sock.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/types.h>
  95. #include <linux/socket.h>
  96. #include <linux/in.h>
  97. #include <linux/kernel.h>
  98. #include <linux/module.h>
  99. #include <linux/proc_fs.h>
  100. #include <linux/seq_file.h>
  101. #include <linux/sched.h>
  102. #include <linux/timer.h>
  103. #include <linux/string.h>
  104. #include <linux/sockios.h>
  105. #include <linux/net.h>
  106. #include <linux/mm.h>
  107. #include <linux/slab.h>
  108. #include <linux/interrupt.h>
  109. #include <linux/poll.h>
  110. #include <linux/tcp.h>
  111. #include <linux/init.h>
  112. #include <linux/highmem.h>
  113. #include <linux/user_namespace.h>
  114. #include <linux/static_key.h>
  115. #include <linux/memcontrol.h>
  116. #include <linux/prefetch.h>
  117. #include <asm/uaccess.h>
  118. #include <linux/netdevice.h>
  119. #include <net/protocol.h>
  120. #include <linux/skbuff.h>
  121. #include <net/net_namespace.h>
  122. #include <net/request_sock.h>
  123. #include <net/sock.h>
  124. #include <linux/net_tstamp.h>
  125. #include <net/xfrm.h>
  126. #include <linux/ipsec.h>
  127. #include <net/cls_cgroup.h>
  128. #include <net/netprio_cgroup.h>
  129. #include <linux/filter.h>
  130. #include <trace/events/sock.h>
  131. #ifdef CONFIG_INET
  132. #include <net/tcp.h>
  133. #endif
  134. static DEFINE_MUTEX(proto_list_mutex);
  135. static LIST_HEAD(proto_list);
  136. #ifdef CONFIG_MEMCG_KMEM
  137. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  138. {
  139. struct proto *proto;
  140. int ret = 0;
  141. mutex_lock(&proto_list_mutex);
  142. list_for_each_entry(proto, &proto_list, node) {
  143. if (proto->init_cgroup) {
  144. ret = proto->init_cgroup(memcg, ss);
  145. if (ret)
  146. goto out;
  147. }
  148. }
  149. mutex_unlock(&proto_list_mutex);
  150. return ret;
  151. out:
  152. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  153. if (proto->destroy_cgroup)
  154. proto->destroy_cgroup(memcg);
  155. mutex_unlock(&proto_list_mutex);
  156. return ret;
  157. }
  158. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  159. {
  160. struct proto *proto;
  161. mutex_lock(&proto_list_mutex);
  162. list_for_each_entry_reverse(proto, &proto_list, node)
  163. if (proto->destroy_cgroup)
  164. proto->destroy_cgroup(memcg);
  165. mutex_unlock(&proto_list_mutex);
  166. }
  167. #endif
  168. /*
  169. * Each address family might have different locking rules, so we have
  170. * one slock key per address family:
  171. */
  172. static struct lock_class_key af_family_keys[AF_MAX];
  173. static struct lock_class_key af_family_slock_keys[AF_MAX];
  174. struct static_key memcg_socket_limit_enabled;
  175. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  176. /*
  177. * Make lock validator output more readable. (we pre-construct these
  178. * strings build-time, so that runtime initialization of socket
  179. * locks is fast):
  180. */
  181. static const char *const af_family_key_strings[AF_MAX+1] = {
  182. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  183. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  184. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  185. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  186. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  187. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  188. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  189. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  190. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  191. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  192. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  193. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  194. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  195. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  196. };
  197. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  198. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  199. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  200. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  201. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  202. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  203. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  204. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  205. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  206. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  207. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  208. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  209. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  210. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  211. "slock-AF_NFC" , "slock-AF_MAX"
  212. };
  213. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  214. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  215. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  216. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  217. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  218. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  219. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  220. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  221. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  222. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  223. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  224. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  225. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  226. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  227. "clock-AF_NFC" , "clock-AF_MAX"
  228. };
  229. /*
  230. * sk_callback_lock locking rules are per-address-family,
  231. * so split the lock classes by using a per-AF key:
  232. */
  233. static struct lock_class_key af_callback_keys[AF_MAX];
  234. /* Take into consideration the size of the struct sk_buff overhead in the
  235. * determination of these values, since that is non-constant across
  236. * platforms. This makes socket queueing behavior and performance
  237. * not depend upon such differences.
  238. */
  239. #define _SK_MEM_PACKETS 256
  240. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  241. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  242. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  243. /* Run time adjustable parameters. */
  244. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  245. EXPORT_SYMBOL(sysctl_wmem_max);
  246. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  247. EXPORT_SYMBOL(sysctl_rmem_max);
  248. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  249. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  250. /* Maximal space eaten by iovec or ancillary data plus some space */
  251. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  252. EXPORT_SYMBOL(sysctl_optmem_max);
  253. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  254. EXPORT_SYMBOL_GPL(memalloc_socks);
  255. /**
  256. * sk_set_memalloc - sets %SOCK_MEMALLOC
  257. * @sk: socket to set it on
  258. *
  259. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  260. * It's the responsibility of the admin to adjust min_free_kbytes
  261. * to meet the requirements
  262. */
  263. void sk_set_memalloc(struct sock *sk)
  264. {
  265. sock_set_flag(sk, SOCK_MEMALLOC);
  266. sk->sk_allocation |= __GFP_MEMALLOC;
  267. static_key_slow_inc(&memalloc_socks);
  268. }
  269. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  270. void sk_clear_memalloc(struct sock *sk)
  271. {
  272. sock_reset_flag(sk, SOCK_MEMALLOC);
  273. sk->sk_allocation &= ~__GFP_MEMALLOC;
  274. static_key_slow_dec(&memalloc_socks);
  275. /*
  276. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  277. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  278. * it has rmem allocations there is a risk that the user of the
  279. * socket cannot make forward progress due to exceeding the rmem
  280. * limits. By rights, sk_clear_memalloc() should only be called
  281. * on sockets being torn down but warn and reset the accounting if
  282. * that assumption breaks.
  283. */
  284. if (WARN_ON(sk->sk_forward_alloc))
  285. sk_mem_reclaim(sk);
  286. }
  287. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  288. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  289. {
  290. int ret;
  291. unsigned long pflags = current->flags;
  292. /* these should have been dropped before queueing */
  293. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  294. current->flags |= PF_MEMALLOC;
  295. ret = sk->sk_backlog_rcv(sk, skb);
  296. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  297. return ret;
  298. }
  299. EXPORT_SYMBOL(__sk_backlog_rcv);
  300. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  301. {
  302. struct timeval tv;
  303. if (optlen < sizeof(tv))
  304. return -EINVAL;
  305. if (copy_from_user(&tv, optval, sizeof(tv)))
  306. return -EFAULT;
  307. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  308. return -EDOM;
  309. if (tv.tv_sec < 0) {
  310. static int warned __read_mostly;
  311. *timeo_p = 0;
  312. if (warned < 10 && net_ratelimit()) {
  313. warned++;
  314. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  315. __func__, current->comm, task_pid_nr(current));
  316. }
  317. return 0;
  318. }
  319. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  320. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  321. return 0;
  322. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  323. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  324. return 0;
  325. }
  326. static void sock_warn_obsolete_bsdism(const char *name)
  327. {
  328. static int warned;
  329. static char warncomm[TASK_COMM_LEN];
  330. if (strcmp(warncomm, current->comm) && warned < 5) {
  331. strcpy(warncomm, current->comm);
  332. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  333. warncomm, name);
  334. warned++;
  335. }
  336. }
  337. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  338. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  339. {
  340. if (sk->sk_flags & flags) {
  341. sk->sk_flags &= ~flags;
  342. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  343. net_disable_timestamp();
  344. }
  345. }
  346. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  347. {
  348. int err;
  349. int skb_len;
  350. unsigned long flags;
  351. struct sk_buff_head *list = &sk->sk_receive_queue;
  352. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  353. atomic_inc(&sk->sk_drops);
  354. trace_sock_rcvqueue_full(sk, skb);
  355. return -ENOMEM;
  356. }
  357. err = sk_filter(sk, skb);
  358. if (err)
  359. return err;
  360. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  361. atomic_inc(&sk->sk_drops);
  362. return -ENOBUFS;
  363. }
  364. skb->dev = NULL;
  365. skb_set_owner_r(skb, sk);
  366. /* Cache the SKB length before we tack it onto the receive
  367. * queue. Once it is added it no longer belongs to us and
  368. * may be freed by other threads of control pulling packets
  369. * from the queue.
  370. */
  371. skb_len = skb->len;
  372. /* we escape from rcu protected region, make sure we dont leak
  373. * a norefcounted dst
  374. */
  375. skb_dst_force(skb);
  376. spin_lock_irqsave(&list->lock, flags);
  377. skb->dropcount = atomic_read(&sk->sk_drops);
  378. __skb_queue_tail(list, skb);
  379. spin_unlock_irqrestore(&list->lock, flags);
  380. if (!sock_flag(sk, SOCK_DEAD))
  381. sk->sk_data_ready(sk, skb_len);
  382. return 0;
  383. }
  384. EXPORT_SYMBOL(sock_queue_rcv_skb);
  385. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  386. {
  387. int rc = NET_RX_SUCCESS;
  388. if (sk_filter(sk, skb))
  389. goto discard_and_relse;
  390. skb->dev = NULL;
  391. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
  392. atomic_inc(&sk->sk_drops);
  393. goto discard_and_relse;
  394. }
  395. if (nested)
  396. bh_lock_sock_nested(sk);
  397. else
  398. bh_lock_sock(sk);
  399. if (!sock_owned_by_user(sk)) {
  400. /*
  401. * trylock + unlock semantics:
  402. */
  403. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  404. rc = sk_backlog_rcv(sk, skb);
  405. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  406. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  407. bh_unlock_sock(sk);
  408. atomic_inc(&sk->sk_drops);
  409. goto discard_and_relse;
  410. }
  411. bh_unlock_sock(sk);
  412. out:
  413. sock_put(sk);
  414. return rc;
  415. discard_and_relse:
  416. kfree_skb(skb);
  417. goto out;
  418. }
  419. EXPORT_SYMBOL(sk_receive_skb);
  420. void sk_reset_txq(struct sock *sk)
  421. {
  422. sk_tx_queue_clear(sk);
  423. }
  424. EXPORT_SYMBOL(sk_reset_txq);
  425. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  426. {
  427. struct dst_entry *dst = __sk_dst_get(sk);
  428. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  429. sk_tx_queue_clear(sk);
  430. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  431. dst_release(dst);
  432. return NULL;
  433. }
  434. return dst;
  435. }
  436. EXPORT_SYMBOL(__sk_dst_check);
  437. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  438. {
  439. struct dst_entry *dst = sk_dst_get(sk);
  440. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  441. sk_dst_reset(sk);
  442. dst_release(dst);
  443. return NULL;
  444. }
  445. return dst;
  446. }
  447. EXPORT_SYMBOL(sk_dst_check);
  448. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  449. {
  450. int ret = -ENOPROTOOPT;
  451. #ifdef CONFIG_NETDEVICES
  452. struct net *net = sock_net(sk);
  453. char devname[IFNAMSIZ];
  454. int index;
  455. /* Sorry... */
  456. ret = -EPERM;
  457. if (!capable(CAP_NET_RAW))
  458. goto out;
  459. ret = -EINVAL;
  460. if (optlen < 0)
  461. goto out;
  462. /* Bind this socket to a particular device like "eth0",
  463. * as specified in the passed interface name. If the
  464. * name is "" or the option length is zero the socket
  465. * is not bound.
  466. */
  467. if (optlen > IFNAMSIZ - 1)
  468. optlen = IFNAMSIZ - 1;
  469. memset(devname, 0, sizeof(devname));
  470. ret = -EFAULT;
  471. if (copy_from_user(devname, optval, optlen))
  472. goto out;
  473. index = 0;
  474. if (devname[0] != '\0') {
  475. struct net_device *dev;
  476. rcu_read_lock();
  477. dev = dev_get_by_name_rcu(net, devname);
  478. if (dev)
  479. index = dev->ifindex;
  480. rcu_read_unlock();
  481. ret = -ENODEV;
  482. if (!dev)
  483. goto out;
  484. }
  485. lock_sock(sk);
  486. sk->sk_bound_dev_if = index;
  487. sk_dst_reset(sk);
  488. release_sock(sk);
  489. ret = 0;
  490. out:
  491. #endif
  492. return ret;
  493. }
  494. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  495. {
  496. if (valbool)
  497. sock_set_flag(sk, bit);
  498. else
  499. sock_reset_flag(sk, bit);
  500. }
  501. /*
  502. * This is meant for all protocols to use and covers goings on
  503. * at the socket level. Everything here is generic.
  504. */
  505. int sock_setsockopt(struct socket *sock, int level, int optname,
  506. char __user *optval, unsigned int optlen)
  507. {
  508. struct sock *sk = sock->sk;
  509. int val;
  510. int valbool;
  511. struct linger ling;
  512. int ret = 0;
  513. /*
  514. * Options without arguments
  515. */
  516. if (optname == SO_BINDTODEVICE)
  517. return sock_bindtodevice(sk, optval, optlen);
  518. if (optlen < sizeof(int))
  519. return -EINVAL;
  520. if (get_user(val, (int __user *)optval))
  521. return -EFAULT;
  522. valbool = val ? 1 : 0;
  523. lock_sock(sk);
  524. switch (optname) {
  525. case SO_DEBUG:
  526. if (val && !capable(CAP_NET_ADMIN))
  527. ret = -EACCES;
  528. else
  529. sock_valbool_flag(sk, SOCK_DBG, valbool);
  530. break;
  531. case SO_REUSEADDR:
  532. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  533. break;
  534. case SO_TYPE:
  535. case SO_PROTOCOL:
  536. case SO_DOMAIN:
  537. case SO_ERROR:
  538. ret = -ENOPROTOOPT;
  539. break;
  540. case SO_DONTROUTE:
  541. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  542. break;
  543. case SO_BROADCAST:
  544. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  545. break;
  546. case SO_SNDBUF:
  547. /* Don't error on this BSD doesn't and if you think
  548. * about it this is right. Otherwise apps have to
  549. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  550. * are treated in BSD as hints
  551. */
  552. val = min_t(u32, val, sysctl_wmem_max);
  553. set_sndbuf:
  554. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  555. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  556. /* Wake up sending tasks if we upped the value. */
  557. sk->sk_write_space(sk);
  558. break;
  559. case SO_SNDBUFFORCE:
  560. if (!capable(CAP_NET_ADMIN)) {
  561. ret = -EPERM;
  562. break;
  563. }
  564. goto set_sndbuf;
  565. case SO_RCVBUF:
  566. /* Don't error on this BSD doesn't and if you think
  567. * about it this is right. Otherwise apps have to
  568. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  569. * are treated in BSD as hints
  570. */
  571. val = min_t(u32, val, sysctl_rmem_max);
  572. set_rcvbuf:
  573. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  574. /*
  575. * We double it on the way in to account for
  576. * "struct sk_buff" etc. overhead. Applications
  577. * assume that the SO_RCVBUF setting they make will
  578. * allow that much actual data to be received on that
  579. * socket.
  580. *
  581. * Applications are unaware that "struct sk_buff" and
  582. * other overheads allocate from the receive buffer
  583. * during socket buffer allocation.
  584. *
  585. * And after considering the possible alternatives,
  586. * returning the value we actually used in getsockopt
  587. * is the most desirable behavior.
  588. */
  589. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  590. break;
  591. case SO_RCVBUFFORCE:
  592. if (!capable(CAP_NET_ADMIN)) {
  593. ret = -EPERM;
  594. break;
  595. }
  596. goto set_rcvbuf;
  597. case SO_KEEPALIVE:
  598. #ifdef CONFIG_INET
  599. if (sk->sk_protocol == IPPROTO_TCP &&
  600. sk->sk_type == SOCK_STREAM)
  601. tcp_set_keepalive(sk, valbool);
  602. #endif
  603. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  604. break;
  605. case SO_OOBINLINE:
  606. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  607. break;
  608. case SO_NO_CHECK:
  609. sk->sk_no_check = valbool;
  610. break;
  611. case SO_PRIORITY:
  612. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  613. sk->sk_priority = val;
  614. else
  615. ret = -EPERM;
  616. break;
  617. case SO_LINGER:
  618. if (optlen < sizeof(ling)) {
  619. ret = -EINVAL; /* 1003.1g */
  620. break;
  621. }
  622. if (copy_from_user(&ling, optval, sizeof(ling))) {
  623. ret = -EFAULT;
  624. break;
  625. }
  626. if (!ling.l_onoff)
  627. sock_reset_flag(sk, SOCK_LINGER);
  628. else {
  629. #if (BITS_PER_LONG == 32)
  630. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  631. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  632. else
  633. #endif
  634. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  635. sock_set_flag(sk, SOCK_LINGER);
  636. }
  637. break;
  638. case SO_BSDCOMPAT:
  639. sock_warn_obsolete_bsdism("setsockopt");
  640. break;
  641. case SO_PASSCRED:
  642. if (valbool)
  643. set_bit(SOCK_PASSCRED, &sock->flags);
  644. else
  645. clear_bit(SOCK_PASSCRED, &sock->flags);
  646. break;
  647. case SO_TIMESTAMP:
  648. case SO_TIMESTAMPNS:
  649. if (valbool) {
  650. if (optname == SO_TIMESTAMP)
  651. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  652. else
  653. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  654. sock_set_flag(sk, SOCK_RCVTSTAMP);
  655. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  656. } else {
  657. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  658. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  659. }
  660. break;
  661. case SO_TIMESTAMPING:
  662. if (val & ~SOF_TIMESTAMPING_MASK) {
  663. ret = -EINVAL;
  664. break;
  665. }
  666. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  667. val & SOF_TIMESTAMPING_TX_HARDWARE);
  668. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  669. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  670. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  671. val & SOF_TIMESTAMPING_RX_HARDWARE);
  672. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  673. sock_enable_timestamp(sk,
  674. SOCK_TIMESTAMPING_RX_SOFTWARE);
  675. else
  676. sock_disable_timestamp(sk,
  677. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  678. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  679. val & SOF_TIMESTAMPING_SOFTWARE);
  680. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  681. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  682. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  683. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  684. break;
  685. case SO_RCVLOWAT:
  686. if (val < 0)
  687. val = INT_MAX;
  688. sk->sk_rcvlowat = val ? : 1;
  689. break;
  690. case SO_RCVTIMEO:
  691. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  692. break;
  693. case SO_SNDTIMEO:
  694. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  695. break;
  696. case SO_ATTACH_FILTER:
  697. ret = -EINVAL;
  698. if (optlen == sizeof(struct sock_fprog)) {
  699. struct sock_fprog fprog;
  700. ret = -EFAULT;
  701. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  702. break;
  703. ret = sk_attach_filter(&fprog, sk);
  704. }
  705. break;
  706. case SO_DETACH_FILTER:
  707. ret = sk_detach_filter(sk);
  708. break;
  709. case SO_PASSSEC:
  710. if (valbool)
  711. set_bit(SOCK_PASSSEC, &sock->flags);
  712. else
  713. clear_bit(SOCK_PASSSEC, &sock->flags);
  714. break;
  715. case SO_MARK:
  716. if (!capable(CAP_NET_ADMIN))
  717. ret = -EPERM;
  718. else
  719. sk->sk_mark = val;
  720. break;
  721. /* We implement the SO_SNDLOWAT etc to
  722. not be settable (1003.1g 5.3) */
  723. case SO_RXQ_OVFL:
  724. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  725. break;
  726. case SO_WIFI_STATUS:
  727. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  728. break;
  729. case SO_PEEK_OFF:
  730. if (sock->ops->set_peek_off)
  731. sock->ops->set_peek_off(sk, val);
  732. else
  733. ret = -EOPNOTSUPP;
  734. break;
  735. case SO_NOFCS:
  736. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  737. break;
  738. default:
  739. ret = -ENOPROTOOPT;
  740. break;
  741. }
  742. release_sock(sk);
  743. return ret;
  744. }
  745. EXPORT_SYMBOL(sock_setsockopt);
  746. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  747. struct ucred *ucred)
  748. {
  749. ucred->pid = pid_vnr(pid);
  750. ucred->uid = ucred->gid = -1;
  751. if (cred) {
  752. struct user_namespace *current_ns = current_user_ns();
  753. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  754. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  755. }
  756. }
  757. EXPORT_SYMBOL_GPL(cred_to_ucred);
  758. int sock_getsockopt(struct socket *sock, int level, int optname,
  759. char __user *optval, int __user *optlen)
  760. {
  761. struct sock *sk = sock->sk;
  762. union {
  763. int val;
  764. struct linger ling;
  765. struct timeval tm;
  766. } v;
  767. int lv = sizeof(int);
  768. int len;
  769. if (get_user(len, optlen))
  770. return -EFAULT;
  771. if (len < 0)
  772. return -EINVAL;
  773. memset(&v, 0, sizeof(v));
  774. switch (optname) {
  775. case SO_DEBUG:
  776. v.val = sock_flag(sk, SOCK_DBG);
  777. break;
  778. case SO_DONTROUTE:
  779. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  780. break;
  781. case SO_BROADCAST:
  782. v.val = sock_flag(sk, SOCK_BROADCAST);
  783. break;
  784. case SO_SNDBUF:
  785. v.val = sk->sk_sndbuf;
  786. break;
  787. case SO_RCVBUF:
  788. v.val = sk->sk_rcvbuf;
  789. break;
  790. case SO_REUSEADDR:
  791. v.val = sk->sk_reuse;
  792. break;
  793. case SO_KEEPALIVE:
  794. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  795. break;
  796. case SO_TYPE:
  797. v.val = sk->sk_type;
  798. break;
  799. case SO_PROTOCOL:
  800. v.val = sk->sk_protocol;
  801. break;
  802. case SO_DOMAIN:
  803. v.val = sk->sk_family;
  804. break;
  805. case SO_ERROR:
  806. v.val = -sock_error(sk);
  807. if (v.val == 0)
  808. v.val = xchg(&sk->sk_err_soft, 0);
  809. break;
  810. case SO_OOBINLINE:
  811. v.val = sock_flag(sk, SOCK_URGINLINE);
  812. break;
  813. case SO_NO_CHECK:
  814. v.val = sk->sk_no_check;
  815. break;
  816. case SO_PRIORITY:
  817. v.val = sk->sk_priority;
  818. break;
  819. case SO_LINGER:
  820. lv = sizeof(v.ling);
  821. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  822. v.ling.l_linger = sk->sk_lingertime / HZ;
  823. break;
  824. case SO_BSDCOMPAT:
  825. sock_warn_obsolete_bsdism("getsockopt");
  826. break;
  827. case SO_TIMESTAMP:
  828. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  829. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  830. break;
  831. case SO_TIMESTAMPNS:
  832. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  833. break;
  834. case SO_TIMESTAMPING:
  835. v.val = 0;
  836. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  837. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  838. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  839. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  840. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  841. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  842. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  843. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  844. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  845. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  846. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  847. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  848. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  849. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  850. break;
  851. case SO_RCVTIMEO:
  852. lv = sizeof(struct timeval);
  853. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  854. v.tm.tv_sec = 0;
  855. v.tm.tv_usec = 0;
  856. } else {
  857. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  858. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  859. }
  860. break;
  861. case SO_SNDTIMEO:
  862. lv = sizeof(struct timeval);
  863. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  864. v.tm.tv_sec = 0;
  865. v.tm.tv_usec = 0;
  866. } else {
  867. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  868. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  869. }
  870. break;
  871. case SO_RCVLOWAT:
  872. v.val = sk->sk_rcvlowat;
  873. break;
  874. case SO_SNDLOWAT:
  875. v.val = 1;
  876. break;
  877. case SO_PASSCRED:
  878. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  879. break;
  880. case SO_PEERCRED:
  881. {
  882. struct ucred peercred;
  883. if (len > sizeof(peercred))
  884. len = sizeof(peercred);
  885. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  886. if (copy_to_user(optval, &peercred, len))
  887. return -EFAULT;
  888. goto lenout;
  889. }
  890. case SO_PEERNAME:
  891. {
  892. char address[128];
  893. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  894. return -ENOTCONN;
  895. if (lv < len)
  896. return -EINVAL;
  897. if (copy_to_user(optval, address, len))
  898. return -EFAULT;
  899. goto lenout;
  900. }
  901. /* Dubious BSD thing... Probably nobody even uses it, but
  902. * the UNIX standard wants it for whatever reason... -DaveM
  903. */
  904. case SO_ACCEPTCONN:
  905. v.val = sk->sk_state == TCP_LISTEN;
  906. break;
  907. case SO_PASSSEC:
  908. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  909. break;
  910. case SO_PEERSEC:
  911. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  912. case SO_MARK:
  913. v.val = sk->sk_mark;
  914. break;
  915. case SO_RXQ_OVFL:
  916. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  917. break;
  918. case SO_WIFI_STATUS:
  919. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  920. break;
  921. case SO_PEEK_OFF:
  922. if (!sock->ops->set_peek_off)
  923. return -EOPNOTSUPP;
  924. v.val = sk->sk_peek_off;
  925. break;
  926. case SO_NOFCS:
  927. v.val = sock_flag(sk, SOCK_NOFCS);
  928. break;
  929. default:
  930. return -ENOPROTOOPT;
  931. }
  932. if (len > lv)
  933. len = lv;
  934. if (copy_to_user(optval, &v, len))
  935. return -EFAULT;
  936. lenout:
  937. if (put_user(len, optlen))
  938. return -EFAULT;
  939. return 0;
  940. }
  941. /*
  942. * Initialize an sk_lock.
  943. *
  944. * (We also register the sk_lock with the lock validator.)
  945. */
  946. static inline void sock_lock_init(struct sock *sk)
  947. {
  948. sock_lock_init_class_and_name(sk,
  949. af_family_slock_key_strings[sk->sk_family],
  950. af_family_slock_keys + sk->sk_family,
  951. af_family_key_strings[sk->sk_family],
  952. af_family_keys + sk->sk_family);
  953. }
  954. /*
  955. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  956. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  957. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  958. */
  959. static void sock_copy(struct sock *nsk, const struct sock *osk)
  960. {
  961. #ifdef CONFIG_SECURITY_NETWORK
  962. void *sptr = nsk->sk_security;
  963. #endif
  964. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  965. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  966. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  967. #ifdef CONFIG_SECURITY_NETWORK
  968. nsk->sk_security = sptr;
  969. security_sk_clone(osk, nsk);
  970. #endif
  971. }
  972. /*
  973. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  974. * un-modified. Special care is taken when initializing object to zero.
  975. */
  976. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  977. {
  978. if (offsetof(struct sock, sk_node.next) != 0)
  979. memset(sk, 0, offsetof(struct sock, sk_node.next));
  980. memset(&sk->sk_node.pprev, 0,
  981. size - offsetof(struct sock, sk_node.pprev));
  982. }
  983. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  984. {
  985. unsigned long nulls1, nulls2;
  986. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  987. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  988. if (nulls1 > nulls2)
  989. swap(nulls1, nulls2);
  990. if (nulls1 != 0)
  991. memset((char *)sk, 0, nulls1);
  992. memset((char *)sk + nulls1 + sizeof(void *), 0,
  993. nulls2 - nulls1 - sizeof(void *));
  994. memset((char *)sk + nulls2 + sizeof(void *), 0,
  995. size - nulls2 - sizeof(void *));
  996. }
  997. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  998. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  999. int family)
  1000. {
  1001. struct sock *sk;
  1002. struct kmem_cache *slab;
  1003. slab = prot->slab;
  1004. if (slab != NULL) {
  1005. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1006. if (!sk)
  1007. return sk;
  1008. if (priority & __GFP_ZERO) {
  1009. if (prot->clear_sk)
  1010. prot->clear_sk(sk, prot->obj_size);
  1011. else
  1012. sk_prot_clear_nulls(sk, prot->obj_size);
  1013. }
  1014. } else
  1015. sk = kmalloc(prot->obj_size, priority);
  1016. if (sk != NULL) {
  1017. kmemcheck_annotate_bitfield(sk, flags);
  1018. if (security_sk_alloc(sk, family, priority))
  1019. goto out_free;
  1020. if (!try_module_get(prot->owner))
  1021. goto out_free_sec;
  1022. sk_tx_queue_clear(sk);
  1023. }
  1024. return sk;
  1025. out_free_sec:
  1026. security_sk_free(sk);
  1027. out_free:
  1028. if (slab != NULL)
  1029. kmem_cache_free(slab, sk);
  1030. else
  1031. kfree(sk);
  1032. return NULL;
  1033. }
  1034. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1035. {
  1036. struct kmem_cache *slab;
  1037. struct module *owner;
  1038. owner = prot->owner;
  1039. slab = prot->slab;
  1040. security_sk_free(sk);
  1041. if (slab != NULL)
  1042. kmem_cache_free(slab, sk);
  1043. else
  1044. kfree(sk);
  1045. module_put(owner);
  1046. }
  1047. #ifdef CONFIG_CGROUPS
  1048. #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
  1049. void sock_update_classid(struct sock *sk)
  1050. {
  1051. u32 classid;
  1052. rcu_read_lock(); /* doing current task, which cannot vanish. */
  1053. classid = task_cls_classid(current);
  1054. rcu_read_unlock();
  1055. if (classid != sk->sk_classid)
  1056. sk->sk_classid = classid;
  1057. }
  1058. EXPORT_SYMBOL(sock_update_classid);
  1059. #endif
  1060. #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
  1061. void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
  1062. {
  1063. if (in_interrupt())
  1064. return;
  1065. sk->sk_cgrp_prioidx = task_netprioidx(task);
  1066. }
  1067. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1068. #endif
  1069. #endif
  1070. /**
  1071. * sk_alloc - All socket objects are allocated here
  1072. * @net: the applicable net namespace
  1073. * @family: protocol family
  1074. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1075. * @prot: struct proto associated with this new sock instance
  1076. */
  1077. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1078. struct proto *prot)
  1079. {
  1080. struct sock *sk;
  1081. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1082. if (sk) {
  1083. sk->sk_family = family;
  1084. /*
  1085. * See comment in struct sock definition to understand
  1086. * why we need sk_prot_creator -acme
  1087. */
  1088. sk->sk_prot = sk->sk_prot_creator = prot;
  1089. sock_lock_init(sk);
  1090. sock_net_set(sk, get_net(net));
  1091. atomic_set(&sk->sk_wmem_alloc, 1);
  1092. sock_update_classid(sk);
  1093. sock_update_netprioidx(sk, current);
  1094. }
  1095. return sk;
  1096. }
  1097. EXPORT_SYMBOL(sk_alloc);
  1098. static void __sk_free(struct sock *sk)
  1099. {
  1100. struct sk_filter *filter;
  1101. if (sk->sk_destruct)
  1102. sk->sk_destruct(sk);
  1103. filter = rcu_dereference_check(sk->sk_filter,
  1104. atomic_read(&sk->sk_wmem_alloc) == 0);
  1105. if (filter) {
  1106. sk_filter_uncharge(sk, filter);
  1107. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1108. }
  1109. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1110. if (atomic_read(&sk->sk_omem_alloc))
  1111. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1112. __func__, atomic_read(&sk->sk_omem_alloc));
  1113. if (sk->sk_peer_cred)
  1114. put_cred(sk->sk_peer_cred);
  1115. put_pid(sk->sk_peer_pid);
  1116. put_net(sock_net(sk));
  1117. sk_prot_free(sk->sk_prot_creator, sk);
  1118. }
  1119. void sk_free(struct sock *sk)
  1120. {
  1121. /*
  1122. * We subtract one from sk_wmem_alloc and can know if
  1123. * some packets are still in some tx queue.
  1124. * If not null, sock_wfree() will call __sk_free(sk) later
  1125. */
  1126. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1127. __sk_free(sk);
  1128. }
  1129. EXPORT_SYMBOL(sk_free);
  1130. /*
  1131. * Last sock_put should drop reference to sk->sk_net. It has already
  1132. * been dropped in sk_change_net. Taking reference to stopping namespace
  1133. * is not an option.
  1134. * Take reference to a socket to remove it from hash _alive_ and after that
  1135. * destroy it in the context of init_net.
  1136. */
  1137. void sk_release_kernel(struct sock *sk)
  1138. {
  1139. if (sk == NULL || sk->sk_socket == NULL)
  1140. return;
  1141. sock_hold(sk);
  1142. sock_release(sk->sk_socket);
  1143. release_net(sock_net(sk));
  1144. sock_net_set(sk, get_net(&init_net));
  1145. sock_put(sk);
  1146. }
  1147. EXPORT_SYMBOL(sk_release_kernel);
  1148. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1149. {
  1150. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1151. sock_update_memcg(newsk);
  1152. }
  1153. /**
  1154. * sk_clone_lock - clone a socket, and lock its clone
  1155. * @sk: the socket to clone
  1156. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1157. *
  1158. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1159. */
  1160. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1161. {
  1162. struct sock *newsk;
  1163. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1164. if (newsk != NULL) {
  1165. struct sk_filter *filter;
  1166. sock_copy(newsk, sk);
  1167. /* SANITY */
  1168. get_net(sock_net(newsk));
  1169. sk_node_init(&newsk->sk_node);
  1170. sock_lock_init(newsk);
  1171. bh_lock_sock(newsk);
  1172. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1173. newsk->sk_backlog.len = 0;
  1174. atomic_set(&newsk->sk_rmem_alloc, 0);
  1175. /*
  1176. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1177. */
  1178. atomic_set(&newsk->sk_wmem_alloc, 1);
  1179. atomic_set(&newsk->sk_omem_alloc, 0);
  1180. skb_queue_head_init(&newsk->sk_receive_queue);
  1181. skb_queue_head_init(&newsk->sk_write_queue);
  1182. #ifdef CONFIG_NET_DMA
  1183. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1184. #endif
  1185. spin_lock_init(&newsk->sk_dst_lock);
  1186. rwlock_init(&newsk->sk_callback_lock);
  1187. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1188. af_callback_keys + newsk->sk_family,
  1189. af_family_clock_key_strings[newsk->sk_family]);
  1190. newsk->sk_dst_cache = NULL;
  1191. newsk->sk_wmem_queued = 0;
  1192. newsk->sk_forward_alloc = 0;
  1193. newsk->sk_send_head = NULL;
  1194. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1195. sock_reset_flag(newsk, SOCK_DONE);
  1196. skb_queue_head_init(&newsk->sk_error_queue);
  1197. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1198. if (filter != NULL)
  1199. sk_filter_charge(newsk, filter);
  1200. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1201. /* It is still raw copy of parent, so invalidate
  1202. * destructor and make plain sk_free() */
  1203. newsk->sk_destruct = NULL;
  1204. bh_unlock_sock(newsk);
  1205. sk_free(newsk);
  1206. newsk = NULL;
  1207. goto out;
  1208. }
  1209. newsk->sk_err = 0;
  1210. newsk->sk_priority = 0;
  1211. /*
  1212. * Before updating sk_refcnt, we must commit prior changes to memory
  1213. * (Documentation/RCU/rculist_nulls.txt for details)
  1214. */
  1215. smp_wmb();
  1216. atomic_set(&newsk->sk_refcnt, 2);
  1217. /*
  1218. * Increment the counter in the same struct proto as the master
  1219. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1220. * is the same as sk->sk_prot->socks, as this field was copied
  1221. * with memcpy).
  1222. *
  1223. * This _changes_ the previous behaviour, where
  1224. * tcp_create_openreq_child always was incrementing the
  1225. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1226. * to be taken into account in all callers. -acme
  1227. */
  1228. sk_refcnt_debug_inc(newsk);
  1229. sk_set_socket(newsk, NULL);
  1230. newsk->sk_wq = NULL;
  1231. sk_update_clone(sk, newsk);
  1232. if (newsk->sk_prot->sockets_allocated)
  1233. sk_sockets_allocated_inc(newsk);
  1234. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1235. net_enable_timestamp();
  1236. }
  1237. out:
  1238. return newsk;
  1239. }
  1240. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1241. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1242. {
  1243. __sk_dst_set(sk, dst);
  1244. sk->sk_route_caps = dst->dev->features;
  1245. if (sk->sk_route_caps & NETIF_F_GSO)
  1246. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1247. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1248. if (sk_can_gso(sk)) {
  1249. if (dst->header_len) {
  1250. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1251. } else {
  1252. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1253. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1254. sk->sk_gso_max_segs = dst->dev->gso_max_segs;
  1255. }
  1256. }
  1257. }
  1258. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1259. /*
  1260. * Simple resource managers for sockets.
  1261. */
  1262. /*
  1263. * Write buffer destructor automatically called from kfree_skb.
  1264. */
  1265. void sock_wfree(struct sk_buff *skb)
  1266. {
  1267. struct sock *sk = skb->sk;
  1268. unsigned int len = skb->truesize;
  1269. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1270. /*
  1271. * Keep a reference on sk_wmem_alloc, this will be released
  1272. * after sk_write_space() call
  1273. */
  1274. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1275. sk->sk_write_space(sk);
  1276. len = 1;
  1277. }
  1278. /*
  1279. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1280. * could not do because of in-flight packets
  1281. */
  1282. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1283. __sk_free(sk);
  1284. }
  1285. EXPORT_SYMBOL(sock_wfree);
  1286. /*
  1287. * Read buffer destructor automatically called from kfree_skb.
  1288. */
  1289. void sock_rfree(struct sk_buff *skb)
  1290. {
  1291. struct sock *sk = skb->sk;
  1292. unsigned int len = skb->truesize;
  1293. atomic_sub(len, &sk->sk_rmem_alloc);
  1294. sk_mem_uncharge(sk, len);
  1295. }
  1296. EXPORT_SYMBOL(sock_rfree);
  1297. void sock_edemux(struct sk_buff *skb)
  1298. {
  1299. struct sock *sk = skb->sk;
  1300. #ifdef CONFIG_INET
  1301. if (sk->sk_state == TCP_TIME_WAIT)
  1302. inet_twsk_put(inet_twsk(sk));
  1303. else
  1304. #endif
  1305. sock_put(sk);
  1306. }
  1307. EXPORT_SYMBOL(sock_edemux);
  1308. kuid_t sock_i_uid(struct sock *sk)
  1309. {
  1310. kuid_t uid;
  1311. read_lock_bh(&sk->sk_callback_lock);
  1312. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1313. read_unlock_bh(&sk->sk_callback_lock);
  1314. return uid;
  1315. }
  1316. EXPORT_SYMBOL(sock_i_uid);
  1317. unsigned long sock_i_ino(struct sock *sk)
  1318. {
  1319. unsigned long ino;
  1320. read_lock_bh(&sk->sk_callback_lock);
  1321. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1322. read_unlock_bh(&sk->sk_callback_lock);
  1323. return ino;
  1324. }
  1325. EXPORT_SYMBOL(sock_i_ino);
  1326. /*
  1327. * Allocate a skb from the socket's send buffer.
  1328. */
  1329. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1330. gfp_t priority)
  1331. {
  1332. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1333. struct sk_buff *skb = alloc_skb(size, priority);
  1334. if (skb) {
  1335. skb_set_owner_w(skb, sk);
  1336. return skb;
  1337. }
  1338. }
  1339. return NULL;
  1340. }
  1341. EXPORT_SYMBOL(sock_wmalloc);
  1342. /*
  1343. * Allocate a skb from the socket's receive buffer.
  1344. */
  1345. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1346. gfp_t priority)
  1347. {
  1348. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1349. struct sk_buff *skb = alloc_skb(size, priority);
  1350. if (skb) {
  1351. skb_set_owner_r(skb, sk);
  1352. return skb;
  1353. }
  1354. }
  1355. return NULL;
  1356. }
  1357. /*
  1358. * Allocate a memory block from the socket's option memory buffer.
  1359. */
  1360. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1361. {
  1362. if ((unsigned int)size <= sysctl_optmem_max &&
  1363. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1364. void *mem;
  1365. /* First do the add, to avoid the race if kmalloc
  1366. * might sleep.
  1367. */
  1368. atomic_add(size, &sk->sk_omem_alloc);
  1369. mem = kmalloc(size, priority);
  1370. if (mem)
  1371. return mem;
  1372. atomic_sub(size, &sk->sk_omem_alloc);
  1373. }
  1374. return NULL;
  1375. }
  1376. EXPORT_SYMBOL(sock_kmalloc);
  1377. /*
  1378. * Free an option memory block.
  1379. */
  1380. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1381. {
  1382. kfree(mem);
  1383. atomic_sub(size, &sk->sk_omem_alloc);
  1384. }
  1385. EXPORT_SYMBOL(sock_kfree_s);
  1386. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1387. I think, these locks should be removed for datagram sockets.
  1388. */
  1389. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1390. {
  1391. DEFINE_WAIT(wait);
  1392. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1393. for (;;) {
  1394. if (!timeo)
  1395. break;
  1396. if (signal_pending(current))
  1397. break;
  1398. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1399. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1400. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1401. break;
  1402. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1403. break;
  1404. if (sk->sk_err)
  1405. break;
  1406. timeo = schedule_timeout(timeo);
  1407. }
  1408. finish_wait(sk_sleep(sk), &wait);
  1409. return timeo;
  1410. }
  1411. /*
  1412. * Generic send/receive buffer handlers
  1413. */
  1414. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1415. unsigned long data_len, int noblock,
  1416. int *errcode)
  1417. {
  1418. struct sk_buff *skb;
  1419. gfp_t gfp_mask;
  1420. long timeo;
  1421. int err;
  1422. int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1423. err = -EMSGSIZE;
  1424. if (npages > MAX_SKB_FRAGS)
  1425. goto failure;
  1426. gfp_mask = sk->sk_allocation;
  1427. if (gfp_mask & __GFP_WAIT)
  1428. gfp_mask |= __GFP_REPEAT;
  1429. timeo = sock_sndtimeo(sk, noblock);
  1430. while (1) {
  1431. err = sock_error(sk);
  1432. if (err != 0)
  1433. goto failure;
  1434. err = -EPIPE;
  1435. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1436. goto failure;
  1437. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1438. skb = alloc_skb(header_len, gfp_mask);
  1439. if (skb) {
  1440. int i;
  1441. /* No pages, we're done... */
  1442. if (!data_len)
  1443. break;
  1444. skb->truesize += data_len;
  1445. skb_shinfo(skb)->nr_frags = npages;
  1446. for (i = 0; i < npages; i++) {
  1447. struct page *page;
  1448. page = alloc_pages(sk->sk_allocation, 0);
  1449. if (!page) {
  1450. err = -ENOBUFS;
  1451. skb_shinfo(skb)->nr_frags = i;
  1452. kfree_skb(skb);
  1453. goto failure;
  1454. }
  1455. __skb_fill_page_desc(skb, i,
  1456. page, 0,
  1457. (data_len >= PAGE_SIZE ?
  1458. PAGE_SIZE :
  1459. data_len));
  1460. data_len -= PAGE_SIZE;
  1461. }
  1462. /* Full success... */
  1463. break;
  1464. }
  1465. err = -ENOBUFS;
  1466. goto failure;
  1467. }
  1468. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1469. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1470. err = -EAGAIN;
  1471. if (!timeo)
  1472. goto failure;
  1473. if (signal_pending(current))
  1474. goto interrupted;
  1475. timeo = sock_wait_for_wmem(sk, timeo);
  1476. }
  1477. skb_set_owner_w(skb, sk);
  1478. return skb;
  1479. interrupted:
  1480. err = sock_intr_errno(timeo);
  1481. failure:
  1482. *errcode = err;
  1483. return NULL;
  1484. }
  1485. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1486. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1487. int noblock, int *errcode)
  1488. {
  1489. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1490. }
  1491. EXPORT_SYMBOL(sock_alloc_send_skb);
  1492. /* On 32bit arches, an skb frag is limited to 2^15 */
  1493. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1494. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1495. {
  1496. int order;
  1497. if (pfrag->page) {
  1498. if (atomic_read(&pfrag->page->_count) == 1) {
  1499. pfrag->offset = 0;
  1500. return true;
  1501. }
  1502. if (pfrag->offset < pfrag->size)
  1503. return true;
  1504. put_page(pfrag->page);
  1505. }
  1506. /* We restrict high order allocations to users that can afford to wait */
  1507. order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
  1508. do {
  1509. gfp_t gfp = sk->sk_allocation;
  1510. if (order)
  1511. gfp |= __GFP_COMP | __GFP_NOWARN;
  1512. pfrag->page = alloc_pages(gfp, order);
  1513. if (likely(pfrag->page)) {
  1514. pfrag->offset = 0;
  1515. pfrag->size = PAGE_SIZE << order;
  1516. return true;
  1517. }
  1518. } while (--order >= 0);
  1519. sk_enter_memory_pressure(sk);
  1520. sk_stream_moderate_sndbuf(sk);
  1521. return false;
  1522. }
  1523. EXPORT_SYMBOL(sk_page_frag_refill);
  1524. static void __lock_sock(struct sock *sk)
  1525. __releases(&sk->sk_lock.slock)
  1526. __acquires(&sk->sk_lock.slock)
  1527. {
  1528. DEFINE_WAIT(wait);
  1529. for (;;) {
  1530. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1531. TASK_UNINTERRUPTIBLE);
  1532. spin_unlock_bh(&sk->sk_lock.slock);
  1533. schedule();
  1534. spin_lock_bh(&sk->sk_lock.slock);
  1535. if (!sock_owned_by_user(sk))
  1536. break;
  1537. }
  1538. finish_wait(&sk->sk_lock.wq, &wait);
  1539. }
  1540. static void __release_sock(struct sock *sk)
  1541. __releases(&sk->sk_lock.slock)
  1542. __acquires(&sk->sk_lock.slock)
  1543. {
  1544. struct sk_buff *skb = sk->sk_backlog.head;
  1545. do {
  1546. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1547. bh_unlock_sock(sk);
  1548. do {
  1549. struct sk_buff *next = skb->next;
  1550. prefetch(next);
  1551. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1552. skb->next = NULL;
  1553. sk_backlog_rcv(sk, skb);
  1554. /*
  1555. * We are in process context here with softirqs
  1556. * disabled, use cond_resched_softirq() to preempt.
  1557. * This is safe to do because we've taken the backlog
  1558. * queue private:
  1559. */
  1560. cond_resched_softirq();
  1561. skb = next;
  1562. } while (skb != NULL);
  1563. bh_lock_sock(sk);
  1564. } while ((skb = sk->sk_backlog.head) != NULL);
  1565. /*
  1566. * Doing the zeroing here guarantee we can not loop forever
  1567. * while a wild producer attempts to flood us.
  1568. */
  1569. sk->sk_backlog.len = 0;
  1570. }
  1571. /**
  1572. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1573. * @sk: sock to wait on
  1574. * @timeo: for how long
  1575. *
  1576. * Now socket state including sk->sk_err is changed only under lock,
  1577. * hence we may omit checks after joining wait queue.
  1578. * We check receive queue before schedule() only as optimization;
  1579. * it is very likely that release_sock() added new data.
  1580. */
  1581. int sk_wait_data(struct sock *sk, long *timeo)
  1582. {
  1583. int rc;
  1584. DEFINE_WAIT(wait);
  1585. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1586. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1587. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1588. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1589. finish_wait(sk_sleep(sk), &wait);
  1590. return rc;
  1591. }
  1592. EXPORT_SYMBOL(sk_wait_data);
  1593. /**
  1594. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1595. * @sk: socket
  1596. * @size: memory size to allocate
  1597. * @kind: allocation type
  1598. *
  1599. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1600. * rmem allocation. This function assumes that protocols which have
  1601. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1602. */
  1603. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1604. {
  1605. struct proto *prot = sk->sk_prot;
  1606. int amt = sk_mem_pages(size);
  1607. long allocated;
  1608. int parent_status = UNDER_LIMIT;
  1609. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1610. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1611. /* Under limit. */
  1612. if (parent_status == UNDER_LIMIT &&
  1613. allocated <= sk_prot_mem_limits(sk, 0)) {
  1614. sk_leave_memory_pressure(sk);
  1615. return 1;
  1616. }
  1617. /* Under pressure. (we or our parents) */
  1618. if ((parent_status > SOFT_LIMIT) ||
  1619. allocated > sk_prot_mem_limits(sk, 1))
  1620. sk_enter_memory_pressure(sk);
  1621. /* Over hard limit (we or our parents) */
  1622. if ((parent_status == OVER_LIMIT) ||
  1623. (allocated > sk_prot_mem_limits(sk, 2)))
  1624. goto suppress_allocation;
  1625. /* guarantee minimum buffer size under pressure */
  1626. if (kind == SK_MEM_RECV) {
  1627. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1628. return 1;
  1629. } else { /* SK_MEM_SEND */
  1630. if (sk->sk_type == SOCK_STREAM) {
  1631. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1632. return 1;
  1633. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1634. prot->sysctl_wmem[0])
  1635. return 1;
  1636. }
  1637. if (sk_has_memory_pressure(sk)) {
  1638. int alloc;
  1639. if (!sk_under_memory_pressure(sk))
  1640. return 1;
  1641. alloc = sk_sockets_allocated_read_positive(sk);
  1642. if (sk_prot_mem_limits(sk, 2) > alloc *
  1643. sk_mem_pages(sk->sk_wmem_queued +
  1644. atomic_read(&sk->sk_rmem_alloc) +
  1645. sk->sk_forward_alloc))
  1646. return 1;
  1647. }
  1648. suppress_allocation:
  1649. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1650. sk_stream_moderate_sndbuf(sk);
  1651. /* Fail only if socket is _under_ its sndbuf.
  1652. * In this case we cannot block, so that we have to fail.
  1653. */
  1654. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1655. return 1;
  1656. }
  1657. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1658. /* Alas. Undo changes. */
  1659. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1660. sk_memory_allocated_sub(sk, amt);
  1661. return 0;
  1662. }
  1663. EXPORT_SYMBOL(__sk_mem_schedule);
  1664. /**
  1665. * __sk_reclaim - reclaim memory_allocated
  1666. * @sk: socket
  1667. */
  1668. void __sk_mem_reclaim(struct sock *sk)
  1669. {
  1670. sk_memory_allocated_sub(sk,
  1671. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1672. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1673. if (sk_under_memory_pressure(sk) &&
  1674. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1675. sk_leave_memory_pressure(sk);
  1676. }
  1677. EXPORT_SYMBOL(__sk_mem_reclaim);
  1678. /*
  1679. * Set of default routines for initialising struct proto_ops when
  1680. * the protocol does not support a particular function. In certain
  1681. * cases where it makes no sense for a protocol to have a "do nothing"
  1682. * function, some default processing is provided.
  1683. */
  1684. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1685. {
  1686. return -EOPNOTSUPP;
  1687. }
  1688. EXPORT_SYMBOL(sock_no_bind);
  1689. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1690. int len, int flags)
  1691. {
  1692. return -EOPNOTSUPP;
  1693. }
  1694. EXPORT_SYMBOL(sock_no_connect);
  1695. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1696. {
  1697. return -EOPNOTSUPP;
  1698. }
  1699. EXPORT_SYMBOL(sock_no_socketpair);
  1700. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1701. {
  1702. return -EOPNOTSUPP;
  1703. }
  1704. EXPORT_SYMBOL(sock_no_accept);
  1705. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1706. int *len, int peer)
  1707. {
  1708. return -EOPNOTSUPP;
  1709. }
  1710. EXPORT_SYMBOL(sock_no_getname);
  1711. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1712. {
  1713. return 0;
  1714. }
  1715. EXPORT_SYMBOL(sock_no_poll);
  1716. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1717. {
  1718. return -EOPNOTSUPP;
  1719. }
  1720. EXPORT_SYMBOL(sock_no_ioctl);
  1721. int sock_no_listen(struct socket *sock, int backlog)
  1722. {
  1723. return -EOPNOTSUPP;
  1724. }
  1725. EXPORT_SYMBOL(sock_no_listen);
  1726. int sock_no_shutdown(struct socket *sock, int how)
  1727. {
  1728. return -EOPNOTSUPP;
  1729. }
  1730. EXPORT_SYMBOL(sock_no_shutdown);
  1731. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1732. char __user *optval, unsigned int optlen)
  1733. {
  1734. return -EOPNOTSUPP;
  1735. }
  1736. EXPORT_SYMBOL(sock_no_setsockopt);
  1737. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1738. char __user *optval, int __user *optlen)
  1739. {
  1740. return -EOPNOTSUPP;
  1741. }
  1742. EXPORT_SYMBOL(sock_no_getsockopt);
  1743. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1744. size_t len)
  1745. {
  1746. return -EOPNOTSUPP;
  1747. }
  1748. EXPORT_SYMBOL(sock_no_sendmsg);
  1749. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1750. size_t len, int flags)
  1751. {
  1752. return -EOPNOTSUPP;
  1753. }
  1754. EXPORT_SYMBOL(sock_no_recvmsg);
  1755. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1756. {
  1757. /* Mirror missing mmap method error code */
  1758. return -ENODEV;
  1759. }
  1760. EXPORT_SYMBOL(sock_no_mmap);
  1761. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1762. {
  1763. ssize_t res;
  1764. struct msghdr msg = {.msg_flags = flags};
  1765. struct kvec iov;
  1766. char *kaddr = kmap(page);
  1767. iov.iov_base = kaddr + offset;
  1768. iov.iov_len = size;
  1769. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1770. kunmap(page);
  1771. return res;
  1772. }
  1773. EXPORT_SYMBOL(sock_no_sendpage);
  1774. /*
  1775. * Default Socket Callbacks
  1776. */
  1777. static void sock_def_wakeup(struct sock *sk)
  1778. {
  1779. struct socket_wq *wq;
  1780. rcu_read_lock();
  1781. wq = rcu_dereference(sk->sk_wq);
  1782. if (wq_has_sleeper(wq))
  1783. wake_up_interruptible_all(&wq->wait);
  1784. rcu_read_unlock();
  1785. }
  1786. static void sock_def_error_report(struct sock *sk)
  1787. {
  1788. struct socket_wq *wq;
  1789. rcu_read_lock();
  1790. wq = rcu_dereference(sk->sk_wq);
  1791. if (wq_has_sleeper(wq))
  1792. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1793. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1794. rcu_read_unlock();
  1795. }
  1796. static void sock_def_readable(struct sock *sk, int len)
  1797. {
  1798. struct socket_wq *wq;
  1799. rcu_read_lock();
  1800. wq = rcu_dereference(sk->sk_wq);
  1801. if (wq_has_sleeper(wq))
  1802. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1803. POLLRDNORM | POLLRDBAND);
  1804. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1805. rcu_read_unlock();
  1806. }
  1807. static void sock_def_write_space(struct sock *sk)
  1808. {
  1809. struct socket_wq *wq;
  1810. rcu_read_lock();
  1811. /* Do not wake up a writer until he can make "significant"
  1812. * progress. --DaveM
  1813. */
  1814. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1815. wq = rcu_dereference(sk->sk_wq);
  1816. if (wq_has_sleeper(wq))
  1817. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1818. POLLWRNORM | POLLWRBAND);
  1819. /* Should agree with poll, otherwise some programs break */
  1820. if (sock_writeable(sk))
  1821. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1822. }
  1823. rcu_read_unlock();
  1824. }
  1825. static void sock_def_destruct(struct sock *sk)
  1826. {
  1827. kfree(sk->sk_protinfo);
  1828. }
  1829. void sk_send_sigurg(struct sock *sk)
  1830. {
  1831. if (sk->sk_socket && sk->sk_socket->file)
  1832. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1833. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1834. }
  1835. EXPORT_SYMBOL(sk_send_sigurg);
  1836. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1837. unsigned long expires)
  1838. {
  1839. if (!mod_timer(timer, expires))
  1840. sock_hold(sk);
  1841. }
  1842. EXPORT_SYMBOL(sk_reset_timer);
  1843. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1844. {
  1845. if (timer_pending(timer) && del_timer(timer))
  1846. __sock_put(sk);
  1847. }
  1848. EXPORT_SYMBOL(sk_stop_timer);
  1849. void sock_init_data(struct socket *sock, struct sock *sk)
  1850. {
  1851. skb_queue_head_init(&sk->sk_receive_queue);
  1852. skb_queue_head_init(&sk->sk_write_queue);
  1853. skb_queue_head_init(&sk->sk_error_queue);
  1854. #ifdef CONFIG_NET_DMA
  1855. skb_queue_head_init(&sk->sk_async_wait_queue);
  1856. #endif
  1857. sk->sk_send_head = NULL;
  1858. init_timer(&sk->sk_timer);
  1859. sk->sk_allocation = GFP_KERNEL;
  1860. sk->sk_rcvbuf = sysctl_rmem_default;
  1861. sk->sk_sndbuf = sysctl_wmem_default;
  1862. sk->sk_state = TCP_CLOSE;
  1863. sk_set_socket(sk, sock);
  1864. sock_set_flag(sk, SOCK_ZAPPED);
  1865. if (sock) {
  1866. sk->sk_type = sock->type;
  1867. sk->sk_wq = sock->wq;
  1868. sock->sk = sk;
  1869. } else
  1870. sk->sk_wq = NULL;
  1871. spin_lock_init(&sk->sk_dst_lock);
  1872. rwlock_init(&sk->sk_callback_lock);
  1873. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1874. af_callback_keys + sk->sk_family,
  1875. af_family_clock_key_strings[sk->sk_family]);
  1876. sk->sk_state_change = sock_def_wakeup;
  1877. sk->sk_data_ready = sock_def_readable;
  1878. sk->sk_write_space = sock_def_write_space;
  1879. sk->sk_error_report = sock_def_error_report;
  1880. sk->sk_destruct = sock_def_destruct;
  1881. sk->sk_frag.page = NULL;
  1882. sk->sk_frag.offset = 0;
  1883. sk->sk_peek_off = -1;
  1884. sk->sk_peer_pid = NULL;
  1885. sk->sk_peer_cred = NULL;
  1886. sk->sk_write_pending = 0;
  1887. sk->sk_rcvlowat = 1;
  1888. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1889. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1890. sk->sk_stamp = ktime_set(-1L, 0);
  1891. /*
  1892. * Before updating sk_refcnt, we must commit prior changes to memory
  1893. * (Documentation/RCU/rculist_nulls.txt for details)
  1894. */
  1895. smp_wmb();
  1896. atomic_set(&sk->sk_refcnt, 1);
  1897. atomic_set(&sk->sk_drops, 0);
  1898. }
  1899. EXPORT_SYMBOL(sock_init_data);
  1900. void lock_sock_nested(struct sock *sk, int subclass)
  1901. {
  1902. might_sleep();
  1903. spin_lock_bh(&sk->sk_lock.slock);
  1904. if (sk->sk_lock.owned)
  1905. __lock_sock(sk);
  1906. sk->sk_lock.owned = 1;
  1907. spin_unlock(&sk->sk_lock.slock);
  1908. /*
  1909. * The sk_lock has mutex_lock() semantics here:
  1910. */
  1911. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1912. local_bh_enable();
  1913. }
  1914. EXPORT_SYMBOL(lock_sock_nested);
  1915. void release_sock(struct sock *sk)
  1916. {
  1917. /*
  1918. * The sk_lock has mutex_unlock() semantics:
  1919. */
  1920. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1921. spin_lock_bh(&sk->sk_lock.slock);
  1922. if (sk->sk_backlog.tail)
  1923. __release_sock(sk);
  1924. if (sk->sk_prot->release_cb)
  1925. sk->sk_prot->release_cb(sk);
  1926. sk->sk_lock.owned = 0;
  1927. if (waitqueue_active(&sk->sk_lock.wq))
  1928. wake_up(&sk->sk_lock.wq);
  1929. spin_unlock_bh(&sk->sk_lock.slock);
  1930. }
  1931. EXPORT_SYMBOL(release_sock);
  1932. /**
  1933. * lock_sock_fast - fast version of lock_sock
  1934. * @sk: socket
  1935. *
  1936. * This version should be used for very small section, where process wont block
  1937. * return false if fast path is taken
  1938. * sk_lock.slock locked, owned = 0, BH disabled
  1939. * return true if slow path is taken
  1940. * sk_lock.slock unlocked, owned = 1, BH enabled
  1941. */
  1942. bool lock_sock_fast(struct sock *sk)
  1943. {
  1944. might_sleep();
  1945. spin_lock_bh(&sk->sk_lock.slock);
  1946. if (!sk->sk_lock.owned)
  1947. /*
  1948. * Note : We must disable BH
  1949. */
  1950. return false;
  1951. __lock_sock(sk);
  1952. sk->sk_lock.owned = 1;
  1953. spin_unlock(&sk->sk_lock.slock);
  1954. /*
  1955. * The sk_lock has mutex_lock() semantics here:
  1956. */
  1957. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1958. local_bh_enable();
  1959. return true;
  1960. }
  1961. EXPORT_SYMBOL(lock_sock_fast);
  1962. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1963. {
  1964. struct timeval tv;
  1965. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1966. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1967. tv = ktime_to_timeval(sk->sk_stamp);
  1968. if (tv.tv_sec == -1)
  1969. return -ENOENT;
  1970. if (tv.tv_sec == 0) {
  1971. sk->sk_stamp = ktime_get_real();
  1972. tv = ktime_to_timeval(sk->sk_stamp);
  1973. }
  1974. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1975. }
  1976. EXPORT_SYMBOL(sock_get_timestamp);
  1977. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1978. {
  1979. struct timespec ts;
  1980. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1981. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1982. ts = ktime_to_timespec(sk->sk_stamp);
  1983. if (ts.tv_sec == -1)
  1984. return -ENOENT;
  1985. if (ts.tv_sec == 0) {
  1986. sk->sk_stamp = ktime_get_real();
  1987. ts = ktime_to_timespec(sk->sk_stamp);
  1988. }
  1989. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1990. }
  1991. EXPORT_SYMBOL(sock_get_timestampns);
  1992. void sock_enable_timestamp(struct sock *sk, int flag)
  1993. {
  1994. if (!sock_flag(sk, flag)) {
  1995. unsigned long previous_flags = sk->sk_flags;
  1996. sock_set_flag(sk, flag);
  1997. /*
  1998. * we just set one of the two flags which require net
  1999. * time stamping, but time stamping might have been on
  2000. * already because of the other one
  2001. */
  2002. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  2003. net_enable_timestamp();
  2004. }
  2005. }
  2006. /*
  2007. * Get a socket option on an socket.
  2008. *
  2009. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2010. * asynchronous errors should be reported by getsockopt. We assume
  2011. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2012. */
  2013. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2014. char __user *optval, int __user *optlen)
  2015. {
  2016. struct sock *sk = sock->sk;
  2017. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2018. }
  2019. EXPORT_SYMBOL(sock_common_getsockopt);
  2020. #ifdef CONFIG_COMPAT
  2021. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2022. char __user *optval, int __user *optlen)
  2023. {
  2024. struct sock *sk = sock->sk;
  2025. if (sk->sk_prot->compat_getsockopt != NULL)
  2026. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2027. optval, optlen);
  2028. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2029. }
  2030. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2031. #endif
  2032. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  2033. struct msghdr *msg, size_t size, int flags)
  2034. {
  2035. struct sock *sk = sock->sk;
  2036. int addr_len = 0;
  2037. int err;
  2038. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  2039. flags & ~MSG_DONTWAIT, &addr_len);
  2040. if (err >= 0)
  2041. msg->msg_namelen = addr_len;
  2042. return err;
  2043. }
  2044. EXPORT_SYMBOL(sock_common_recvmsg);
  2045. /*
  2046. * Set socket options on an inet socket.
  2047. */
  2048. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2049. char __user *optval, unsigned int optlen)
  2050. {
  2051. struct sock *sk = sock->sk;
  2052. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2053. }
  2054. EXPORT_SYMBOL(sock_common_setsockopt);
  2055. #ifdef CONFIG_COMPAT
  2056. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2057. char __user *optval, unsigned int optlen)
  2058. {
  2059. struct sock *sk = sock->sk;
  2060. if (sk->sk_prot->compat_setsockopt != NULL)
  2061. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2062. optval, optlen);
  2063. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2064. }
  2065. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2066. #endif
  2067. void sk_common_release(struct sock *sk)
  2068. {
  2069. if (sk->sk_prot->destroy)
  2070. sk->sk_prot->destroy(sk);
  2071. /*
  2072. * Observation: when sock_common_release is called, processes have
  2073. * no access to socket. But net still has.
  2074. * Step one, detach it from networking:
  2075. *
  2076. * A. Remove from hash tables.
  2077. */
  2078. sk->sk_prot->unhash(sk);
  2079. /*
  2080. * In this point socket cannot receive new packets, but it is possible
  2081. * that some packets are in flight because some CPU runs receiver and
  2082. * did hash table lookup before we unhashed socket. They will achieve
  2083. * receive queue and will be purged by socket destructor.
  2084. *
  2085. * Also we still have packets pending on receive queue and probably,
  2086. * our own packets waiting in device queues. sock_destroy will drain
  2087. * receive queue, but transmitted packets will delay socket destruction
  2088. * until the last reference will be released.
  2089. */
  2090. sock_orphan(sk);
  2091. xfrm_sk_free_policy(sk);
  2092. sk_refcnt_debug_release(sk);
  2093. if (sk->sk_frag.page) {
  2094. put_page(sk->sk_frag.page);
  2095. sk->sk_frag.page = NULL;
  2096. }
  2097. sock_put(sk);
  2098. }
  2099. EXPORT_SYMBOL(sk_common_release);
  2100. #ifdef CONFIG_PROC_FS
  2101. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2102. struct prot_inuse {
  2103. int val[PROTO_INUSE_NR];
  2104. };
  2105. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2106. #ifdef CONFIG_NET_NS
  2107. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2108. {
  2109. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2110. }
  2111. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2112. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2113. {
  2114. int cpu, idx = prot->inuse_idx;
  2115. int res = 0;
  2116. for_each_possible_cpu(cpu)
  2117. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2118. return res >= 0 ? res : 0;
  2119. }
  2120. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2121. static int __net_init sock_inuse_init_net(struct net *net)
  2122. {
  2123. net->core.inuse = alloc_percpu(struct prot_inuse);
  2124. return net->core.inuse ? 0 : -ENOMEM;
  2125. }
  2126. static void __net_exit sock_inuse_exit_net(struct net *net)
  2127. {
  2128. free_percpu(net->core.inuse);
  2129. }
  2130. static struct pernet_operations net_inuse_ops = {
  2131. .init = sock_inuse_init_net,
  2132. .exit = sock_inuse_exit_net,
  2133. };
  2134. static __init int net_inuse_init(void)
  2135. {
  2136. if (register_pernet_subsys(&net_inuse_ops))
  2137. panic("Cannot initialize net inuse counters");
  2138. return 0;
  2139. }
  2140. core_initcall(net_inuse_init);
  2141. #else
  2142. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2143. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2144. {
  2145. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2146. }
  2147. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2148. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2149. {
  2150. int cpu, idx = prot->inuse_idx;
  2151. int res = 0;
  2152. for_each_possible_cpu(cpu)
  2153. res += per_cpu(prot_inuse, cpu).val[idx];
  2154. return res >= 0 ? res : 0;
  2155. }
  2156. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2157. #endif
  2158. static void assign_proto_idx(struct proto *prot)
  2159. {
  2160. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2161. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2162. pr_err("PROTO_INUSE_NR exhausted\n");
  2163. return;
  2164. }
  2165. set_bit(prot->inuse_idx, proto_inuse_idx);
  2166. }
  2167. static void release_proto_idx(struct proto *prot)
  2168. {
  2169. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2170. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2171. }
  2172. #else
  2173. static inline void assign_proto_idx(struct proto *prot)
  2174. {
  2175. }
  2176. static inline void release_proto_idx(struct proto *prot)
  2177. {
  2178. }
  2179. #endif
  2180. int proto_register(struct proto *prot, int alloc_slab)
  2181. {
  2182. if (alloc_slab) {
  2183. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2184. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2185. NULL);
  2186. if (prot->slab == NULL) {
  2187. pr_crit("%s: Can't create sock SLAB cache!\n",
  2188. prot->name);
  2189. goto out;
  2190. }
  2191. if (prot->rsk_prot != NULL) {
  2192. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2193. if (prot->rsk_prot->slab_name == NULL)
  2194. goto out_free_sock_slab;
  2195. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2196. prot->rsk_prot->obj_size, 0,
  2197. SLAB_HWCACHE_ALIGN, NULL);
  2198. if (prot->rsk_prot->slab == NULL) {
  2199. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2200. prot->name);
  2201. goto out_free_request_sock_slab_name;
  2202. }
  2203. }
  2204. if (prot->twsk_prot != NULL) {
  2205. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2206. if (prot->twsk_prot->twsk_slab_name == NULL)
  2207. goto out_free_request_sock_slab;
  2208. prot->twsk_prot->twsk_slab =
  2209. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2210. prot->twsk_prot->twsk_obj_size,
  2211. 0,
  2212. SLAB_HWCACHE_ALIGN |
  2213. prot->slab_flags,
  2214. NULL);
  2215. if (prot->twsk_prot->twsk_slab == NULL)
  2216. goto out_free_timewait_sock_slab_name;
  2217. }
  2218. }
  2219. mutex_lock(&proto_list_mutex);
  2220. list_add(&prot->node, &proto_list);
  2221. assign_proto_idx(prot);
  2222. mutex_unlock(&proto_list_mutex);
  2223. return 0;
  2224. out_free_timewait_sock_slab_name:
  2225. kfree(prot->twsk_prot->twsk_slab_name);
  2226. out_free_request_sock_slab:
  2227. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2228. kmem_cache_destroy(prot->rsk_prot->slab);
  2229. prot->rsk_prot->slab = NULL;
  2230. }
  2231. out_free_request_sock_slab_name:
  2232. if (prot->rsk_prot)
  2233. kfree(prot->rsk_prot->slab_name);
  2234. out_free_sock_slab:
  2235. kmem_cache_destroy(prot->slab);
  2236. prot->slab = NULL;
  2237. out:
  2238. return -ENOBUFS;
  2239. }
  2240. EXPORT_SYMBOL(proto_register);
  2241. void proto_unregister(struct proto *prot)
  2242. {
  2243. mutex_lock(&proto_list_mutex);
  2244. release_proto_idx(prot);
  2245. list_del(&prot->node);
  2246. mutex_unlock(&proto_list_mutex);
  2247. if (prot->slab != NULL) {
  2248. kmem_cache_destroy(prot->slab);
  2249. prot->slab = NULL;
  2250. }
  2251. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2252. kmem_cache_destroy(prot->rsk_prot->slab);
  2253. kfree(prot->rsk_prot->slab_name);
  2254. prot->rsk_prot->slab = NULL;
  2255. }
  2256. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2257. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2258. kfree(prot->twsk_prot->twsk_slab_name);
  2259. prot->twsk_prot->twsk_slab = NULL;
  2260. }
  2261. }
  2262. EXPORT_SYMBOL(proto_unregister);
  2263. #ifdef CONFIG_PROC_FS
  2264. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2265. __acquires(proto_list_mutex)
  2266. {
  2267. mutex_lock(&proto_list_mutex);
  2268. return seq_list_start_head(&proto_list, *pos);
  2269. }
  2270. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2271. {
  2272. return seq_list_next(v, &proto_list, pos);
  2273. }
  2274. static void proto_seq_stop(struct seq_file *seq, void *v)
  2275. __releases(proto_list_mutex)
  2276. {
  2277. mutex_unlock(&proto_list_mutex);
  2278. }
  2279. static char proto_method_implemented(const void *method)
  2280. {
  2281. return method == NULL ? 'n' : 'y';
  2282. }
  2283. static long sock_prot_memory_allocated(struct proto *proto)
  2284. {
  2285. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2286. }
  2287. static char *sock_prot_memory_pressure(struct proto *proto)
  2288. {
  2289. return proto->memory_pressure != NULL ?
  2290. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2291. }
  2292. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2293. {
  2294. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2295. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2296. proto->name,
  2297. proto->obj_size,
  2298. sock_prot_inuse_get(seq_file_net(seq), proto),
  2299. sock_prot_memory_allocated(proto),
  2300. sock_prot_memory_pressure(proto),
  2301. proto->max_header,
  2302. proto->slab == NULL ? "no" : "yes",
  2303. module_name(proto->owner),
  2304. proto_method_implemented(proto->close),
  2305. proto_method_implemented(proto->connect),
  2306. proto_method_implemented(proto->disconnect),
  2307. proto_method_implemented(proto->accept),
  2308. proto_method_implemented(proto->ioctl),
  2309. proto_method_implemented(proto->init),
  2310. proto_method_implemented(proto->destroy),
  2311. proto_method_implemented(proto->shutdown),
  2312. proto_method_implemented(proto->setsockopt),
  2313. proto_method_implemented(proto->getsockopt),
  2314. proto_method_implemented(proto->sendmsg),
  2315. proto_method_implemented(proto->recvmsg),
  2316. proto_method_implemented(proto->sendpage),
  2317. proto_method_implemented(proto->bind),
  2318. proto_method_implemented(proto->backlog_rcv),
  2319. proto_method_implemented(proto->hash),
  2320. proto_method_implemented(proto->unhash),
  2321. proto_method_implemented(proto->get_port),
  2322. proto_method_implemented(proto->enter_memory_pressure));
  2323. }
  2324. static int proto_seq_show(struct seq_file *seq, void *v)
  2325. {
  2326. if (v == &proto_list)
  2327. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2328. "protocol",
  2329. "size",
  2330. "sockets",
  2331. "memory",
  2332. "press",
  2333. "maxhdr",
  2334. "slab",
  2335. "module",
  2336. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2337. else
  2338. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2339. return 0;
  2340. }
  2341. static const struct seq_operations proto_seq_ops = {
  2342. .start = proto_seq_start,
  2343. .next = proto_seq_next,
  2344. .stop = proto_seq_stop,
  2345. .show = proto_seq_show,
  2346. };
  2347. static int proto_seq_open(struct inode *inode, struct file *file)
  2348. {
  2349. return seq_open_net(inode, file, &proto_seq_ops,
  2350. sizeof(struct seq_net_private));
  2351. }
  2352. static const struct file_operations proto_seq_fops = {
  2353. .owner = THIS_MODULE,
  2354. .open = proto_seq_open,
  2355. .read = seq_read,
  2356. .llseek = seq_lseek,
  2357. .release = seq_release_net,
  2358. };
  2359. static __net_init int proto_init_net(struct net *net)
  2360. {
  2361. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2362. return -ENOMEM;
  2363. return 0;
  2364. }
  2365. static __net_exit void proto_exit_net(struct net *net)
  2366. {
  2367. proc_net_remove(net, "protocols");
  2368. }
  2369. static __net_initdata struct pernet_operations proto_net_ops = {
  2370. .init = proto_init_net,
  2371. .exit = proto_exit_net,
  2372. };
  2373. static int __init proto_init(void)
  2374. {
  2375. return register_pernet_subsys(&proto_net_ops);
  2376. }
  2377. subsys_initcall(proto_init);
  2378. #endif /* PROC_FS */