evlist.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include <lk/debugfs.h>
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include "debug.h"
  18. #include <unistd.h>
  19. #include "parse-events.h"
  20. #include <sys/mman.h>
  21. #include <linux/bitops.h>
  22. #include <linux/hash.h>
  23. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  24. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  25. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  26. struct thread_map *threads)
  27. {
  28. int i;
  29. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  30. INIT_HLIST_HEAD(&evlist->heads[i]);
  31. INIT_LIST_HEAD(&evlist->entries);
  32. perf_evlist__set_maps(evlist, cpus, threads);
  33. evlist->workload.pid = -1;
  34. }
  35. struct perf_evlist *perf_evlist__new(void)
  36. {
  37. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  38. if (evlist != NULL)
  39. perf_evlist__init(evlist, NULL, NULL);
  40. return evlist;
  41. }
  42. /**
  43. * perf_evlist__set_id_pos - set the positions of event ids.
  44. * @evlist: selected event list
  45. *
  46. * Events with compatible sample types all have the same id_pos
  47. * and is_pos. For convenience, put a copy on evlist.
  48. */
  49. void perf_evlist__set_id_pos(struct perf_evlist *evlist)
  50. {
  51. struct perf_evsel *first = perf_evlist__first(evlist);
  52. evlist->id_pos = first->id_pos;
  53. evlist->is_pos = first->is_pos;
  54. }
  55. static void perf_evlist__update_id_pos(struct perf_evlist *evlist)
  56. {
  57. struct perf_evsel *evsel;
  58. list_for_each_entry(evsel, &evlist->entries, node)
  59. perf_evsel__calc_id_pos(evsel);
  60. perf_evlist__set_id_pos(evlist);
  61. }
  62. static void perf_evlist__purge(struct perf_evlist *evlist)
  63. {
  64. struct perf_evsel *pos, *n;
  65. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  66. list_del_init(&pos->node);
  67. perf_evsel__delete(pos);
  68. }
  69. evlist->nr_entries = 0;
  70. }
  71. void perf_evlist__exit(struct perf_evlist *evlist)
  72. {
  73. free(evlist->mmap);
  74. free(evlist->pollfd);
  75. evlist->mmap = NULL;
  76. evlist->pollfd = NULL;
  77. }
  78. void perf_evlist__delete(struct perf_evlist *evlist)
  79. {
  80. perf_evlist__purge(evlist);
  81. perf_evlist__exit(evlist);
  82. free(evlist);
  83. }
  84. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  85. {
  86. list_add_tail(&entry->node, &evlist->entries);
  87. if (!evlist->nr_entries++)
  88. perf_evlist__set_id_pos(evlist);
  89. }
  90. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  91. struct list_head *list,
  92. int nr_entries)
  93. {
  94. bool set_id_pos = !evlist->nr_entries;
  95. list_splice_tail(list, &evlist->entries);
  96. evlist->nr_entries += nr_entries;
  97. if (set_id_pos)
  98. perf_evlist__set_id_pos(evlist);
  99. }
  100. void __perf_evlist__set_leader(struct list_head *list)
  101. {
  102. struct perf_evsel *evsel, *leader;
  103. leader = list_entry(list->next, struct perf_evsel, node);
  104. evsel = list_entry(list->prev, struct perf_evsel, node);
  105. leader->nr_members = evsel->idx - leader->idx + 1;
  106. list_for_each_entry(evsel, list, node) {
  107. evsel->leader = leader;
  108. }
  109. }
  110. void perf_evlist__set_leader(struct perf_evlist *evlist)
  111. {
  112. if (evlist->nr_entries) {
  113. evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
  114. __perf_evlist__set_leader(&evlist->entries);
  115. }
  116. }
  117. int perf_evlist__add_default(struct perf_evlist *evlist)
  118. {
  119. struct perf_event_attr attr = {
  120. .type = PERF_TYPE_HARDWARE,
  121. .config = PERF_COUNT_HW_CPU_CYCLES,
  122. };
  123. struct perf_evsel *evsel;
  124. event_attr_init(&attr);
  125. evsel = perf_evsel__new(&attr, 0);
  126. if (evsel == NULL)
  127. goto error;
  128. /* use strdup() because free(evsel) assumes name is allocated */
  129. evsel->name = strdup("cycles");
  130. if (!evsel->name)
  131. goto error_free;
  132. perf_evlist__add(evlist, evsel);
  133. return 0;
  134. error_free:
  135. perf_evsel__delete(evsel);
  136. error:
  137. return -ENOMEM;
  138. }
  139. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  140. struct perf_event_attr *attrs, size_t nr_attrs)
  141. {
  142. struct perf_evsel *evsel, *n;
  143. LIST_HEAD(head);
  144. size_t i;
  145. for (i = 0; i < nr_attrs; i++) {
  146. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  147. if (evsel == NULL)
  148. goto out_delete_partial_list;
  149. list_add_tail(&evsel->node, &head);
  150. }
  151. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  152. return 0;
  153. out_delete_partial_list:
  154. list_for_each_entry_safe(evsel, n, &head, node)
  155. perf_evsel__delete(evsel);
  156. return -1;
  157. }
  158. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  159. struct perf_event_attr *attrs, size_t nr_attrs)
  160. {
  161. size_t i;
  162. for (i = 0; i < nr_attrs; i++)
  163. event_attr_init(attrs + i);
  164. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  165. }
  166. struct perf_evsel *
  167. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  168. {
  169. struct perf_evsel *evsel;
  170. list_for_each_entry(evsel, &evlist->entries, node) {
  171. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  172. (int)evsel->attr.config == id)
  173. return evsel;
  174. }
  175. return NULL;
  176. }
  177. struct perf_evsel *
  178. perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist,
  179. const char *name)
  180. {
  181. struct perf_evsel *evsel;
  182. list_for_each_entry(evsel, &evlist->entries, node) {
  183. if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) &&
  184. (strcmp(evsel->name, name) == 0))
  185. return evsel;
  186. }
  187. return NULL;
  188. }
  189. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  190. const char *sys, const char *name, void *handler)
  191. {
  192. struct perf_evsel *evsel;
  193. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  194. if (evsel == NULL)
  195. return -1;
  196. evsel->handler.func = handler;
  197. perf_evlist__add(evlist, evsel);
  198. return 0;
  199. }
  200. void perf_evlist__disable(struct perf_evlist *evlist)
  201. {
  202. int cpu, thread;
  203. struct perf_evsel *pos;
  204. int nr_cpus = cpu_map__nr(evlist->cpus);
  205. int nr_threads = thread_map__nr(evlist->threads);
  206. for (cpu = 0; cpu < nr_cpus; cpu++) {
  207. list_for_each_entry(pos, &evlist->entries, node) {
  208. if (!perf_evsel__is_group_leader(pos) || !pos->fd)
  209. continue;
  210. for (thread = 0; thread < nr_threads; thread++)
  211. ioctl(FD(pos, cpu, thread),
  212. PERF_EVENT_IOC_DISABLE, 0);
  213. }
  214. }
  215. }
  216. void perf_evlist__enable(struct perf_evlist *evlist)
  217. {
  218. int cpu, thread;
  219. struct perf_evsel *pos;
  220. int nr_cpus = cpu_map__nr(evlist->cpus);
  221. int nr_threads = thread_map__nr(evlist->threads);
  222. for (cpu = 0; cpu < nr_cpus; cpu++) {
  223. list_for_each_entry(pos, &evlist->entries, node) {
  224. if (!perf_evsel__is_group_leader(pos) || !pos->fd)
  225. continue;
  226. for (thread = 0; thread < nr_threads; thread++)
  227. ioctl(FD(pos, cpu, thread),
  228. PERF_EVENT_IOC_ENABLE, 0);
  229. }
  230. }
  231. }
  232. int perf_evlist__disable_event(struct perf_evlist *evlist,
  233. struct perf_evsel *evsel)
  234. {
  235. int cpu, thread, err;
  236. if (!evsel->fd)
  237. return 0;
  238. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  239. for (thread = 0; thread < evlist->threads->nr; thread++) {
  240. err = ioctl(FD(evsel, cpu, thread),
  241. PERF_EVENT_IOC_DISABLE, 0);
  242. if (err)
  243. return err;
  244. }
  245. }
  246. return 0;
  247. }
  248. int perf_evlist__enable_event(struct perf_evlist *evlist,
  249. struct perf_evsel *evsel)
  250. {
  251. int cpu, thread, err;
  252. if (!evsel->fd)
  253. return -EINVAL;
  254. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  255. for (thread = 0; thread < evlist->threads->nr; thread++) {
  256. err = ioctl(FD(evsel, cpu, thread),
  257. PERF_EVENT_IOC_ENABLE, 0);
  258. if (err)
  259. return err;
  260. }
  261. }
  262. return 0;
  263. }
  264. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  265. {
  266. int nr_cpus = cpu_map__nr(evlist->cpus);
  267. int nr_threads = thread_map__nr(evlist->threads);
  268. int nfds = nr_cpus * nr_threads * evlist->nr_entries;
  269. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  270. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  271. }
  272. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  273. {
  274. fcntl(fd, F_SETFL, O_NONBLOCK);
  275. evlist->pollfd[evlist->nr_fds].fd = fd;
  276. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  277. evlist->nr_fds++;
  278. }
  279. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  280. struct perf_evsel *evsel,
  281. int cpu, int thread, u64 id)
  282. {
  283. int hash;
  284. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  285. sid->id = id;
  286. sid->evsel = evsel;
  287. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  288. hlist_add_head(&sid->node, &evlist->heads[hash]);
  289. }
  290. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  291. int cpu, int thread, u64 id)
  292. {
  293. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  294. evsel->id[evsel->ids++] = id;
  295. }
  296. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  297. struct perf_evsel *evsel,
  298. int cpu, int thread, int fd)
  299. {
  300. u64 read_data[4] = { 0, };
  301. int id_idx = 1; /* The first entry is the counter value */
  302. u64 id;
  303. int ret;
  304. ret = ioctl(fd, PERF_EVENT_IOC_ID, &id);
  305. if (!ret)
  306. goto add;
  307. if (errno != ENOTTY)
  308. return -1;
  309. /* Legacy way to get event id.. All hail to old kernels! */
  310. /*
  311. * This way does not work with group format read, so bail
  312. * out in that case.
  313. */
  314. if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP)
  315. return -1;
  316. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  317. read(fd, &read_data, sizeof(read_data)) == -1)
  318. return -1;
  319. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  320. ++id_idx;
  321. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  322. ++id_idx;
  323. id = read_data[id_idx];
  324. add:
  325. perf_evlist__id_add(evlist, evsel, cpu, thread, id);
  326. return 0;
  327. }
  328. struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id)
  329. {
  330. struct hlist_head *head;
  331. struct perf_sample_id *sid;
  332. int hash;
  333. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  334. head = &evlist->heads[hash];
  335. hlist_for_each_entry(sid, head, node)
  336. if (sid->id == id)
  337. return sid;
  338. return NULL;
  339. }
  340. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  341. {
  342. struct perf_sample_id *sid;
  343. if (evlist->nr_entries == 1)
  344. return perf_evlist__first(evlist);
  345. sid = perf_evlist__id2sid(evlist, id);
  346. if (sid)
  347. return sid->evsel;
  348. if (!perf_evlist__sample_id_all(evlist))
  349. return perf_evlist__first(evlist);
  350. return NULL;
  351. }
  352. static int perf_evlist__event2id(struct perf_evlist *evlist,
  353. union perf_event *event, u64 *id)
  354. {
  355. const u64 *array = event->sample.array;
  356. ssize_t n;
  357. n = (event->header.size - sizeof(event->header)) >> 3;
  358. if (event->header.type == PERF_RECORD_SAMPLE) {
  359. if (evlist->id_pos >= n)
  360. return -1;
  361. *id = array[evlist->id_pos];
  362. } else {
  363. if (evlist->is_pos > n)
  364. return -1;
  365. n -= evlist->is_pos;
  366. *id = array[n];
  367. }
  368. return 0;
  369. }
  370. static struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist,
  371. union perf_event *event)
  372. {
  373. struct perf_evsel *first = perf_evlist__first(evlist);
  374. struct hlist_head *head;
  375. struct perf_sample_id *sid;
  376. int hash;
  377. u64 id;
  378. if (evlist->nr_entries == 1)
  379. return first;
  380. if (!first->attr.sample_id_all &&
  381. event->header.type != PERF_RECORD_SAMPLE)
  382. return first;
  383. if (perf_evlist__event2id(evlist, event, &id))
  384. return NULL;
  385. /* Synthesized events have an id of zero */
  386. if (!id)
  387. return first;
  388. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  389. head = &evlist->heads[hash];
  390. hlist_for_each_entry(sid, head, node) {
  391. if (sid->id == id)
  392. return sid->evsel;
  393. }
  394. return NULL;
  395. }
  396. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  397. {
  398. struct perf_mmap *md = &evlist->mmap[idx];
  399. unsigned int head = perf_mmap__read_head(md);
  400. unsigned int old = md->prev;
  401. unsigned char *data = md->base + page_size;
  402. union perf_event *event = NULL;
  403. if (evlist->overwrite) {
  404. /*
  405. * If we're further behind than half the buffer, there's a chance
  406. * the writer will bite our tail and mess up the samples under us.
  407. *
  408. * If we somehow ended up ahead of the head, we got messed up.
  409. *
  410. * In either case, truncate and restart at head.
  411. */
  412. int diff = head - old;
  413. if (diff > md->mask / 2 || diff < 0) {
  414. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  415. /*
  416. * head points to a known good entry, start there.
  417. */
  418. old = head;
  419. }
  420. }
  421. if (old != head) {
  422. size_t size;
  423. event = (union perf_event *)&data[old & md->mask];
  424. size = event->header.size;
  425. /*
  426. * Event straddles the mmap boundary -- header should always
  427. * be inside due to u64 alignment of output.
  428. */
  429. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  430. unsigned int offset = old;
  431. unsigned int len = min(sizeof(*event), size), cpy;
  432. void *dst = &md->event_copy;
  433. do {
  434. cpy = min(md->mask + 1 - (offset & md->mask), len);
  435. memcpy(dst, &data[offset & md->mask], cpy);
  436. offset += cpy;
  437. dst += cpy;
  438. len -= cpy;
  439. } while (len);
  440. event = &md->event_copy;
  441. }
  442. old += size;
  443. }
  444. md->prev = old;
  445. if (!evlist->overwrite)
  446. perf_mmap__write_tail(md, old);
  447. return event;
  448. }
  449. static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx)
  450. {
  451. if (evlist->mmap[idx].base != NULL) {
  452. munmap(evlist->mmap[idx].base, evlist->mmap_len);
  453. evlist->mmap[idx].base = NULL;
  454. }
  455. }
  456. void perf_evlist__munmap(struct perf_evlist *evlist)
  457. {
  458. int i;
  459. for (i = 0; i < evlist->nr_mmaps; i++)
  460. __perf_evlist__munmap(evlist, i);
  461. free(evlist->mmap);
  462. evlist->mmap = NULL;
  463. }
  464. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  465. {
  466. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  467. if (cpu_map__empty(evlist->cpus))
  468. evlist->nr_mmaps = thread_map__nr(evlist->threads);
  469. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  470. return evlist->mmap != NULL ? 0 : -ENOMEM;
  471. }
  472. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  473. int idx, int prot, int mask, int fd)
  474. {
  475. evlist->mmap[idx].prev = 0;
  476. evlist->mmap[idx].mask = mask;
  477. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  478. MAP_SHARED, fd, 0);
  479. if (evlist->mmap[idx].base == MAP_FAILED) {
  480. evlist->mmap[idx].base = NULL;
  481. return -1;
  482. }
  483. perf_evlist__add_pollfd(evlist, fd);
  484. return 0;
  485. }
  486. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  487. {
  488. struct perf_evsel *evsel;
  489. int cpu, thread;
  490. int nr_cpus = cpu_map__nr(evlist->cpus);
  491. int nr_threads = thread_map__nr(evlist->threads);
  492. pr_debug2("perf event ring buffer mmapped per cpu\n");
  493. for (cpu = 0; cpu < nr_cpus; cpu++) {
  494. int output = -1;
  495. for (thread = 0; thread < nr_threads; thread++) {
  496. list_for_each_entry(evsel, &evlist->entries, node) {
  497. int fd = FD(evsel, cpu, thread);
  498. if (output == -1) {
  499. output = fd;
  500. if (__perf_evlist__mmap(evlist, cpu,
  501. prot, mask, output) < 0)
  502. goto out_unmap;
  503. } else {
  504. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  505. goto out_unmap;
  506. }
  507. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  508. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  509. goto out_unmap;
  510. }
  511. }
  512. }
  513. return 0;
  514. out_unmap:
  515. for (cpu = 0; cpu < nr_cpus; cpu++)
  516. __perf_evlist__munmap(evlist, cpu);
  517. return -1;
  518. }
  519. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  520. {
  521. struct perf_evsel *evsel;
  522. int thread;
  523. int nr_threads = thread_map__nr(evlist->threads);
  524. pr_debug2("perf event ring buffer mmapped per thread\n");
  525. for (thread = 0; thread < nr_threads; thread++) {
  526. int output = -1;
  527. list_for_each_entry(evsel, &evlist->entries, node) {
  528. int fd = FD(evsel, 0, thread);
  529. if (output == -1) {
  530. output = fd;
  531. if (__perf_evlist__mmap(evlist, thread,
  532. prot, mask, output) < 0)
  533. goto out_unmap;
  534. } else {
  535. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  536. goto out_unmap;
  537. }
  538. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  539. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  540. goto out_unmap;
  541. }
  542. }
  543. return 0;
  544. out_unmap:
  545. for (thread = 0; thread < nr_threads; thread++)
  546. __perf_evlist__munmap(evlist, thread);
  547. return -1;
  548. }
  549. /** perf_evlist__mmap - Create per cpu maps to receive events
  550. *
  551. * @evlist - list of events
  552. * @pages - map length in pages
  553. * @overwrite - overwrite older events?
  554. *
  555. * If overwrite is false the user needs to signal event consuption using:
  556. *
  557. * struct perf_mmap *m = &evlist->mmap[cpu];
  558. * unsigned int head = perf_mmap__read_head(m);
  559. *
  560. * perf_mmap__write_tail(m, head)
  561. *
  562. * Using perf_evlist__read_on_cpu does this automatically.
  563. */
  564. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  565. bool overwrite)
  566. {
  567. struct perf_evsel *evsel;
  568. const struct cpu_map *cpus = evlist->cpus;
  569. const struct thread_map *threads = evlist->threads;
  570. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  571. /* 512 kiB: default amount of unprivileged mlocked memory */
  572. if (pages == UINT_MAX)
  573. pages = (512 * 1024) / page_size;
  574. else if (!is_power_of_2(pages))
  575. return -EINVAL;
  576. mask = pages * page_size - 1;
  577. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  578. return -ENOMEM;
  579. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  580. return -ENOMEM;
  581. evlist->overwrite = overwrite;
  582. evlist->mmap_len = (pages + 1) * page_size;
  583. list_for_each_entry(evsel, &evlist->entries, node) {
  584. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  585. evsel->sample_id == NULL &&
  586. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  587. return -ENOMEM;
  588. }
  589. if (cpu_map__empty(cpus))
  590. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  591. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  592. }
  593. int perf_evlist__create_maps(struct perf_evlist *evlist,
  594. struct perf_target *target)
  595. {
  596. evlist->threads = thread_map__new_str(target->pid, target->tid,
  597. target->uid);
  598. if (evlist->threads == NULL)
  599. return -1;
  600. if (perf_target__has_task(target))
  601. evlist->cpus = cpu_map__dummy_new();
  602. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  603. evlist->cpus = cpu_map__dummy_new();
  604. else
  605. evlist->cpus = cpu_map__new(target->cpu_list);
  606. if (evlist->cpus == NULL)
  607. goto out_delete_threads;
  608. return 0;
  609. out_delete_threads:
  610. thread_map__delete(evlist->threads);
  611. return -1;
  612. }
  613. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  614. {
  615. cpu_map__delete(evlist->cpus);
  616. thread_map__delete(evlist->threads);
  617. evlist->cpus = NULL;
  618. evlist->threads = NULL;
  619. }
  620. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  621. {
  622. struct perf_evsel *evsel;
  623. int err = 0;
  624. const int ncpus = cpu_map__nr(evlist->cpus),
  625. nthreads = thread_map__nr(evlist->threads);
  626. list_for_each_entry(evsel, &evlist->entries, node) {
  627. if (evsel->filter == NULL)
  628. continue;
  629. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  630. if (err)
  631. break;
  632. }
  633. return err;
  634. }
  635. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  636. {
  637. struct perf_evsel *evsel;
  638. int err = 0;
  639. const int ncpus = cpu_map__nr(evlist->cpus),
  640. nthreads = thread_map__nr(evlist->threads);
  641. list_for_each_entry(evsel, &evlist->entries, node) {
  642. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  643. if (err)
  644. break;
  645. }
  646. return err;
  647. }
  648. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  649. {
  650. struct perf_evsel *pos;
  651. if (evlist->nr_entries == 1)
  652. return true;
  653. if (evlist->id_pos < 0 || evlist->is_pos < 0)
  654. return false;
  655. list_for_each_entry(pos, &evlist->entries, node) {
  656. if (pos->id_pos != evlist->id_pos ||
  657. pos->is_pos != evlist->is_pos)
  658. return false;
  659. }
  660. return true;
  661. }
  662. u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist)
  663. {
  664. struct perf_evsel *evsel;
  665. if (evlist->combined_sample_type)
  666. return evlist->combined_sample_type;
  667. list_for_each_entry(evsel, &evlist->entries, node)
  668. evlist->combined_sample_type |= evsel->attr.sample_type;
  669. return evlist->combined_sample_type;
  670. }
  671. u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist)
  672. {
  673. evlist->combined_sample_type = 0;
  674. return __perf_evlist__combined_sample_type(evlist);
  675. }
  676. bool perf_evlist__valid_read_format(struct perf_evlist *evlist)
  677. {
  678. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  679. u64 read_format = first->attr.read_format;
  680. u64 sample_type = first->attr.sample_type;
  681. list_for_each_entry_continue(pos, &evlist->entries, node) {
  682. if (read_format != pos->attr.read_format)
  683. return false;
  684. }
  685. /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */
  686. if ((sample_type & PERF_SAMPLE_READ) &&
  687. !(read_format & PERF_FORMAT_ID)) {
  688. return false;
  689. }
  690. return true;
  691. }
  692. u64 perf_evlist__read_format(struct perf_evlist *evlist)
  693. {
  694. struct perf_evsel *first = perf_evlist__first(evlist);
  695. return first->attr.read_format;
  696. }
  697. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  698. {
  699. struct perf_evsel *first = perf_evlist__first(evlist);
  700. struct perf_sample *data;
  701. u64 sample_type;
  702. u16 size = 0;
  703. if (!first->attr.sample_id_all)
  704. goto out;
  705. sample_type = first->attr.sample_type;
  706. if (sample_type & PERF_SAMPLE_TID)
  707. size += sizeof(data->tid) * 2;
  708. if (sample_type & PERF_SAMPLE_TIME)
  709. size += sizeof(data->time);
  710. if (sample_type & PERF_SAMPLE_ID)
  711. size += sizeof(data->id);
  712. if (sample_type & PERF_SAMPLE_STREAM_ID)
  713. size += sizeof(data->stream_id);
  714. if (sample_type & PERF_SAMPLE_CPU)
  715. size += sizeof(data->cpu) * 2;
  716. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  717. size += sizeof(data->id);
  718. out:
  719. return size;
  720. }
  721. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  722. {
  723. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  724. list_for_each_entry_continue(pos, &evlist->entries, node) {
  725. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  726. return false;
  727. }
  728. return true;
  729. }
  730. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  731. {
  732. struct perf_evsel *first = perf_evlist__first(evlist);
  733. return first->attr.sample_id_all;
  734. }
  735. void perf_evlist__set_selected(struct perf_evlist *evlist,
  736. struct perf_evsel *evsel)
  737. {
  738. evlist->selected = evsel;
  739. }
  740. void perf_evlist__close(struct perf_evlist *evlist)
  741. {
  742. struct perf_evsel *evsel;
  743. int ncpus = cpu_map__nr(evlist->cpus);
  744. int nthreads = thread_map__nr(evlist->threads);
  745. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  746. perf_evsel__close(evsel, ncpus, nthreads);
  747. }
  748. int perf_evlist__open(struct perf_evlist *evlist)
  749. {
  750. struct perf_evsel *evsel;
  751. int err;
  752. perf_evlist__update_id_pos(evlist);
  753. list_for_each_entry(evsel, &evlist->entries, node) {
  754. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  755. if (err < 0)
  756. goto out_err;
  757. }
  758. return 0;
  759. out_err:
  760. perf_evlist__close(evlist);
  761. errno = -err;
  762. return err;
  763. }
  764. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  765. struct perf_target *target,
  766. const char *argv[], bool pipe_output,
  767. bool want_signal)
  768. {
  769. int child_ready_pipe[2], go_pipe[2];
  770. char bf;
  771. if (pipe(child_ready_pipe) < 0) {
  772. perror("failed to create 'ready' pipe");
  773. return -1;
  774. }
  775. if (pipe(go_pipe) < 0) {
  776. perror("failed to create 'go' pipe");
  777. goto out_close_ready_pipe;
  778. }
  779. evlist->workload.pid = fork();
  780. if (evlist->workload.pid < 0) {
  781. perror("failed to fork");
  782. goto out_close_pipes;
  783. }
  784. if (!evlist->workload.pid) {
  785. if (pipe_output)
  786. dup2(2, 1);
  787. signal(SIGTERM, SIG_DFL);
  788. close(child_ready_pipe[0]);
  789. close(go_pipe[1]);
  790. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  791. /*
  792. * Tell the parent we're ready to go
  793. */
  794. close(child_ready_pipe[1]);
  795. /*
  796. * Wait until the parent tells us to go.
  797. */
  798. if (read(go_pipe[0], &bf, 1) == -1)
  799. perror("unable to read pipe");
  800. execvp(argv[0], (char **)argv);
  801. perror(argv[0]);
  802. if (want_signal)
  803. kill(getppid(), SIGUSR1);
  804. exit(-1);
  805. }
  806. if (perf_target__none(target))
  807. evlist->threads->map[0] = evlist->workload.pid;
  808. close(child_ready_pipe[1]);
  809. close(go_pipe[0]);
  810. /*
  811. * wait for child to settle
  812. */
  813. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  814. perror("unable to read pipe");
  815. goto out_close_pipes;
  816. }
  817. fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
  818. evlist->workload.cork_fd = go_pipe[1];
  819. close(child_ready_pipe[0]);
  820. return 0;
  821. out_close_pipes:
  822. close(go_pipe[0]);
  823. close(go_pipe[1]);
  824. out_close_ready_pipe:
  825. close(child_ready_pipe[0]);
  826. close(child_ready_pipe[1]);
  827. return -1;
  828. }
  829. int perf_evlist__start_workload(struct perf_evlist *evlist)
  830. {
  831. if (evlist->workload.cork_fd > 0) {
  832. char bf = 0;
  833. int ret;
  834. /*
  835. * Remove the cork, let it rip!
  836. */
  837. ret = write(evlist->workload.cork_fd, &bf, 1);
  838. if (ret < 0)
  839. perror("enable to write to pipe");
  840. close(evlist->workload.cork_fd);
  841. return ret;
  842. }
  843. return 0;
  844. }
  845. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  846. struct perf_sample *sample)
  847. {
  848. struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event);
  849. if (!evsel)
  850. return -EFAULT;
  851. return perf_evsel__parse_sample(evsel, event, sample);
  852. }
  853. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  854. {
  855. struct perf_evsel *evsel;
  856. size_t printed = 0;
  857. list_for_each_entry(evsel, &evlist->entries, node) {
  858. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  859. perf_evsel__name(evsel));
  860. }
  861. return printed + fprintf(fp, "\n");;
  862. }