddev->size << 1;
  4077. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  4078. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  4079. " %d KB/sec/disc.\n", speed_min(mddev));
  4080. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4081. "(but not more than %d KB/sec) for reconstruction.\n",
  4082. speed_max(mddev));
  4083. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4084. /* we don't use the checkpoint if there's a bitmap */
  4085. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
  4086. && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4087. j = mddev->recovery_cp;
  4088. else
  4089. j = 0;
  4090. io_sectors = 0;
  4091. for (m = 0; m < SYNC_MARKS; m++) {
  4092. mark[m] = jiffies;
  4093. mark_cnt[m] = io_sectors;
  4094. }
  4095. last_mark = 0;
  4096. mddev->resync_mark = mark[last_mark];
  4097. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4098. /*
  4099. * Tune reconstruction:
  4100. */
  4101. window = 32*(PAGE_SIZE/512);
  4102. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4103. window/2,(unsigned long long) max_sectors/2);
  4104. atomic_set(&mddev->recovery_active, 0);
  4105. init_waitqueue_head(&mddev->recovery_wait);
  4106. last_check = 0;
  4107. if (j>2) {
  4108. printk(KERN_INFO
  4109. "md: resuming recovery of %s from checkpoint.\n",
  4110. mdname(mddev));
  4111. mddev->curr_resync = j;
  4112. }
  4113. while (j < max_sectors) {
  4114. sector_t sectors;
  4115. skipped = 0;
  4116. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4117. currspeed < speed_min(mddev));
  4118. if (sectors == 0) {
  4119. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4120. goto out;
  4121. }
  4122. if (!skipped) { /* actual IO requested */
  4123. io_sectors += sectors;
  4124. atomic_add(sectors, &mddev->recovery_active);
  4125. }
  4126. j += sectors;
  4127. if (j>1) mddev->curr_resync = j;
  4128. if (last_check == 0)
  4129. /* this is the earliers that rebuilt will be
  4130. * visible in /proc/mdstat
  4131. */
  4132. md_new_event(mddev);
  4133. if (last_check + window > io_sectors || j == max_sectors)
  4134. continue;
  4135. last_check = io_sectors;
  4136. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4137. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4138. break;
  4139. repeat:
  4140. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4141. /* step marks */
  4142. int next = (last_mark+1) % SYNC_MARKS;
  4143. mddev->resync_mark = mark[next];
  4144. mddev->resync_mark_cnt = mark_cnt[next];
  4145. mark[next] = jiffies;
  4146. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4147. last_mark = next;
  4148. }
  4149. if (kthread_should_stop()) {
  4150. /*
  4151. * got a signal, exit.
  4152. */
  4153. printk(KERN_INFO
  4154. "md: md_do_sync() got signal ... exiting\n");
  4155. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4156. goto out;
  4157. }
  4158. /*
  4159. * this loop exits only if either when we are slower than
  4160. * the 'hard' speed limit, or the system was IO-idle for
  4161. * a jiffy.
  4162. * the system might be non-idle CPU-wise, but we only care
  4163. * about not overloading the IO subsystem. (things like an
  4164. * e2fsck being done on the RAID array should execute fast)
  4165. */
  4166. mddev->queue->unplug_fn(mddev->queue);
  4167. cond_resched();
  4168. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4169. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4170. if (currspeed > speed_min(mddev)) {
  4171. if ((currspeed > speed_max(mddev)) ||
  4172. !is_mddev_idle(mddev)) {
  4173. msleep(500);
  4174. goto repeat;
  4175. }
  4176. }
  4177. }
  4178. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  4179. /*
  4180. * this also signals 'finished resyncing' to md_stop
  4181. */
  4182. out:
  4183. mddev->queue->unplug_fn(mddev->queue);
  4184. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4185. /* tell personality that we are finished */
  4186. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4187. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4188. test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  4189. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4190. mddev->curr_resync > 2 &&
  4191. mddev->curr_resync >= mddev->recovery_cp) {
  4192. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4193. printk(KERN_INFO
  4194. "md: checkpointing recovery of %s.\n",
  4195. mdname(mddev));
  4196. mddev->recovery_cp = mddev->curr_resync;
  4197. } else
  4198. mddev->recovery_cp = MaxSector;
  4199. }
  4200. skip:
  4201. mddev->curr_resync = 0;
  4202. wake_up(&resync_wait);
  4203. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4204. md_wakeup_thread(mddev->thread);
  4205. }
  4206. EXPORT_SYMBOL_GPL(md_do_sync);
  4207. /*
  4208. * This routine is regularly called by all per-raid-array threads to
  4209. * deal with generic issues like resync and super-block update.
  4210. * Raid personalities that don't have a thread (linear/raid0) do not
  4211. * need this as they never do any recovery or update the superblock.
  4212. *
  4213. * It does not do any resync itself, but rather "forks" off other threads
  4214. * to do that as needed.
  4215. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4216. * "->recovery" and create a thread at ->sync_thread.
  4217. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4218. * and wakeups up this thread which will reap the thread and finish up.
  4219. * This thread also removes any faulty devices (with nr_pending == 0).
  4220. *
  4221. * The overall approach is:
  4222. * 1/ if the superblock needs updating, update it.
  4223. * 2/ If a recovery thread is running, don't do anything else.
  4224. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4225. * 4/ If there are any faulty devices, remove them.
  4226. * 5/ If array is degraded, try to add spares devices
  4227. * 6/ If array has spares or is not in-sync, start a resync thread.
  4228. */
  4229. void md_check_recovery(mddev_t *mddev)
  4230. {
  4231. mdk_rdev_t *rdev;
  4232. struct list_head *rtmp;
  4233. if (mddev->bitmap)
  4234. bitmap_daemon_work(mddev->bitmap);
  4235. if (mddev->ro)
  4236. return;
  4237. if (signal_pending(current)) {
  4238. if (mddev->pers->sync_request) {
  4239. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4240. mdname(mddev));
  4241. mddev->safemode = 2;
  4242. }
  4243. flush_signals(current);
  4244. }
  4245. if ( ! (
  4246. mddev->sb_dirty ||
  4247. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4248. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4249. (mddev->safemode == 1) ||
  4250. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4251. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4252. ))
  4253. return;
  4254. if (mddev_trylock(mddev)) {
  4255. int spares =0;
  4256. spin_lock_irq(&mddev->write_lock);
  4257. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4258. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4259. mddev->in_sync = 1;
  4260. mddev->sb_dirty = 1;
  4261. }
  4262. if (mddev->safemode == 1)
  4263. mddev->safemode = 0;
  4264. spin_unlock_irq(&mddev->write_lock);
  4265. if (mddev->sb_dirty)
  4266. md_update_sb(mddev);
  4267. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4268. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4269. /* resync/recovery still happening */
  4270. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4271. goto unlock;
  4272. }
  4273. if (mddev->sync_thread) {
  4274. /* resync has finished, collect result */
  4275. md_unregister_thread(mddev->sync_thread);
  4276. mddev->sync_thread = NULL;
  4277. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4278. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4279. /* success...*/
  4280. /* activate any spares */
  4281. mddev->pers->spare_active(mddev);
  4282. }
  4283. md_update_sb(mddev);
  4284. /* if array is no-longer degraded, then any saved_raid_disk
  4285. * information must be scrapped
  4286. */
  4287. if (!mddev->degraded)
  4288. ITERATE_RDEV(mddev,rdev,rtmp)
  4289. rdev->saved_raid_disk = -1;
  4290. mddev->recovery = 0;
  4291. /* flag recovery needed just to double check */
  4292. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4293. md_new_event(mddev);
  4294. goto unlock;
  4295. }
  4296. /* Clear some bits that don't mean anything, but
  4297. * might be left set
  4298. */
  4299. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4300. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4301. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4302. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4303. /* no recovery is running.
  4304. * remove any failed drives, then
  4305. * add spares if possible.
  4306. * Spare are also removed and re-added, to allow
  4307. * the personality to fail the re-add.
  4308. */
  4309. ITERATE_RDEV(mddev,rdev,rtmp)
  4310. if (rdev->raid_disk >= 0 &&
  4311. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  4312. atomic_read(&rdev->nr_pending)==0) {
  4313. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  4314. char nm[20];
  4315. sprintf(nm,"rd%d", rdev->raid_disk);
  4316. sysfs_remove_link(&mddev->kobj, nm);
  4317. rdev->raid_disk = -1;
  4318. }
  4319. }
  4320. if (mddev->degraded) {
  4321. ITERATE_RDEV(mddev,rdev,rtmp)
  4322. if (rdev->raid_disk < 0
  4323. && !test_bit(Faulty, &rdev->flags)) {
  4324. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4325. char nm[20];
  4326. sprintf(nm, "rd%d", rdev->raid_disk);
  4327. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  4328. spares++;
  4329. md_new_event(mddev);
  4330. } else
  4331. break;
  4332. }
  4333. }
  4334. if (spares) {
  4335. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4336. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4337. } else if (mddev->recovery_cp < MaxSector) {
  4338. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4339. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4340. /* nothing to be done ... */
  4341. goto unlock;
  4342. if (mddev->pers->sync_request) {
  4343. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4344. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4345. /* We are adding a device or devices to an array
  4346. * which has the bitmap stored on all devices.
  4347. * So make sure all bitmap pages get written
  4348. */
  4349. bitmap_write_all(mddev->bitmap);
  4350. }
  4351. mddev->sync_thread = md_register_thread(md_do_sync,
  4352. mddev,
  4353. "%s_resync");
  4354. if (!mddev->sync_thread) {
  4355. printk(KERN_ERR "%s: could not start resync"
  4356. " thread...\n",
  4357. mdname(mddev));
  4358. /* leave the spares where they are, it shouldn't hurt */
  4359. mddev->recovery = 0;
  4360. } else
  4361. md_wakeup_thread(mddev->sync_thread);
  4362. md_new_event(mddev);
  4363. }
  4364. unlock:
  4365. mddev_unlock(mddev);
  4366. }
  4367. }
  4368. static int md_notify_reboot(struct notifier_block *this,
  4369. unsigned long code, void *x)
  4370. {
  4371. struct list_head *tmp;
  4372. mddev_t *mddev;
  4373. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  4374. printk(KERN_INFO "md: stopping all md devices.\n");
  4375. ITERATE_MDDEV(mddev,tmp)
  4376. if (mddev_trylock(mddev)) {
  4377. do_md_stop (mddev, 1);
  4378. mddev_unlock(mddev);
  4379. }
  4380. /*
  4381. * certain more exotic SCSI devices are known to be
  4382. * volatile wrt too early system reboots. While the
  4383. * right place to handle this issue is the given
  4384. * driver, we do want to have a safe RAID driver ...
  4385. */
  4386. mdelay(1000*1);
  4387. }
  4388. return NOTIFY_DONE;
  4389. }
  4390. static struct notifier_block md_notifier = {
  4391. .notifier_call = md_notify_reboot,
  4392. .next = NULL,
  4393. .priority = INT_MAX, /* before any real devices */
  4394. };
  4395. static void md_geninit(void)
  4396. {
  4397. struct proc_dir_entry *p;
  4398. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  4399. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  4400. if (p)
  4401. p->proc_fops = &md_seq_fops;
  4402. }
  4403. static int __init md_init(void)
  4404. {
  4405. int minor;
  4406. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  4407. " MD_SB_DISKS=%d\n",
  4408. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  4409. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  4410. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
  4411. BITMAP_MINOR);
  4412. if (register_blkdev(MAJOR_NR, "md"))
  4413. return -1;
  4414. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  4415. unregister_blkdev(MAJOR_NR, "md");
  4416. return -1;
  4417. }
  4418. devfs_mk_dir("md");
  4419. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  4420. md_probe, NULL, NULL);
  4421. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  4422. md_probe, NULL, NULL);
  4423. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  4424. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  4425. S_IFBLK|S_IRUSR|S_IWUSR,
  4426. "md/%d", minor);
  4427. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  4428. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  4429. S_IFBLK|S_IRUSR|S_IWUSR,
  4430. "md/mdp%d", minor);
  4431. register_reboot_notifier(&md_notifier);
  4432. raid_table_header = register_sysctl_table(raid_root_table, 1);
  4433. md_geninit();
  4434. return (0);
  4435. }
  4436. #ifndef MODULE
  4437. /*
  4438. * Searches all registered partitions for autorun RAID arrays
  4439. * at boot time.
  4440. */
  4441. static dev_t detected_devices[128];
  4442. static int dev_cnt;
  4443. void md_autodetect_dev(dev_t dev)
  4444. {
  4445. if (dev_cnt >= 0 && dev_cnt < 127)
  4446. detected_devices[dev_cnt++] = dev;
  4447. }
  4448. static void autostart_arrays(int part)
  4449. {
  4450. mdk_rdev_t *rdev;
  4451. int i;
  4452. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  4453. for (i = 0; i < dev_cnt; i++) {
  4454. dev_t dev = detected_devices[i];
  4455. rdev = md_import_device(dev,0, 0);
  4456. if (IS_ERR(rdev))
  4457. continue;
  4458. if (test_bit(Faulty, &rdev->flags)) {
  4459. MD_BUG();
  4460. continue;
  4461. }
  4462. list_add(&rdev->same_set, &pending_raid_disks);
  4463. }
  4464. dev_cnt = 0;
  4465. autorun_devices(part);
  4466. }
  4467. #endif
  4468. static __exit void md_exit(void)
  4469. {
  4470. mddev_t *mddev;
  4471. struct list_head *tmp;
  4472. int i;
  4473. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  4474. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  4475. for (i=0; i < MAX_MD_DEVS; i++)
  4476. devfs_remove("md/%d", i);
  4477. for (i=0; i < MAX_MD_DEVS; i++)
  4478. devfs_remove("md/d%d", i);
  4479. devfs_remove("md");
  4480. unregister_blkdev(MAJOR_NR,"md");
  4481. unregister_blkdev(mdp_major, "mdp");
  4482. unregister_reboot_notifier(&md_notifier);
  4483. unregister_sysctl_table(raid_table_header);
  4484. remove_proc_entry("mdstat", NULL);
  4485. ITERATE_MDDEV(mddev,tmp) {
  4486. struct gendisk *disk = mddev->gendisk;
  4487. if (!disk)
  4488. continue;
  4489. export_array(mddev);
  4490. del_gendisk(disk);
  4491. put_disk(disk);
  4492. mddev->gendisk = NULL;
  4493. mddev_put(mddev);
  4494. }
  4495. }
  4496. module_init(md_init)
  4497. module_exit(md_exit)
  4498. static int get_ro(char *buffer, struct kernel_param *kp)
  4499. {
  4500. return sprintf(buffer, "%d", start_readonly);
  4501. }
  4502. static int set_ro(const char *val, struct kernel_param *kp)
  4503. {
  4504. char *e;
  4505. int num = simple_strtoul(val, &e, 10);
  4506. if (*val && (*e == '\0' || *e == '\n')) {
  4507. start_readonly = num;
  4508. return 0;
  4509. }
  4510. return -EINVAL;
  4511. }
  4512. module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
  4513. module_param(start_dirty_degraded, int, 0644);
  4514. EXPORT_SYMBOL(register_md_personality);
  4515. EXPORT_SYMBOL(unregister_md_personality);
  4516. EXPORT_SYMBOL(md_error);
  4517. EXPORT_SYMBOL(md_done_sync);
  4518. EXPORT_SYMBOL(md_write_start);
  4519. EXPORT_SYMBOL(md_write_end);
  4520. EXPORT_SYMBOL(md_register_thread);
  4521. EXPORT_SYMBOL(md_unregister_thread);
  4522. EXPORT_SYMBOL(md_wakeup_thread);
  4523. EXPORT_SYMBOL(md_print_devices);
  4524. EXPORT_SYMBOL(md_check_recovery);
  4525. MODULE_LICENSE("GPL");
  4526. MODULE_ALIAS("md");
  4527. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);