vmx.c 209 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include "trace.h"
  43. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  44. #define __ex_clear(x, reg) \
  45. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. static const struct x86_cpu_id vmx_cpu_id[] = {
  49. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  50. {}
  51. };
  52. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  53. static bool __read_mostly enable_vpid = 1;
  54. module_param_named(vpid, enable_vpid, bool, 0444);
  55. static bool __read_mostly flexpriority_enabled = 1;
  56. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  57. static bool __read_mostly enable_ept = 1;
  58. module_param_named(ept, enable_ept, bool, S_IRUGO);
  59. static bool __read_mostly enable_unrestricted_guest = 1;
  60. module_param_named(unrestricted_guest,
  61. enable_unrestricted_guest, bool, S_IRUGO);
  62. static bool __read_mostly enable_ept_ad_bits = 1;
  63. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  64. static bool __read_mostly emulate_invalid_guest_state = 0;
  65. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  66. static bool __read_mostly vmm_exclusive = 1;
  67. module_param(vmm_exclusive, bool, S_IRUGO);
  68. static bool __read_mostly fasteoi = 1;
  69. module_param(fasteoi, bool, S_IRUGO);
  70. /*
  71. * If nested=1, nested virtualization is supported, i.e., guests may use
  72. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  73. * use VMX instructions.
  74. */
  75. static bool __read_mostly nested = 0;
  76. module_param(nested, bool, S_IRUGO);
  77. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  78. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  79. #define KVM_GUEST_CR0_MASK \
  80. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  81. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  82. (X86_CR0_WP | X86_CR0_NE)
  83. #define KVM_VM_CR0_ALWAYS_ON \
  84. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  85. #define KVM_CR4_GUEST_OWNED_BITS \
  86. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  87. | X86_CR4_OSXMMEXCPT)
  88. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  89. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  90. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  91. /*
  92. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  93. * ple_gap: upper bound on the amount of time between two successive
  94. * executions of PAUSE in a loop. Also indicate if ple enabled.
  95. * According to test, this time is usually smaller than 128 cycles.
  96. * ple_window: upper bound on the amount of time a guest is allowed to execute
  97. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  98. * less than 2^12 cycles
  99. * Time is measured based on a counter that runs at the same rate as the TSC,
  100. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  101. */
  102. #define KVM_VMX_DEFAULT_PLE_GAP 128
  103. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  104. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  105. module_param(ple_gap, int, S_IRUGO);
  106. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  107. module_param(ple_window, int, S_IRUGO);
  108. #define NR_AUTOLOAD_MSRS 8
  109. #define VMCS02_POOL_SIZE 1
  110. struct vmcs {
  111. u32 revision_id;
  112. u32 abort;
  113. char data[0];
  114. };
  115. /*
  116. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  117. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  118. * loaded on this CPU (so we can clear them if the CPU goes down).
  119. */
  120. struct loaded_vmcs {
  121. struct vmcs *vmcs;
  122. int cpu;
  123. int launched;
  124. struct list_head loaded_vmcss_on_cpu_link;
  125. };
  126. struct shared_msr_entry {
  127. unsigned index;
  128. u64 data;
  129. u64 mask;
  130. };
  131. /*
  132. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  133. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  134. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  135. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  136. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  137. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  138. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  139. * underlying hardware which will be used to run L2.
  140. * This structure is packed to ensure that its layout is identical across
  141. * machines (necessary for live migration).
  142. * If there are changes in this struct, VMCS12_REVISION must be changed.
  143. */
  144. typedef u64 natural_width;
  145. struct __packed vmcs12 {
  146. /* According to the Intel spec, a VMCS region must start with the
  147. * following two fields. Then follow implementation-specific data.
  148. */
  149. u32 revision_id;
  150. u32 abort;
  151. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  152. u32 padding[7]; /* room for future expansion */
  153. u64 io_bitmap_a;
  154. u64 io_bitmap_b;
  155. u64 msr_bitmap;
  156. u64 vm_exit_msr_store_addr;
  157. u64 vm_exit_msr_load_addr;
  158. u64 vm_entry_msr_load_addr;
  159. u64 tsc_offset;
  160. u64 virtual_apic_page_addr;
  161. u64 apic_access_addr;
  162. u64 ept_pointer;
  163. u64 guest_physical_address;
  164. u64 vmcs_link_pointer;
  165. u64 guest_ia32_debugctl;
  166. u64 guest_ia32_pat;
  167. u64 guest_ia32_efer;
  168. u64 guest_ia32_perf_global_ctrl;
  169. u64 guest_pdptr0;
  170. u64 guest_pdptr1;
  171. u64 guest_pdptr2;
  172. u64 guest_pdptr3;
  173. u64 host_ia32_pat;
  174. u64 host_ia32_efer;
  175. u64 host_ia32_perf_global_ctrl;
  176. u64 padding64[8]; /* room for future expansion */
  177. /*
  178. * To allow migration of L1 (complete with its L2 guests) between
  179. * machines of different natural widths (32 or 64 bit), we cannot have
  180. * unsigned long fields with no explict size. We use u64 (aliased
  181. * natural_width) instead. Luckily, x86 is little-endian.
  182. */
  183. natural_width cr0_guest_host_mask;
  184. natural_width cr4_guest_host_mask;
  185. natural_width cr0_read_shadow;
  186. natural_width cr4_read_shadow;
  187. natural_width cr3_target_value0;
  188. natural_width cr3_target_value1;
  189. natural_width cr3_target_value2;
  190. natural_width cr3_target_value3;
  191. natural_width exit_qualification;
  192. natural_width guest_linear_address;
  193. natural_width guest_cr0;
  194. natural_width guest_cr3;
  195. natural_width guest_cr4;
  196. natural_width guest_es_base;
  197. natural_width guest_cs_base;
  198. natural_width guest_ss_base;
  199. natural_width guest_ds_base;
  200. natural_width guest_fs_base;
  201. natural_width guest_gs_base;
  202. natural_width guest_ldtr_base;
  203. natural_width guest_tr_base;
  204. natural_width guest_gdtr_base;
  205. natural_width guest_idtr_base;
  206. natural_width guest_dr7;
  207. natural_width guest_rsp;
  208. natural_width guest_rip;
  209. natural_width guest_rflags;
  210. natural_width guest_pending_dbg_exceptions;
  211. natural_width guest_sysenter_esp;
  212. natural_width guest_sysenter_eip;
  213. natural_width host_cr0;
  214. natural_width host_cr3;
  215. natural_width host_cr4;
  216. natural_width host_fs_base;
  217. natural_width host_gs_base;
  218. natural_width host_tr_base;
  219. natural_width host_gdtr_base;
  220. natural_width host_idtr_base;
  221. natural_width host_ia32_sysenter_esp;
  222. natural_width host_ia32_sysenter_eip;
  223. natural_width host_rsp;
  224. natural_width host_rip;
  225. natural_width paddingl[8]; /* room for future expansion */
  226. u32 pin_based_vm_exec_control;
  227. u32 cpu_based_vm_exec_control;
  228. u32 exception_bitmap;
  229. u32 page_fault_error_code_mask;
  230. u32 page_fault_error_code_match;
  231. u32 cr3_target_count;
  232. u32 vm_exit_controls;
  233. u32 vm_exit_msr_store_count;
  234. u32 vm_exit_msr_load_count;
  235. u32 vm_entry_controls;
  236. u32 vm_entry_msr_load_count;
  237. u32 vm_entry_intr_info_field;
  238. u32 vm_entry_exception_error_code;
  239. u32 vm_entry_instruction_len;
  240. u32 tpr_threshold;
  241. u32 secondary_vm_exec_control;
  242. u32 vm_instruction_error;
  243. u32 vm_exit_reason;
  244. u32 vm_exit_intr_info;
  245. u32 vm_exit_intr_error_code;
  246. u32 idt_vectoring_info_field;
  247. u32 idt_vectoring_error_code;
  248. u32 vm_exit_instruction_len;
  249. u32 vmx_instruction_info;
  250. u32 guest_es_limit;
  251. u32 guest_cs_limit;
  252. u32 guest_ss_limit;
  253. u32 guest_ds_limit;
  254. u32 guest_fs_limit;
  255. u32 guest_gs_limit;
  256. u32 guest_ldtr_limit;
  257. u32 guest_tr_limit;
  258. u32 guest_gdtr_limit;
  259. u32 guest_idtr_limit;
  260. u32 guest_es_ar_bytes;
  261. u32 guest_cs_ar_bytes;
  262. u32 guest_ss_ar_bytes;
  263. u32 guest_ds_ar_bytes;
  264. u32 guest_fs_ar_bytes;
  265. u32 guest_gs_ar_bytes;
  266. u32 guest_ldtr_ar_bytes;
  267. u32 guest_tr_ar_bytes;
  268. u32 guest_interruptibility_info;
  269. u32 guest_activity_state;
  270. u32 guest_sysenter_cs;
  271. u32 host_ia32_sysenter_cs;
  272. u32 padding32[8]; /* room for future expansion */
  273. u16 virtual_processor_id;
  274. u16 guest_es_selector;
  275. u16 guest_cs_selector;
  276. u16 guest_ss_selector;
  277. u16 guest_ds_selector;
  278. u16 guest_fs_selector;
  279. u16 guest_gs_selector;
  280. u16 guest_ldtr_selector;
  281. u16 guest_tr_selector;
  282. u16 host_es_selector;
  283. u16 host_cs_selector;
  284. u16 host_ss_selector;
  285. u16 host_ds_selector;
  286. u16 host_fs_selector;
  287. u16 host_gs_selector;
  288. u16 host_tr_selector;
  289. };
  290. /*
  291. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  292. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  293. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  294. */
  295. #define VMCS12_REVISION 0x11e57ed0
  296. /*
  297. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  298. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  299. * current implementation, 4K are reserved to avoid future complications.
  300. */
  301. #define VMCS12_SIZE 0x1000
  302. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  303. struct vmcs02_list {
  304. struct list_head list;
  305. gpa_t vmptr;
  306. struct loaded_vmcs vmcs02;
  307. };
  308. /*
  309. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  310. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  311. */
  312. struct nested_vmx {
  313. /* Has the level1 guest done vmxon? */
  314. bool vmxon;
  315. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  316. gpa_t current_vmptr;
  317. /* The host-usable pointer to the above */
  318. struct page *current_vmcs12_page;
  319. struct vmcs12 *current_vmcs12;
  320. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  321. struct list_head vmcs02_pool;
  322. int vmcs02_num;
  323. u64 vmcs01_tsc_offset;
  324. /* L2 must run next, and mustn't decide to exit to L1. */
  325. bool nested_run_pending;
  326. /*
  327. * Guest pages referred to in vmcs02 with host-physical pointers, so
  328. * we must keep them pinned while L2 runs.
  329. */
  330. struct page *apic_access_page;
  331. };
  332. struct vcpu_vmx {
  333. struct kvm_vcpu vcpu;
  334. unsigned long host_rsp;
  335. u8 fail;
  336. u8 cpl;
  337. bool nmi_known_unmasked;
  338. u32 exit_intr_info;
  339. u32 idt_vectoring_info;
  340. ulong rflags;
  341. struct shared_msr_entry *guest_msrs;
  342. int nmsrs;
  343. int save_nmsrs;
  344. #ifdef CONFIG_X86_64
  345. u64 msr_host_kernel_gs_base;
  346. u64 msr_guest_kernel_gs_base;
  347. #endif
  348. /*
  349. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  350. * non-nested (L1) guest, it always points to vmcs01. For a nested
  351. * guest (L2), it points to a different VMCS.
  352. */
  353. struct loaded_vmcs vmcs01;
  354. struct loaded_vmcs *loaded_vmcs;
  355. bool __launched; /* temporary, used in vmx_vcpu_run */
  356. struct msr_autoload {
  357. unsigned nr;
  358. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  359. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  360. } msr_autoload;
  361. struct {
  362. int loaded;
  363. u16 fs_sel, gs_sel, ldt_sel;
  364. #ifdef CONFIG_X86_64
  365. u16 ds_sel, es_sel;
  366. #endif
  367. int gs_ldt_reload_needed;
  368. int fs_reload_needed;
  369. } host_state;
  370. struct {
  371. int vm86_active;
  372. ulong save_rflags;
  373. struct kvm_save_segment {
  374. u16 selector;
  375. unsigned long base;
  376. u32 limit;
  377. u32 ar;
  378. } tr, es, ds, fs, gs;
  379. } rmode;
  380. struct {
  381. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  382. struct kvm_save_segment seg[8];
  383. } segment_cache;
  384. int vpid;
  385. bool emulation_required;
  386. /* Support for vnmi-less CPUs */
  387. int soft_vnmi_blocked;
  388. ktime_t entry_time;
  389. s64 vnmi_blocked_time;
  390. u32 exit_reason;
  391. bool rdtscp_enabled;
  392. /* Support for a guest hypervisor (nested VMX) */
  393. struct nested_vmx nested;
  394. };
  395. enum segment_cache_field {
  396. SEG_FIELD_SEL = 0,
  397. SEG_FIELD_BASE = 1,
  398. SEG_FIELD_LIMIT = 2,
  399. SEG_FIELD_AR = 3,
  400. SEG_FIELD_NR = 4
  401. };
  402. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  403. {
  404. return container_of(vcpu, struct vcpu_vmx, vcpu);
  405. }
  406. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  407. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  408. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  409. [number##_HIGH] = VMCS12_OFFSET(name)+4
  410. static unsigned short vmcs_field_to_offset_table[] = {
  411. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  412. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  413. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  414. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  415. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  416. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  417. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  418. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  419. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  420. FIELD(HOST_ES_SELECTOR, host_es_selector),
  421. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  422. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  423. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  424. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  425. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  426. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  427. FIELD64(IO_BITMAP_A, io_bitmap_a),
  428. FIELD64(IO_BITMAP_B, io_bitmap_b),
  429. FIELD64(MSR_BITMAP, msr_bitmap),
  430. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  431. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  432. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  433. FIELD64(TSC_OFFSET, tsc_offset),
  434. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  435. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  436. FIELD64(EPT_POINTER, ept_pointer),
  437. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  438. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  439. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  440. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  441. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  442. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  443. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  444. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  445. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  446. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  447. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  448. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  449. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  450. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  451. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  452. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  453. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  454. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  455. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  456. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  457. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  458. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  459. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  460. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  461. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  462. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  463. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  464. FIELD(TPR_THRESHOLD, tpr_threshold),
  465. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  466. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  467. FIELD(VM_EXIT_REASON, vm_exit_reason),
  468. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  469. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  470. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  471. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  472. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  473. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  474. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  475. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  476. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  477. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  478. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  479. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  480. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  481. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  482. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  483. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  484. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  485. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  486. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  487. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  488. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  489. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  490. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  491. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  492. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  493. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  494. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  495. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  496. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  497. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  498. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  499. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  500. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  501. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  502. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  503. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  504. FIELD(EXIT_QUALIFICATION, exit_qualification),
  505. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  506. FIELD(GUEST_CR0, guest_cr0),
  507. FIELD(GUEST_CR3, guest_cr3),
  508. FIELD(GUEST_CR4, guest_cr4),
  509. FIELD(GUEST_ES_BASE, guest_es_base),
  510. FIELD(GUEST_CS_BASE, guest_cs_base),
  511. FIELD(GUEST_SS_BASE, guest_ss_base),
  512. FIELD(GUEST_DS_BASE, guest_ds_base),
  513. FIELD(GUEST_FS_BASE, guest_fs_base),
  514. FIELD(GUEST_GS_BASE, guest_gs_base),
  515. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  516. FIELD(GUEST_TR_BASE, guest_tr_base),
  517. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  518. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  519. FIELD(GUEST_DR7, guest_dr7),
  520. FIELD(GUEST_RSP, guest_rsp),
  521. FIELD(GUEST_RIP, guest_rip),
  522. FIELD(GUEST_RFLAGS, guest_rflags),
  523. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  524. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  525. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  526. FIELD(HOST_CR0, host_cr0),
  527. FIELD(HOST_CR3, host_cr3),
  528. FIELD(HOST_CR4, host_cr4),
  529. FIELD(HOST_FS_BASE, host_fs_base),
  530. FIELD(HOST_GS_BASE, host_gs_base),
  531. FIELD(HOST_TR_BASE, host_tr_base),
  532. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  533. FIELD(HOST_IDTR_BASE, host_idtr_base),
  534. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  535. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  536. FIELD(HOST_RSP, host_rsp),
  537. FIELD(HOST_RIP, host_rip),
  538. };
  539. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  540. static inline short vmcs_field_to_offset(unsigned long field)
  541. {
  542. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  543. return -1;
  544. return vmcs_field_to_offset_table[field];
  545. }
  546. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  547. {
  548. return to_vmx(vcpu)->nested.current_vmcs12;
  549. }
  550. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  551. {
  552. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  553. if (is_error_page(page)) {
  554. kvm_release_page_clean(page);
  555. return NULL;
  556. }
  557. return page;
  558. }
  559. static void nested_release_page(struct page *page)
  560. {
  561. kvm_release_page_dirty(page);
  562. }
  563. static void nested_release_page_clean(struct page *page)
  564. {
  565. kvm_release_page_clean(page);
  566. }
  567. static u64 construct_eptp(unsigned long root_hpa);
  568. static void kvm_cpu_vmxon(u64 addr);
  569. static void kvm_cpu_vmxoff(void);
  570. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  571. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  572. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  573. struct kvm_segment *var, int seg);
  574. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  575. struct kvm_segment *var, int seg);
  576. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  577. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  578. /*
  579. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  580. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  581. */
  582. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  583. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  584. static unsigned long *vmx_io_bitmap_a;
  585. static unsigned long *vmx_io_bitmap_b;
  586. static unsigned long *vmx_msr_bitmap_legacy;
  587. static unsigned long *vmx_msr_bitmap_longmode;
  588. static bool cpu_has_load_ia32_efer;
  589. static bool cpu_has_load_perf_global_ctrl;
  590. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  591. static DEFINE_SPINLOCK(vmx_vpid_lock);
  592. static struct vmcs_config {
  593. int size;
  594. int order;
  595. u32 revision_id;
  596. u32 pin_based_exec_ctrl;
  597. u32 cpu_based_exec_ctrl;
  598. u32 cpu_based_2nd_exec_ctrl;
  599. u32 vmexit_ctrl;
  600. u32 vmentry_ctrl;
  601. } vmcs_config;
  602. static struct vmx_capability {
  603. u32 ept;
  604. u32 vpid;
  605. } vmx_capability;
  606. #define VMX_SEGMENT_FIELD(seg) \
  607. [VCPU_SREG_##seg] = { \
  608. .selector = GUEST_##seg##_SELECTOR, \
  609. .base = GUEST_##seg##_BASE, \
  610. .limit = GUEST_##seg##_LIMIT, \
  611. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  612. }
  613. static struct kvm_vmx_segment_field {
  614. unsigned selector;
  615. unsigned base;
  616. unsigned limit;
  617. unsigned ar_bytes;
  618. } kvm_vmx_segment_fields[] = {
  619. VMX_SEGMENT_FIELD(CS),
  620. VMX_SEGMENT_FIELD(DS),
  621. VMX_SEGMENT_FIELD(ES),
  622. VMX_SEGMENT_FIELD(FS),
  623. VMX_SEGMENT_FIELD(GS),
  624. VMX_SEGMENT_FIELD(SS),
  625. VMX_SEGMENT_FIELD(TR),
  626. VMX_SEGMENT_FIELD(LDTR),
  627. };
  628. static u64 host_efer;
  629. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  630. /*
  631. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  632. * away by decrementing the array size.
  633. */
  634. static const u32 vmx_msr_index[] = {
  635. #ifdef CONFIG_X86_64
  636. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  637. #endif
  638. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  639. };
  640. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  641. static inline bool is_page_fault(u32 intr_info)
  642. {
  643. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  644. INTR_INFO_VALID_MASK)) ==
  645. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  646. }
  647. static inline bool is_no_device(u32 intr_info)
  648. {
  649. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  650. INTR_INFO_VALID_MASK)) ==
  651. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  652. }
  653. static inline bool is_invalid_opcode(u32 intr_info)
  654. {
  655. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  656. INTR_INFO_VALID_MASK)) ==
  657. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  658. }
  659. static inline bool is_external_interrupt(u32 intr_info)
  660. {
  661. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  662. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  663. }
  664. static inline bool is_machine_check(u32 intr_info)
  665. {
  666. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  667. INTR_INFO_VALID_MASK)) ==
  668. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  669. }
  670. static inline bool cpu_has_vmx_msr_bitmap(void)
  671. {
  672. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  673. }
  674. static inline bool cpu_has_vmx_tpr_shadow(void)
  675. {
  676. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  677. }
  678. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  679. {
  680. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  681. }
  682. static inline bool cpu_has_secondary_exec_ctrls(void)
  683. {
  684. return vmcs_config.cpu_based_exec_ctrl &
  685. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  686. }
  687. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  688. {
  689. return vmcs_config.cpu_based_2nd_exec_ctrl &
  690. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  691. }
  692. static inline bool cpu_has_vmx_flexpriority(void)
  693. {
  694. return cpu_has_vmx_tpr_shadow() &&
  695. cpu_has_vmx_virtualize_apic_accesses();
  696. }
  697. static inline bool cpu_has_vmx_ept_execute_only(void)
  698. {
  699. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  700. }
  701. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  702. {
  703. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  704. }
  705. static inline bool cpu_has_vmx_eptp_writeback(void)
  706. {
  707. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  708. }
  709. static inline bool cpu_has_vmx_ept_2m_page(void)
  710. {
  711. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  712. }
  713. static inline bool cpu_has_vmx_ept_1g_page(void)
  714. {
  715. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  716. }
  717. static inline bool cpu_has_vmx_ept_4levels(void)
  718. {
  719. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  720. }
  721. static inline bool cpu_has_vmx_ept_ad_bits(void)
  722. {
  723. return vmx_capability.ept & VMX_EPT_AD_BIT;
  724. }
  725. static inline bool cpu_has_vmx_invept_individual_addr(void)
  726. {
  727. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  728. }
  729. static inline bool cpu_has_vmx_invept_context(void)
  730. {
  731. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  732. }
  733. static inline bool cpu_has_vmx_invept_global(void)
  734. {
  735. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  736. }
  737. static inline bool cpu_has_vmx_invvpid_single(void)
  738. {
  739. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  740. }
  741. static inline bool cpu_has_vmx_invvpid_global(void)
  742. {
  743. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  744. }
  745. static inline bool cpu_has_vmx_ept(void)
  746. {
  747. return vmcs_config.cpu_based_2nd_exec_ctrl &
  748. SECONDARY_EXEC_ENABLE_EPT;
  749. }
  750. static inline bool cpu_has_vmx_unrestricted_guest(void)
  751. {
  752. return vmcs_config.cpu_based_2nd_exec_ctrl &
  753. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  754. }
  755. static inline bool cpu_has_vmx_ple(void)
  756. {
  757. return vmcs_config.cpu_based_2nd_exec_ctrl &
  758. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  759. }
  760. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  761. {
  762. return flexpriority_enabled && irqchip_in_kernel(kvm);
  763. }
  764. static inline bool cpu_has_vmx_vpid(void)
  765. {
  766. return vmcs_config.cpu_based_2nd_exec_ctrl &
  767. SECONDARY_EXEC_ENABLE_VPID;
  768. }
  769. static inline bool cpu_has_vmx_rdtscp(void)
  770. {
  771. return vmcs_config.cpu_based_2nd_exec_ctrl &
  772. SECONDARY_EXEC_RDTSCP;
  773. }
  774. static inline bool cpu_has_virtual_nmis(void)
  775. {
  776. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  777. }
  778. static inline bool cpu_has_vmx_wbinvd_exit(void)
  779. {
  780. return vmcs_config.cpu_based_2nd_exec_ctrl &
  781. SECONDARY_EXEC_WBINVD_EXITING;
  782. }
  783. static inline bool report_flexpriority(void)
  784. {
  785. return flexpriority_enabled;
  786. }
  787. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  788. {
  789. return vmcs12->cpu_based_vm_exec_control & bit;
  790. }
  791. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  792. {
  793. return (vmcs12->cpu_based_vm_exec_control &
  794. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  795. (vmcs12->secondary_vm_exec_control & bit);
  796. }
  797. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  798. struct kvm_vcpu *vcpu)
  799. {
  800. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  801. }
  802. static inline bool is_exception(u32 intr_info)
  803. {
  804. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  805. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  806. }
  807. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  808. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  809. struct vmcs12 *vmcs12,
  810. u32 reason, unsigned long qualification);
  811. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  812. {
  813. int i;
  814. for (i = 0; i < vmx->nmsrs; ++i)
  815. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  816. return i;
  817. return -1;
  818. }
  819. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  820. {
  821. struct {
  822. u64 vpid : 16;
  823. u64 rsvd : 48;
  824. u64 gva;
  825. } operand = { vpid, 0, gva };
  826. asm volatile (__ex(ASM_VMX_INVVPID)
  827. /* CF==1 or ZF==1 --> rc = -1 */
  828. "; ja 1f ; ud2 ; 1:"
  829. : : "a"(&operand), "c"(ext) : "cc", "memory");
  830. }
  831. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  832. {
  833. struct {
  834. u64 eptp, gpa;
  835. } operand = {eptp, gpa};
  836. asm volatile (__ex(ASM_VMX_INVEPT)
  837. /* CF==1 or ZF==1 --> rc = -1 */
  838. "; ja 1f ; ud2 ; 1:\n"
  839. : : "a" (&operand), "c" (ext) : "cc", "memory");
  840. }
  841. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  842. {
  843. int i;
  844. i = __find_msr_index(vmx, msr);
  845. if (i >= 0)
  846. return &vmx->guest_msrs[i];
  847. return NULL;
  848. }
  849. static void vmcs_clear(struct vmcs *vmcs)
  850. {
  851. u64 phys_addr = __pa(vmcs);
  852. u8 error;
  853. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  854. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  855. : "cc", "memory");
  856. if (error)
  857. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  858. vmcs, phys_addr);
  859. }
  860. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  861. {
  862. vmcs_clear(loaded_vmcs->vmcs);
  863. loaded_vmcs->cpu = -1;
  864. loaded_vmcs->launched = 0;
  865. }
  866. static void vmcs_load(struct vmcs *vmcs)
  867. {
  868. u64 phys_addr = __pa(vmcs);
  869. u8 error;
  870. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  871. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  872. : "cc", "memory");
  873. if (error)
  874. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  875. vmcs, phys_addr);
  876. }
  877. static void __loaded_vmcs_clear(void *arg)
  878. {
  879. struct loaded_vmcs *loaded_vmcs = arg;
  880. int cpu = raw_smp_processor_id();
  881. if (loaded_vmcs->cpu != cpu)
  882. return; /* vcpu migration can race with cpu offline */
  883. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  884. per_cpu(current_vmcs, cpu) = NULL;
  885. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  886. loaded_vmcs_init(loaded_vmcs);
  887. }
  888. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  889. {
  890. if (loaded_vmcs->cpu != -1)
  891. smp_call_function_single(
  892. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  893. }
  894. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  895. {
  896. if (vmx->vpid == 0)
  897. return;
  898. if (cpu_has_vmx_invvpid_single())
  899. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  900. }
  901. static inline void vpid_sync_vcpu_global(void)
  902. {
  903. if (cpu_has_vmx_invvpid_global())
  904. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  905. }
  906. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  907. {
  908. if (cpu_has_vmx_invvpid_single())
  909. vpid_sync_vcpu_single(vmx);
  910. else
  911. vpid_sync_vcpu_global();
  912. }
  913. static inline void ept_sync_global(void)
  914. {
  915. if (cpu_has_vmx_invept_global())
  916. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  917. }
  918. static inline void ept_sync_context(u64 eptp)
  919. {
  920. if (enable_ept) {
  921. if (cpu_has_vmx_invept_context())
  922. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  923. else
  924. ept_sync_global();
  925. }
  926. }
  927. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  928. {
  929. if (enable_ept) {
  930. if (cpu_has_vmx_invept_individual_addr())
  931. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  932. eptp, gpa);
  933. else
  934. ept_sync_context(eptp);
  935. }
  936. }
  937. static __always_inline unsigned long vmcs_readl(unsigned long field)
  938. {
  939. unsigned long value;
  940. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  941. : "=a"(value) : "d"(field) : "cc");
  942. return value;
  943. }
  944. static __always_inline u16 vmcs_read16(unsigned long field)
  945. {
  946. return vmcs_readl(field);
  947. }
  948. static __always_inline u32 vmcs_read32(unsigned long field)
  949. {
  950. return vmcs_readl(field);
  951. }
  952. static __always_inline u64 vmcs_read64(unsigned long field)
  953. {
  954. #ifdef CONFIG_X86_64
  955. return vmcs_readl(field);
  956. #else
  957. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  958. #endif
  959. }
  960. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  961. {
  962. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  963. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  964. dump_stack();
  965. }
  966. static void vmcs_writel(unsigned long field, unsigned long value)
  967. {
  968. u8 error;
  969. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  970. : "=q"(error) : "a"(value), "d"(field) : "cc");
  971. if (unlikely(error))
  972. vmwrite_error(field, value);
  973. }
  974. static void vmcs_write16(unsigned long field, u16 value)
  975. {
  976. vmcs_writel(field, value);
  977. }
  978. static void vmcs_write32(unsigned long field, u32 value)
  979. {
  980. vmcs_writel(field, value);
  981. }
  982. static void vmcs_write64(unsigned long field, u64 value)
  983. {
  984. vmcs_writel(field, value);
  985. #ifndef CONFIG_X86_64
  986. asm volatile ("");
  987. vmcs_writel(field+1, value >> 32);
  988. #endif
  989. }
  990. static void vmcs_clear_bits(unsigned long field, u32 mask)
  991. {
  992. vmcs_writel(field, vmcs_readl(field) & ~mask);
  993. }
  994. static void vmcs_set_bits(unsigned long field, u32 mask)
  995. {
  996. vmcs_writel(field, vmcs_readl(field) | mask);
  997. }
  998. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  999. {
  1000. vmx->segment_cache.bitmask = 0;
  1001. }
  1002. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1003. unsigned field)
  1004. {
  1005. bool ret;
  1006. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1007. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1008. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1009. vmx->segment_cache.bitmask = 0;
  1010. }
  1011. ret = vmx->segment_cache.bitmask & mask;
  1012. vmx->segment_cache.bitmask |= mask;
  1013. return ret;
  1014. }
  1015. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1016. {
  1017. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1018. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1019. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1020. return *p;
  1021. }
  1022. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1023. {
  1024. ulong *p = &vmx->segment_cache.seg[seg].base;
  1025. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1026. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1027. return *p;
  1028. }
  1029. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1030. {
  1031. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1032. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1033. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1034. return *p;
  1035. }
  1036. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1037. {
  1038. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1039. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1040. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1041. return *p;
  1042. }
  1043. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1044. {
  1045. u32 eb;
  1046. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1047. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1048. if ((vcpu->guest_debug &
  1049. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1050. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1051. eb |= 1u << BP_VECTOR;
  1052. if (to_vmx(vcpu)->rmode.vm86_active)
  1053. eb = ~0;
  1054. if (enable_ept)
  1055. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1056. if (vcpu->fpu_active)
  1057. eb &= ~(1u << NM_VECTOR);
  1058. /* When we are running a nested L2 guest and L1 specified for it a
  1059. * certain exception bitmap, we must trap the same exceptions and pass
  1060. * them to L1. When running L2, we will only handle the exceptions
  1061. * specified above if L1 did not want them.
  1062. */
  1063. if (is_guest_mode(vcpu))
  1064. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1065. vmcs_write32(EXCEPTION_BITMAP, eb);
  1066. }
  1067. static void clear_atomic_switch_msr_special(unsigned long entry,
  1068. unsigned long exit)
  1069. {
  1070. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1071. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1072. }
  1073. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1074. {
  1075. unsigned i;
  1076. struct msr_autoload *m = &vmx->msr_autoload;
  1077. switch (msr) {
  1078. case MSR_EFER:
  1079. if (cpu_has_load_ia32_efer) {
  1080. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1081. VM_EXIT_LOAD_IA32_EFER);
  1082. return;
  1083. }
  1084. break;
  1085. case MSR_CORE_PERF_GLOBAL_CTRL:
  1086. if (cpu_has_load_perf_global_ctrl) {
  1087. clear_atomic_switch_msr_special(
  1088. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1089. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1090. return;
  1091. }
  1092. break;
  1093. }
  1094. for (i = 0; i < m->nr; ++i)
  1095. if (m->guest[i].index == msr)
  1096. break;
  1097. if (i == m->nr)
  1098. return;
  1099. --m->nr;
  1100. m->guest[i] = m->guest[m->nr];
  1101. m->host[i] = m->host[m->nr];
  1102. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1103. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1104. }
  1105. static void add_atomic_switch_msr_special(unsigned long entry,
  1106. unsigned long exit, unsigned long guest_val_vmcs,
  1107. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1108. {
  1109. vmcs_write64(guest_val_vmcs, guest_val);
  1110. vmcs_write64(host_val_vmcs, host_val);
  1111. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1112. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1113. }
  1114. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1115. u64 guest_val, u64 host_val)
  1116. {
  1117. unsigned i;
  1118. struct msr_autoload *m = &vmx->msr_autoload;
  1119. switch (msr) {
  1120. case MSR_EFER:
  1121. if (cpu_has_load_ia32_efer) {
  1122. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1123. VM_EXIT_LOAD_IA32_EFER,
  1124. GUEST_IA32_EFER,
  1125. HOST_IA32_EFER,
  1126. guest_val, host_val);
  1127. return;
  1128. }
  1129. break;
  1130. case MSR_CORE_PERF_GLOBAL_CTRL:
  1131. if (cpu_has_load_perf_global_ctrl) {
  1132. add_atomic_switch_msr_special(
  1133. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1134. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1135. GUEST_IA32_PERF_GLOBAL_CTRL,
  1136. HOST_IA32_PERF_GLOBAL_CTRL,
  1137. guest_val, host_val);
  1138. return;
  1139. }
  1140. break;
  1141. }
  1142. for (i = 0; i < m->nr; ++i)
  1143. if (m->guest[i].index == msr)
  1144. break;
  1145. if (i == NR_AUTOLOAD_MSRS) {
  1146. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1147. "Can't add msr %x\n", msr);
  1148. return;
  1149. } else if (i == m->nr) {
  1150. ++m->nr;
  1151. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1152. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1153. }
  1154. m->guest[i].index = msr;
  1155. m->guest[i].value = guest_val;
  1156. m->host[i].index = msr;
  1157. m->host[i].value = host_val;
  1158. }
  1159. static void reload_tss(void)
  1160. {
  1161. /*
  1162. * VT restores TR but not its size. Useless.
  1163. */
  1164. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1165. struct desc_struct *descs;
  1166. descs = (void *)gdt->address;
  1167. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1168. load_TR_desc();
  1169. }
  1170. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1171. {
  1172. u64 guest_efer;
  1173. u64 ignore_bits;
  1174. guest_efer = vmx->vcpu.arch.efer;
  1175. /*
  1176. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1177. * outside long mode
  1178. */
  1179. ignore_bits = EFER_NX | EFER_SCE;
  1180. #ifdef CONFIG_X86_64
  1181. ignore_bits |= EFER_LMA | EFER_LME;
  1182. /* SCE is meaningful only in long mode on Intel */
  1183. if (guest_efer & EFER_LMA)
  1184. ignore_bits &= ~(u64)EFER_SCE;
  1185. #endif
  1186. guest_efer &= ~ignore_bits;
  1187. guest_efer |= host_efer & ignore_bits;
  1188. vmx->guest_msrs[efer_offset].data = guest_efer;
  1189. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1190. clear_atomic_switch_msr(vmx, MSR_EFER);
  1191. /* On ept, can't emulate nx, and must switch nx atomically */
  1192. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1193. guest_efer = vmx->vcpu.arch.efer;
  1194. if (!(guest_efer & EFER_LMA))
  1195. guest_efer &= ~EFER_LME;
  1196. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1197. return false;
  1198. }
  1199. return true;
  1200. }
  1201. static unsigned long segment_base(u16 selector)
  1202. {
  1203. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1204. struct desc_struct *d;
  1205. unsigned long table_base;
  1206. unsigned long v;
  1207. if (!(selector & ~3))
  1208. return 0;
  1209. table_base = gdt->address;
  1210. if (selector & 4) { /* from ldt */
  1211. u16 ldt_selector = kvm_read_ldt();
  1212. if (!(ldt_selector & ~3))
  1213. return 0;
  1214. table_base = segment_base(ldt_selector);
  1215. }
  1216. d = (struct desc_struct *)(table_base + (selector & ~7));
  1217. v = get_desc_base(d);
  1218. #ifdef CONFIG_X86_64
  1219. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1220. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1221. #endif
  1222. return v;
  1223. }
  1224. static inline unsigned long kvm_read_tr_base(void)
  1225. {
  1226. u16 tr;
  1227. asm("str %0" : "=g"(tr));
  1228. return segment_base(tr);
  1229. }
  1230. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1231. {
  1232. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1233. int i;
  1234. if (vmx->host_state.loaded)
  1235. return;
  1236. vmx->host_state.loaded = 1;
  1237. /*
  1238. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1239. * allow segment selectors with cpl > 0 or ti == 1.
  1240. */
  1241. vmx->host_state.ldt_sel = kvm_read_ldt();
  1242. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1243. savesegment(fs, vmx->host_state.fs_sel);
  1244. if (!(vmx->host_state.fs_sel & 7)) {
  1245. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1246. vmx->host_state.fs_reload_needed = 0;
  1247. } else {
  1248. vmcs_write16(HOST_FS_SELECTOR, 0);
  1249. vmx->host_state.fs_reload_needed = 1;
  1250. }
  1251. savesegment(gs, vmx->host_state.gs_sel);
  1252. if (!(vmx->host_state.gs_sel & 7))
  1253. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1254. else {
  1255. vmcs_write16(HOST_GS_SELECTOR, 0);
  1256. vmx->host_state.gs_ldt_reload_needed = 1;
  1257. }
  1258. #ifdef CONFIG_X86_64
  1259. savesegment(ds, vmx->host_state.ds_sel);
  1260. savesegment(es, vmx->host_state.es_sel);
  1261. #endif
  1262. #ifdef CONFIG_X86_64
  1263. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1264. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1265. #else
  1266. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1267. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1268. #endif
  1269. #ifdef CONFIG_X86_64
  1270. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1271. if (is_long_mode(&vmx->vcpu))
  1272. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1273. #endif
  1274. for (i = 0; i < vmx->save_nmsrs; ++i)
  1275. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1276. vmx->guest_msrs[i].data,
  1277. vmx->guest_msrs[i].mask);
  1278. }
  1279. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1280. {
  1281. if (!vmx->host_state.loaded)
  1282. return;
  1283. ++vmx->vcpu.stat.host_state_reload;
  1284. vmx->host_state.loaded = 0;
  1285. #ifdef CONFIG_X86_64
  1286. if (is_long_mode(&vmx->vcpu))
  1287. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1288. #endif
  1289. if (vmx->host_state.gs_ldt_reload_needed) {
  1290. kvm_load_ldt(vmx->host_state.ldt_sel);
  1291. #ifdef CONFIG_X86_64
  1292. load_gs_index(vmx->host_state.gs_sel);
  1293. #else
  1294. loadsegment(gs, vmx->host_state.gs_sel);
  1295. #endif
  1296. }
  1297. if (vmx->host_state.fs_reload_needed)
  1298. loadsegment(fs, vmx->host_state.fs_sel);
  1299. #ifdef CONFIG_X86_64
  1300. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1301. loadsegment(ds, vmx->host_state.ds_sel);
  1302. loadsegment(es, vmx->host_state.es_sel);
  1303. }
  1304. #else
  1305. /*
  1306. * The sysexit path does not restore ds/es, so we must set them to
  1307. * a reasonable value ourselves.
  1308. */
  1309. loadsegment(ds, __USER_DS);
  1310. loadsegment(es, __USER_DS);
  1311. #endif
  1312. reload_tss();
  1313. #ifdef CONFIG_X86_64
  1314. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1315. #endif
  1316. if (user_has_fpu())
  1317. clts();
  1318. load_gdt(&__get_cpu_var(host_gdt));
  1319. }
  1320. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1321. {
  1322. preempt_disable();
  1323. __vmx_load_host_state(vmx);
  1324. preempt_enable();
  1325. }
  1326. /*
  1327. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1328. * vcpu mutex is already taken.
  1329. */
  1330. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1331. {
  1332. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1333. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1334. if (!vmm_exclusive)
  1335. kvm_cpu_vmxon(phys_addr);
  1336. else if (vmx->loaded_vmcs->cpu != cpu)
  1337. loaded_vmcs_clear(vmx->loaded_vmcs);
  1338. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1339. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1340. vmcs_load(vmx->loaded_vmcs->vmcs);
  1341. }
  1342. if (vmx->loaded_vmcs->cpu != cpu) {
  1343. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1344. unsigned long sysenter_esp;
  1345. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1346. local_irq_disable();
  1347. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1348. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1349. local_irq_enable();
  1350. /*
  1351. * Linux uses per-cpu TSS and GDT, so set these when switching
  1352. * processors.
  1353. */
  1354. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1355. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1356. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1357. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1358. vmx->loaded_vmcs->cpu = cpu;
  1359. }
  1360. }
  1361. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1362. {
  1363. __vmx_load_host_state(to_vmx(vcpu));
  1364. if (!vmm_exclusive) {
  1365. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1366. vcpu->cpu = -1;
  1367. kvm_cpu_vmxoff();
  1368. }
  1369. }
  1370. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1371. {
  1372. ulong cr0;
  1373. if (vcpu->fpu_active)
  1374. return;
  1375. vcpu->fpu_active = 1;
  1376. cr0 = vmcs_readl(GUEST_CR0);
  1377. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1378. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1379. vmcs_writel(GUEST_CR0, cr0);
  1380. update_exception_bitmap(vcpu);
  1381. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1382. if (is_guest_mode(vcpu))
  1383. vcpu->arch.cr0_guest_owned_bits &=
  1384. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1385. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1386. }
  1387. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1388. /*
  1389. * Return the cr0 value that a nested guest would read. This is a combination
  1390. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1391. * its hypervisor (cr0_read_shadow).
  1392. */
  1393. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1394. {
  1395. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1396. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1397. }
  1398. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1399. {
  1400. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1401. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1402. }
  1403. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1404. {
  1405. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1406. * set this *before* calling this function.
  1407. */
  1408. vmx_decache_cr0_guest_bits(vcpu);
  1409. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1410. update_exception_bitmap(vcpu);
  1411. vcpu->arch.cr0_guest_owned_bits = 0;
  1412. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1413. if (is_guest_mode(vcpu)) {
  1414. /*
  1415. * L1's specified read shadow might not contain the TS bit,
  1416. * so now that we turned on shadowing of this bit, we need to
  1417. * set this bit of the shadow. Like in nested_vmx_run we need
  1418. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1419. * up-to-date here because we just decached cr0.TS (and we'll
  1420. * only update vmcs12->guest_cr0 on nested exit).
  1421. */
  1422. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1423. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1424. (vcpu->arch.cr0 & X86_CR0_TS);
  1425. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1426. } else
  1427. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1428. }
  1429. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1430. {
  1431. unsigned long rflags, save_rflags;
  1432. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1433. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1434. rflags = vmcs_readl(GUEST_RFLAGS);
  1435. if (to_vmx(vcpu)->rmode.vm86_active) {
  1436. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1437. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1438. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1439. }
  1440. to_vmx(vcpu)->rflags = rflags;
  1441. }
  1442. return to_vmx(vcpu)->rflags;
  1443. }
  1444. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1445. {
  1446. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1447. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1448. to_vmx(vcpu)->rflags = rflags;
  1449. if (to_vmx(vcpu)->rmode.vm86_active) {
  1450. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1451. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1452. }
  1453. vmcs_writel(GUEST_RFLAGS, rflags);
  1454. }
  1455. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1456. {
  1457. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1458. int ret = 0;
  1459. if (interruptibility & GUEST_INTR_STATE_STI)
  1460. ret |= KVM_X86_SHADOW_INT_STI;
  1461. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1462. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1463. return ret & mask;
  1464. }
  1465. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1466. {
  1467. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1468. u32 interruptibility = interruptibility_old;
  1469. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1470. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1471. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1472. else if (mask & KVM_X86_SHADOW_INT_STI)
  1473. interruptibility |= GUEST_INTR_STATE_STI;
  1474. if ((interruptibility != interruptibility_old))
  1475. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1476. }
  1477. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1478. {
  1479. unsigned long rip;
  1480. rip = kvm_rip_read(vcpu);
  1481. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1482. kvm_rip_write(vcpu, rip);
  1483. /* skipping an emulated instruction also counts */
  1484. vmx_set_interrupt_shadow(vcpu, 0);
  1485. }
  1486. /*
  1487. * KVM wants to inject page-faults which it got to the guest. This function
  1488. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1489. * This function assumes it is called with the exit reason in vmcs02 being
  1490. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1491. * is running).
  1492. */
  1493. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1494. {
  1495. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1496. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1497. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1498. return 0;
  1499. nested_vmx_vmexit(vcpu);
  1500. return 1;
  1501. }
  1502. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1503. bool has_error_code, u32 error_code,
  1504. bool reinject)
  1505. {
  1506. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1507. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1508. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1509. nested_pf_handled(vcpu))
  1510. return;
  1511. if (has_error_code) {
  1512. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1513. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1514. }
  1515. if (vmx->rmode.vm86_active) {
  1516. int inc_eip = 0;
  1517. if (kvm_exception_is_soft(nr))
  1518. inc_eip = vcpu->arch.event_exit_inst_len;
  1519. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1520. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1521. return;
  1522. }
  1523. if (kvm_exception_is_soft(nr)) {
  1524. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1525. vmx->vcpu.arch.event_exit_inst_len);
  1526. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1527. } else
  1528. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1529. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1530. }
  1531. static bool vmx_rdtscp_supported(void)
  1532. {
  1533. return cpu_has_vmx_rdtscp();
  1534. }
  1535. /*
  1536. * Swap MSR entry in host/guest MSR entry array.
  1537. */
  1538. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1539. {
  1540. struct shared_msr_entry tmp;
  1541. tmp = vmx->guest_msrs[to];
  1542. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1543. vmx->guest_msrs[from] = tmp;
  1544. }
  1545. /*
  1546. * Set up the vmcs to automatically save and restore system
  1547. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1548. * mode, as fiddling with msrs is very expensive.
  1549. */
  1550. static void setup_msrs(struct vcpu_vmx *vmx)
  1551. {
  1552. int save_nmsrs, index;
  1553. unsigned long *msr_bitmap;
  1554. save_nmsrs = 0;
  1555. #ifdef CONFIG_X86_64
  1556. if (is_long_mode(&vmx->vcpu)) {
  1557. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1558. if (index >= 0)
  1559. move_msr_up(vmx, index, save_nmsrs++);
  1560. index = __find_msr_index(vmx, MSR_LSTAR);
  1561. if (index >= 0)
  1562. move_msr_up(vmx, index, save_nmsrs++);
  1563. index = __find_msr_index(vmx, MSR_CSTAR);
  1564. if (index >= 0)
  1565. move_msr_up(vmx, index, save_nmsrs++);
  1566. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1567. if (index >= 0 && vmx->rdtscp_enabled)
  1568. move_msr_up(vmx, index, save_nmsrs++);
  1569. /*
  1570. * MSR_STAR is only needed on long mode guests, and only
  1571. * if efer.sce is enabled.
  1572. */
  1573. index = __find_msr_index(vmx, MSR_STAR);
  1574. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1575. move_msr_up(vmx, index, save_nmsrs++);
  1576. }
  1577. #endif
  1578. index = __find_msr_index(vmx, MSR_EFER);
  1579. if (index >= 0 && update_transition_efer(vmx, index))
  1580. move_msr_up(vmx, index, save_nmsrs++);
  1581. vmx->save_nmsrs = save_nmsrs;
  1582. if (cpu_has_vmx_msr_bitmap()) {
  1583. if (is_long_mode(&vmx->vcpu))
  1584. msr_bitmap = vmx_msr_bitmap_longmode;
  1585. else
  1586. msr_bitmap = vmx_msr_bitmap_legacy;
  1587. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1588. }
  1589. }
  1590. /*
  1591. * reads and returns guest's timestamp counter "register"
  1592. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1593. */
  1594. static u64 guest_read_tsc(void)
  1595. {
  1596. u64 host_tsc, tsc_offset;
  1597. rdtscll(host_tsc);
  1598. tsc_offset = vmcs_read64(TSC_OFFSET);
  1599. return host_tsc + tsc_offset;
  1600. }
  1601. /*
  1602. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1603. * counter, even if a nested guest (L2) is currently running.
  1604. */
  1605. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
  1606. {
  1607. u64 host_tsc, tsc_offset;
  1608. rdtscll(host_tsc);
  1609. tsc_offset = is_guest_mode(vcpu) ?
  1610. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1611. vmcs_read64(TSC_OFFSET);
  1612. return host_tsc + tsc_offset;
  1613. }
  1614. /*
  1615. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1616. * software catchup for faster rates on slower CPUs.
  1617. */
  1618. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1619. {
  1620. if (!scale)
  1621. return;
  1622. if (user_tsc_khz > tsc_khz) {
  1623. vcpu->arch.tsc_catchup = 1;
  1624. vcpu->arch.tsc_always_catchup = 1;
  1625. } else
  1626. WARN(1, "user requested TSC rate below hardware speed\n");
  1627. }
  1628. /*
  1629. * writes 'offset' into guest's timestamp counter offset register
  1630. */
  1631. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1632. {
  1633. if (is_guest_mode(vcpu)) {
  1634. /*
  1635. * We're here if L1 chose not to trap WRMSR to TSC. According
  1636. * to the spec, this should set L1's TSC; The offset that L1
  1637. * set for L2 remains unchanged, and still needs to be added
  1638. * to the newly set TSC to get L2's TSC.
  1639. */
  1640. struct vmcs12 *vmcs12;
  1641. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1642. /* recalculate vmcs02.TSC_OFFSET: */
  1643. vmcs12 = get_vmcs12(vcpu);
  1644. vmcs_write64(TSC_OFFSET, offset +
  1645. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1646. vmcs12->tsc_offset : 0));
  1647. } else {
  1648. vmcs_write64(TSC_OFFSET, offset);
  1649. }
  1650. }
  1651. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1652. {
  1653. u64 offset = vmcs_read64(TSC_OFFSET);
  1654. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1655. if (is_guest_mode(vcpu)) {
  1656. /* Even when running L2, the adjustment needs to apply to L1 */
  1657. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1658. }
  1659. }
  1660. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1661. {
  1662. return target_tsc - native_read_tsc();
  1663. }
  1664. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1665. {
  1666. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1667. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1668. }
  1669. /*
  1670. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1671. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1672. * all guests if the "nested" module option is off, and can also be disabled
  1673. * for a single guest by disabling its VMX cpuid bit.
  1674. */
  1675. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1676. {
  1677. return nested && guest_cpuid_has_vmx(vcpu);
  1678. }
  1679. /*
  1680. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1681. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1682. * The same values should also be used to verify that vmcs12 control fields are
  1683. * valid during nested entry from L1 to L2.
  1684. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1685. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1686. * bit in the high half is on if the corresponding bit in the control field
  1687. * may be on. See also vmx_control_verify().
  1688. * TODO: allow these variables to be modified (downgraded) by module options
  1689. * or other means.
  1690. */
  1691. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1692. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1693. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1694. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1695. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1696. static __init void nested_vmx_setup_ctls_msrs(void)
  1697. {
  1698. /*
  1699. * Note that as a general rule, the high half of the MSRs (bits in
  1700. * the control fields which may be 1) should be initialized by the
  1701. * intersection of the underlying hardware's MSR (i.e., features which
  1702. * can be supported) and the list of features we want to expose -
  1703. * because they are known to be properly supported in our code.
  1704. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1705. * be set to 0, meaning that L1 may turn off any of these bits. The
  1706. * reason is that if one of these bits is necessary, it will appear
  1707. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1708. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1709. * nested_vmx_exit_handled() will not pass related exits to L1.
  1710. * These rules have exceptions below.
  1711. */
  1712. /* pin-based controls */
  1713. /*
  1714. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1715. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1716. */
  1717. nested_vmx_pinbased_ctls_low = 0x16 ;
  1718. nested_vmx_pinbased_ctls_high = 0x16 |
  1719. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1720. PIN_BASED_VIRTUAL_NMIS;
  1721. /* exit controls */
  1722. nested_vmx_exit_ctls_low = 0;
  1723. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1724. #ifdef CONFIG_X86_64
  1725. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1726. #else
  1727. nested_vmx_exit_ctls_high = 0;
  1728. #endif
  1729. /* entry controls */
  1730. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1731. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1732. nested_vmx_entry_ctls_low = 0;
  1733. nested_vmx_entry_ctls_high &=
  1734. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1735. /* cpu-based controls */
  1736. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1737. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1738. nested_vmx_procbased_ctls_low = 0;
  1739. nested_vmx_procbased_ctls_high &=
  1740. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1741. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1742. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1743. CPU_BASED_CR3_STORE_EXITING |
  1744. #ifdef CONFIG_X86_64
  1745. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1746. #endif
  1747. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1748. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1749. CPU_BASED_RDPMC_EXITING |
  1750. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1751. /*
  1752. * We can allow some features even when not supported by the
  1753. * hardware. For example, L1 can specify an MSR bitmap - and we
  1754. * can use it to avoid exits to L1 - even when L0 runs L2
  1755. * without MSR bitmaps.
  1756. */
  1757. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1758. /* secondary cpu-based controls */
  1759. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1760. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1761. nested_vmx_secondary_ctls_low = 0;
  1762. nested_vmx_secondary_ctls_high &=
  1763. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1764. }
  1765. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1766. {
  1767. /*
  1768. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1769. */
  1770. return ((control & high) | low) == control;
  1771. }
  1772. static inline u64 vmx_control_msr(u32 low, u32 high)
  1773. {
  1774. return low | ((u64)high << 32);
  1775. }
  1776. /*
  1777. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1778. * also let it use VMX-specific MSRs.
  1779. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1780. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1781. * like all other MSRs).
  1782. */
  1783. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1784. {
  1785. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1786. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1787. /*
  1788. * According to the spec, processors which do not support VMX
  1789. * should throw a #GP(0) when VMX capability MSRs are read.
  1790. */
  1791. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1792. return 1;
  1793. }
  1794. switch (msr_index) {
  1795. case MSR_IA32_FEATURE_CONTROL:
  1796. *pdata = 0;
  1797. break;
  1798. case MSR_IA32_VMX_BASIC:
  1799. /*
  1800. * This MSR reports some information about VMX support. We
  1801. * should return information about the VMX we emulate for the
  1802. * guest, and the VMCS structure we give it - not about the
  1803. * VMX support of the underlying hardware.
  1804. */
  1805. *pdata = VMCS12_REVISION |
  1806. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1807. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1808. break;
  1809. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1810. case MSR_IA32_VMX_PINBASED_CTLS:
  1811. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1812. nested_vmx_pinbased_ctls_high);
  1813. break;
  1814. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1815. case MSR_IA32_VMX_PROCBASED_CTLS:
  1816. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1817. nested_vmx_procbased_ctls_high);
  1818. break;
  1819. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1820. case MSR_IA32_VMX_EXIT_CTLS:
  1821. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1822. nested_vmx_exit_ctls_high);
  1823. break;
  1824. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1825. case MSR_IA32_VMX_ENTRY_CTLS:
  1826. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1827. nested_vmx_entry_ctls_high);
  1828. break;
  1829. case MSR_IA32_VMX_MISC:
  1830. *pdata = 0;
  1831. break;
  1832. /*
  1833. * These MSRs specify bits which the guest must keep fixed (on or off)
  1834. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1835. * We picked the standard core2 setting.
  1836. */
  1837. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1838. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1839. case MSR_IA32_VMX_CR0_FIXED0:
  1840. *pdata = VMXON_CR0_ALWAYSON;
  1841. break;
  1842. case MSR_IA32_VMX_CR0_FIXED1:
  1843. *pdata = -1ULL;
  1844. break;
  1845. case MSR_IA32_VMX_CR4_FIXED0:
  1846. *pdata = VMXON_CR4_ALWAYSON;
  1847. break;
  1848. case MSR_IA32_VMX_CR4_FIXED1:
  1849. *pdata = -1ULL;
  1850. break;
  1851. case MSR_IA32_VMX_VMCS_ENUM:
  1852. *pdata = 0x1f;
  1853. break;
  1854. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1855. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1856. nested_vmx_secondary_ctls_high);
  1857. break;
  1858. case MSR_IA32_VMX_EPT_VPID_CAP:
  1859. /* Currently, no nested ept or nested vpid */
  1860. *pdata = 0;
  1861. break;
  1862. default:
  1863. return 0;
  1864. }
  1865. return 1;
  1866. }
  1867. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1868. {
  1869. if (!nested_vmx_allowed(vcpu))
  1870. return 0;
  1871. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1872. /* TODO: the right thing. */
  1873. return 1;
  1874. /*
  1875. * No need to treat VMX capability MSRs specially: If we don't handle
  1876. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1877. */
  1878. return 0;
  1879. }
  1880. /*
  1881. * Reads an msr value (of 'msr_index') into 'pdata'.
  1882. * Returns 0 on success, non-0 otherwise.
  1883. * Assumes vcpu_load() was already called.
  1884. */
  1885. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1886. {
  1887. u64 data;
  1888. struct shared_msr_entry *msr;
  1889. if (!pdata) {
  1890. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1891. return -EINVAL;
  1892. }
  1893. switch (msr_index) {
  1894. #ifdef CONFIG_X86_64
  1895. case MSR_FS_BASE:
  1896. data = vmcs_readl(GUEST_FS_BASE);
  1897. break;
  1898. case MSR_GS_BASE:
  1899. data = vmcs_readl(GUEST_GS_BASE);
  1900. break;
  1901. case MSR_KERNEL_GS_BASE:
  1902. vmx_load_host_state(to_vmx(vcpu));
  1903. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1904. break;
  1905. #endif
  1906. case MSR_EFER:
  1907. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1908. case MSR_IA32_TSC:
  1909. data = guest_read_tsc();
  1910. break;
  1911. case MSR_IA32_SYSENTER_CS:
  1912. data = vmcs_read32(GUEST_SYSENTER_CS);
  1913. break;
  1914. case MSR_IA32_SYSENTER_EIP:
  1915. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1916. break;
  1917. case MSR_IA32_SYSENTER_ESP:
  1918. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1919. break;
  1920. case MSR_TSC_AUX:
  1921. if (!to_vmx(vcpu)->rdtscp_enabled)
  1922. return 1;
  1923. /* Otherwise falls through */
  1924. default:
  1925. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1926. return 0;
  1927. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1928. if (msr) {
  1929. data = msr->data;
  1930. break;
  1931. }
  1932. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1933. }
  1934. *pdata = data;
  1935. return 0;
  1936. }
  1937. /*
  1938. * Writes msr value into into the appropriate "register".
  1939. * Returns 0 on success, non-0 otherwise.
  1940. * Assumes vcpu_load() was already called.
  1941. */
  1942. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1943. {
  1944. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1945. struct shared_msr_entry *msr;
  1946. int ret = 0;
  1947. switch (msr_index) {
  1948. case MSR_EFER:
  1949. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1950. break;
  1951. #ifdef CONFIG_X86_64
  1952. case MSR_FS_BASE:
  1953. vmx_segment_cache_clear(vmx);
  1954. vmcs_writel(GUEST_FS_BASE, data);
  1955. break;
  1956. case MSR_GS_BASE:
  1957. vmx_segment_cache_clear(vmx);
  1958. vmcs_writel(GUEST_GS_BASE, data);
  1959. break;
  1960. case MSR_KERNEL_GS_BASE:
  1961. vmx_load_host_state(vmx);
  1962. vmx->msr_guest_kernel_gs_base = data;
  1963. break;
  1964. #endif
  1965. case MSR_IA32_SYSENTER_CS:
  1966. vmcs_write32(GUEST_SYSENTER_CS, data);
  1967. break;
  1968. case MSR_IA32_SYSENTER_EIP:
  1969. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1970. break;
  1971. case MSR_IA32_SYSENTER_ESP:
  1972. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1973. break;
  1974. case MSR_IA32_TSC:
  1975. kvm_write_tsc(vcpu, data);
  1976. break;
  1977. case MSR_IA32_CR_PAT:
  1978. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1979. vmcs_write64(GUEST_IA32_PAT, data);
  1980. vcpu->arch.pat = data;
  1981. break;
  1982. }
  1983. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1984. break;
  1985. case MSR_TSC_AUX:
  1986. if (!vmx->rdtscp_enabled)
  1987. return 1;
  1988. /* Check reserved bit, higher 32 bits should be zero */
  1989. if ((data >> 32) != 0)
  1990. return 1;
  1991. /* Otherwise falls through */
  1992. default:
  1993. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1994. break;
  1995. msr = find_msr_entry(vmx, msr_index);
  1996. if (msr) {
  1997. msr->data = data;
  1998. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  1999. preempt_disable();
  2000. kvm_set_shared_msr(msr->index, msr->data,
  2001. msr->mask);
  2002. preempt_enable();
  2003. }
  2004. break;
  2005. }
  2006. ret = kvm_set_msr_common(vcpu, msr_index, data);
  2007. }
  2008. return ret;
  2009. }
  2010. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2011. {
  2012. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2013. switch (reg) {
  2014. case VCPU_REGS_RSP:
  2015. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2016. break;
  2017. case VCPU_REGS_RIP:
  2018. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2019. break;
  2020. case VCPU_EXREG_PDPTR:
  2021. if (enable_ept)
  2022. ept_save_pdptrs(vcpu);
  2023. break;
  2024. default:
  2025. break;
  2026. }
  2027. }
  2028. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  2029. {
  2030. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  2031. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  2032. else
  2033. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2034. update_exception_bitmap(vcpu);
  2035. }
  2036. static __init int cpu_has_kvm_support(void)
  2037. {
  2038. return cpu_has_vmx();
  2039. }
  2040. static __init int vmx_disabled_by_bios(void)
  2041. {
  2042. u64 msr;
  2043. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2044. if (msr & FEATURE_CONTROL_LOCKED) {
  2045. /* launched w/ TXT and VMX disabled */
  2046. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2047. && tboot_enabled())
  2048. return 1;
  2049. /* launched w/o TXT and VMX only enabled w/ TXT */
  2050. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2051. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2052. && !tboot_enabled()) {
  2053. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2054. "activate TXT before enabling KVM\n");
  2055. return 1;
  2056. }
  2057. /* launched w/o TXT and VMX disabled */
  2058. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2059. && !tboot_enabled())
  2060. return 1;
  2061. }
  2062. return 0;
  2063. }
  2064. static void kvm_cpu_vmxon(u64 addr)
  2065. {
  2066. asm volatile (ASM_VMX_VMXON_RAX
  2067. : : "a"(&addr), "m"(addr)
  2068. : "memory", "cc");
  2069. }
  2070. static int hardware_enable(void *garbage)
  2071. {
  2072. int cpu = raw_smp_processor_id();
  2073. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2074. u64 old, test_bits;
  2075. if (read_cr4() & X86_CR4_VMXE)
  2076. return -EBUSY;
  2077. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2078. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2079. test_bits = FEATURE_CONTROL_LOCKED;
  2080. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2081. if (tboot_enabled())
  2082. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2083. if ((old & test_bits) != test_bits) {
  2084. /* enable and lock */
  2085. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2086. }
  2087. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2088. if (vmm_exclusive) {
  2089. kvm_cpu_vmxon(phys_addr);
  2090. ept_sync_global();
  2091. }
  2092. store_gdt(&__get_cpu_var(host_gdt));
  2093. return 0;
  2094. }
  2095. static void vmclear_local_loaded_vmcss(void)
  2096. {
  2097. int cpu = raw_smp_processor_id();
  2098. struct loaded_vmcs *v, *n;
  2099. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2100. loaded_vmcss_on_cpu_link)
  2101. __loaded_vmcs_clear(v);
  2102. }
  2103. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2104. * tricks.
  2105. */
  2106. static void kvm_cpu_vmxoff(void)
  2107. {
  2108. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2109. }
  2110. static void hardware_disable(void *garbage)
  2111. {
  2112. if (vmm_exclusive) {
  2113. vmclear_local_loaded_vmcss();
  2114. kvm_cpu_vmxoff();
  2115. }
  2116. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2117. }
  2118. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2119. u32 msr, u32 *result)
  2120. {
  2121. u32 vmx_msr_low, vmx_msr_high;
  2122. u32 ctl = ctl_min | ctl_opt;
  2123. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2124. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2125. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2126. /* Ensure minimum (required) set of control bits are supported. */
  2127. if (ctl_min & ~ctl)
  2128. return -EIO;
  2129. *result = ctl;
  2130. return 0;
  2131. }
  2132. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2133. {
  2134. u32 vmx_msr_low, vmx_msr_high;
  2135. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2136. return vmx_msr_high & ctl;
  2137. }
  2138. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2139. {
  2140. u32 vmx_msr_low, vmx_msr_high;
  2141. u32 min, opt, min2, opt2;
  2142. u32 _pin_based_exec_control = 0;
  2143. u32 _cpu_based_exec_control = 0;
  2144. u32 _cpu_based_2nd_exec_control = 0;
  2145. u32 _vmexit_control = 0;
  2146. u32 _vmentry_control = 0;
  2147. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2148. opt = PIN_BASED_VIRTUAL_NMIS;
  2149. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2150. &_pin_based_exec_control) < 0)
  2151. return -EIO;
  2152. min = CPU_BASED_HLT_EXITING |
  2153. #ifdef CONFIG_X86_64
  2154. CPU_BASED_CR8_LOAD_EXITING |
  2155. CPU_BASED_CR8_STORE_EXITING |
  2156. #endif
  2157. CPU_BASED_CR3_LOAD_EXITING |
  2158. CPU_BASED_CR3_STORE_EXITING |
  2159. CPU_BASED_USE_IO_BITMAPS |
  2160. CPU_BASED_MOV_DR_EXITING |
  2161. CPU_BASED_USE_TSC_OFFSETING |
  2162. CPU_BASED_MWAIT_EXITING |
  2163. CPU_BASED_MONITOR_EXITING |
  2164. CPU_BASED_INVLPG_EXITING |
  2165. CPU_BASED_RDPMC_EXITING;
  2166. opt = CPU_BASED_TPR_SHADOW |
  2167. CPU_BASED_USE_MSR_BITMAPS |
  2168. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2169. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2170. &_cpu_based_exec_control) < 0)
  2171. return -EIO;
  2172. #ifdef CONFIG_X86_64
  2173. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2174. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2175. ~CPU_BASED_CR8_STORE_EXITING;
  2176. #endif
  2177. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2178. min2 = 0;
  2179. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2180. SECONDARY_EXEC_WBINVD_EXITING |
  2181. SECONDARY_EXEC_ENABLE_VPID |
  2182. SECONDARY_EXEC_ENABLE_EPT |
  2183. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2184. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2185. SECONDARY_EXEC_RDTSCP;
  2186. if (adjust_vmx_controls(min2, opt2,
  2187. MSR_IA32_VMX_PROCBASED_CTLS2,
  2188. &_cpu_based_2nd_exec_control) < 0)
  2189. return -EIO;
  2190. }
  2191. #ifndef CONFIG_X86_64
  2192. if (!(_cpu_based_2nd_exec_control &
  2193. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2194. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2195. #endif
  2196. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2197. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2198. enabled */
  2199. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2200. CPU_BASED_CR3_STORE_EXITING |
  2201. CPU_BASED_INVLPG_EXITING);
  2202. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2203. vmx_capability.ept, vmx_capability.vpid);
  2204. }
  2205. min = 0;
  2206. #ifdef CONFIG_X86_64
  2207. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2208. #endif
  2209. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2210. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2211. &_vmexit_control) < 0)
  2212. return -EIO;
  2213. min = 0;
  2214. opt = VM_ENTRY_LOAD_IA32_PAT;
  2215. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2216. &_vmentry_control) < 0)
  2217. return -EIO;
  2218. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2219. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2220. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2221. return -EIO;
  2222. #ifdef CONFIG_X86_64
  2223. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2224. if (vmx_msr_high & (1u<<16))
  2225. return -EIO;
  2226. #endif
  2227. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2228. if (((vmx_msr_high >> 18) & 15) != 6)
  2229. return -EIO;
  2230. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2231. vmcs_conf->order = get_order(vmcs_config.size);
  2232. vmcs_conf->revision_id = vmx_msr_low;
  2233. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2234. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2235. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2236. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2237. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2238. cpu_has_load_ia32_efer =
  2239. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2240. VM_ENTRY_LOAD_IA32_EFER)
  2241. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2242. VM_EXIT_LOAD_IA32_EFER);
  2243. cpu_has_load_perf_global_ctrl =
  2244. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2245. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2246. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2247. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2248. /*
  2249. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2250. * but due to arrata below it can't be used. Workaround is to use
  2251. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2252. *
  2253. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2254. *
  2255. * AAK155 (model 26)
  2256. * AAP115 (model 30)
  2257. * AAT100 (model 37)
  2258. * BC86,AAY89,BD102 (model 44)
  2259. * BA97 (model 46)
  2260. *
  2261. */
  2262. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2263. switch (boot_cpu_data.x86_model) {
  2264. case 26:
  2265. case 30:
  2266. case 37:
  2267. case 44:
  2268. case 46:
  2269. cpu_has_load_perf_global_ctrl = false;
  2270. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2271. "does not work properly. Using workaround\n");
  2272. break;
  2273. default:
  2274. break;
  2275. }
  2276. }
  2277. return 0;
  2278. }
  2279. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2280. {
  2281. int node = cpu_to_node(cpu);
  2282. struct page *pages;
  2283. struct vmcs *vmcs;
  2284. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2285. if (!pages)
  2286. return NULL;
  2287. vmcs = page_address(pages);
  2288. memset(vmcs, 0, vmcs_config.size);
  2289. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2290. return vmcs;
  2291. }
  2292. static struct vmcs *alloc_vmcs(void)
  2293. {
  2294. return alloc_vmcs_cpu(raw_smp_processor_id());
  2295. }
  2296. static void free_vmcs(struct vmcs *vmcs)
  2297. {
  2298. free_pages((unsigned long)vmcs, vmcs_config.order);
  2299. }
  2300. /*
  2301. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2302. */
  2303. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2304. {
  2305. if (!loaded_vmcs->vmcs)
  2306. return;
  2307. loaded_vmcs_clear(loaded_vmcs);
  2308. free_vmcs(loaded_vmcs->vmcs);
  2309. loaded_vmcs->vmcs = NULL;
  2310. }
  2311. static void free_kvm_area(void)
  2312. {
  2313. int cpu;
  2314. for_each_possible_cpu(cpu) {
  2315. free_vmcs(per_cpu(vmxarea, cpu));
  2316. per_cpu(vmxarea, cpu) = NULL;
  2317. }
  2318. }
  2319. static __init int alloc_kvm_area(void)
  2320. {
  2321. int cpu;
  2322. for_each_possible_cpu(cpu) {
  2323. struct vmcs *vmcs;
  2324. vmcs = alloc_vmcs_cpu(cpu);
  2325. if (!vmcs) {
  2326. free_kvm_area();
  2327. return -ENOMEM;
  2328. }
  2329. per_cpu(vmxarea, cpu) = vmcs;
  2330. }
  2331. return 0;
  2332. }
  2333. static __init int hardware_setup(void)
  2334. {
  2335. if (setup_vmcs_config(&vmcs_config) < 0)
  2336. return -EIO;
  2337. if (boot_cpu_has(X86_FEATURE_NX))
  2338. kvm_enable_efer_bits(EFER_NX);
  2339. if (!cpu_has_vmx_vpid())
  2340. enable_vpid = 0;
  2341. if (!cpu_has_vmx_ept() ||
  2342. !cpu_has_vmx_ept_4levels()) {
  2343. enable_ept = 0;
  2344. enable_unrestricted_guest = 0;
  2345. enable_ept_ad_bits = 0;
  2346. }
  2347. if (!cpu_has_vmx_ept_ad_bits())
  2348. enable_ept_ad_bits = 0;
  2349. if (!cpu_has_vmx_unrestricted_guest())
  2350. enable_unrestricted_guest = 0;
  2351. if (!cpu_has_vmx_flexpriority())
  2352. flexpriority_enabled = 0;
  2353. if (!cpu_has_vmx_tpr_shadow())
  2354. kvm_x86_ops->update_cr8_intercept = NULL;
  2355. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2356. kvm_disable_largepages();
  2357. if (!cpu_has_vmx_ple())
  2358. ple_gap = 0;
  2359. if (nested)
  2360. nested_vmx_setup_ctls_msrs();
  2361. return alloc_kvm_area();
  2362. }
  2363. static __exit void hardware_unsetup(void)
  2364. {
  2365. free_kvm_area();
  2366. }
  2367. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2368. {
  2369. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2370. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2371. vmcs_write16(sf->selector, save->selector);
  2372. vmcs_writel(sf->base, save->base);
  2373. vmcs_write32(sf->limit, save->limit);
  2374. vmcs_write32(sf->ar_bytes, save->ar);
  2375. } else {
  2376. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2377. << AR_DPL_SHIFT;
  2378. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2379. }
  2380. }
  2381. static void enter_pmode(struct kvm_vcpu *vcpu)
  2382. {
  2383. unsigned long flags;
  2384. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2385. vmx->emulation_required = 1;
  2386. vmx->rmode.vm86_active = 0;
  2387. vmx_segment_cache_clear(vmx);
  2388. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2389. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2390. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2391. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2392. flags = vmcs_readl(GUEST_RFLAGS);
  2393. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2394. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2395. vmcs_writel(GUEST_RFLAGS, flags);
  2396. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2397. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2398. update_exception_bitmap(vcpu);
  2399. if (emulate_invalid_guest_state)
  2400. return;
  2401. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2402. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2403. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2404. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2405. vmx_segment_cache_clear(vmx);
  2406. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2407. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2408. vmcs_write16(GUEST_CS_SELECTOR,
  2409. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2410. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2411. }
  2412. static gva_t rmode_tss_base(struct kvm *kvm)
  2413. {
  2414. if (!kvm->arch.tss_addr) {
  2415. struct kvm_memslots *slots;
  2416. struct kvm_memory_slot *slot;
  2417. gfn_t base_gfn;
  2418. slots = kvm_memslots(kvm);
  2419. slot = id_to_memslot(slots, 0);
  2420. base_gfn = slot->base_gfn + slot->npages - 3;
  2421. return base_gfn << PAGE_SHIFT;
  2422. }
  2423. return kvm->arch.tss_addr;
  2424. }
  2425. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2426. {
  2427. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2428. save->selector = vmcs_read16(sf->selector);
  2429. save->base = vmcs_readl(sf->base);
  2430. save->limit = vmcs_read32(sf->limit);
  2431. save->ar = vmcs_read32(sf->ar_bytes);
  2432. vmcs_write16(sf->selector, save->base >> 4);
  2433. vmcs_write32(sf->base, save->base & 0xffff0);
  2434. vmcs_write32(sf->limit, 0xffff);
  2435. vmcs_write32(sf->ar_bytes, 0xf3);
  2436. if (save->base & 0xf)
  2437. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2438. " aligned when entering protected mode (seg=%d)",
  2439. seg);
  2440. }
  2441. static void enter_rmode(struct kvm_vcpu *vcpu)
  2442. {
  2443. unsigned long flags;
  2444. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2445. struct kvm_segment var;
  2446. if (enable_unrestricted_guest)
  2447. return;
  2448. vmx->emulation_required = 1;
  2449. vmx->rmode.vm86_active = 1;
  2450. /*
  2451. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2452. * vcpu. Call it here with phys address pointing 16M below 4G.
  2453. */
  2454. if (!vcpu->kvm->arch.tss_addr) {
  2455. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2456. "called before entering vcpu\n");
  2457. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2458. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2459. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2460. }
  2461. vmx_segment_cache_clear(vmx);
  2462. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2463. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2464. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2465. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2466. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2467. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2468. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2469. flags = vmcs_readl(GUEST_RFLAGS);
  2470. vmx->rmode.save_rflags = flags;
  2471. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2472. vmcs_writel(GUEST_RFLAGS, flags);
  2473. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2474. update_exception_bitmap(vcpu);
  2475. if (emulate_invalid_guest_state)
  2476. goto continue_rmode;
  2477. vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
  2478. vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
  2479. vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
  2480. vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
  2481. vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
  2482. vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
  2483. vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
  2484. vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
  2485. vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
  2486. vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
  2487. vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
  2488. vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
  2489. continue_rmode:
  2490. kvm_mmu_reset_context(vcpu);
  2491. }
  2492. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2493. {
  2494. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2495. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2496. if (!msr)
  2497. return;
  2498. /*
  2499. * Force kernel_gs_base reloading before EFER changes, as control
  2500. * of this msr depends on is_long_mode().
  2501. */
  2502. vmx_load_host_state(to_vmx(vcpu));
  2503. vcpu->arch.efer = efer;
  2504. if (efer & EFER_LMA) {
  2505. vmcs_write32(VM_ENTRY_CONTROLS,
  2506. vmcs_read32(VM_ENTRY_CONTROLS) |
  2507. VM_ENTRY_IA32E_MODE);
  2508. msr->data = efer;
  2509. } else {
  2510. vmcs_write32(VM_ENTRY_CONTROLS,
  2511. vmcs_read32(VM_ENTRY_CONTROLS) &
  2512. ~VM_ENTRY_IA32E_MODE);
  2513. msr->data = efer & ~EFER_LME;
  2514. }
  2515. setup_msrs(vmx);
  2516. }
  2517. #ifdef CONFIG_X86_64
  2518. static void enter_lmode(struct kvm_vcpu *vcpu)
  2519. {
  2520. u32 guest_tr_ar;
  2521. vmx_segment_cache_clear(to_vmx(vcpu));
  2522. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2523. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2524. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2525. __func__);
  2526. vmcs_write32(GUEST_TR_AR_BYTES,
  2527. (guest_tr_ar & ~AR_TYPE_MASK)
  2528. | AR_TYPE_BUSY_64_TSS);
  2529. }
  2530. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2531. }
  2532. static void exit_lmode(struct kvm_vcpu *vcpu)
  2533. {
  2534. vmcs_write32(VM_ENTRY_CONTROLS,
  2535. vmcs_read32(VM_ENTRY_CONTROLS)
  2536. & ~VM_ENTRY_IA32E_MODE);
  2537. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2538. }
  2539. #endif
  2540. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2541. {
  2542. vpid_sync_context(to_vmx(vcpu));
  2543. if (enable_ept) {
  2544. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2545. return;
  2546. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2547. }
  2548. }
  2549. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2550. {
  2551. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2552. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2553. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2554. }
  2555. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2556. {
  2557. if (enable_ept && is_paging(vcpu))
  2558. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2559. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2560. }
  2561. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2562. {
  2563. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2564. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2565. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2566. }
  2567. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2568. {
  2569. if (!test_bit(VCPU_EXREG_PDPTR,
  2570. (unsigned long *)&vcpu->arch.regs_dirty))
  2571. return;
  2572. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2573. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2574. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2575. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2576. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2577. }
  2578. }
  2579. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2580. {
  2581. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2582. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2583. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2584. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2585. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2586. }
  2587. __set_bit(VCPU_EXREG_PDPTR,
  2588. (unsigned long *)&vcpu->arch.regs_avail);
  2589. __set_bit(VCPU_EXREG_PDPTR,
  2590. (unsigned long *)&vcpu->arch.regs_dirty);
  2591. }
  2592. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2593. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2594. unsigned long cr0,
  2595. struct kvm_vcpu *vcpu)
  2596. {
  2597. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2598. vmx_decache_cr3(vcpu);
  2599. if (!(cr0 & X86_CR0_PG)) {
  2600. /* From paging/starting to nonpaging */
  2601. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2602. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2603. (CPU_BASED_CR3_LOAD_EXITING |
  2604. CPU_BASED_CR3_STORE_EXITING));
  2605. vcpu->arch.cr0 = cr0;
  2606. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2607. } else if (!is_paging(vcpu)) {
  2608. /* From nonpaging to paging */
  2609. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2610. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2611. ~(CPU_BASED_CR3_LOAD_EXITING |
  2612. CPU_BASED_CR3_STORE_EXITING));
  2613. vcpu->arch.cr0 = cr0;
  2614. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2615. }
  2616. if (!(cr0 & X86_CR0_WP))
  2617. *hw_cr0 &= ~X86_CR0_WP;
  2618. }
  2619. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2620. {
  2621. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2622. unsigned long hw_cr0;
  2623. if (enable_unrestricted_guest)
  2624. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2625. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2626. else
  2627. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2628. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2629. enter_pmode(vcpu);
  2630. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2631. enter_rmode(vcpu);
  2632. #ifdef CONFIG_X86_64
  2633. if (vcpu->arch.efer & EFER_LME) {
  2634. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2635. enter_lmode(vcpu);
  2636. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2637. exit_lmode(vcpu);
  2638. }
  2639. #endif
  2640. if (enable_ept)
  2641. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2642. if (!vcpu->fpu_active)
  2643. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2644. vmcs_writel(CR0_READ_SHADOW, cr0);
  2645. vmcs_writel(GUEST_CR0, hw_cr0);
  2646. vcpu->arch.cr0 = cr0;
  2647. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2648. }
  2649. static u64 construct_eptp(unsigned long root_hpa)
  2650. {
  2651. u64 eptp;
  2652. /* TODO write the value reading from MSR */
  2653. eptp = VMX_EPT_DEFAULT_MT |
  2654. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2655. if (enable_ept_ad_bits)
  2656. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2657. eptp |= (root_hpa & PAGE_MASK);
  2658. return eptp;
  2659. }
  2660. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2661. {
  2662. unsigned long guest_cr3;
  2663. u64 eptp;
  2664. guest_cr3 = cr3;
  2665. if (enable_ept) {
  2666. eptp = construct_eptp(cr3);
  2667. vmcs_write64(EPT_POINTER, eptp);
  2668. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2669. vcpu->kvm->arch.ept_identity_map_addr;
  2670. ept_load_pdptrs(vcpu);
  2671. }
  2672. vmx_flush_tlb(vcpu);
  2673. vmcs_writel(GUEST_CR3, guest_cr3);
  2674. }
  2675. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2676. {
  2677. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2678. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2679. if (cr4 & X86_CR4_VMXE) {
  2680. /*
  2681. * To use VMXON (and later other VMX instructions), a guest
  2682. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2683. * So basically the check on whether to allow nested VMX
  2684. * is here.
  2685. */
  2686. if (!nested_vmx_allowed(vcpu))
  2687. return 1;
  2688. } else if (to_vmx(vcpu)->nested.vmxon)
  2689. return 1;
  2690. vcpu->arch.cr4 = cr4;
  2691. if (enable_ept) {
  2692. if (!is_paging(vcpu)) {
  2693. hw_cr4 &= ~X86_CR4_PAE;
  2694. hw_cr4 |= X86_CR4_PSE;
  2695. } else if (!(cr4 & X86_CR4_PAE)) {
  2696. hw_cr4 &= ~X86_CR4_PAE;
  2697. }
  2698. }
  2699. vmcs_writel(CR4_READ_SHADOW, cr4);
  2700. vmcs_writel(GUEST_CR4, hw_cr4);
  2701. return 0;
  2702. }
  2703. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2704. struct kvm_segment *var, int seg)
  2705. {
  2706. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2707. struct kvm_save_segment *save;
  2708. u32 ar;
  2709. if (vmx->rmode.vm86_active
  2710. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2711. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2712. || seg == VCPU_SREG_GS)
  2713. && !emulate_invalid_guest_state) {
  2714. switch (seg) {
  2715. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2716. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2717. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2718. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2719. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2720. default: BUG();
  2721. }
  2722. var->selector = save->selector;
  2723. var->base = save->base;
  2724. var->limit = save->limit;
  2725. ar = save->ar;
  2726. if (seg == VCPU_SREG_TR
  2727. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2728. goto use_saved_rmode_seg;
  2729. }
  2730. var->base = vmx_read_guest_seg_base(vmx, seg);
  2731. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2732. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2733. ar = vmx_read_guest_seg_ar(vmx, seg);
  2734. use_saved_rmode_seg:
  2735. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2736. ar = 0;
  2737. var->type = ar & 15;
  2738. var->s = (ar >> 4) & 1;
  2739. var->dpl = (ar >> 5) & 3;
  2740. var->present = (ar >> 7) & 1;
  2741. var->avl = (ar >> 12) & 1;
  2742. var->l = (ar >> 13) & 1;
  2743. var->db = (ar >> 14) & 1;
  2744. var->g = (ar >> 15) & 1;
  2745. var->unusable = (ar >> 16) & 1;
  2746. }
  2747. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2748. {
  2749. struct kvm_segment s;
  2750. if (to_vmx(vcpu)->rmode.vm86_active) {
  2751. vmx_get_segment(vcpu, &s, seg);
  2752. return s.base;
  2753. }
  2754. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2755. }
  2756. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2757. {
  2758. if (!is_protmode(vcpu))
  2759. return 0;
  2760. if (!is_long_mode(vcpu)
  2761. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2762. return 3;
  2763. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2764. }
  2765. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2766. {
  2767. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2768. /*
  2769. * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
  2770. * fail; use the cache instead.
  2771. */
  2772. if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
  2773. return vmx->cpl;
  2774. }
  2775. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2776. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2777. vmx->cpl = __vmx_get_cpl(vcpu);
  2778. }
  2779. return vmx->cpl;
  2780. }
  2781. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2782. {
  2783. u32 ar;
  2784. if (var->unusable || !var->present)
  2785. ar = 1 << 16;
  2786. else {
  2787. ar = var->type & 15;
  2788. ar |= (var->s & 1) << 4;
  2789. ar |= (var->dpl & 3) << 5;
  2790. ar |= (var->present & 1) << 7;
  2791. ar |= (var->avl & 1) << 12;
  2792. ar |= (var->l & 1) << 13;
  2793. ar |= (var->db & 1) << 14;
  2794. ar |= (var->g & 1) << 15;
  2795. }
  2796. return ar;
  2797. }
  2798. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2799. struct kvm_segment *var, int seg)
  2800. {
  2801. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2802. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2803. u32 ar;
  2804. vmx_segment_cache_clear(vmx);
  2805. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2806. vmcs_write16(sf->selector, var->selector);
  2807. vmx->rmode.tr.selector = var->selector;
  2808. vmx->rmode.tr.base = var->base;
  2809. vmx->rmode.tr.limit = var->limit;
  2810. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2811. return;
  2812. }
  2813. vmcs_writel(sf->base, var->base);
  2814. vmcs_write32(sf->limit, var->limit);
  2815. vmcs_write16(sf->selector, var->selector);
  2816. if (vmx->rmode.vm86_active && var->s) {
  2817. /*
  2818. * Hack real-mode segments into vm86 compatibility.
  2819. */
  2820. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2821. vmcs_writel(sf->base, 0xf0000);
  2822. ar = 0xf3;
  2823. } else
  2824. ar = vmx_segment_access_rights(var);
  2825. /*
  2826. * Fix the "Accessed" bit in AR field of segment registers for older
  2827. * qemu binaries.
  2828. * IA32 arch specifies that at the time of processor reset the
  2829. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2830. * is setting it to 0 in the usedland code. This causes invalid guest
  2831. * state vmexit when "unrestricted guest" mode is turned on.
  2832. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2833. * tree. Newer qemu binaries with that qemu fix would not need this
  2834. * kvm hack.
  2835. */
  2836. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2837. ar |= 0x1; /* Accessed */
  2838. vmcs_write32(sf->ar_bytes, ar);
  2839. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2840. /*
  2841. * Fix segments for real mode guest in hosts that don't have
  2842. * "unrestricted_mode" or it was disabled.
  2843. * This is done to allow migration of the guests from hosts with
  2844. * unrestricted guest like Westmere to older host that don't have
  2845. * unrestricted guest like Nehelem.
  2846. */
  2847. if (!enable_unrestricted_guest && vmx->rmode.vm86_active) {
  2848. switch (seg) {
  2849. case VCPU_SREG_CS:
  2850. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2851. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2852. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2853. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2854. vmcs_write16(GUEST_CS_SELECTOR,
  2855. vmcs_readl(GUEST_CS_BASE) >> 4);
  2856. break;
  2857. case VCPU_SREG_ES:
  2858. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2859. break;
  2860. case VCPU_SREG_DS:
  2861. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2862. break;
  2863. case VCPU_SREG_GS:
  2864. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2865. break;
  2866. case VCPU_SREG_FS:
  2867. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2868. break;
  2869. case VCPU_SREG_SS:
  2870. vmcs_write16(GUEST_SS_SELECTOR,
  2871. vmcs_readl(GUEST_SS_BASE) >> 4);
  2872. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2873. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2874. break;
  2875. }
  2876. }
  2877. }
  2878. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2879. {
  2880. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2881. *db = (ar >> 14) & 1;
  2882. *l = (ar >> 13) & 1;
  2883. }
  2884. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2885. {
  2886. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2887. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2888. }
  2889. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2890. {
  2891. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2892. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2893. }
  2894. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2895. {
  2896. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2897. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2898. }
  2899. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2900. {
  2901. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2902. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2903. }
  2904. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2905. {
  2906. struct kvm_segment var;
  2907. u32 ar;
  2908. vmx_get_segment(vcpu, &var, seg);
  2909. ar = vmx_segment_access_rights(&var);
  2910. if (var.base != (var.selector << 4))
  2911. return false;
  2912. if (var.limit != 0xffff)
  2913. return false;
  2914. if (ar != 0xf3)
  2915. return false;
  2916. return true;
  2917. }
  2918. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2919. {
  2920. struct kvm_segment cs;
  2921. unsigned int cs_rpl;
  2922. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2923. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2924. if (cs.unusable)
  2925. return false;
  2926. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2927. return false;
  2928. if (!cs.s)
  2929. return false;
  2930. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2931. if (cs.dpl > cs_rpl)
  2932. return false;
  2933. } else {
  2934. if (cs.dpl != cs_rpl)
  2935. return false;
  2936. }
  2937. if (!cs.present)
  2938. return false;
  2939. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2940. return true;
  2941. }
  2942. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2943. {
  2944. struct kvm_segment ss;
  2945. unsigned int ss_rpl;
  2946. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2947. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2948. if (ss.unusable)
  2949. return true;
  2950. if (ss.type != 3 && ss.type != 7)
  2951. return false;
  2952. if (!ss.s)
  2953. return false;
  2954. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2955. return false;
  2956. if (!ss.present)
  2957. return false;
  2958. return true;
  2959. }
  2960. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2961. {
  2962. struct kvm_segment var;
  2963. unsigned int rpl;
  2964. vmx_get_segment(vcpu, &var, seg);
  2965. rpl = var.selector & SELECTOR_RPL_MASK;
  2966. if (var.unusable)
  2967. return true;
  2968. if (!var.s)
  2969. return false;
  2970. if (!var.present)
  2971. return false;
  2972. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2973. if (var.dpl < rpl) /* DPL < RPL */
  2974. return false;
  2975. }
  2976. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2977. * rights flags
  2978. */
  2979. return true;
  2980. }
  2981. static bool tr_valid(struct kvm_vcpu *vcpu)
  2982. {
  2983. struct kvm_segment tr;
  2984. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2985. if (tr.unusable)
  2986. return false;
  2987. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2988. return false;
  2989. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2990. return false;
  2991. if (!tr.present)
  2992. return false;
  2993. return true;
  2994. }
  2995. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2996. {
  2997. struct kvm_segment ldtr;
  2998. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2999. if (ldtr.unusable)
  3000. return true;
  3001. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3002. return false;
  3003. if (ldtr.type != 2)
  3004. return false;
  3005. if (!ldtr.present)
  3006. return false;
  3007. return true;
  3008. }
  3009. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3010. {
  3011. struct kvm_segment cs, ss;
  3012. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3013. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3014. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3015. (ss.selector & SELECTOR_RPL_MASK));
  3016. }
  3017. /*
  3018. * Check if guest state is valid. Returns true if valid, false if
  3019. * not.
  3020. * We assume that registers are always usable
  3021. */
  3022. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3023. {
  3024. /* real mode guest state checks */
  3025. if (!is_protmode(vcpu)) {
  3026. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3027. return false;
  3028. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3029. return false;
  3030. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3031. return false;
  3032. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3033. return false;
  3034. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3035. return false;
  3036. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3037. return false;
  3038. } else {
  3039. /* protected mode guest state checks */
  3040. if (!cs_ss_rpl_check(vcpu))
  3041. return false;
  3042. if (!code_segment_valid(vcpu))
  3043. return false;
  3044. if (!stack_segment_valid(vcpu))
  3045. return false;
  3046. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3047. return false;
  3048. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3049. return false;
  3050. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3051. return false;
  3052. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3053. return false;
  3054. if (!tr_valid(vcpu))
  3055. return false;
  3056. if (!ldtr_valid(vcpu))
  3057. return false;
  3058. }
  3059. /* TODO:
  3060. * - Add checks on RIP
  3061. * - Add checks on RFLAGS
  3062. */
  3063. return true;
  3064. }
  3065. static int init_rmode_tss(struct kvm *kvm)
  3066. {
  3067. gfn_t fn;
  3068. u16 data = 0;
  3069. int r, idx, ret = 0;
  3070. idx = srcu_read_lock(&kvm->srcu);
  3071. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  3072. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3073. if (r < 0)
  3074. goto out;
  3075. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3076. r = kvm_write_guest_page(kvm, fn++, &data,
  3077. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3078. if (r < 0)
  3079. goto out;
  3080. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3081. if (r < 0)
  3082. goto out;
  3083. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3084. if (r < 0)
  3085. goto out;
  3086. data = ~0;
  3087. r = kvm_write_guest_page(kvm, fn, &data,
  3088. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3089. sizeof(u8));
  3090. if (r < 0)
  3091. goto out;
  3092. ret = 1;
  3093. out:
  3094. srcu_read_unlock(&kvm->srcu, idx);
  3095. return ret;
  3096. }
  3097. static int init_rmode_identity_map(struct kvm *kvm)
  3098. {
  3099. int i, idx, r, ret;
  3100. pfn_t identity_map_pfn;
  3101. u32 tmp;
  3102. if (!enable_ept)
  3103. return 1;
  3104. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3105. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3106. "haven't been allocated!\n");
  3107. return 0;
  3108. }
  3109. if (likely(kvm->arch.ept_identity_pagetable_done))
  3110. return 1;
  3111. ret = 0;
  3112. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3113. idx = srcu_read_lock(&kvm->srcu);
  3114. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3115. if (r < 0)
  3116. goto out;
  3117. /* Set up identity-mapping pagetable for EPT in real mode */
  3118. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3119. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3120. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3121. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3122. &tmp, i * sizeof(tmp), sizeof(tmp));
  3123. if (r < 0)
  3124. goto out;
  3125. }
  3126. kvm->arch.ept_identity_pagetable_done = true;
  3127. ret = 1;
  3128. out:
  3129. srcu_read_unlock(&kvm->srcu, idx);
  3130. return ret;
  3131. }
  3132. static void seg_setup(int seg)
  3133. {
  3134. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3135. unsigned int ar;
  3136. vmcs_write16(sf->selector, 0);
  3137. vmcs_writel(sf->base, 0);
  3138. vmcs_write32(sf->limit, 0xffff);
  3139. if (enable_unrestricted_guest) {
  3140. ar = 0x93;
  3141. if (seg == VCPU_SREG_CS)
  3142. ar |= 0x08; /* code segment */
  3143. } else
  3144. ar = 0xf3;
  3145. vmcs_write32(sf->ar_bytes, ar);
  3146. }
  3147. static int alloc_apic_access_page(struct kvm *kvm)
  3148. {
  3149. struct kvm_userspace_memory_region kvm_userspace_mem;
  3150. int r = 0;
  3151. mutex_lock(&kvm->slots_lock);
  3152. if (kvm->arch.apic_access_page)
  3153. goto out;
  3154. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3155. kvm_userspace_mem.flags = 0;
  3156. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3157. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3158. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3159. if (r)
  3160. goto out;
  3161. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  3162. out:
  3163. mutex_unlock(&kvm->slots_lock);
  3164. return r;
  3165. }
  3166. static int alloc_identity_pagetable(struct kvm *kvm)
  3167. {
  3168. struct kvm_userspace_memory_region kvm_userspace_mem;
  3169. int r = 0;
  3170. mutex_lock(&kvm->slots_lock);
  3171. if (kvm->arch.ept_identity_pagetable)
  3172. goto out;
  3173. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3174. kvm_userspace_mem.flags = 0;
  3175. kvm_userspace_mem.guest_phys_addr =
  3176. kvm->arch.ept_identity_map_addr;
  3177. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3178. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3179. if (r)
  3180. goto out;
  3181. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  3182. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3183. out:
  3184. mutex_unlock(&kvm->slots_lock);
  3185. return r;
  3186. }
  3187. static void allocate_vpid(struct vcpu_vmx *vmx)
  3188. {
  3189. int vpid;
  3190. vmx->vpid = 0;
  3191. if (!enable_vpid)
  3192. return;
  3193. spin_lock(&vmx_vpid_lock);
  3194. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3195. if (vpid < VMX_NR_VPIDS) {
  3196. vmx->vpid = vpid;
  3197. __set_bit(vpid, vmx_vpid_bitmap);
  3198. }
  3199. spin_unlock(&vmx_vpid_lock);
  3200. }
  3201. static void free_vpid(struct vcpu_vmx *vmx)
  3202. {
  3203. if (!enable_vpid)
  3204. return;
  3205. spin_lock(&vmx_vpid_lock);
  3206. if (vmx->vpid != 0)
  3207. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3208. spin_unlock(&vmx_vpid_lock);
  3209. }
  3210. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3211. {
  3212. int f = sizeof(unsigned long);
  3213. if (!cpu_has_vmx_msr_bitmap())
  3214. return;
  3215. /*
  3216. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3217. * have the write-low and read-high bitmap offsets the wrong way round.
  3218. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3219. */
  3220. if (msr <= 0x1fff) {
  3221. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3222. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3223. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3224. msr &= 0x1fff;
  3225. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3226. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3227. }
  3228. }
  3229. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3230. {
  3231. if (!longmode_only)
  3232. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3233. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3234. }
  3235. /*
  3236. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3237. * will not change in the lifetime of the guest.
  3238. * Note that host-state that does change is set elsewhere. E.g., host-state
  3239. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3240. */
  3241. static void vmx_set_constant_host_state(void)
  3242. {
  3243. u32 low32, high32;
  3244. unsigned long tmpl;
  3245. struct desc_ptr dt;
  3246. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  3247. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3248. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3249. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3250. #ifdef CONFIG_X86_64
  3251. /*
  3252. * Load null selectors, so we can avoid reloading them in
  3253. * __vmx_load_host_state(), in case userspace uses the null selectors
  3254. * too (the expected case).
  3255. */
  3256. vmcs_write16(HOST_DS_SELECTOR, 0);
  3257. vmcs_write16(HOST_ES_SELECTOR, 0);
  3258. #else
  3259. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3260. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3261. #endif
  3262. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3263. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3264. native_store_idt(&dt);
  3265. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3266. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3267. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3268. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3269. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3270. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3271. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3272. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3273. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3274. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3275. }
  3276. }
  3277. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3278. {
  3279. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3280. if (enable_ept)
  3281. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3282. if (is_guest_mode(&vmx->vcpu))
  3283. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3284. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3285. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3286. }
  3287. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3288. {
  3289. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3290. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3291. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3292. #ifdef CONFIG_X86_64
  3293. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3294. CPU_BASED_CR8_LOAD_EXITING;
  3295. #endif
  3296. }
  3297. if (!enable_ept)
  3298. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3299. CPU_BASED_CR3_LOAD_EXITING |
  3300. CPU_BASED_INVLPG_EXITING;
  3301. return exec_control;
  3302. }
  3303. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3304. {
  3305. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3306. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3307. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3308. if (vmx->vpid == 0)
  3309. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3310. if (!enable_ept) {
  3311. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3312. enable_unrestricted_guest = 0;
  3313. }
  3314. if (!enable_unrestricted_guest)
  3315. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3316. if (!ple_gap)
  3317. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3318. return exec_control;
  3319. }
  3320. static void ept_set_mmio_spte_mask(void)
  3321. {
  3322. /*
  3323. * EPT Misconfigurations can be generated if the value of bits 2:0
  3324. * of an EPT paging-structure entry is 110b (write/execute).
  3325. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3326. * spte.
  3327. */
  3328. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3329. }
  3330. /*
  3331. * Sets up the vmcs for emulated real mode.
  3332. */
  3333. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3334. {
  3335. #ifdef CONFIG_X86_64
  3336. unsigned long a;
  3337. #endif
  3338. int i;
  3339. /* I/O */
  3340. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3341. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3342. if (cpu_has_vmx_msr_bitmap())
  3343. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3344. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3345. /* Control */
  3346. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3347. vmcs_config.pin_based_exec_ctrl);
  3348. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3349. if (cpu_has_secondary_exec_ctrls()) {
  3350. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3351. vmx_secondary_exec_control(vmx));
  3352. }
  3353. if (ple_gap) {
  3354. vmcs_write32(PLE_GAP, ple_gap);
  3355. vmcs_write32(PLE_WINDOW, ple_window);
  3356. }
  3357. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3358. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3359. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3360. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3361. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3362. vmx_set_constant_host_state();
  3363. #ifdef CONFIG_X86_64
  3364. rdmsrl(MSR_FS_BASE, a);
  3365. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3366. rdmsrl(MSR_GS_BASE, a);
  3367. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3368. #else
  3369. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3370. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3371. #endif
  3372. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3373. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3374. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3375. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3376. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3377. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3378. u32 msr_low, msr_high;
  3379. u64 host_pat;
  3380. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3381. host_pat = msr_low | ((u64) msr_high << 32);
  3382. /* Write the default value follow host pat */
  3383. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3384. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3385. vmx->vcpu.arch.pat = host_pat;
  3386. }
  3387. for (i = 0; i < NR_VMX_MSR; ++i) {
  3388. u32 index = vmx_msr_index[i];
  3389. u32 data_low, data_high;
  3390. int j = vmx->nmsrs;
  3391. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3392. continue;
  3393. if (wrmsr_safe(index, data_low, data_high) < 0)
  3394. continue;
  3395. vmx->guest_msrs[j].index = i;
  3396. vmx->guest_msrs[j].data = 0;
  3397. vmx->guest_msrs[j].mask = -1ull;
  3398. ++vmx->nmsrs;
  3399. }
  3400. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3401. /* 22.2.1, 20.8.1 */
  3402. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3403. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3404. set_cr4_guest_host_mask(vmx);
  3405. kvm_write_tsc(&vmx->vcpu, 0);
  3406. return 0;
  3407. }
  3408. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3409. {
  3410. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3411. u64 msr;
  3412. int ret;
  3413. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3414. vmx->rmode.vm86_active = 0;
  3415. vmx->soft_vnmi_blocked = 0;
  3416. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3417. kvm_set_cr8(&vmx->vcpu, 0);
  3418. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3419. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3420. msr |= MSR_IA32_APICBASE_BSP;
  3421. kvm_set_apic_base(&vmx->vcpu, msr);
  3422. ret = fx_init(&vmx->vcpu);
  3423. if (ret != 0)
  3424. goto out;
  3425. vmx_segment_cache_clear(vmx);
  3426. seg_setup(VCPU_SREG_CS);
  3427. /*
  3428. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3429. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3430. */
  3431. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3432. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3433. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3434. } else {
  3435. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3436. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3437. }
  3438. seg_setup(VCPU_SREG_DS);
  3439. seg_setup(VCPU_SREG_ES);
  3440. seg_setup(VCPU_SREG_FS);
  3441. seg_setup(VCPU_SREG_GS);
  3442. seg_setup(VCPU_SREG_SS);
  3443. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3444. vmcs_writel(GUEST_TR_BASE, 0);
  3445. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3446. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3447. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3448. vmcs_writel(GUEST_LDTR_BASE, 0);
  3449. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3450. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3451. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3452. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3453. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3454. vmcs_writel(GUEST_RFLAGS, 0x02);
  3455. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3456. kvm_rip_write(vcpu, 0xfff0);
  3457. else
  3458. kvm_rip_write(vcpu, 0);
  3459. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3460. vmcs_writel(GUEST_DR7, 0x400);
  3461. vmcs_writel(GUEST_GDTR_BASE, 0);
  3462. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3463. vmcs_writel(GUEST_IDTR_BASE, 0);
  3464. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3465. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3466. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3467. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3468. /* Special registers */
  3469. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3470. setup_msrs(vmx);
  3471. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3472. if (cpu_has_vmx_tpr_shadow()) {
  3473. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3474. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3475. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3476. __pa(vmx->vcpu.arch.apic->regs));
  3477. vmcs_write32(TPR_THRESHOLD, 0);
  3478. }
  3479. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3480. vmcs_write64(APIC_ACCESS_ADDR,
  3481. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3482. if (vmx->vpid != 0)
  3483. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3484. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3485. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3486. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3487. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3488. vmx_set_cr4(&vmx->vcpu, 0);
  3489. vmx_set_efer(&vmx->vcpu, 0);
  3490. vmx_fpu_activate(&vmx->vcpu);
  3491. update_exception_bitmap(&vmx->vcpu);
  3492. vpid_sync_context(vmx);
  3493. ret = 0;
  3494. /* HACK: Don't enable emulation on guest boot/reset */
  3495. vmx->emulation_required = 0;
  3496. out:
  3497. return ret;
  3498. }
  3499. /*
  3500. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3501. * For most existing hypervisors, this will always return true.
  3502. */
  3503. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3504. {
  3505. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3506. PIN_BASED_EXT_INTR_MASK;
  3507. }
  3508. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3509. {
  3510. u32 cpu_based_vm_exec_control;
  3511. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3512. /*
  3513. * We get here if vmx_interrupt_allowed() said we can't
  3514. * inject to L1 now because L2 must run. Ask L2 to exit
  3515. * right after entry, so we can inject to L1 more promptly.
  3516. */
  3517. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3518. return;
  3519. }
  3520. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3521. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3522. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3523. }
  3524. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3525. {
  3526. u32 cpu_based_vm_exec_control;
  3527. if (!cpu_has_virtual_nmis()) {
  3528. enable_irq_window(vcpu);
  3529. return;
  3530. }
  3531. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3532. enable_irq_window(vcpu);
  3533. return;
  3534. }
  3535. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3536. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3537. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3538. }
  3539. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3540. {
  3541. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3542. uint32_t intr;
  3543. int irq = vcpu->arch.interrupt.nr;
  3544. trace_kvm_inj_virq(irq);
  3545. ++vcpu->stat.irq_injections;
  3546. if (vmx->rmode.vm86_active) {
  3547. int inc_eip = 0;
  3548. if (vcpu->arch.interrupt.soft)
  3549. inc_eip = vcpu->arch.event_exit_inst_len;
  3550. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3551. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3552. return;
  3553. }
  3554. intr = irq | INTR_INFO_VALID_MASK;
  3555. if (vcpu->arch.interrupt.soft) {
  3556. intr |= INTR_TYPE_SOFT_INTR;
  3557. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3558. vmx->vcpu.arch.event_exit_inst_len);
  3559. } else
  3560. intr |= INTR_TYPE_EXT_INTR;
  3561. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3562. }
  3563. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3564. {
  3565. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3566. if (is_guest_mode(vcpu))
  3567. return;
  3568. if (!cpu_has_virtual_nmis()) {
  3569. /*
  3570. * Tracking the NMI-blocked state in software is built upon
  3571. * finding the next open IRQ window. This, in turn, depends on
  3572. * well-behaving guests: They have to keep IRQs disabled at
  3573. * least as long as the NMI handler runs. Otherwise we may
  3574. * cause NMI nesting, maybe breaking the guest. But as this is
  3575. * highly unlikely, we can live with the residual risk.
  3576. */
  3577. vmx->soft_vnmi_blocked = 1;
  3578. vmx->vnmi_blocked_time = 0;
  3579. }
  3580. ++vcpu->stat.nmi_injections;
  3581. vmx->nmi_known_unmasked = false;
  3582. if (vmx->rmode.vm86_active) {
  3583. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3584. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3585. return;
  3586. }
  3587. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3588. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3589. }
  3590. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3591. {
  3592. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3593. return 0;
  3594. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3595. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3596. | GUEST_INTR_STATE_NMI));
  3597. }
  3598. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3599. {
  3600. if (!cpu_has_virtual_nmis())
  3601. return to_vmx(vcpu)->soft_vnmi_blocked;
  3602. if (to_vmx(vcpu)->nmi_known_unmasked)
  3603. return false;
  3604. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3605. }
  3606. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3607. {
  3608. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3609. if (!cpu_has_virtual_nmis()) {
  3610. if (vmx->soft_vnmi_blocked != masked) {
  3611. vmx->soft_vnmi_blocked = masked;
  3612. vmx->vnmi_blocked_time = 0;
  3613. }
  3614. } else {
  3615. vmx->nmi_known_unmasked = !masked;
  3616. if (masked)
  3617. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3618. GUEST_INTR_STATE_NMI);
  3619. else
  3620. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3621. GUEST_INTR_STATE_NMI);
  3622. }
  3623. }
  3624. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3625. {
  3626. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3627. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3628. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3629. (vmcs12->idt_vectoring_info_field &
  3630. VECTORING_INFO_VALID_MASK))
  3631. return 0;
  3632. nested_vmx_vmexit(vcpu);
  3633. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3634. vmcs12->vm_exit_intr_info = 0;
  3635. /* fall through to normal code, but now in L1, not L2 */
  3636. }
  3637. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3638. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3639. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3640. }
  3641. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3642. {
  3643. int ret;
  3644. struct kvm_userspace_memory_region tss_mem = {
  3645. .slot = TSS_PRIVATE_MEMSLOT,
  3646. .guest_phys_addr = addr,
  3647. .memory_size = PAGE_SIZE * 3,
  3648. .flags = 0,
  3649. };
  3650. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3651. if (ret)
  3652. return ret;
  3653. kvm->arch.tss_addr = addr;
  3654. if (!init_rmode_tss(kvm))
  3655. return -ENOMEM;
  3656. return 0;
  3657. }
  3658. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3659. int vec, u32 err_code)
  3660. {
  3661. /*
  3662. * Instruction with address size override prefix opcode 0x67
  3663. * Cause the #SS fault with 0 error code in VM86 mode.
  3664. */
  3665. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3666. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3667. return 1;
  3668. /*
  3669. * Forward all other exceptions that are valid in real mode.
  3670. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3671. * the required debugging infrastructure rework.
  3672. */
  3673. switch (vec) {
  3674. case DB_VECTOR:
  3675. if (vcpu->guest_debug &
  3676. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3677. return 0;
  3678. kvm_queue_exception(vcpu, vec);
  3679. return 1;
  3680. case BP_VECTOR:
  3681. /*
  3682. * Update instruction length as we may reinject the exception
  3683. * from user space while in guest debugging mode.
  3684. */
  3685. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3686. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3687. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3688. return 0;
  3689. /* fall through */
  3690. case DE_VECTOR:
  3691. case OF_VECTOR:
  3692. case BR_VECTOR:
  3693. case UD_VECTOR:
  3694. case DF_VECTOR:
  3695. case SS_VECTOR:
  3696. case GP_VECTOR:
  3697. case MF_VECTOR:
  3698. kvm_queue_exception(vcpu, vec);
  3699. return 1;
  3700. }
  3701. return 0;
  3702. }
  3703. /*
  3704. * Trigger machine check on the host. We assume all the MSRs are already set up
  3705. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3706. * We pass a fake environment to the machine check handler because we want
  3707. * the guest to be always treated like user space, no matter what context
  3708. * it used internally.
  3709. */
  3710. static void kvm_machine_check(void)
  3711. {
  3712. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3713. struct pt_regs regs = {
  3714. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3715. .flags = X86_EFLAGS_IF,
  3716. };
  3717. do_machine_check(&regs, 0);
  3718. #endif
  3719. }
  3720. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3721. {
  3722. /* already handled by vcpu_run */
  3723. return 1;
  3724. }
  3725. static int handle_exception(struct kvm_vcpu *vcpu)
  3726. {
  3727. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3728. struct kvm_run *kvm_run = vcpu->run;
  3729. u32 intr_info, ex_no, error_code;
  3730. unsigned long cr2, rip, dr6;
  3731. u32 vect_info;
  3732. enum emulation_result er;
  3733. vect_info = vmx->idt_vectoring_info;
  3734. intr_info = vmx->exit_intr_info;
  3735. if (is_machine_check(intr_info))
  3736. return handle_machine_check(vcpu);
  3737. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3738. !is_page_fault(intr_info)) {
  3739. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3740. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3741. vcpu->run->internal.ndata = 2;
  3742. vcpu->run->internal.data[0] = vect_info;
  3743. vcpu->run->internal.data[1] = intr_info;
  3744. return 0;
  3745. }
  3746. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3747. return 1; /* already handled by vmx_vcpu_run() */
  3748. if (is_no_device(intr_info)) {
  3749. vmx_fpu_activate(vcpu);
  3750. return 1;
  3751. }
  3752. if (is_invalid_opcode(intr_info)) {
  3753. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3754. if (er != EMULATE_DONE)
  3755. kvm_queue_exception(vcpu, UD_VECTOR);
  3756. return 1;
  3757. }
  3758. error_code = 0;
  3759. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3760. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3761. if (is_page_fault(intr_info)) {
  3762. /* EPT won't cause page fault directly */
  3763. BUG_ON(enable_ept);
  3764. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3765. trace_kvm_page_fault(cr2, error_code);
  3766. if (kvm_event_needs_reinjection(vcpu))
  3767. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3768. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3769. }
  3770. if (vmx->rmode.vm86_active &&
  3771. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3772. error_code)) {
  3773. if (vcpu->arch.halt_request) {
  3774. vcpu->arch.halt_request = 0;
  3775. return kvm_emulate_halt(vcpu);
  3776. }
  3777. return 1;
  3778. }
  3779. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3780. switch (ex_no) {
  3781. case DB_VECTOR:
  3782. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3783. if (!(vcpu->guest_debug &
  3784. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3785. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3786. kvm_queue_exception(vcpu, DB_VECTOR);
  3787. return 1;
  3788. }
  3789. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3790. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3791. /* fall through */
  3792. case BP_VECTOR:
  3793. /*
  3794. * Update instruction length as we may reinject #BP from
  3795. * user space while in guest debugging mode. Reading it for
  3796. * #DB as well causes no harm, it is not used in that case.
  3797. */
  3798. vmx->vcpu.arch.event_exit_inst_len =
  3799. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3800. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3801. rip = kvm_rip_read(vcpu);
  3802. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3803. kvm_run->debug.arch.exception = ex_no;
  3804. break;
  3805. default:
  3806. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3807. kvm_run->ex.exception = ex_no;
  3808. kvm_run->ex.error_code = error_code;
  3809. break;
  3810. }
  3811. return 0;
  3812. }
  3813. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3814. {
  3815. ++vcpu->stat.irq_exits;
  3816. return 1;
  3817. }
  3818. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3819. {
  3820. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3821. return 0;
  3822. }
  3823. static int handle_io(struct kvm_vcpu *vcpu)
  3824. {
  3825. unsigned long exit_qualification;
  3826. int size, in, string;
  3827. unsigned port;
  3828. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3829. string = (exit_qualification & 16) != 0;
  3830. in = (exit_qualification & 8) != 0;
  3831. ++vcpu->stat.io_exits;
  3832. if (string || in)
  3833. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3834. port = exit_qualification >> 16;
  3835. size = (exit_qualification & 7) + 1;
  3836. skip_emulated_instruction(vcpu);
  3837. return kvm_fast_pio_out(vcpu, size, port);
  3838. }
  3839. static void
  3840. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3841. {
  3842. /*
  3843. * Patch in the VMCALL instruction:
  3844. */
  3845. hypercall[0] = 0x0f;
  3846. hypercall[1] = 0x01;
  3847. hypercall[2] = 0xc1;
  3848. }
  3849. /* called to set cr0 as approriate for a mov-to-cr0 exit. */
  3850. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3851. {
  3852. if (to_vmx(vcpu)->nested.vmxon &&
  3853. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3854. return 1;
  3855. if (is_guest_mode(vcpu)) {
  3856. /*
  3857. * We get here when L2 changed cr0 in a way that did not change
  3858. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3859. * but did change L0 shadowed bits. This can currently happen
  3860. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3861. * loading) while pretending to allow the guest to change it.
  3862. */
  3863. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3864. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3865. return 1;
  3866. vmcs_writel(CR0_READ_SHADOW, val);
  3867. return 0;
  3868. } else
  3869. return kvm_set_cr0(vcpu, val);
  3870. }
  3871. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3872. {
  3873. if (is_guest_mode(vcpu)) {
  3874. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3875. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3876. return 1;
  3877. vmcs_writel(CR4_READ_SHADOW, val);
  3878. return 0;
  3879. } else
  3880. return kvm_set_cr4(vcpu, val);
  3881. }
  3882. /* called to set cr0 as approriate for clts instruction exit. */
  3883. static void handle_clts(struct kvm_vcpu *vcpu)
  3884. {
  3885. if (is_guest_mode(vcpu)) {
  3886. /*
  3887. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3888. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3889. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3890. */
  3891. vmcs_writel(CR0_READ_SHADOW,
  3892. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3893. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3894. } else
  3895. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3896. }
  3897. static int handle_cr(struct kvm_vcpu *vcpu)
  3898. {
  3899. unsigned long exit_qualification, val;
  3900. int cr;
  3901. int reg;
  3902. int err;
  3903. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3904. cr = exit_qualification & 15;
  3905. reg = (exit_qualification >> 8) & 15;
  3906. switch ((exit_qualification >> 4) & 3) {
  3907. case 0: /* mov to cr */
  3908. val = kvm_register_read(vcpu, reg);
  3909. trace_kvm_cr_write(cr, val);
  3910. switch (cr) {
  3911. case 0:
  3912. err = handle_set_cr0(vcpu, val);
  3913. kvm_complete_insn_gp(vcpu, err);
  3914. return 1;
  3915. case 3:
  3916. err = kvm_set_cr3(vcpu, val);
  3917. kvm_complete_insn_gp(vcpu, err);
  3918. return 1;
  3919. case 4:
  3920. err = handle_set_cr4(vcpu, val);
  3921. kvm_complete_insn_gp(vcpu, err);
  3922. return 1;
  3923. case 8: {
  3924. u8 cr8_prev = kvm_get_cr8(vcpu);
  3925. u8 cr8 = kvm_register_read(vcpu, reg);
  3926. err = kvm_set_cr8(vcpu, cr8);
  3927. kvm_complete_insn_gp(vcpu, err);
  3928. if (irqchip_in_kernel(vcpu->kvm))
  3929. return 1;
  3930. if (cr8_prev <= cr8)
  3931. return 1;
  3932. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3933. return 0;
  3934. }
  3935. };
  3936. break;
  3937. case 2: /* clts */
  3938. handle_clts(vcpu);
  3939. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3940. skip_emulated_instruction(vcpu);
  3941. vmx_fpu_activate(vcpu);
  3942. return 1;
  3943. case 1: /*mov from cr*/
  3944. switch (cr) {
  3945. case 3:
  3946. val = kvm_read_cr3(vcpu);
  3947. kvm_register_write(vcpu, reg, val);
  3948. trace_kvm_cr_read(cr, val);
  3949. skip_emulated_instruction(vcpu);
  3950. return 1;
  3951. case 8:
  3952. val = kvm_get_cr8(vcpu);
  3953. kvm_register_write(vcpu, reg, val);
  3954. trace_kvm_cr_read(cr, val);
  3955. skip_emulated_instruction(vcpu);
  3956. return 1;
  3957. }
  3958. break;
  3959. case 3: /* lmsw */
  3960. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3961. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3962. kvm_lmsw(vcpu, val);
  3963. skip_emulated_instruction(vcpu);
  3964. return 1;
  3965. default:
  3966. break;
  3967. }
  3968. vcpu->run->exit_reason = 0;
  3969. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3970. (int)(exit_qualification >> 4) & 3, cr);
  3971. return 0;
  3972. }
  3973. static int handle_dr(struct kvm_vcpu *vcpu)
  3974. {
  3975. unsigned long exit_qualification;
  3976. int dr, reg;
  3977. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3978. if (!kvm_require_cpl(vcpu, 0))
  3979. return 1;
  3980. dr = vmcs_readl(GUEST_DR7);
  3981. if (dr & DR7_GD) {
  3982. /*
  3983. * As the vm-exit takes precedence over the debug trap, we
  3984. * need to emulate the latter, either for the host or the
  3985. * guest debugging itself.
  3986. */
  3987. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3988. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3989. vcpu->run->debug.arch.dr7 = dr;
  3990. vcpu->run->debug.arch.pc =
  3991. vmcs_readl(GUEST_CS_BASE) +
  3992. vmcs_readl(GUEST_RIP);
  3993. vcpu->run->debug.arch.exception = DB_VECTOR;
  3994. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3995. return 0;
  3996. } else {
  3997. vcpu->arch.dr7 &= ~DR7_GD;
  3998. vcpu->arch.dr6 |= DR6_BD;
  3999. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4000. kvm_queue_exception(vcpu, DB_VECTOR);
  4001. return 1;
  4002. }
  4003. }
  4004. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4005. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4006. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4007. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4008. unsigned long val;
  4009. if (!kvm_get_dr(vcpu, dr, &val))
  4010. kvm_register_write(vcpu, reg, val);
  4011. } else
  4012. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4013. skip_emulated_instruction(vcpu);
  4014. return 1;
  4015. }
  4016. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4017. {
  4018. vmcs_writel(GUEST_DR7, val);
  4019. }
  4020. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4021. {
  4022. kvm_emulate_cpuid(vcpu);
  4023. return 1;
  4024. }
  4025. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4026. {
  4027. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4028. u64 data;
  4029. if (vmx_get_msr(vcpu, ecx, &data)) {
  4030. trace_kvm_msr_read_ex(ecx);
  4031. kvm_inject_gp(vcpu, 0);
  4032. return 1;
  4033. }
  4034. trace_kvm_msr_read(ecx, data);
  4035. /* FIXME: handling of bits 32:63 of rax, rdx */
  4036. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4037. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4038. skip_emulated_instruction(vcpu);
  4039. return 1;
  4040. }
  4041. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4042. {
  4043. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4044. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4045. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4046. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  4047. trace_kvm_msr_write_ex(ecx, data);
  4048. kvm_inject_gp(vcpu, 0);
  4049. return 1;
  4050. }
  4051. trace_kvm_msr_write(ecx, data);
  4052. skip_emulated_instruction(vcpu);
  4053. return 1;
  4054. }
  4055. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4056. {
  4057. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4058. return 1;
  4059. }
  4060. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4061. {
  4062. u32 cpu_based_vm_exec_control;
  4063. /* clear pending irq */
  4064. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4065. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4066. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4067. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4068. ++vcpu->stat.irq_window_exits;
  4069. /*
  4070. * If the user space waits to inject interrupts, exit as soon as
  4071. * possible
  4072. */
  4073. if (!irqchip_in_kernel(vcpu->kvm) &&
  4074. vcpu->run->request_interrupt_window &&
  4075. !kvm_cpu_has_interrupt(vcpu)) {
  4076. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4077. return 0;
  4078. }
  4079. return 1;
  4080. }
  4081. static int handle_halt(struct kvm_vcpu *vcpu)
  4082. {
  4083. skip_emulated_instruction(vcpu);
  4084. return kvm_emulate_halt(vcpu);
  4085. }
  4086. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4087. {
  4088. skip_emulated_instruction(vcpu);
  4089. kvm_emulate_hypercall(vcpu);
  4090. return 1;
  4091. }
  4092. static int handle_invd(struct kvm_vcpu *vcpu)
  4093. {
  4094. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4095. }
  4096. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4097. {
  4098. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4099. kvm_mmu_invlpg(vcpu, exit_qualification);
  4100. skip_emulated_instruction(vcpu);
  4101. return 1;
  4102. }
  4103. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4104. {
  4105. int err;
  4106. err = kvm_rdpmc(vcpu);
  4107. kvm_complete_insn_gp(vcpu, err);
  4108. return 1;
  4109. }
  4110. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4111. {
  4112. skip_emulated_instruction(vcpu);
  4113. kvm_emulate_wbinvd(vcpu);
  4114. return 1;
  4115. }
  4116. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4117. {
  4118. u64 new_bv = kvm_read_edx_eax(vcpu);
  4119. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4120. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4121. skip_emulated_instruction(vcpu);
  4122. return 1;
  4123. }
  4124. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4125. {
  4126. if (likely(fasteoi)) {
  4127. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4128. int access_type, offset;
  4129. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4130. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4131. /*
  4132. * Sane guest uses MOV to write EOI, with written value
  4133. * not cared. So make a short-circuit here by avoiding
  4134. * heavy instruction emulation.
  4135. */
  4136. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4137. (offset == APIC_EOI)) {
  4138. kvm_lapic_set_eoi(vcpu);
  4139. skip_emulated_instruction(vcpu);
  4140. return 1;
  4141. }
  4142. }
  4143. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4144. }
  4145. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4146. {
  4147. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4148. unsigned long exit_qualification;
  4149. bool has_error_code = false;
  4150. u32 error_code = 0;
  4151. u16 tss_selector;
  4152. int reason, type, idt_v, idt_index;
  4153. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4154. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4155. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4156. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4157. reason = (u32)exit_qualification >> 30;
  4158. if (reason == TASK_SWITCH_GATE && idt_v) {
  4159. switch (type) {
  4160. case INTR_TYPE_NMI_INTR:
  4161. vcpu->arch.nmi_injected = false;
  4162. vmx_set_nmi_mask(vcpu, true);
  4163. break;
  4164. case INTR_TYPE_EXT_INTR:
  4165. case INTR_TYPE_SOFT_INTR:
  4166. kvm_clear_interrupt_queue(vcpu);
  4167. break;
  4168. case INTR_TYPE_HARD_EXCEPTION:
  4169. if (vmx->idt_vectoring_info &
  4170. VECTORING_INFO_DELIVER_CODE_MASK) {
  4171. has_error_code = true;
  4172. error_code =
  4173. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4174. }
  4175. /* fall through */
  4176. case INTR_TYPE_SOFT_EXCEPTION:
  4177. kvm_clear_exception_queue(vcpu);
  4178. break;
  4179. default:
  4180. break;
  4181. }
  4182. }
  4183. tss_selector = exit_qualification;
  4184. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4185. type != INTR_TYPE_EXT_INTR &&
  4186. type != INTR_TYPE_NMI_INTR))
  4187. skip_emulated_instruction(vcpu);
  4188. if (kvm_task_switch(vcpu, tss_selector,
  4189. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4190. has_error_code, error_code) == EMULATE_FAIL) {
  4191. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4192. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4193. vcpu->run->internal.ndata = 0;
  4194. return 0;
  4195. }
  4196. /* clear all local breakpoint enable flags */
  4197. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4198. /*
  4199. * TODO: What about debug traps on tss switch?
  4200. * Are we supposed to inject them and update dr6?
  4201. */
  4202. return 1;
  4203. }
  4204. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4205. {
  4206. unsigned long exit_qualification;
  4207. gpa_t gpa;
  4208. int gla_validity;
  4209. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4210. if (exit_qualification & (1 << 6)) {
  4211. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  4212. return -EINVAL;
  4213. }
  4214. gla_validity = (exit_qualification >> 7) & 0x3;
  4215. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4216. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4217. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4218. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4219. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4220. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4221. (long unsigned int)exit_qualification);
  4222. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4223. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4224. return 0;
  4225. }
  4226. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4227. trace_kvm_page_fault(gpa, exit_qualification);
  4228. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  4229. }
  4230. static u64 ept_rsvd_mask(u64 spte, int level)
  4231. {
  4232. int i;
  4233. u64 mask = 0;
  4234. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4235. mask |= (1ULL << i);
  4236. if (level > 2)
  4237. /* bits 7:3 reserved */
  4238. mask |= 0xf8;
  4239. else if (level == 2) {
  4240. if (spte & (1ULL << 7))
  4241. /* 2MB ref, bits 20:12 reserved */
  4242. mask |= 0x1ff000;
  4243. else
  4244. /* bits 6:3 reserved */
  4245. mask |= 0x78;
  4246. }
  4247. return mask;
  4248. }
  4249. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4250. int level)
  4251. {
  4252. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4253. /* 010b (write-only) */
  4254. WARN_ON((spte & 0x7) == 0x2);
  4255. /* 110b (write/execute) */
  4256. WARN_ON((spte & 0x7) == 0x6);
  4257. /* 100b (execute-only) and value not supported by logical processor */
  4258. if (!cpu_has_vmx_ept_execute_only())
  4259. WARN_ON((spte & 0x7) == 0x4);
  4260. /* not 000b */
  4261. if ((spte & 0x7)) {
  4262. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4263. if (rsvd_bits != 0) {
  4264. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4265. __func__, rsvd_bits);
  4266. WARN_ON(1);
  4267. }
  4268. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4269. u64 ept_mem_type = (spte & 0x38) >> 3;
  4270. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4271. ept_mem_type == 7) {
  4272. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4273. __func__, ept_mem_type);
  4274. WARN_ON(1);
  4275. }
  4276. }
  4277. }
  4278. }
  4279. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4280. {
  4281. u64 sptes[4];
  4282. int nr_sptes, i, ret;
  4283. gpa_t gpa;
  4284. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4285. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4286. if (likely(ret == 1))
  4287. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4288. EMULATE_DONE;
  4289. if (unlikely(!ret))
  4290. return 1;
  4291. /* It is the real ept misconfig */
  4292. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4293. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4294. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4295. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4296. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4297. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4298. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4299. return 0;
  4300. }
  4301. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4302. {
  4303. u32 cpu_based_vm_exec_control;
  4304. /* clear pending NMI */
  4305. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4306. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4307. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4308. ++vcpu->stat.nmi_window_exits;
  4309. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4310. return 1;
  4311. }
  4312. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4313. {
  4314. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4315. enum emulation_result err = EMULATE_DONE;
  4316. int ret = 1;
  4317. u32 cpu_exec_ctrl;
  4318. bool intr_window_requested;
  4319. unsigned count = 130;
  4320. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4321. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4322. while (!guest_state_valid(vcpu) && count-- != 0) {
  4323. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4324. return handle_interrupt_window(&vmx->vcpu);
  4325. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4326. return 1;
  4327. err = emulate_instruction(vcpu, 0);
  4328. if (err == EMULATE_DO_MMIO) {
  4329. ret = 0;
  4330. goto out;
  4331. }
  4332. if (err != EMULATE_DONE)
  4333. return 0;
  4334. if (signal_pending(current))
  4335. goto out;
  4336. if (need_resched())
  4337. schedule();
  4338. }
  4339. vmx->emulation_required = !guest_state_valid(vcpu);
  4340. out:
  4341. return ret;
  4342. }
  4343. /*
  4344. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4345. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4346. */
  4347. static int handle_pause(struct kvm_vcpu *vcpu)
  4348. {
  4349. skip_emulated_instruction(vcpu);
  4350. kvm_vcpu_on_spin(vcpu);
  4351. return 1;
  4352. }
  4353. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4354. {
  4355. kvm_queue_exception(vcpu, UD_VECTOR);
  4356. return 1;
  4357. }
  4358. /*
  4359. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4360. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4361. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4362. * allows keeping them loaded on the processor, and in the future will allow
  4363. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4364. * every entry if they never change.
  4365. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4366. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4367. *
  4368. * The following functions allocate and free a vmcs02 in this pool.
  4369. */
  4370. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4371. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4372. {
  4373. struct vmcs02_list *item;
  4374. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4375. if (item->vmptr == vmx->nested.current_vmptr) {
  4376. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4377. return &item->vmcs02;
  4378. }
  4379. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4380. /* Recycle the least recently used VMCS. */
  4381. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4382. struct vmcs02_list, list);
  4383. item->vmptr = vmx->nested.current_vmptr;
  4384. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4385. return &item->vmcs02;
  4386. }
  4387. /* Create a new VMCS */
  4388. item = (struct vmcs02_list *)
  4389. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4390. if (!item)
  4391. return NULL;
  4392. item->vmcs02.vmcs = alloc_vmcs();
  4393. if (!item->vmcs02.vmcs) {
  4394. kfree(item);
  4395. return NULL;
  4396. }
  4397. loaded_vmcs_init(&item->vmcs02);
  4398. item->vmptr = vmx->nested.current_vmptr;
  4399. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4400. vmx->nested.vmcs02_num++;
  4401. return &item->vmcs02;
  4402. }
  4403. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4404. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4405. {
  4406. struct vmcs02_list *item;
  4407. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4408. if (item->vmptr == vmptr) {
  4409. free_loaded_vmcs(&item->vmcs02);
  4410. list_del(&item->list);
  4411. kfree(item);
  4412. vmx->nested.vmcs02_num--;
  4413. return;
  4414. }
  4415. }
  4416. /*
  4417. * Free all VMCSs saved for this vcpu, except the one pointed by
  4418. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4419. * currently used, if running L2), and vmcs01 when running L2.
  4420. */
  4421. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4422. {
  4423. struct vmcs02_list *item, *n;
  4424. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4425. if (vmx->loaded_vmcs != &item->vmcs02)
  4426. free_loaded_vmcs(&item->vmcs02);
  4427. list_del(&item->list);
  4428. kfree(item);
  4429. }
  4430. vmx->nested.vmcs02_num = 0;
  4431. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4432. free_loaded_vmcs(&vmx->vmcs01);
  4433. }
  4434. /*
  4435. * Emulate the VMXON instruction.
  4436. * Currently, we just remember that VMX is active, and do not save or even
  4437. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4438. * do not currently need to store anything in that guest-allocated memory
  4439. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4440. * argument is different from the VMXON pointer (which the spec says they do).
  4441. */
  4442. static int handle_vmon(struct kvm_vcpu *vcpu)
  4443. {
  4444. struct kvm_segment cs;
  4445. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4446. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4447. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4448. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4449. * Otherwise, we should fail with #UD. We test these now:
  4450. */
  4451. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4452. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4453. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4454. kvm_queue_exception(vcpu, UD_VECTOR);
  4455. return 1;
  4456. }
  4457. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4458. if (is_long_mode(vcpu) && !cs.l) {
  4459. kvm_queue_exception(vcpu, UD_VECTOR);
  4460. return 1;
  4461. }
  4462. if (vmx_get_cpl(vcpu)) {
  4463. kvm_inject_gp(vcpu, 0);
  4464. return 1;
  4465. }
  4466. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4467. vmx->nested.vmcs02_num = 0;
  4468. vmx->nested.vmxon = true;
  4469. skip_emulated_instruction(vcpu);
  4470. return 1;
  4471. }
  4472. /*
  4473. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4474. * for running VMX instructions (except VMXON, whose prerequisites are
  4475. * slightly different). It also specifies what exception to inject otherwise.
  4476. */
  4477. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4478. {
  4479. struct kvm_segment cs;
  4480. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4481. if (!vmx->nested.vmxon) {
  4482. kvm_queue_exception(vcpu, UD_VECTOR);
  4483. return 0;
  4484. }
  4485. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4486. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4487. (is_long_mode(vcpu) && !cs.l)) {
  4488. kvm_queue_exception(vcpu, UD_VECTOR);
  4489. return 0;
  4490. }
  4491. if (vmx_get_cpl(vcpu)) {
  4492. kvm_inject_gp(vcpu, 0);
  4493. return 0;
  4494. }
  4495. return 1;
  4496. }
  4497. /*
  4498. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4499. * just stops using VMX.
  4500. */
  4501. static void free_nested(struct vcpu_vmx *vmx)
  4502. {
  4503. if (!vmx->nested.vmxon)
  4504. return;
  4505. vmx->nested.vmxon = false;
  4506. if (vmx->nested.current_vmptr != -1ull) {
  4507. kunmap(vmx->nested.current_vmcs12_page);
  4508. nested_release_page(vmx->nested.current_vmcs12_page);
  4509. vmx->nested.current_vmptr = -1ull;
  4510. vmx->nested.current_vmcs12 = NULL;
  4511. }
  4512. /* Unpin physical memory we referred to in current vmcs02 */
  4513. if (vmx->nested.apic_access_page) {
  4514. nested_release_page(vmx->nested.apic_access_page);
  4515. vmx->nested.apic_access_page = 0;
  4516. }
  4517. nested_free_all_saved_vmcss(vmx);
  4518. }
  4519. /* Emulate the VMXOFF instruction */
  4520. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4521. {
  4522. if (!nested_vmx_check_permission(vcpu))
  4523. return 1;
  4524. free_nested(to_vmx(vcpu));
  4525. skip_emulated_instruction(vcpu);
  4526. return 1;
  4527. }
  4528. /*
  4529. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4530. * exit caused by such an instruction (run by a guest hypervisor).
  4531. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4532. * #UD or #GP.
  4533. */
  4534. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4535. unsigned long exit_qualification,
  4536. u32 vmx_instruction_info, gva_t *ret)
  4537. {
  4538. /*
  4539. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4540. * Execution", on an exit, vmx_instruction_info holds most of the
  4541. * addressing components of the operand. Only the displacement part
  4542. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4543. * For how an actual address is calculated from all these components,
  4544. * refer to Vol. 1, "Operand Addressing".
  4545. */
  4546. int scaling = vmx_instruction_info & 3;
  4547. int addr_size = (vmx_instruction_info >> 7) & 7;
  4548. bool is_reg = vmx_instruction_info & (1u << 10);
  4549. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4550. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4551. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4552. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4553. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4554. if (is_reg) {
  4555. kvm_queue_exception(vcpu, UD_VECTOR);
  4556. return 1;
  4557. }
  4558. /* Addr = segment_base + offset */
  4559. /* offset = base + [index * scale] + displacement */
  4560. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4561. if (base_is_valid)
  4562. *ret += kvm_register_read(vcpu, base_reg);
  4563. if (index_is_valid)
  4564. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4565. *ret += exit_qualification; /* holds the displacement */
  4566. if (addr_size == 1) /* 32 bit */
  4567. *ret &= 0xffffffff;
  4568. /*
  4569. * TODO: throw #GP (and return 1) in various cases that the VM*
  4570. * instructions require it - e.g., offset beyond segment limit,
  4571. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4572. * address, and so on. Currently these are not checked.
  4573. */
  4574. return 0;
  4575. }
  4576. /*
  4577. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4578. * set the success or error code of an emulated VMX instruction, as specified
  4579. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4580. */
  4581. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4582. {
  4583. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4584. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4585. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4586. }
  4587. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4588. {
  4589. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4590. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4591. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4592. | X86_EFLAGS_CF);
  4593. }
  4594. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4595. u32 vm_instruction_error)
  4596. {
  4597. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4598. /*
  4599. * failValid writes the error number to the current VMCS, which
  4600. * can't be done there isn't a current VMCS.
  4601. */
  4602. nested_vmx_failInvalid(vcpu);
  4603. return;
  4604. }
  4605. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4606. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4607. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4608. | X86_EFLAGS_ZF);
  4609. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4610. }
  4611. /* Emulate the VMCLEAR instruction */
  4612. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4613. {
  4614. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4615. gva_t gva;
  4616. gpa_t vmptr;
  4617. struct vmcs12 *vmcs12;
  4618. struct page *page;
  4619. struct x86_exception e;
  4620. if (!nested_vmx_check_permission(vcpu))
  4621. return 1;
  4622. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4623. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4624. return 1;
  4625. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4626. sizeof(vmptr), &e)) {
  4627. kvm_inject_page_fault(vcpu, &e);
  4628. return 1;
  4629. }
  4630. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4631. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4632. skip_emulated_instruction(vcpu);
  4633. return 1;
  4634. }
  4635. if (vmptr == vmx->nested.current_vmptr) {
  4636. kunmap(vmx->nested.current_vmcs12_page);
  4637. nested_release_page(vmx->nested.current_vmcs12_page);
  4638. vmx->nested.current_vmptr = -1ull;
  4639. vmx->nested.current_vmcs12 = NULL;
  4640. }
  4641. page = nested_get_page(vcpu, vmptr);
  4642. if (page == NULL) {
  4643. /*
  4644. * For accurate processor emulation, VMCLEAR beyond available
  4645. * physical memory should do nothing at all. However, it is
  4646. * possible that a nested vmx bug, not a guest hypervisor bug,
  4647. * resulted in this case, so let's shut down before doing any
  4648. * more damage:
  4649. */
  4650. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4651. return 1;
  4652. }
  4653. vmcs12 = kmap(page);
  4654. vmcs12->launch_state = 0;
  4655. kunmap(page);
  4656. nested_release_page(page);
  4657. nested_free_vmcs02(vmx, vmptr);
  4658. skip_emulated_instruction(vcpu);
  4659. nested_vmx_succeed(vcpu);
  4660. return 1;
  4661. }
  4662. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4663. /* Emulate the VMLAUNCH instruction */
  4664. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4665. {
  4666. return nested_vmx_run(vcpu, true);
  4667. }
  4668. /* Emulate the VMRESUME instruction */
  4669. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4670. {
  4671. return nested_vmx_run(vcpu, false);
  4672. }
  4673. enum vmcs_field_type {
  4674. VMCS_FIELD_TYPE_U16 = 0,
  4675. VMCS_FIELD_TYPE_U64 = 1,
  4676. VMCS_FIELD_TYPE_U32 = 2,
  4677. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4678. };
  4679. static inline int vmcs_field_type(unsigned long field)
  4680. {
  4681. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4682. return VMCS_FIELD_TYPE_U32;
  4683. return (field >> 13) & 0x3 ;
  4684. }
  4685. static inline int vmcs_field_readonly(unsigned long field)
  4686. {
  4687. return (((field >> 10) & 0x3) == 1);
  4688. }
  4689. /*
  4690. * Read a vmcs12 field. Since these can have varying lengths and we return
  4691. * one type, we chose the biggest type (u64) and zero-extend the return value
  4692. * to that size. Note that the caller, handle_vmread, might need to use only
  4693. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4694. * 64-bit fields are to be returned).
  4695. */
  4696. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4697. unsigned long field, u64 *ret)
  4698. {
  4699. short offset = vmcs_field_to_offset(field);
  4700. char *p;
  4701. if (offset < 0)
  4702. return 0;
  4703. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4704. switch (vmcs_field_type(field)) {
  4705. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4706. *ret = *((natural_width *)p);
  4707. return 1;
  4708. case VMCS_FIELD_TYPE_U16:
  4709. *ret = *((u16 *)p);
  4710. return 1;
  4711. case VMCS_FIELD_TYPE_U32:
  4712. *ret = *((u32 *)p);
  4713. return 1;
  4714. case VMCS_FIELD_TYPE_U64:
  4715. *ret = *((u64 *)p);
  4716. return 1;
  4717. default:
  4718. return 0; /* can never happen. */
  4719. }
  4720. }
  4721. /*
  4722. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4723. * used before) all generate the same failure when it is missing.
  4724. */
  4725. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4726. {
  4727. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4728. if (vmx->nested.current_vmptr == -1ull) {
  4729. nested_vmx_failInvalid(vcpu);
  4730. skip_emulated_instruction(vcpu);
  4731. return 0;
  4732. }
  4733. return 1;
  4734. }
  4735. static int handle_vmread(struct kvm_vcpu *vcpu)
  4736. {
  4737. unsigned long field;
  4738. u64 field_value;
  4739. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4740. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4741. gva_t gva = 0;
  4742. if (!nested_vmx_check_permission(vcpu) ||
  4743. !nested_vmx_check_vmcs12(vcpu))
  4744. return 1;
  4745. /* Decode instruction info and find the field to read */
  4746. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4747. /* Read the field, zero-extended to a u64 field_value */
  4748. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4749. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4750. skip_emulated_instruction(vcpu);
  4751. return 1;
  4752. }
  4753. /*
  4754. * Now copy part of this value to register or memory, as requested.
  4755. * Note that the number of bits actually copied is 32 or 64 depending
  4756. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4757. */
  4758. if (vmx_instruction_info & (1u << 10)) {
  4759. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4760. field_value);
  4761. } else {
  4762. if (get_vmx_mem_address(vcpu, exit_qualification,
  4763. vmx_instruction_info, &gva))
  4764. return 1;
  4765. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4766. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4767. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4768. }
  4769. nested_vmx_succeed(vcpu);
  4770. skip_emulated_instruction(vcpu);
  4771. return 1;
  4772. }
  4773. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4774. {
  4775. unsigned long field;
  4776. gva_t gva;
  4777. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4778. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4779. char *p;
  4780. short offset;
  4781. /* The value to write might be 32 or 64 bits, depending on L1's long
  4782. * mode, and eventually we need to write that into a field of several
  4783. * possible lengths. The code below first zero-extends the value to 64
  4784. * bit (field_value), and then copies only the approriate number of
  4785. * bits into the vmcs12 field.
  4786. */
  4787. u64 field_value = 0;
  4788. struct x86_exception e;
  4789. if (!nested_vmx_check_permission(vcpu) ||
  4790. !nested_vmx_check_vmcs12(vcpu))
  4791. return 1;
  4792. if (vmx_instruction_info & (1u << 10))
  4793. field_value = kvm_register_read(vcpu,
  4794. (((vmx_instruction_info) >> 3) & 0xf));
  4795. else {
  4796. if (get_vmx_mem_address(vcpu, exit_qualification,
  4797. vmx_instruction_info, &gva))
  4798. return 1;
  4799. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4800. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4801. kvm_inject_page_fault(vcpu, &e);
  4802. return 1;
  4803. }
  4804. }
  4805. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4806. if (vmcs_field_readonly(field)) {
  4807. nested_vmx_failValid(vcpu,
  4808. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4809. skip_emulated_instruction(vcpu);
  4810. return 1;
  4811. }
  4812. offset = vmcs_field_to_offset(field);
  4813. if (offset < 0) {
  4814. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4815. skip_emulated_instruction(vcpu);
  4816. return 1;
  4817. }
  4818. p = ((char *) get_vmcs12(vcpu)) + offset;
  4819. switch (vmcs_field_type(field)) {
  4820. case VMCS_FIELD_TYPE_U16:
  4821. *(u16 *)p = field_value;
  4822. break;
  4823. case VMCS_FIELD_TYPE_U32:
  4824. *(u32 *)p = field_value;
  4825. break;
  4826. case VMCS_FIELD_TYPE_U64:
  4827. *(u64 *)p = field_value;
  4828. break;
  4829. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4830. *(natural_width *)p = field_value;
  4831. break;
  4832. default:
  4833. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4834. skip_emulated_instruction(vcpu);
  4835. return 1;
  4836. }
  4837. nested_vmx_succeed(vcpu);
  4838. skip_emulated_instruction(vcpu);
  4839. return 1;
  4840. }
  4841. /* Emulate the VMPTRLD instruction */
  4842. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4843. {
  4844. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4845. gva_t gva;
  4846. gpa_t vmptr;
  4847. struct x86_exception e;
  4848. if (!nested_vmx_check_permission(vcpu))
  4849. return 1;
  4850. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4851. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4852. return 1;
  4853. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4854. sizeof(vmptr), &e)) {
  4855. kvm_inject_page_fault(vcpu, &e);
  4856. return 1;
  4857. }
  4858. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4859. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4860. skip_emulated_instruction(vcpu);
  4861. return 1;
  4862. }
  4863. if (vmx->nested.current_vmptr != vmptr) {
  4864. struct vmcs12 *new_vmcs12;
  4865. struct page *page;
  4866. page = nested_get_page(vcpu, vmptr);
  4867. if (page == NULL) {
  4868. nested_vmx_failInvalid(vcpu);
  4869. skip_emulated_instruction(vcpu);
  4870. return 1;
  4871. }
  4872. new_vmcs12 = kmap(page);
  4873. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4874. kunmap(page);
  4875. nested_release_page_clean(page);
  4876. nested_vmx_failValid(vcpu,
  4877. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4878. skip_emulated_instruction(vcpu);
  4879. return 1;
  4880. }
  4881. if (vmx->nested.current_vmptr != -1ull) {
  4882. kunmap(vmx->nested.current_vmcs12_page);
  4883. nested_release_page(vmx->nested.current_vmcs12_page);
  4884. }
  4885. vmx->nested.current_vmptr = vmptr;
  4886. vmx->nested.current_vmcs12 = new_vmcs12;
  4887. vmx->nested.current_vmcs12_page = page;
  4888. }
  4889. nested_vmx_succeed(vcpu);
  4890. skip_emulated_instruction(vcpu);
  4891. return 1;
  4892. }
  4893. /* Emulate the VMPTRST instruction */
  4894. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4895. {
  4896. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4897. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4898. gva_t vmcs_gva;
  4899. struct x86_exception e;
  4900. if (!nested_vmx_check_permission(vcpu))
  4901. return 1;
  4902. if (get_vmx_mem_address(vcpu, exit_qualification,
  4903. vmx_instruction_info, &vmcs_gva))
  4904. return 1;
  4905. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4906. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4907. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4908. sizeof(u64), &e)) {
  4909. kvm_inject_page_fault(vcpu, &e);
  4910. return 1;
  4911. }
  4912. nested_vmx_succeed(vcpu);
  4913. skip_emulated_instruction(vcpu);
  4914. return 1;
  4915. }
  4916. /*
  4917. * The exit handlers return 1 if the exit was handled fully and guest execution
  4918. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4919. * to be done to userspace and return 0.
  4920. */
  4921. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4922. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4923. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4924. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4925. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4926. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4927. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4928. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4929. [EXIT_REASON_CPUID] = handle_cpuid,
  4930. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4931. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4932. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4933. [EXIT_REASON_HLT] = handle_halt,
  4934. [EXIT_REASON_INVD] = handle_invd,
  4935. [EXIT_REASON_INVLPG] = handle_invlpg,
  4936. [EXIT_REASON_RDPMC] = handle_rdpmc,
  4937. [EXIT_REASON_VMCALL] = handle_vmcall,
  4938. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4939. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4940. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4941. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4942. [EXIT_REASON_VMREAD] = handle_vmread,
  4943. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4944. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4945. [EXIT_REASON_VMOFF] = handle_vmoff,
  4946. [EXIT_REASON_VMON] = handle_vmon,
  4947. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4948. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4949. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4950. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4951. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4952. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4953. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4954. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4955. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4956. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4957. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4958. };
  4959. static const int kvm_vmx_max_exit_handlers =
  4960. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4961. /*
  4962. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  4963. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  4964. * disinterest in the current event (read or write a specific MSR) by using an
  4965. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  4966. */
  4967. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  4968. struct vmcs12 *vmcs12, u32 exit_reason)
  4969. {
  4970. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  4971. gpa_t bitmap;
  4972. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  4973. return 1;
  4974. /*
  4975. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  4976. * for the four combinations of read/write and low/high MSR numbers.
  4977. * First we need to figure out which of the four to use:
  4978. */
  4979. bitmap = vmcs12->msr_bitmap;
  4980. if (exit_reason == EXIT_REASON_MSR_WRITE)
  4981. bitmap += 2048;
  4982. if (msr_index >= 0xc0000000) {
  4983. msr_index -= 0xc0000000;
  4984. bitmap += 1024;
  4985. }
  4986. /* Then read the msr_index'th bit from this bitmap: */
  4987. if (msr_index < 1024*8) {
  4988. unsigned char b;
  4989. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  4990. return 1 & (b >> (msr_index & 7));
  4991. } else
  4992. return 1; /* let L1 handle the wrong parameter */
  4993. }
  4994. /*
  4995. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  4996. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  4997. * intercept (via guest_host_mask etc.) the current event.
  4998. */
  4999. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5000. struct vmcs12 *vmcs12)
  5001. {
  5002. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5003. int cr = exit_qualification & 15;
  5004. int reg = (exit_qualification >> 8) & 15;
  5005. unsigned long val = kvm_register_read(vcpu, reg);
  5006. switch ((exit_qualification >> 4) & 3) {
  5007. case 0: /* mov to cr */
  5008. switch (cr) {
  5009. case 0:
  5010. if (vmcs12->cr0_guest_host_mask &
  5011. (val ^ vmcs12->cr0_read_shadow))
  5012. return 1;
  5013. break;
  5014. case 3:
  5015. if ((vmcs12->cr3_target_count >= 1 &&
  5016. vmcs12->cr3_target_value0 == val) ||
  5017. (vmcs12->cr3_target_count >= 2 &&
  5018. vmcs12->cr3_target_value1 == val) ||
  5019. (vmcs12->cr3_target_count >= 3 &&
  5020. vmcs12->cr3_target_value2 == val) ||
  5021. (vmcs12->cr3_target_count >= 4 &&
  5022. vmcs12->cr3_target_value3 == val))
  5023. return 0;
  5024. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5025. return 1;
  5026. break;
  5027. case 4:
  5028. if (vmcs12->cr4_guest_host_mask &
  5029. (vmcs12->cr4_read_shadow ^ val))
  5030. return 1;
  5031. break;
  5032. case 8:
  5033. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5034. return 1;
  5035. break;
  5036. }
  5037. break;
  5038. case 2: /* clts */
  5039. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5040. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5041. return 1;
  5042. break;
  5043. case 1: /* mov from cr */
  5044. switch (cr) {
  5045. case 3:
  5046. if (vmcs12->cpu_based_vm_exec_control &
  5047. CPU_BASED_CR3_STORE_EXITING)
  5048. return 1;
  5049. break;
  5050. case 8:
  5051. if (vmcs12->cpu_based_vm_exec_control &
  5052. CPU_BASED_CR8_STORE_EXITING)
  5053. return 1;
  5054. break;
  5055. }
  5056. break;
  5057. case 3: /* lmsw */
  5058. /*
  5059. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5060. * cr0. Other attempted changes are ignored, with no exit.
  5061. */
  5062. if (vmcs12->cr0_guest_host_mask & 0xe &
  5063. (val ^ vmcs12->cr0_read_shadow))
  5064. return 1;
  5065. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5066. !(vmcs12->cr0_read_shadow & 0x1) &&
  5067. (val & 0x1))
  5068. return 1;
  5069. break;
  5070. }
  5071. return 0;
  5072. }
  5073. /*
  5074. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5075. * should handle it ourselves in L0 (and then continue L2). Only call this
  5076. * when in is_guest_mode (L2).
  5077. */
  5078. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5079. {
  5080. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  5081. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5082. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5083. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5084. if (vmx->nested.nested_run_pending)
  5085. return 0;
  5086. if (unlikely(vmx->fail)) {
  5087. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5088. vmcs_read32(VM_INSTRUCTION_ERROR));
  5089. return 1;
  5090. }
  5091. switch (exit_reason) {
  5092. case EXIT_REASON_EXCEPTION_NMI:
  5093. if (!is_exception(intr_info))
  5094. return 0;
  5095. else if (is_page_fault(intr_info))
  5096. return enable_ept;
  5097. return vmcs12->exception_bitmap &
  5098. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5099. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5100. return 0;
  5101. case EXIT_REASON_TRIPLE_FAULT:
  5102. return 1;
  5103. case EXIT_REASON_PENDING_INTERRUPT:
  5104. case EXIT_REASON_NMI_WINDOW:
  5105. /*
  5106. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5107. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5108. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5109. * Same for NMI Window Exiting.
  5110. */
  5111. return 1;
  5112. case EXIT_REASON_TASK_SWITCH:
  5113. return 1;
  5114. case EXIT_REASON_CPUID:
  5115. return 1;
  5116. case EXIT_REASON_HLT:
  5117. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5118. case EXIT_REASON_INVD:
  5119. return 1;
  5120. case EXIT_REASON_INVLPG:
  5121. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5122. case EXIT_REASON_RDPMC:
  5123. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5124. case EXIT_REASON_RDTSC:
  5125. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5126. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5127. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5128. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5129. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5130. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5131. /*
  5132. * VMX instructions trap unconditionally. This allows L1 to
  5133. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5134. */
  5135. return 1;
  5136. case EXIT_REASON_CR_ACCESS:
  5137. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5138. case EXIT_REASON_DR_ACCESS:
  5139. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5140. case EXIT_REASON_IO_INSTRUCTION:
  5141. /* TODO: support IO bitmaps */
  5142. return 1;
  5143. case EXIT_REASON_MSR_READ:
  5144. case EXIT_REASON_MSR_WRITE:
  5145. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5146. case EXIT_REASON_INVALID_STATE:
  5147. return 1;
  5148. case EXIT_REASON_MWAIT_INSTRUCTION:
  5149. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5150. case EXIT_REASON_MONITOR_INSTRUCTION:
  5151. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5152. case EXIT_REASON_PAUSE_INSTRUCTION:
  5153. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5154. nested_cpu_has2(vmcs12,
  5155. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5156. case EXIT_REASON_MCE_DURING_VMENTRY:
  5157. return 0;
  5158. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5159. return 1;
  5160. case EXIT_REASON_APIC_ACCESS:
  5161. return nested_cpu_has2(vmcs12,
  5162. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5163. case EXIT_REASON_EPT_VIOLATION:
  5164. case EXIT_REASON_EPT_MISCONFIG:
  5165. return 0;
  5166. case EXIT_REASON_WBINVD:
  5167. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5168. case EXIT_REASON_XSETBV:
  5169. return 1;
  5170. default:
  5171. return 1;
  5172. }
  5173. }
  5174. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5175. {
  5176. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5177. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5178. }
  5179. /*
  5180. * The guest has exited. See if we can fix it or if we need userspace
  5181. * assistance.
  5182. */
  5183. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5184. {
  5185. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5186. u32 exit_reason = vmx->exit_reason;
  5187. u32 vectoring_info = vmx->idt_vectoring_info;
  5188. /* If guest state is invalid, start emulating */
  5189. if (vmx->emulation_required && emulate_invalid_guest_state)
  5190. return handle_invalid_guest_state(vcpu);
  5191. /*
  5192. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5193. * we did not inject a still-pending event to L1 now because of
  5194. * nested_run_pending, we need to re-enable this bit.
  5195. */
  5196. if (vmx->nested.nested_run_pending)
  5197. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5198. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5199. exit_reason == EXIT_REASON_VMRESUME))
  5200. vmx->nested.nested_run_pending = 1;
  5201. else
  5202. vmx->nested.nested_run_pending = 0;
  5203. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5204. nested_vmx_vmexit(vcpu);
  5205. return 1;
  5206. }
  5207. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5208. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5209. vcpu->run->fail_entry.hardware_entry_failure_reason
  5210. = exit_reason;
  5211. return 0;
  5212. }
  5213. if (unlikely(vmx->fail)) {
  5214. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5215. vcpu->run->fail_entry.hardware_entry_failure_reason
  5216. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5217. return 0;
  5218. }
  5219. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5220. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5221. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5222. exit_reason != EXIT_REASON_TASK_SWITCH))
  5223. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  5224. "(0x%x) and exit reason is 0x%x\n",
  5225. __func__, vectoring_info, exit_reason);
  5226. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5227. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5228. get_vmcs12(vcpu), vcpu)))) {
  5229. if (vmx_interrupt_allowed(vcpu)) {
  5230. vmx->soft_vnmi_blocked = 0;
  5231. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5232. vcpu->arch.nmi_pending) {
  5233. /*
  5234. * This CPU don't support us in finding the end of an
  5235. * NMI-blocked window if the guest runs with IRQs
  5236. * disabled. So we pull the trigger after 1 s of
  5237. * futile waiting, but inform the user about this.
  5238. */
  5239. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5240. "state on VCPU %d after 1 s timeout\n",
  5241. __func__, vcpu->vcpu_id);
  5242. vmx->soft_vnmi_blocked = 0;
  5243. }
  5244. }
  5245. if (exit_reason < kvm_vmx_max_exit_handlers
  5246. && kvm_vmx_exit_handlers[exit_reason])
  5247. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5248. else {
  5249. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5250. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5251. }
  5252. return 0;
  5253. }
  5254. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5255. {
  5256. if (irr == -1 || tpr < irr) {
  5257. vmcs_write32(TPR_THRESHOLD, 0);
  5258. return;
  5259. }
  5260. vmcs_write32(TPR_THRESHOLD, irr);
  5261. }
  5262. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5263. {
  5264. u32 exit_intr_info;
  5265. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5266. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5267. return;
  5268. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5269. exit_intr_info = vmx->exit_intr_info;
  5270. /* Handle machine checks before interrupts are enabled */
  5271. if (is_machine_check(exit_intr_info))
  5272. kvm_machine_check();
  5273. /* We need to handle NMIs before interrupts are enabled */
  5274. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5275. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5276. kvm_before_handle_nmi(&vmx->vcpu);
  5277. asm("int $2");
  5278. kvm_after_handle_nmi(&vmx->vcpu);
  5279. }
  5280. }
  5281. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5282. {
  5283. u32 exit_intr_info;
  5284. bool unblock_nmi;
  5285. u8 vector;
  5286. bool idtv_info_valid;
  5287. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5288. if (cpu_has_virtual_nmis()) {
  5289. if (vmx->nmi_known_unmasked)
  5290. return;
  5291. /*
  5292. * Can't use vmx->exit_intr_info since we're not sure what
  5293. * the exit reason is.
  5294. */
  5295. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5296. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5297. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5298. /*
  5299. * SDM 3: 27.7.1.2 (September 2008)
  5300. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5301. * a guest IRET fault.
  5302. * SDM 3: 23.2.2 (September 2008)
  5303. * Bit 12 is undefined in any of the following cases:
  5304. * If the VM exit sets the valid bit in the IDT-vectoring
  5305. * information field.
  5306. * If the VM exit is due to a double fault.
  5307. */
  5308. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5309. vector != DF_VECTOR && !idtv_info_valid)
  5310. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5311. GUEST_INTR_STATE_NMI);
  5312. else
  5313. vmx->nmi_known_unmasked =
  5314. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5315. & GUEST_INTR_STATE_NMI);
  5316. } else if (unlikely(vmx->soft_vnmi_blocked))
  5317. vmx->vnmi_blocked_time +=
  5318. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5319. }
  5320. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5321. u32 idt_vectoring_info,
  5322. int instr_len_field,
  5323. int error_code_field)
  5324. {
  5325. u8 vector;
  5326. int type;
  5327. bool idtv_info_valid;
  5328. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5329. vmx->vcpu.arch.nmi_injected = false;
  5330. kvm_clear_exception_queue(&vmx->vcpu);
  5331. kvm_clear_interrupt_queue(&vmx->vcpu);
  5332. if (!idtv_info_valid)
  5333. return;
  5334. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5335. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5336. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5337. switch (type) {
  5338. case INTR_TYPE_NMI_INTR:
  5339. vmx->vcpu.arch.nmi_injected = true;
  5340. /*
  5341. * SDM 3: 27.7.1.2 (September 2008)
  5342. * Clear bit "block by NMI" before VM entry if a NMI
  5343. * delivery faulted.
  5344. */
  5345. vmx_set_nmi_mask(&vmx->vcpu, false);
  5346. break;
  5347. case INTR_TYPE_SOFT_EXCEPTION:
  5348. vmx->vcpu.arch.event_exit_inst_len =
  5349. vmcs_read32(instr_len_field);
  5350. /* fall through */
  5351. case INTR_TYPE_HARD_EXCEPTION:
  5352. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5353. u32 err = vmcs_read32(error_code_field);
  5354. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5355. } else
  5356. kvm_queue_exception(&vmx->vcpu, vector);
  5357. break;
  5358. case INTR_TYPE_SOFT_INTR:
  5359. vmx->vcpu.arch.event_exit_inst_len =
  5360. vmcs_read32(instr_len_field);
  5361. /* fall through */
  5362. case INTR_TYPE_EXT_INTR:
  5363. kvm_queue_interrupt(&vmx->vcpu, vector,
  5364. type == INTR_TYPE_SOFT_INTR);
  5365. break;
  5366. default:
  5367. break;
  5368. }
  5369. }
  5370. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5371. {
  5372. if (is_guest_mode(&vmx->vcpu))
  5373. return;
  5374. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5375. VM_EXIT_INSTRUCTION_LEN,
  5376. IDT_VECTORING_ERROR_CODE);
  5377. }
  5378. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5379. {
  5380. if (is_guest_mode(vcpu))
  5381. return;
  5382. __vmx_complete_interrupts(to_vmx(vcpu),
  5383. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5384. VM_ENTRY_INSTRUCTION_LEN,
  5385. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5386. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5387. }
  5388. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5389. {
  5390. int i, nr_msrs;
  5391. struct perf_guest_switch_msr *msrs;
  5392. msrs = perf_guest_get_msrs(&nr_msrs);
  5393. if (!msrs)
  5394. return;
  5395. for (i = 0; i < nr_msrs; i++)
  5396. if (msrs[i].host == msrs[i].guest)
  5397. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5398. else
  5399. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5400. msrs[i].host);
  5401. }
  5402. #ifdef CONFIG_X86_64
  5403. #define R "r"
  5404. #define Q "q"
  5405. #else
  5406. #define R "e"
  5407. #define Q "l"
  5408. #endif
  5409. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5410. {
  5411. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5412. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5413. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5414. if (vmcs12->idt_vectoring_info_field &
  5415. VECTORING_INFO_VALID_MASK) {
  5416. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5417. vmcs12->idt_vectoring_info_field);
  5418. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5419. vmcs12->vm_exit_instruction_len);
  5420. if (vmcs12->idt_vectoring_info_field &
  5421. VECTORING_INFO_DELIVER_CODE_MASK)
  5422. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5423. vmcs12->idt_vectoring_error_code);
  5424. }
  5425. }
  5426. /* Record the guest's net vcpu time for enforced NMI injections. */
  5427. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5428. vmx->entry_time = ktime_get();
  5429. /* Don't enter VMX if guest state is invalid, let the exit handler
  5430. start emulation until we arrive back to a valid state */
  5431. if (vmx->emulation_required && emulate_invalid_guest_state)
  5432. return;
  5433. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5434. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5435. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5436. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5437. /* When single-stepping over STI and MOV SS, we must clear the
  5438. * corresponding interruptibility bits in the guest state. Otherwise
  5439. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5440. * exceptions being set, but that's not correct for the guest debugging
  5441. * case. */
  5442. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5443. vmx_set_interrupt_shadow(vcpu, 0);
  5444. atomic_switch_perf_msrs(vmx);
  5445. vmx->__launched = vmx->loaded_vmcs->launched;
  5446. asm(
  5447. /* Store host registers */
  5448. "push %%"R"dx; push %%"R"bp;"
  5449. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  5450. "push %%"R"cx \n\t"
  5451. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  5452. "je 1f \n\t"
  5453. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  5454. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5455. "1: \n\t"
  5456. /* Reload cr2 if changed */
  5457. "mov %c[cr2](%0), %%"R"ax \n\t"
  5458. "mov %%cr2, %%"R"dx \n\t"
  5459. "cmp %%"R"ax, %%"R"dx \n\t"
  5460. "je 2f \n\t"
  5461. "mov %%"R"ax, %%cr2 \n\t"
  5462. "2: \n\t"
  5463. /* Check if vmlaunch of vmresume is needed */
  5464. "cmpl $0, %c[launched](%0) \n\t"
  5465. /* Load guest registers. Don't clobber flags. */
  5466. "mov %c[rax](%0), %%"R"ax \n\t"
  5467. "mov %c[rbx](%0), %%"R"bx \n\t"
  5468. "mov %c[rdx](%0), %%"R"dx \n\t"
  5469. "mov %c[rsi](%0), %%"R"si \n\t"
  5470. "mov %c[rdi](%0), %%"R"di \n\t"
  5471. "mov %c[rbp](%0), %%"R"bp \n\t"
  5472. #ifdef CONFIG_X86_64
  5473. "mov %c[r8](%0), %%r8 \n\t"
  5474. "mov %c[r9](%0), %%r9 \n\t"
  5475. "mov %c[r10](%0), %%r10 \n\t"
  5476. "mov %c[r11](%0), %%r11 \n\t"
  5477. "mov %c[r12](%0), %%r12 \n\t"
  5478. "mov %c[r13](%0), %%r13 \n\t"
  5479. "mov %c[r14](%0), %%r14 \n\t"
  5480. "mov %c[r15](%0), %%r15 \n\t"
  5481. #endif
  5482. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  5483. /* Enter guest mode */
  5484. "jne .Llaunched \n\t"
  5485. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5486. "jmp .Lkvm_vmx_return \n\t"
  5487. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5488. ".Lkvm_vmx_return: "
  5489. /* Save guest registers, load host registers, keep flags */
  5490. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  5491. "pop %0 \n\t"
  5492. "mov %%"R"ax, %c[rax](%0) \n\t"
  5493. "mov %%"R"bx, %c[rbx](%0) \n\t"
  5494. "pop"Q" %c[rcx](%0) \n\t"
  5495. "mov %%"R"dx, %c[rdx](%0) \n\t"
  5496. "mov %%"R"si, %c[rsi](%0) \n\t"
  5497. "mov %%"R"di, %c[rdi](%0) \n\t"
  5498. "mov %%"R"bp, %c[rbp](%0) \n\t"
  5499. #ifdef CONFIG_X86_64
  5500. "mov %%r8, %c[r8](%0) \n\t"
  5501. "mov %%r9, %c[r9](%0) \n\t"
  5502. "mov %%r10, %c[r10](%0) \n\t"
  5503. "mov %%r11, %c[r11](%0) \n\t"
  5504. "mov %%r12, %c[r12](%0) \n\t"
  5505. "mov %%r13, %c[r13](%0) \n\t"
  5506. "mov %%r14, %c[r14](%0) \n\t"
  5507. "mov %%r15, %c[r15](%0) \n\t"
  5508. #endif
  5509. "mov %%cr2, %%"R"ax \n\t"
  5510. "mov %%"R"ax, %c[cr2](%0) \n\t"
  5511. "pop %%"R"bp; pop %%"R"dx \n\t"
  5512. "setbe %c[fail](%0) \n\t"
  5513. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5514. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5515. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5516. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5517. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5518. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5519. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5520. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5521. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5522. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5523. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5524. #ifdef CONFIG_X86_64
  5525. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5526. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5527. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5528. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5529. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5530. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5531. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5532. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5533. #endif
  5534. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5535. [wordsize]"i"(sizeof(ulong))
  5536. : "cc", "memory"
  5537. , R"ax", R"bx", R"di", R"si"
  5538. #ifdef CONFIG_X86_64
  5539. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5540. #endif
  5541. );
  5542. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5543. | (1 << VCPU_EXREG_RFLAGS)
  5544. | (1 << VCPU_EXREG_CPL)
  5545. | (1 << VCPU_EXREG_PDPTR)
  5546. | (1 << VCPU_EXREG_SEGMENTS)
  5547. | (1 << VCPU_EXREG_CR3));
  5548. vcpu->arch.regs_dirty = 0;
  5549. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5550. if (is_guest_mode(vcpu)) {
  5551. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5552. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5553. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5554. vmcs12->idt_vectoring_error_code =
  5555. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5556. vmcs12->vm_exit_instruction_len =
  5557. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5558. }
  5559. }
  5560. vmx->loaded_vmcs->launched = 1;
  5561. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5562. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5563. vmx_complete_atomic_exit(vmx);
  5564. vmx_recover_nmi_blocking(vmx);
  5565. vmx_complete_interrupts(vmx);
  5566. }
  5567. #undef R
  5568. #undef Q
  5569. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5570. {
  5571. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5572. free_vpid(vmx);
  5573. free_nested(vmx);
  5574. free_loaded_vmcs(vmx->loaded_vmcs);
  5575. kfree(vmx->guest_msrs);
  5576. kvm_vcpu_uninit(vcpu);
  5577. kmem_cache_free(kvm_vcpu_cache, vmx);
  5578. }
  5579. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5580. {
  5581. int err;
  5582. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5583. int cpu;
  5584. if (!vmx)
  5585. return ERR_PTR(-ENOMEM);
  5586. allocate_vpid(vmx);
  5587. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5588. if (err)
  5589. goto free_vcpu;
  5590. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5591. err = -ENOMEM;
  5592. if (!vmx->guest_msrs) {
  5593. goto uninit_vcpu;
  5594. }
  5595. vmx->loaded_vmcs = &vmx->vmcs01;
  5596. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5597. if (!vmx->loaded_vmcs->vmcs)
  5598. goto free_msrs;
  5599. if (!vmm_exclusive)
  5600. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5601. loaded_vmcs_init(vmx->loaded_vmcs);
  5602. if (!vmm_exclusive)
  5603. kvm_cpu_vmxoff();
  5604. cpu = get_cpu();
  5605. vmx_vcpu_load(&vmx->vcpu, cpu);
  5606. vmx->vcpu.cpu = cpu;
  5607. err = vmx_vcpu_setup(vmx);
  5608. vmx_vcpu_put(&vmx->vcpu);
  5609. put_cpu();
  5610. if (err)
  5611. goto free_vmcs;
  5612. if (vm_need_virtualize_apic_accesses(kvm))
  5613. err = alloc_apic_access_page(kvm);
  5614. if (err)
  5615. goto free_vmcs;
  5616. if (enable_ept) {
  5617. if (!kvm->arch.ept_identity_map_addr)
  5618. kvm->arch.ept_identity_map_addr =
  5619. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5620. err = -ENOMEM;
  5621. if (alloc_identity_pagetable(kvm) != 0)
  5622. goto free_vmcs;
  5623. if (!init_rmode_identity_map(kvm))
  5624. goto free_vmcs;
  5625. }
  5626. vmx->nested.current_vmptr = -1ull;
  5627. vmx->nested.current_vmcs12 = NULL;
  5628. return &vmx->vcpu;
  5629. free_vmcs:
  5630. free_loaded_vmcs(vmx->loaded_vmcs);
  5631. free_msrs:
  5632. kfree(vmx->guest_msrs);
  5633. uninit_vcpu:
  5634. kvm_vcpu_uninit(&vmx->vcpu);
  5635. free_vcpu:
  5636. free_vpid(vmx);
  5637. kmem_cache_free(kvm_vcpu_cache, vmx);
  5638. return ERR_PTR(err);
  5639. }
  5640. static void __init vmx_check_processor_compat(void *rtn)
  5641. {
  5642. struct vmcs_config vmcs_conf;
  5643. *(int *)rtn = 0;
  5644. if (setup_vmcs_config(&vmcs_conf) < 0)
  5645. *(int *)rtn = -EIO;
  5646. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5647. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5648. smp_processor_id());
  5649. *(int *)rtn = -EIO;
  5650. }
  5651. }
  5652. static int get_ept_level(void)
  5653. {
  5654. return VMX_EPT_DEFAULT_GAW + 1;
  5655. }
  5656. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5657. {
  5658. u64 ret;
  5659. /* For VT-d and EPT combination
  5660. * 1. MMIO: always map as UC
  5661. * 2. EPT with VT-d:
  5662. * a. VT-d without snooping control feature: can't guarantee the
  5663. * result, try to trust guest.
  5664. * b. VT-d with snooping control feature: snooping control feature of
  5665. * VT-d engine can guarantee the cache correctness. Just set it
  5666. * to WB to keep consistent with host. So the same as item 3.
  5667. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5668. * consistent with host MTRR
  5669. */
  5670. if (is_mmio)
  5671. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5672. else if (vcpu->kvm->arch.iommu_domain &&
  5673. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5674. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5675. VMX_EPT_MT_EPTE_SHIFT;
  5676. else
  5677. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5678. | VMX_EPT_IPAT_BIT;
  5679. return ret;
  5680. }
  5681. static int vmx_get_lpage_level(void)
  5682. {
  5683. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5684. return PT_DIRECTORY_LEVEL;
  5685. else
  5686. /* For shadow and EPT supported 1GB page */
  5687. return PT_PDPE_LEVEL;
  5688. }
  5689. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5690. {
  5691. struct kvm_cpuid_entry2 *best;
  5692. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5693. u32 exec_control;
  5694. vmx->rdtscp_enabled = false;
  5695. if (vmx_rdtscp_supported()) {
  5696. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5697. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5698. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5699. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5700. vmx->rdtscp_enabled = true;
  5701. else {
  5702. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5703. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5704. exec_control);
  5705. }
  5706. }
  5707. }
  5708. }
  5709. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5710. {
  5711. if (func == 1 && nested)
  5712. entry->ecx |= bit(X86_FEATURE_VMX);
  5713. }
  5714. /*
  5715. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5716. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5717. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5718. * guest in a way that will both be appropriate to L1's requests, and our
  5719. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5720. * function also has additional necessary side-effects, like setting various
  5721. * vcpu->arch fields.
  5722. */
  5723. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5724. {
  5725. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5726. u32 exec_control;
  5727. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5728. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5729. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5730. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5731. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5732. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5733. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5734. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5735. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5736. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5737. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5738. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5739. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5740. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5741. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5742. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5743. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5744. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5745. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5746. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5747. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5748. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5749. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5750. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5751. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5752. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5753. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5754. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5755. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5756. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5757. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5758. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5759. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5760. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5761. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5762. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5763. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5764. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5765. vmcs12->vm_entry_intr_info_field);
  5766. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5767. vmcs12->vm_entry_exception_error_code);
  5768. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5769. vmcs12->vm_entry_instruction_len);
  5770. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5771. vmcs12->guest_interruptibility_info);
  5772. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5773. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5774. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5775. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5776. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5777. vmcs12->guest_pending_dbg_exceptions);
  5778. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5779. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5780. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5781. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5782. (vmcs_config.pin_based_exec_ctrl |
  5783. vmcs12->pin_based_vm_exec_control));
  5784. /*
  5785. * Whether page-faults are trapped is determined by a combination of
  5786. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5787. * If enable_ept, L0 doesn't care about page faults and we should
  5788. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5789. * care about (at least some) page faults, and because it is not easy
  5790. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5791. * to exit on each and every L2 page fault. This is done by setting
  5792. * MASK=MATCH=0 and (see below) EB.PF=1.
  5793. * Note that below we don't need special code to set EB.PF beyond the
  5794. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5795. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5796. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5797. *
  5798. * A problem with this approach (when !enable_ept) is that L1 may be
  5799. * injected with more page faults than it asked for. This could have
  5800. * caused problems, but in practice existing hypervisors don't care.
  5801. * To fix this, we will need to emulate the PFEC checking (on the L1
  5802. * page tables), using walk_addr(), when injecting PFs to L1.
  5803. */
  5804. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5805. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5806. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5807. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5808. if (cpu_has_secondary_exec_ctrls()) {
  5809. u32 exec_control = vmx_secondary_exec_control(vmx);
  5810. if (!vmx->rdtscp_enabled)
  5811. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5812. /* Take the following fields only from vmcs12 */
  5813. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5814. if (nested_cpu_has(vmcs12,
  5815. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5816. exec_control |= vmcs12->secondary_vm_exec_control;
  5817. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5818. /*
  5819. * Translate L1 physical address to host physical
  5820. * address for vmcs02. Keep the page pinned, so this
  5821. * physical address remains valid. We keep a reference
  5822. * to it so we can release it later.
  5823. */
  5824. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5825. nested_release_page(vmx->nested.apic_access_page);
  5826. vmx->nested.apic_access_page =
  5827. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5828. /*
  5829. * If translation failed, no matter: This feature asks
  5830. * to exit when accessing the given address, and if it
  5831. * can never be accessed, this feature won't do
  5832. * anything anyway.
  5833. */
  5834. if (!vmx->nested.apic_access_page)
  5835. exec_control &=
  5836. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5837. else
  5838. vmcs_write64(APIC_ACCESS_ADDR,
  5839. page_to_phys(vmx->nested.apic_access_page));
  5840. }
  5841. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5842. }
  5843. /*
  5844. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5845. * Some constant fields are set here by vmx_set_constant_host_state().
  5846. * Other fields are different per CPU, and will be set later when
  5847. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5848. */
  5849. vmx_set_constant_host_state();
  5850. /*
  5851. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5852. * entry, but only if the current (host) sp changed from the value
  5853. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5854. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5855. * here we just force the write to happen on entry.
  5856. */
  5857. vmx->host_rsp = 0;
  5858. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5859. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5860. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5861. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5862. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5863. /*
  5864. * Merging of IO and MSR bitmaps not currently supported.
  5865. * Rather, exit every time.
  5866. */
  5867. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5868. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5869. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5870. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5871. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5872. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5873. * trap. Note that CR0.TS also needs updating - we do this later.
  5874. */
  5875. update_exception_bitmap(vcpu);
  5876. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5877. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5878. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5879. vmcs_write32(VM_EXIT_CONTROLS,
  5880. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5881. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5882. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5883. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5884. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5885. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5886. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5887. set_cr4_guest_host_mask(vmx);
  5888. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  5889. vmcs_write64(TSC_OFFSET,
  5890. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5891. else
  5892. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5893. if (enable_vpid) {
  5894. /*
  5895. * Trivially support vpid by letting L2s share their parent
  5896. * L1's vpid. TODO: move to a more elaborate solution, giving
  5897. * each L2 its own vpid and exposing the vpid feature to L1.
  5898. */
  5899. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5900. vmx_flush_tlb(vcpu);
  5901. }
  5902. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5903. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5904. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5905. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5906. else
  5907. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5908. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5909. vmx_set_efer(vcpu, vcpu->arch.efer);
  5910. /*
  5911. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5912. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5913. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5914. * the specifications by L1; It's not enough to take
  5915. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5916. * have more bits than L1 expected.
  5917. */
  5918. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5919. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5920. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5921. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5922. /* shadow page tables on either EPT or shadow page tables */
  5923. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5924. kvm_mmu_reset_context(vcpu);
  5925. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5926. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5927. }
  5928. /*
  5929. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5930. * for running an L2 nested guest.
  5931. */
  5932. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5933. {
  5934. struct vmcs12 *vmcs12;
  5935. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5936. int cpu;
  5937. struct loaded_vmcs *vmcs02;
  5938. if (!nested_vmx_check_permission(vcpu) ||
  5939. !nested_vmx_check_vmcs12(vcpu))
  5940. return 1;
  5941. skip_emulated_instruction(vcpu);
  5942. vmcs12 = get_vmcs12(vcpu);
  5943. /*
  5944. * The nested entry process starts with enforcing various prerequisites
  5945. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5946. * they fail: As the SDM explains, some conditions should cause the
  5947. * instruction to fail, while others will cause the instruction to seem
  5948. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  5949. * To speed up the normal (success) code path, we should avoid checking
  5950. * for misconfigurations which will anyway be caught by the processor
  5951. * when using the merged vmcs02.
  5952. */
  5953. if (vmcs12->launch_state == launch) {
  5954. nested_vmx_failValid(vcpu,
  5955. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  5956. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  5957. return 1;
  5958. }
  5959. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  5960. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  5961. /*TODO: Also verify bits beyond physical address width are 0*/
  5962. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5963. return 1;
  5964. }
  5965. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  5966. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  5967. /*TODO: Also verify bits beyond physical address width are 0*/
  5968. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5969. return 1;
  5970. }
  5971. if (vmcs12->vm_entry_msr_load_count > 0 ||
  5972. vmcs12->vm_exit_msr_load_count > 0 ||
  5973. vmcs12->vm_exit_msr_store_count > 0) {
  5974. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  5975. __func__);
  5976. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5977. return 1;
  5978. }
  5979. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  5980. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  5981. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  5982. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  5983. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  5984. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  5985. !vmx_control_verify(vmcs12->vm_exit_controls,
  5986. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  5987. !vmx_control_verify(vmcs12->vm_entry_controls,
  5988. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  5989. {
  5990. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5991. return 1;
  5992. }
  5993. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5994. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5995. nested_vmx_failValid(vcpu,
  5996. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  5997. return 1;
  5998. }
  5999. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6000. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6001. nested_vmx_entry_failure(vcpu, vmcs12,
  6002. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6003. return 1;
  6004. }
  6005. if (vmcs12->vmcs_link_pointer != -1ull) {
  6006. nested_vmx_entry_failure(vcpu, vmcs12,
  6007. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6008. return 1;
  6009. }
  6010. /*
  6011. * We're finally done with prerequisite checking, and can start with
  6012. * the nested entry.
  6013. */
  6014. vmcs02 = nested_get_current_vmcs02(vmx);
  6015. if (!vmcs02)
  6016. return -ENOMEM;
  6017. enter_guest_mode(vcpu);
  6018. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6019. cpu = get_cpu();
  6020. vmx->loaded_vmcs = vmcs02;
  6021. vmx_vcpu_put(vcpu);
  6022. vmx_vcpu_load(vcpu, cpu);
  6023. vcpu->cpu = cpu;
  6024. put_cpu();
  6025. vmcs12->launch_state = 1;
  6026. prepare_vmcs02(vcpu, vmcs12);
  6027. /*
  6028. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6029. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6030. * returned as far as L1 is concerned. It will only return (and set
  6031. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6032. */
  6033. return 1;
  6034. }
  6035. /*
  6036. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6037. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6038. * This function returns the new value we should put in vmcs12.guest_cr0.
  6039. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6040. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6041. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6042. * didn't trap the bit, because if L1 did, so would L0).
  6043. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6044. * been modified by L2, and L1 knows it. So just leave the old value of
  6045. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6046. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6047. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6048. * changed these bits, and therefore they need to be updated, but L0
  6049. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6050. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6051. */
  6052. static inline unsigned long
  6053. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6054. {
  6055. return
  6056. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6057. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6058. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6059. vcpu->arch.cr0_guest_owned_bits));
  6060. }
  6061. static inline unsigned long
  6062. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6063. {
  6064. return
  6065. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6066. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6067. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6068. vcpu->arch.cr4_guest_owned_bits));
  6069. }
  6070. /*
  6071. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6072. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6073. * and this function updates it to reflect the changes to the guest state while
  6074. * L2 was running (and perhaps made some exits which were handled directly by L0
  6075. * without going back to L1), and to reflect the exit reason.
  6076. * Note that we do not have to copy here all VMCS fields, just those that
  6077. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6078. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6079. * which already writes to vmcs12 directly.
  6080. */
  6081. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6082. {
  6083. /* update guest state fields: */
  6084. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6085. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6086. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6087. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6088. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6089. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6090. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6091. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6092. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6093. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6094. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6095. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6096. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6097. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6098. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6099. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6100. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6101. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6102. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6103. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6104. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6105. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6106. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6107. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6108. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6109. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6110. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6111. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6112. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6113. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6114. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6115. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6116. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6117. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6118. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6119. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6120. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6121. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6122. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6123. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6124. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6125. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6126. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6127. vmcs12->guest_interruptibility_info =
  6128. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6129. vmcs12->guest_pending_dbg_exceptions =
  6130. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6131. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6132. * the relevant bit asks not to trap the change */
  6133. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6134. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6135. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6136. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6137. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6138. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6139. /* update exit information fields: */
  6140. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6141. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6142. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6143. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6144. vmcs12->idt_vectoring_info_field =
  6145. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6146. vmcs12->idt_vectoring_error_code =
  6147. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6148. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6149. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6150. /* clear vm-entry fields which are to be cleared on exit */
  6151. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6152. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6153. }
  6154. /*
  6155. * A part of what we need to when the nested L2 guest exits and we want to
  6156. * run its L1 parent, is to reset L1's guest state to the host state specified
  6157. * in vmcs12.
  6158. * This function is to be called not only on normal nested exit, but also on
  6159. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6160. * Failures During or After Loading Guest State").
  6161. * This function should be called when the active VMCS is L1's (vmcs01).
  6162. */
  6163. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6164. {
  6165. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6166. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6167. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6168. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6169. else
  6170. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6171. vmx_set_efer(vcpu, vcpu->arch.efer);
  6172. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6173. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6174. /*
  6175. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6176. * actually changed, because it depends on the current state of
  6177. * fpu_active (which may have changed).
  6178. * Note that vmx_set_cr0 refers to efer set above.
  6179. */
  6180. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6181. /*
  6182. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6183. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6184. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6185. */
  6186. update_exception_bitmap(vcpu);
  6187. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6188. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6189. /*
  6190. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6191. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6192. */
  6193. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6194. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6195. /* shadow page tables on either EPT or shadow page tables */
  6196. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6197. kvm_mmu_reset_context(vcpu);
  6198. if (enable_vpid) {
  6199. /*
  6200. * Trivially support vpid by letting L2s share their parent
  6201. * L1's vpid. TODO: move to a more elaborate solution, giving
  6202. * each L2 its own vpid and exposing the vpid feature to L1.
  6203. */
  6204. vmx_flush_tlb(vcpu);
  6205. }
  6206. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6207. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6208. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6209. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6210. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6211. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6212. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6213. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6214. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6215. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6216. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6217. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6218. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6219. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6220. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6221. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6222. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6223. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6224. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6225. vmcs12->host_ia32_perf_global_ctrl);
  6226. }
  6227. /*
  6228. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6229. * and modify vmcs12 to make it see what it would expect to see there if
  6230. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6231. */
  6232. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6233. {
  6234. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6235. int cpu;
  6236. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6237. leave_guest_mode(vcpu);
  6238. prepare_vmcs12(vcpu, vmcs12);
  6239. cpu = get_cpu();
  6240. vmx->loaded_vmcs = &vmx->vmcs01;
  6241. vmx_vcpu_put(vcpu);
  6242. vmx_vcpu_load(vcpu, cpu);
  6243. vcpu->cpu = cpu;
  6244. put_cpu();
  6245. /* if no vmcs02 cache requested, remove the one we used */
  6246. if (VMCS02_POOL_SIZE == 0)
  6247. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6248. load_vmcs12_host_state(vcpu, vmcs12);
  6249. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6250. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6251. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6252. vmx->host_rsp = 0;
  6253. /* Unpin physical memory we referred to in vmcs02 */
  6254. if (vmx->nested.apic_access_page) {
  6255. nested_release_page(vmx->nested.apic_access_page);
  6256. vmx->nested.apic_access_page = 0;
  6257. }
  6258. /*
  6259. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6260. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6261. * success or failure flag accordingly.
  6262. */
  6263. if (unlikely(vmx->fail)) {
  6264. vmx->fail = 0;
  6265. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6266. } else
  6267. nested_vmx_succeed(vcpu);
  6268. }
  6269. /*
  6270. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6271. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6272. * lists the acceptable exit-reason and exit-qualification parameters).
  6273. * It should only be called before L2 actually succeeded to run, and when
  6274. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6275. */
  6276. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6277. struct vmcs12 *vmcs12,
  6278. u32 reason, unsigned long qualification)
  6279. {
  6280. load_vmcs12_host_state(vcpu, vmcs12);
  6281. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6282. vmcs12->exit_qualification = qualification;
  6283. nested_vmx_succeed(vcpu);
  6284. }
  6285. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6286. struct x86_instruction_info *info,
  6287. enum x86_intercept_stage stage)
  6288. {
  6289. return X86EMUL_CONTINUE;
  6290. }
  6291. static struct kvm_x86_ops vmx_x86_ops = {
  6292. .cpu_has_kvm_support = cpu_has_kvm_support,
  6293. .disabled_by_bios = vmx_disabled_by_bios,
  6294. .hardware_setup = hardware_setup,
  6295. .hardware_unsetup = hardware_unsetup,
  6296. .check_processor_compatibility = vmx_check_processor_compat,
  6297. .hardware_enable = hardware_enable,
  6298. .hardware_disable = hardware_disable,
  6299. .cpu_has_accelerated_tpr = report_flexpriority,
  6300. .vcpu_create = vmx_create_vcpu,
  6301. .vcpu_free = vmx_free_vcpu,
  6302. .vcpu_reset = vmx_vcpu_reset,
  6303. .prepare_guest_switch = vmx_save_host_state,
  6304. .vcpu_load = vmx_vcpu_load,
  6305. .vcpu_put = vmx_vcpu_put,
  6306. .set_guest_debug = set_guest_debug,
  6307. .get_msr = vmx_get_msr,
  6308. .set_msr = vmx_set_msr,
  6309. .get_segment_base = vmx_get_segment_base,
  6310. .get_segment = vmx_get_segment,
  6311. .set_segment = vmx_set_segment,
  6312. .get_cpl = vmx_get_cpl,
  6313. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6314. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6315. .decache_cr3 = vmx_decache_cr3,
  6316. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6317. .set_cr0 = vmx_set_cr0,
  6318. .set_cr3 = vmx_set_cr3,
  6319. .set_cr4 = vmx_set_cr4,
  6320. .set_efer = vmx_set_efer,
  6321. .get_idt = vmx_get_idt,
  6322. .set_idt = vmx_set_idt,
  6323. .get_gdt = vmx_get_gdt,
  6324. .set_gdt = vmx_set_gdt,
  6325. .set_dr7 = vmx_set_dr7,
  6326. .cache_reg = vmx_cache_reg,
  6327. .get_rflags = vmx_get_rflags,
  6328. .set_rflags = vmx_set_rflags,
  6329. .fpu_activate = vmx_fpu_activate,
  6330. .fpu_deactivate = vmx_fpu_deactivate,
  6331. .tlb_flush = vmx_flush_tlb,
  6332. .run = vmx_vcpu_run,
  6333. .handle_exit = vmx_handle_exit,
  6334. .skip_emulated_instruction = skip_emulated_instruction,
  6335. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6336. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6337. .patch_hypercall = vmx_patch_hypercall,
  6338. .set_irq = vmx_inject_irq,
  6339. .set_nmi = vmx_inject_nmi,
  6340. .queue_exception = vmx_queue_exception,
  6341. .cancel_injection = vmx_cancel_injection,
  6342. .interrupt_allowed = vmx_interrupt_allowed,
  6343. .nmi_allowed = vmx_nmi_allowed,
  6344. .get_nmi_mask = vmx_get_nmi_mask,
  6345. .set_nmi_mask = vmx_set_nmi_mask,
  6346. .enable_nmi_window = enable_nmi_window,
  6347. .enable_irq_window = enable_irq_window,
  6348. .update_cr8_intercept = update_cr8_intercept,
  6349. .set_tss_addr = vmx_set_tss_addr,
  6350. .get_tdp_level = get_ept_level,
  6351. .get_mt_mask = vmx_get_mt_mask,
  6352. .get_exit_info = vmx_get_exit_info,
  6353. .get_lpage_level = vmx_get_lpage_level,
  6354. .cpuid_update = vmx_cpuid_update,
  6355. .rdtscp_supported = vmx_rdtscp_supported,
  6356. .set_supported_cpuid = vmx_set_supported_cpuid,
  6357. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6358. .set_tsc_khz = vmx_set_tsc_khz,
  6359. .write_tsc_offset = vmx_write_tsc_offset,
  6360. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6361. .compute_tsc_offset = vmx_compute_tsc_offset,
  6362. .read_l1_tsc = vmx_read_l1_tsc,
  6363. .set_tdp_cr3 = vmx_set_cr3,
  6364. .check_intercept = vmx_check_intercept,
  6365. };
  6366. static int __init vmx_init(void)
  6367. {
  6368. int r, i;
  6369. rdmsrl_safe(MSR_EFER, &host_efer);
  6370. for (i = 0; i < NR_VMX_MSR; ++i)
  6371. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6372. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6373. if (!vmx_io_bitmap_a)
  6374. return -ENOMEM;
  6375. r = -ENOMEM;
  6376. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6377. if (!vmx_io_bitmap_b)
  6378. goto out;
  6379. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6380. if (!vmx_msr_bitmap_legacy)
  6381. goto out1;
  6382. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6383. if (!vmx_msr_bitmap_longmode)
  6384. goto out2;
  6385. /*
  6386. * Allow direct access to the PC debug port (it is often used for I/O
  6387. * delays, but the vmexits simply slow things down).
  6388. */
  6389. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6390. clear_bit(0x80, vmx_io_bitmap_a);
  6391. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6392. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6393. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6394. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6395. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6396. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6397. if (r)
  6398. goto out3;
  6399. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6400. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6401. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6402. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6403. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6404. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6405. if (enable_ept) {
  6406. kvm_mmu_set_mask_ptes(0ull,
  6407. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  6408. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  6409. 0ull, VMX_EPT_EXECUTABLE_MASK);
  6410. ept_set_mmio_spte_mask();
  6411. kvm_enable_tdp();
  6412. } else
  6413. kvm_disable_tdp();
  6414. return 0;
  6415. out3:
  6416. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6417. out2:
  6418. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6419. out1:
  6420. free_page((unsigned long)vmx_io_bitmap_b);
  6421. out:
  6422. free_page((unsigned long)vmx_io_bitmap_a);
  6423. return r;
  6424. }
  6425. static void __exit vmx_exit(void)
  6426. {
  6427. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6428. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6429. free_page((unsigned long)vmx_io_bitmap_b);
  6430. free_page((unsigned long)vmx_io_bitmap_a);
  6431. kvm_exit();
  6432. }
  6433. module_init(vmx_init)
  6434. module_exit(vmx_exit)