rmap.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->mutex
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <linux/backing-dev.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. struct anon_vma *anon_vma;
  65. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  66. if (anon_vma) {
  67. atomic_set(&anon_vma->refcount, 1);
  68. /*
  69. * Initialise the anon_vma root to point to itself. If called
  70. * from fork, the root will be reset to the parents anon_vma.
  71. */
  72. anon_vma->root = anon_vma;
  73. }
  74. return anon_vma;
  75. }
  76. static inline void anon_vma_free(struct anon_vma *anon_vma)
  77. {
  78. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  79. /*
  80. * Synchronize against page_lock_anon_vma() such that
  81. * we can safely hold the lock without the anon_vma getting
  82. * freed.
  83. *
  84. * Relies on the full mb implied by the atomic_dec_and_test() from
  85. * put_anon_vma() against the acquire barrier implied by
  86. * mutex_trylock() from page_lock_anon_vma(). This orders:
  87. *
  88. * page_lock_anon_vma() VS put_anon_vma()
  89. * mutex_trylock() atomic_dec_and_test()
  90. * LOCK MB
  91. * atomic_read() mutex_is_locked()
  92. *
  93. * LOCK should suffice since the actual taking of the lock must
  94. * happen _before_ what follows.
  95. */
  96. if (mutex_is_locked(&anon_vma->root->mutex)) {
  97. anon_vma_lock(anon_vma);
  98. anon_vma_unlock(anon_vma);
  99. }
  100. kmem_cache_free(anon_vma_cachep, anon_vma);
  101. }
  102. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  103. {
  104. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  105. }
  106. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  107. {
  108. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  109. }
  110. static void anon_vma_chain_link(struct vm_area_struct *vma,
  111. struct anon_vma_chain *avc,
  112. struct anon_vma *anon_vma)
  113. {
  114. avc->vma = vma;
  115. avc->anon_vma = anon_vma;
  116. list_add(&avc->same_vma, &vma->anon_vma_chain);
  117. anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
  118. }
  119. /**
  120. * anon_vma_prepare - attach an anon_vma to a memory region
  121. * @vma: the memory region in question
  122. *
  123. * This makes sure the memory mapping described by 'vma' has
  124. * an 'anon_vma' attached to it, so that we can associate the
  125. * anonymous pages mapped into it with that anon_vma.
  126. *
  127. * The common case will be that we already have one, but if
  128. * not we either need to find an adjacent mapping that we
  129. * can re-use the anon_vma from (very common when the only
  130. * reason for splitting a vma has been mprotect()), or we
  131. * allocate a new one.
  132. *
  133. * Anon-vma allocations are very subtle, because we may have
  134. * optimistically looked up an anon_vma in page_lock_anon_vma()
  135. * and that may actually touch the spinlock even in the newly
  136. * allocated vma (it depends on RCU to make sure that the
  137. * anon_vma isn't actually destroyed).
  138. *
  139. * As a result, we need to do proper anon_vma locking even
  140. * for the new allocation. At the same time, we do not want
  141. * to do any locking for the common case of already having
  142. * an anon_vma.
  143. *
  144. * This must be called with the mmap_sem held for reading.
  145. */
  146. int anon_vma_prepare(struct vm_area_struct *vma)
  147. {
  148. struct anon_vma *anon_vma = vma->anon_vma;
  149. struct anon_vma_chain *avc;
  150. might_sleep();
  151. if (unlikely(!anon_vma)) {
  152. struct mm_struct *mm = vma->vm_mm;
  153. struct anon_vma *allocated;
  154. avc = anon_vma_chain_alloc(GFP_KERNEL);
  155. if (!avc)
  156. goto out_enomem;
  157. anon_vma = find_mergeable_anon_vma(vma);
  158. allocated = NULL;
  159. if (!anon_vma) {
  160. anon_vma = anon_vma_alloc();
  161. if (unlikely(!anon_vma))
  162. goto out_enomem_free_avc;
  163. allocated = anon_vma;
  164. }
  165. anon_vma_lock(anon_vma);
  166. /* page_table_lock to protect against threads */
  167. spin_lock(&mm->page_table_lock);
  168. if (likely(!vma->anon_vma)) {
  169. vma->anon_vma = anon_vma;
  170. anon_vma_chain_link(vma, avc, anon_vma);
  171. allocated = NULL;
  172. avc = NULL;
  173. }
  174. spin_unlock(&mm->page_table_lock);
  175. anon_vma_unlock(anon_vma);
  176. if (unlikely(allocated))
  177. put_anon_vma(allocated);
  178. if (unlikely(avc))
  179. anon_vma_chain_free(avc);
  180. }
  181. return 0;
  182. out_enomem_free_avc:
  183. anon_vma_chain_free(avc);
  184. out_enomem:
  185. return -ENOMEM;
  186. }
  187. /*
  188. * This is a useful helper function for locking the anon_vma root as
  189. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  190. * have the same vma.
  191. *
  192. * Such anon_vma's should have the same root, so you'd expect to see
  193. * just a single mutex_lock for the whole traversal.
  194. */
  195. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  196. {
  197. struct anon_vma *new_root = anon_vma->root;
  198. if (new_root != root) {
  199. if (WARN_ON_ONCE(root))
  200. mutex_unlock(&root->mutex);
  201. root = new_root;
  202. mutex_lock(&root->mutex);
  203. }
  204. return root;
  205. }
  206. static inline void unlock_anon_vma_root(struct anon_vma *root)
  207. {
  208. if (root)
  209. mutex_unlock(&root->mutex);
  210. }
  211. /*
  212. * Attach the anon_vmas from src to dst.
  213. * Returns 0 on success, -ENOMEM on failure.
  214. */
  215. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  216. {
  217. struct anon_vma_chain *avc, *pavc;
  218. struct anon_vma *root = NULL;
  219. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  220. struct anon_vma *anon_vma;
  221. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  222. if (unlikely(!avc)) {
  223. unlock_anon_vma_root(root);
  224. root = NULL;
  225. avc = anon_vma_chain_alloc(GFP_KERNEL);
  226. if (!avc)
  227. goto enomem_failure;
  228. }
  229. anon_vma = pavc->anon_vma;
  230. root = lock_anon_vma_root(root, anon_vma);
  231. anon_vma_chain_link(dst, avc, anon_vma);
  232. }
  233. unlock_anon_vma_root(root);
  234. return 0;
  235. enomem_failure:
  236. unlink_anon_vmas(dst);
  237. return -ENOMEM;
  238. }
  239. /*
  240. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  241. * the corresponding VMA in the parent process is attached to.
  242. * Returns 0 on success, non-zero on failure.
  243. */
  244. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  245. {
  246. struct anon_vma_chain *avc;
  247. struct anon_vma *anon_vma;
  248. /* Don't bother if the parent process has no anon_vma here. */
  249. if (!pvma->anon_vma)
  250. return 0;
  251. /*
  252. * First, attach the new VMA to the parent VMA's anon_vmas,
  253. * so rmap can find non-COWed pages in child processes.
  254. */
  255. if (anon_vma_clone(vma, pvma))
  256. return -ENOMEM;
  257. /* Then add our own anon_vma. */
  258. anon_vma = anon_vma_alloc();
  259. if (!anon_vma)
  260. goto out_error;
  261. avc = anon_vma_chain_alloc(GFP_KERNEL);
  262. if (!avc)
  263. goto out_error_free_anon_vma;
  264. /*
  265. * The root anon_vma's spinlock is the lock actually used when we
  266. * lock any of the anon_vmas in this anon_vma tree.
  267. */
  268. anon_vma->root = pvma->anon_vma->root;
  269. /*
  270. * With refcounts, an anon_vma can stay around longer than the
  271. * process it belongs to. The root anon_vma needs to be pinned until
  272. * this anon_vma is freed, because the lock lives in the root.
  273. */
  274. get_anon_vma(anon_vma->root);
  275. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  276. vma->anon_vma = anon_vma;
  277. anon_vma_lock(anon_vma);
  278. anon_vma_chain_link(vma, avc, anon_vma);
  279. anon_vma_unlock(anon_vma);
  280. return 0;
  281. out_error_free_anon_vma:
  282. put_anon_vma(anon_vma);
  283. out_error:
  284. unlink_anon_vmas(vma);
  285. return -ENOMEM;
  286. }
  287. void unlink_anon_vmas(struct vm_area_struct *vma)
  288. {
  289. struct anon_vma_chain *avc, *next;
  290. struct anon_vma *root = NULL;
  291. /*
  292. * Unlink each anon_vma chained to the VMA. This list is ordered
  293. * from newest to oldest, ensuring the root anon_vma gets freed last.
  294. */
  295. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  296. struct anon_vma *anon_vma = avc->anon_vma;
  297. root = lock_anon_vma_root(root, anon_vma);
  298. anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
  299. /*
  300. * Leave empty anon_vmas on the list - we'll need
  301. * to free them outside the lock.
  302. */
  303. if (RB_EMPTY_ROOT(&anon_vma->rb_root))
  304. continue;
  305. list_del(&avc->same_vma);
  306. anon_vma_chain_free(avc);
  307. }
  308. unlock_anon_vma_root(root);
  309. /*
  310. * Iterate the list once more, it now only contains empty and unlinked
  311. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  312. * needing to acquire the anon_vma->root->mutex.
  313. */
  314. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  315. struct anon_vma *anon_vma = avc->anon_vma;
  316. put_anon_vma(anon_vma);
  317. list_del(&avc->same_vma);
  318. anon_vma_chain_free(avc);
  319. }
  320. }
  321. static void anon_vma_ctor(void *data)
  322. {
  323. struct anon_vma *anon_vma = data;
  324. mutex_init(&anon_vma->mutex);
  325. atomic_set(&anon_vma->refcount, 0);
  326. anon_vma->rb_root = RB_ROOT;
  327. }
  328. void __init anon_vma_init(void)
  329. {
  330. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  331. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  332. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  333. }
  334. /*
  335. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  336. *
  337. * Since there is no serialization what so ever against page_remove_rmap()
  338. * the best this function can do is return a locked anon_vma that might
  339. * have been relevant to this page.
  340. *
  341. * The page might have been remapped to a different anon_vma or the anon_vma
  342. * returned may already be freed (and even reused).
  343. *
  344. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  345. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  346. * ensure that any anon_vma obtained from the page will still be valid for as
  347. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  348. *
  349. * All users of this function must be very careful when walking the anon_vma
  350. * chain and verify that the page in question is indeed mapped in it
  351. * [ something equivalent to page_mapped_in_vma() ].
  352. *
  353. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  354. * that the anon_vma pointer from page->mapping is valid if there is a
  355. * mapcount, we can dereference the anon_vma after observing those.
  356. */
  357. struct anon_vma *page_get_anon_vma(struct page *page)
  358. {
  359. struct anon_vma *anon_vma = NULL;
  360. unsigned long anon_mapping;
  361. rcu_read_lock();
  362. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  363. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  364. goto out;
  365. if (!page_mapped(page))
  366. goto out;
  367. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  368. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  369. anon_vma = NULL;
  370. goto out;
  371. }
  372. /*
  373. * If this page is still mapped, then its anon_vma cannot have been
  374. * freed. But if it has been unmapped, we have no security against the
  375. * anon_vma structure being freed and reused (for another anon_vma:
  376. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  377. * above cannot corrupt).
  378. */
  379. if (!page_mapped(page)) {
  380. put_anon_vma(anon_vma);
  381. anon_vma = NULL;
  382. }
  383. out:
  384. rcu_read_unlock();
  385. return anon_vma;
  386. }
  387. /*
  388. * Similar to page_get_anon_vma() except it locks the anon_vma.
  389. *
  390. * Its a little more complex as it tries to keep the fast path to a single
  391. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  392. * reference like with page_get_anon_vma() and then block on the mutex.
  393. */
  394. struct anon_vma *page_lock_anon_vma(struct page *page)
  395. {
  396. struct anon_vma *anon_vma = NULL;
  397. struct anon_vma *root_anon_vma;
  398. unsigned long anon_mapping;
  399. rcu_read_lock();
  400. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  401. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  402. goto out;
  403. if (!page_mapped(page))
  404. goto out;
  405. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  406. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  407. if (mutex_trylock(&root_anon_vma->mutex)) {
  408. /*
  409. * If the page is still mapped, then this anon_vma is still
  410. * its anon_vma, and holding the mutex ensures that it will
  411. * not go away, see anon_vma_free().
  412. */
  413. if (!page_mapped(page)) {
  414. mutex_unlock(&root_anon_vma->mutex);
  415. anon_vma = NULL;
  416. }
  417. goto out;
  418. }
  419. /* trylock failed, we got to sleep */
  420. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  421. anon_vma = NULL;
  422. goto out;
  423. }
  424. if (!page_mapped(page)) {
  425. put_anon_vma(anon_vma);
  426. anon_vma = NULL;
  427. goto out;
  428. }
  429. /* we pinned the anon_vma, its safe to sleep */
  430. rcu_read_unlock();
  431. anon_vma_lock(anon_vma);
  432. if (atomic_dec_and_test(&anon_vma->refcount)) {
  433. /*
  434. * Oops, we held the last refcount, release the lock
  435. * and bail -- can't simply use put_anon_vma() because
  436. * we'll deadlock on the anon_vma_lock() recursion.
  437. */
  438. anon_vma_unlock(anon_vma);
  439. __put_anon_vma(anon_vma);
  440. anon_vma = NULL;
  441. }
  442. return anon_vma;
  443. out:
  444. rcu_read_unlock();
  445. return anon_vma;
  446. }
  447. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  448. {
  449. anon_vma_unlock(anon_vma);
  450. }
  451. /*
  452. * At what user virtual address is page expected in @vma?
  453. */
  454. static inline unsigned long
  455. __vma_address(struct page *page, struct vm_area_struct *vma)
  456. {
  457. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  458. if (unlikely(is_vm_hugetlb_page(vma)))
  459. pgoff = page->index << huge_page_order(page_hstate(page));
  460. return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  461. }
  462. inline unsigned long
  463. vma_address(struct page *page, struct vm_area_struct *vma)
  464. {
  465. unsigned long address = __vma_address(page, vma);
  466. /* page should be within @vma mapping range */
  467. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  468. return address;
  469. }
  470. /*
  471. * At what user virtual address is page expected in vma?
  472. * Caller should check the page is actually part of the vma.
  473. */
  474. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  475. {
  476. unsigned long address;
  477. if (PageAnon(page)) {
  478. struct anon_vma *page__anon_vma = page_anon_vma(page);
  479. /*
  480. * Note: swapoff's unuse_vma() is more efficient with this
  481. * check, and needs it to match anon_vma when KSM is active.
  482. */
  483. if (!vma->anon_vma || !page__anon_vma ||
  484. vma->anon_vma->root != page__anon_vma->root)
  485. return -EFAULT;
  486. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  487. if (!vma->vm_file ||
  488. vma->vm_file->f_mapping != page->mapping)
  489. return -EFAULT;
  490. } else
  491. return -EFAULT;
  492. address = __vma_address(page, vma);
  493. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  494. return -EFAULT;
  495. return address;
  496. }
  497. /*
  498. * Check that @page is mapped at @address into @mm.
  499. *
  500. * If @sync is false, page_check_address may perform a racy check to avoid
  501. * the page table lock when the pte is not present (helpful when reclaiming
  502. * highly shared pages).
  503. *
  504. * On success returns with pte mapped and locked.
  505. */
  506. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  507. unsigned long address, spinlock_t **ptlp, int sync)
  508. {
  509. pgd_t *pgd;
  510. pud_t *pud;
  511. pmd_t *pmd;
  512. pte_t *pte;
  513. spinlock_t *ptl;
  514. if (unlikely(PageHuge(page))) {
  515. pte = huge_pte_offset(mm, address);
  516. ptl = &mm->page_table_lock;
  517. goto check;
  518. }
  519. pgd = pgd_offset(mm, address);
  520. if (!pgd_present(*pgd))
  521. return NULL;
  522. pud = pud_offset(pgd, address);
  523. if (!pud_present(*pud))
  524. return NULL;
  525. pmd = pmd_offset(pud, address);
  526. if (!pmd_present(*pmd))
  527. return NULL;
  528. if (pmd_trans_huge(*pmd))
  529. return NULL;
  530. pte = pte_offset_map(pmd, address);
  531. /* Make a quick check before getting the lock */
  532. if (!sync && !pte_present(*pte)) {
  533. pte_unmap(pte);
  534. return NULL;
  535. }
  536. ptl = pte_lockptr(mm, pmd);
  537. check:
  538. spin_lock(ptl);
  539. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  540. *ptlp = ptl;
  541. return pte;
  542. }
  543. pte_unmap_unlock(pte, ptl);
  544. return NULL;
  545. }
  546. /**
  547. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  548. * @page: the page to test
  549. * @vma: the VMA to test
  550. *
  551. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  552. * if the page is not mapped into the page tables of this VMA. Only
  553. * valid for normal file or anonymous VMAs.
  554. */
  555. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  556. {
  557. unsigned long address;
  558. pte_t *pte;
  559. spinlock_t *ptl;
  560. address = __vma_address(page, vma);
  561. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  562. return 0;
  563. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  564. if (!pte) /* the page is not in this mm */
  565. return 0;
  566. pte_unmap_unlock(pte, ptl);
  567. return 1;
  568. }
  569. /*
  570. * Subfunctions of page_referenced: page_referenced_one called
  571. * repeatedly from either page_referenced_anon or page_referenced_file.
  572. */
  573. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  574. unsigned long address, unsigned int *mapcount,
  575. unsigned long *vm_flags)
  576. {
  577. struct mm_struct *mm = vma->vm_mm;
  578. int referenced = 0;
  579. if (unlikely(PageTransHuge(page))) {
  580. pmd_t *pmd;
  581. spin_lock(&mm->page_table_lock);
  582. /*
  583. * rmap might return false positives; we must filter
  584. * these out using page_check_address_pmd().
  585. */
  586. pmd = page_check_address_pmd(page, mm, address,
  587. PAGE_CHECK_ADDRESS_PMD_FLAG);
  588. if (!pmd) {
  589. spin_unlock(&mm->page_table_lock);
  590. goto out;
  591. }
  592. if (vma->vm_flags & VM_LOCKED) {
  593. spin_unlock(&mm->page_table_lock);
  594. *mapcount = 0; /* break early from loop */
  595. *vm_flags |= VM_LOCKED;
  596. goto out;
  597. }
  598. /* go ahead even if the pmd is pmd_trans_splitting() */
  599. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  600. referenced++;
  601. spin_unlock(&mm->page_table_lock);
  602. } else {
  603. pte_t *pte;
  604. spinlock_t *ptl;
  605. /*
  606. * rmap might return false positives; we must filter
  607. * these out using page_check_address().
  608. */
  609. pte = page_check_address(page, mm, address, &ptl, 0);
  610. if (!pte)
  611. goto out;
  612. if (vma->vm_flags & VM_LOCKED) {
  613. pte_unmap_unlock(pte, ptl);
  614. *mapcount = 0; /* break early from loop */
  615. *vm_flags |= VM_LOCKED;
  616. goto out;
  617. }
  618. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  619. /*
  620. * Don't treat a reference through a sequentially read
  621. * mapping as such. If the page has been used in
  622. * another mapping, we will catch it; if this other
  623. * mapping is already gone, the unmap path will have
  624. * set PG_referenced or activated the page.
  625. */
  626. if (likely(!VM_SequentialReadHint(vma)))
  627. referenced++;
  628. }
  629. pte_unmap_unlock(pte, ptl);
  630. }
  631. (*mapcount)--;
  632. if (referenced)
  633. *vm_flags |= vma->vm_flags;
  634. out:
  635. return referenced;
  636. }
  637. static int page_referenced_anon(struct page *page,
  638. struct mem_cgroup *memcg,
  639. unsigned long *vm_flags)
  640. {
  641. unsigned int mapcount;
  642. struct anon_vma *anon_vma;
  643. pgoff_t pgoff;
  644. struct anon_vma_chain *avc;
  645. int referenced = 0;
  646. anon_vma = page_lock_anon_vma(page);
  647. if (!anon_vma)
  648. return referenced;
  649. mapcount = page_mapcount(page);
  650. pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  651. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  652. struct vm_area_struct *vma = avc->vma;
  653. unsigned long address = vma_address(page, vma);
  654. /*
  655. * If we are reclaiming on behalf of a cgroup, skip
  656. * counting on behalf of references from different
  657. * cgroups
  658. */
  659. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  660. continue;
  661. referenced += page_referenced_one(page, vma, address,
  662. &mapcount, vm_flags);
  663. if (!mapcount)
  664. break;
  665. }
  666. page_unlock_anon_vma(anon_vma);
  667. return referenced;
  668. }
  669. /**
  670. * page_referenced_file - referenced check for object-based rmap
  671. * @page: the page we're checking references on.
  672. * @memcg: target memory control group
  673. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  674. *
  675. * For an object-based mapped page, find all the places it is mapped and
  676. * check/clear the referenced flag. This is done by following the page->mapping
  677. * pointer, then walking the chain of vmas it holds. It returns the number
  678. * of references it found.
  679. *
  680. * This function is only called from page_referenced for object-based pages.
  681. */
  682. static int page_referenced_file(struct page *page,
  683. struct mem_cgroup *memcg,
  684. unsigned long *vm_flags)
  685. {
  686. unsigned int mapcount;
  687. struct address_space *mapping = page->mapping;
  688. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  689. struct vm_area_struct *vma;
  690. int referenced = 0;
  691. /*
  692. * The caller's checks on page->mapping and !PageAnon have made
  693. * sure that this is a file page: the check for page->mapping
  694. * excludes the case just before it gets set on an anon page.
  695. */
  696. BUG_ON(PageAnon(page));
  697. /*
  698. * The page lock not only makes sure that page->mapping cannot
  699. * suddenly be NULLified by truncation, it makes sure that the
  700. * structure at mapping cannot be freed and reused yet,
  701. * so we can safely take mapping->i_mmap_mutex.
  702. */
  703. BUG_ON(!PageLocked(page));
  704. mutex_lock(&mapping->i_mmap_mutex);
  705. /*
  706. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  707. * is more likely to be accurate if we note it after spinning.
  708. */
  709. mapcount = page_mapcount(page);
  710. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  711. unsigned long address = vma_address(page, vma);
  712. /*
  713. * If we are reclaiming on behalf of a cgroup, skip
  714. * counting on behalf of references from different
  715. * cgroups
  716. */
  717. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  718. continue;
  719. referenced += page_referenced_one(page, vma, address,
  720. &mapcount, vm_flags);
  721. if (!mapcount)
  722. break;
  723. }
  724. mutex_unlock(&mapping->i_mmap_mutex);
  725. return referenced;
  726. }
  727. /**
  728. * page_referenced - test if the page was referenced
  729. * @page: the page to test
  730. * @is_locked: caller holds lock on the page
  731. * @memcg: target memory cgroup
  732. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  733. *
  734. * Quick test_and_clear_referenced for all mappings to a page,
  735. * returns the number of ptes which referenced the page.
  736. */
  737. int page_referenced(struct page *page,
  738. int is_locked,
  739. struct mem_cgroup *memcg,
  740. unsigned long *vm_flags)
  741. {
  742. int referenced = 0;
  743. int we_locked = 0;
  744. *vm_flags = 0;
  745. if (page_mapped(page) && page_rmapping(page)) {
  746. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  747. we_locked = trylock_page(page);
  748. if (!we_locked) {
  749. referenced++;
  750. goto out;
  751. }
  752. }
  753. if (unlikely(PageKsm(page)))
  754. referenced += page_referenced_ksm(page, memcg,
  755. vm_flags);
  756. else if (PageAnon(page))
  757. referenced += page_referenced_anon(page, memcg,
  758. vm_flags);
  759. else if (page->mapping)
  760. referenced += page_referenced_file(page, memcg,
  761. vm_flags);
  762. if (we_locked)
  763. unlock_page(page);
  764. if (page_test_and_clear_young(page_to_pfn(page)))
  765. referenced++;
  766. }
  767. out:
  768. return referenced;
  769. }
  770. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  771. unsigned long address)
  772. {
  773. struct mm_struct *mm = vma->vm_mm;
  774. pte_t *pte;
  775. spinlock_t *ptl;
  776. int ret = 0;
  777. pte = page_check_address(page, mm, address, &ptl, 1);
  778. if (!pte)
  779. goto out;
  780. if (pte_dirty(*pte) || pte_write(*pte)) {
  781. pte_t entry;
  782. flush_cache_page(vma, address, pte_pfn(*pte));
  783. entry = ptep_clear_flush(vma, address, pte);
  784. entry = pte_wrprotect(entry);
  785. entry = pte_mkclean(entry);
  786. set_pte_at(mm, address, pte, entry);
  787. ret = 1;
  788. }
  789. pte_unmap_unlock(pte, ptl);
  790. if (ret)
  791. mmu_notifier_invalidate_page(mm, address);
  792. out:
  793. return ret;
  794. }
  795. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  796. {
  797. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  798. struct vm_area_struct *vma;
  799. int ret = 0;
  800. BUG_ON(PageAnon(page));
  801. mutex_lock(&mapping->i_mmap_mutex);
  802. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  803. if (vma->vm_flags & VM_SHARED) {
  804. unsigned long address = vma_address(page, vma);
  805. ret += page_mkclean_one(page, vma, address);
  806. }
  807. }
  808. mutex_unlock(&mapping->i_mmap_mutex);
  809. return ret;
  810. }
  811. int page_mkclean(struct page *page)
  812. {
  813. int ret = 0;
  814. BUG_ON(!PageLocked(page));
  815. if (page_mapped(page)) {
  816. struct address_space *mapping = page_mapping(page);
  817. if (mapping)
  818. ret = page_mkclean_file(mapping, page);
  819. }
  820. return ret;
  821. }
  822. EXPORT_SYMBOL_GPL(page_mkclean);
  823. /**
  824. * page_move_anon_rmap - move a page to our anon_vma
  825. * @page: the page to move to our anon_vma
  826. * @vma: the vma the page belongs to
  827. * @address: the user virtual address mapped
  828. *
  829. * When a page belongs exclusively to one process after a COW event,
  830. * that page can be moved into the anon_vma that belongs to just that
  831. * process, so the rmap code will not search the parent or sibling
  832. * processes.
  833. */
  834. void page_move_anon_rmap(struct page *page,
  835. struct vm_area_struct *vma, unsigned long address)
  836. {
  837. struct anon_vma *anon_vma = vma->anon_vma;
  838. VM_BUG_ON(!PageLocked(page));
  839. VM_BUG_ON(!anon_vma);
  840. VM_BUG_ON(page->index != linear_page_index(vma, address));
  841. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  842. page->mapping = (struct address_space *) anon_vma;
  843. }
  844. /**
  845. * __page_set_anon_rmap - set up new anonymous rmap
  846. * @page: Page to add to rmap
  847. * @vma: VM area to add page to.
  848. * @address: User virtual address of the mapping
  849. * @exclusive: the page is exclusively owned by the current process
  850. */
  851. static void __page_set_anon_rmap(struct page *page,
  852. struct vm_area_struct *vma, unsigned long address, int exclusive)
  853. {
  854. struct anon_vma *anon_vma = vma->anon_vma;
  855. BUG_ON(!anon_vma);
  856. if (PageAnon(page))
  857. return;
  858. /*
  859. * If the page isn't exclusively mapped into this vma,
  860. * we must use the _oldest_ possible anon_vma for the
  861. * page mapping!
  862. */
  863. if (!exclusive)
  864. anon_vma = anon_vma->root;
  865. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  866. page->mapping = (struct address_space *) anon_vma;
  867. page->index = linear_page_index(vma, address);
  868. }
  869. /**
  870. * __page_check_anon_rmap - sanity check anonymous rmap addition
  871. * @page: the page to add the mapping to
  872. * @vma: the vm area in which the mapping is added
  873. * @address: the user virtual address mapped
  874. */
  875. static void __page_check_anon_rmap(struct page *page,
  876. struct vm_area_struct *vma, unsigned long address)
  877. {
  878. #ifdef CONFIG_DEBUG_VM
  879. /*
  880. * The page's anon-rmap details (mapping and index) are guaranteed to
  881. * be set up correctly at this point.
  882. *
  883. * We have exclusion against page_add_anon_rmap because the caller
  884. * always holds the page locked, except if called from page_dup_rmap,
  885. * in which case the page is already known to be setup.
  886. *
  887. * We have exclusion against page_add_new_anon_rmap because those pages
  888. * are initially only visible via the pagetables, and the pte is locked
  889. * over the call to page_add_new_anon_rmap.
  890. */
  891. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  892. BUG_ON(page->index != linear_page_index(vma, address));
  893. #endif
  894. }
  895. /**
  896. * page_add_anon_rmap - add pte mapping to an anonymous page
  897. * @page: the page to add the mapping to
  898. * @vma: the vm area in which the mapping is added
  899. * @address: the user virtual address mapped
  900. *
  901. * The caller needs to hold the pte lock, and the page must be locked in
  902. * the anon_vma case: to serialize mapping,index checking after setting,
  903. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  904. * (but PageKsm is never downgraded to PageAnon).
  905. */
  906. void page_add_anon_rmap(struct page *page,
  907. struct vm_area_struct *vma, unsigned long address)
  908. {
  909. do_page_add_anon_rmap(page, vma, address, 0);
  910. }
  911. /*
  912. * Special version of the above for do_swap_page, which often runs
  913. * into pages that are exclusively owned by the current process.
  914. * Everybody else should continue to use page_add_anon_rmap above.
  915. */
  916. void do_page_add_anon_rmap(struct page *page,
  917. struct vm_area_struct *vma, unsigned long address, int exclusive)
  918. {
  919. int first = atomic_inc_and_test(&page->_mapcount);
  920. if (first) {
  921. if (!PageTransHuge(page))
  922. __inc_zone_page_state(page, NR_ANON_PAGES);
  923. else
  924. __inc_zone_page_state(page,
  925. NR_ANON_TRANSPARENT_HUGEPAGES);
  926. }
  927. if (unlikely(PageKsm(page)))
  928. return;
  929. VM_BUG_ON(!PageLocked(page));
  930. /* address might be in next vma when migration races vma_adjust */
  931. if (first)
  932. __page_set_anon_rmap(page, vma, address, exclusive);
  933. else
  934. __page_check_anon_rmap(page, vma, address);
  935. }
  936. /**
  937. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  938. * @page: the page to add the mapping to
  939. * @vma: the vm area in which the mapping is added
  940. * @address: the user virtual address mapped
  941. *
  942. * Same as page_add_anon_rmap but must only be called on *new* pages.
  943. * This means the inc-and-test can be bypassed.
  944. * Page does not have to be locked.
  945. */
  946. void page_add_new_anon_rmap(struct page *page,
  947. struct vm_area_struct *vma, unsigned long address)
  948. {
  949. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  950. SetPageSwapBacked(page);
  951. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  952. if (!PageTransHuge(page))
  953. __inc_zone_page_state(page, NR_ANON_PAGES);
  954. else
  955. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  956. __page_set_anon_rmap(page, vma, address, 1);
  957. if (!mlocked_vma_newpage(vma, page))
  958. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  959. else
  960. add_page_to_unevictable_list(page);
  961. }
  962. /**
  963. * page_add_file_rmap - add pte mapping to a file page
  964. * @page: the page to add the mapping to
  965. *
  966. * The caller needs to hold the pte lock.
  967. */
  968. void page_add_file_rmap(struct page *page)
  969. {
  970. bool locked;
  971. unsigned long flags;
  972. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  973. if (atomic_inc_and_test(&page->_mapcount)) {
  974. __inc_zone_page_state(page, NR_FILE_MAPPED);
  975. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  976. }
  977. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  978. }
  979. /**
  980. * page_remove_rmap - take down pte mapping from a page
  981. * @page: page to remove mapping from
  982. *
  983. * The caller needs to hold the pte lock.
  984. */
  985. void page_remove_rmap(struct page *page)
  986. {
  987. struct address_space *mapping = page_mapping(page);
  988. bool anon = PageAnon(page);
  989. bool locked;
  990. unsigned long flags;
  991. /*
  992. * The anon case has no mem_cgroup page_stat to update; but may
  993. * uncharge_page() below, where the lock ordering can deadlock if
  994. * we hold the lock against page_stat move: so avoid it on anon.
  995. */
  996. if (!anon)
  997. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  998. /* page still mapped by someone else? */
  999. if (!atomic_add_negative(-1, &page->_mapcount))
  1000. goto out;
  1001. /*
  1002. * Now that the last pte has gone, s390 must transfer dirty
  1003. * flag from storage key to struct page. We can usually skip
  1004. * this if the page is anon, so about to be freed; but perhaps
  1005. * not if it's in swapcache - there might be another pte slot
  1006. * containing the swap entry, but page not yet written to swap.
  1007. *
  1008. * And we can skip it on file pages, so long as the filesystem
  1009. * participates in dirty tracking; but need to catch shm and tmpfs
  1010. * and ramfs pages which have been modified since creation by read
  1011. * fault.
  1012. *
  1013. * Note that mapping must be decided above, before decrementing
  1014. * mapcount (which luckily provides a barrier): once page is unmapped,
  1015. * it could be truncated and page->mapping reset to NULL at any moment.
  1016. * Note also that we are relying on page_mapping(page) to set mapping
  1017. * to &swapper_space when PageSwapCache(page).
  1018. */
  1019. if (mapping && !mapping_cap_account_dirty(mapping) &&
  1020. page_test_and_clear_dirty(page_to_pfn(page), 1))
  1021. set_page_dirty(page);
  1022. /*
  1023. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  1024. * and not charged by memcg for now.
  1025. */
  1026. if (unlikely(PageHuge(page)))
  1027. goto out;
  1028. if (anon) {
  1029. mem_cgroup_uncharge_page(page);
  1030. if (!PageTransHuge(page))
  1031. __dec_zone_page_state(page, NR_ANON_PAGES);
  1032. else
  1033. __dec_zone_page_state(page,
  1034. NR_ANON_TRANSPARENT_HUGEPAGES);
  1035. } else {
  1036. __dec_zone_page_state(page, NR_FILE_MAPPED);
  1037. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1038. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  1039. }
  1040. if (unlikely(PageMlocked(page)))
  1041. clear_page_mlock(page);
  1042. /*
  1043. * It would be tidy to reset the PageAnon mapping here,
  1044. * but that might overwrite a racing page_add_anon_rmap
  1045. * which increments mapcount after us but sets mapping
  1046. * before us: so leave the reset to free_hot_cold_page,
  1047. * and remember that it's only reliable while mapped.
  1048. * Leaving it set also helps swapoff to reinstate ptes
  1049. * faster for those pages still in swapcache.
  1050. */
  1051. return;
  1052. out:
  1053. if (!anon)
  1054. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  1055. }
  1056. /*
  1057. * Subfunctions of try_to_unmap: try_to_unmap_one called
  1058. * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
  1059. */
  1060. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1061. unsigned long address, enum ttu_flags flags)
  1062. {
  1063. struct mm_struct *mm = vma->vm_mm;
  1064. pte_t *pte;
  1065. pte_t pteval;
  1066. spinlock_t *ptl;
  1067. int ret = SWAP_AGAIN;
  1068. pte = page_check_address(page, mm, address, &ptl, 0);
  1069. if (!pte)
  1070. goto out;
  1071. /*
  1072. * If the page is mlock()d, we cannot swap it out.
  1073. * If it's recently referenced (perhaps page_referenced
  1074. * skipped over this mm) then we should reactivate it.
  1075. */
  1076. if (!(flags & TTU_IGNORE_MLOCK)) {
  1077. if (vma->vm_flags & VM_LOCKED)
  1078. goto out_mlock;
  1079. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1080. goto out_unmap;
  1081. }
  1082. if (!(flags & TTU_IGNORE_ACCESS)) {
  1083. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1084. ret = SWAP_FAIL;
  1085. goto out_unmap;
  1086. }
  1087. }
  1088. /* Nuke the page table entry. */
  1089. flush_cache_page(vma, address, page_to_pfn(page));
  1090. pteval = ptep_clear_flush(vma, address, pte);
  1091. /* Move the dirty bit to the physical page now the pte is gone. */
  1092. if (pte_dirty(pteval))
  1093. set_page_dirty(page);
  1094. /* Update high watermark before we lower rss */
  1095. update_hiwater_rss(mm);
  1096. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1097. if (PageAnon(page))
  1098. dec_mm_counter(mm, MM_ANONPAGES);
  1099. else
  1100. dec_mm_counter(mm, MM_FILEPAGES);
  1101. set_pte_at(mm, address, pte,
  1102. swp_entry_to_pte(make_hwpoison_entry(page)));
  1103. } else if (PageAnon(page)) {
  1104. swp_entry_t entry = { .val = page_private(page) };
  1105. if (PageSwapCache(page)) {
  1106. /*
  1107. * Store the swap location in the pte.
  1108. * See handle_pte_fault() ...
  1109. */
  1110. if (swap_duplicate(entry) < 0) {
  1111. set_pte_at(mm, address, pte, pteval);
  1112. ret = SWAP_FAIL;
  1113. goto out_unmap;
  1114. }
  1115. if (list_empty(&mm->mmlist)) {
  1116. spin_lock(&mmlist_lock);
  1117. if (list_empty(&mm->mmlist))
  1118. list_add(&mm->mmlist, &init_mm.mmlist);
  1119. spin_unlock(&mmlist_lock);
  1120. }
  1121. dec_mm_counter(mm, MM_ANONPAGES);
  1122. inc_mm_counter(mm, MM_SWAPENTS);
  1123. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1124. /*
  1125. * Store the pfn of the page in a special migration
  1126. * pte. do_swap_page() will wait until the migration
  1127. * pte is removed and then restart fault handling.
  1128. */
  1129. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1130. entry = make_migration_entry(page, pte_write(pteval));
  1131. }
  1132. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1133. BUG_ON(pte_file(*pte));
  1134. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1135. (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1136. /* Establish migration entry for a file page */
  1137. swp_entry_t entry;
  1138. entry = make_migration_entry(page, pte_write(pteval));
  1139. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1140. } else
  1141. dec_mm_counter(mm, MM_FILEPAGES);
  1142. page_remove_rmap(page);
  1143. page_cache_release(page);
  1144. out_unmap:
  1145. pte_unmap_unlock(pte, ptl);
  1146. if (ret != SWAP_FAIL)
  1147. mmu_notifier_invalidate_page(mm, address);
  1148. out:
  1149. return ret;
  1150. out_mlock:
  1151. pte_unmap_unlock(pte, ptl);
  1152. /*
  1153. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1154. * unstable result and race. Plus, We can't wait here because
  1155. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1156. * if trylock failed, the page remain in evictable lru and later
  1157. * vmscan could retry to move the page to unevictable lru if the
  1158. * page is actually mlocked.
  1159. */
  1160. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1161. if (vma->vm_flags & VM_LOCKED) {
  1162. mlock_vma_page(page);
  1163. ret = SWAP_MLOCK;
  1164. }
  1165. up_read(&vma->vm_mm->mmap_sem);
  1166. }
  1167. return ret;
  1168. }
  1169. /*
  1170. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1171. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1172. * Consequently, given a particular page and its ->index, we cannot locate the
  1173. * ptes which are mapping that page without an exhaustive linear search.
  1174. *
  1175. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1176. * maps the file to which the target page belongs. The ->vm_private_data field
  1177. * holds the current cursor into that scan. Successive searches will circulate
  1178. * around the vma's virtual address space.
  1179. *
  1180. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1181. * more scanning pressure is placed against them as well. Eventually pages
  1182. * will become fully unmapped and are eligible for eviction.
  1183. *
  1184. * For very sparsely populated VMAs this is a little inefficient - chances are
  1185. * there there won't be many ptes located within the scan cluster. In this case
  1186. * maybe we could scan further - to the end of the pte page, perhaps.
  1187. *
  1188. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1189. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1190. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1191. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1192. */
  1193. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1194. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1195. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1196. struct vm_area_struct *vma, struct page *check_page)
  1197. {
  1198. struct mm_struct *mm = vma->vm_mm;
  1199. pgd_t *pgd;
  1200. pud_t *pud;
  1201. pmd_t *pmd;
  1202. pte_t *pte;
  1203. pte_t pteval;
  1204. spinlock_t *ptl;
  1205. struct page *page;
  1206. unsigned long address;
  1207. unsigned long mmun_start; /* For mmu_notifiers */
  1208. unsigned long mmun_end; /* For mmu_notifiers */
  1209. unsigned long end;
  1210. int ret = SWAP_AGAIN;
  1211. int locked_vma = 0;
  1212. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1213. end = address + CLUSTER_SIZE;
  1214. if (address < vma->vm_start)
  1215. address = vma->vm_start;
  1216. if (end > vma->vm_end)
  1217. end = vma->vm_end;
  1218. pgd = pgd_offset(mm, address);
  1219. if (!pgd_present(*pgd))
  1220. return ret;
  1221. pud = pud_offset(pgd, address);
  1222. if (!pud_present(*pud))
  1223. return ret;
  1224. pmd = pmd_offset(pud, address);
  1225. if (!pmd_present(*pmd))
  1226. return ret;
  1227. mmun_start = address;
  1228. mmun_end = end;
  1229. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1230. /*
  1231. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1232. * keep the sem while scanning the cluster for mlocking pages.
  1233. */
  1234. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1235. locked_vma = (vma->vm_flags & VM_LOCKED);
  1236. if (!locked_vma)
  1237. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1238. }
  1239. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1240. /* Update high watermark before we lower rss */
  1241. update_hiwater_rss(mm);
  1242. for (; address < end; pte++, address += PAGE_SIZE) {
  1243. if (!pte_present(*pte))
  1244. continue;
  1245. page = vm_normal_page(vma, address, *pte);
  1246. BUG_ON(!page || PageAnon(page));
  1247. if (locked_vma) {
  1248. mlock_vma_page(page); /* no-op if already mlocked */
  1249. if (page == check_page)
  1250. ret = SWAP_MLOCK;
  1251. continue; /* don't unmap */
  1252. }
  1253. if (ptep_clear_flush_young_notify(vma, address, pte))
  1254. continue;
  1255. /* Nuke the page table entry. */
  1256. flush_cache_page(vma, address, pte_pfn(*pte));
  1257. pteval = ptep_clear_flush(vma, address, pte);
  1258. /* If nonlinear, store the file page offset in the pte. */
  1259. if (page->index != linear_page_index(vma, address))
  1260. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1261. /* Move the dirty bit to the physical page now the pte is gone. */
  1262. if (pte_dirty(pteval))
  1263. set_page_dirty(page);
  1264. page_remove_rmap(page);
  1265. page_cache_release(page);
  1266. dec_mm_counter(mm, MM_FILEPAGES);
  1267. (*mapcount)--;
  1268. }
  1269. pte_unmap_unlock(pte - 1, ptl);
  1270. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1271. if (locked_vma)
  1272. up_read(&vma->vm_mm->mmap_sem);
  1273. return ret;
  1274. }
  1275. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1276. {
  1277. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1278. if (!maybe_stack)
  1279. return false;
  1280. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1281. VM_STACK_INCOMPLETE_SETUP)
  1282. return true;
  1283. return false;
  1284. }
  1285. /**
  1286. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1287. * rmap method
  1288. * @page: the page to unmap/unlock
  1289. * @flags: action and flags
  1290. *
  1291. * Find all the mappings of a page using the mapping pointer and the vma chains
  1292. * contained in the anon_vma struct it points to.
  1293. *
  1294. * This function is only called from try_to_unmap/try_to_munlock for
  1295. * anonymous pages.
  1296. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1297. * where the page was found will be held for write. So, we won't recheck
  1298. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1299. * 'LOCKED.
  1300. */
  1301. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1302. {
  1303. struct anon_vma *anon_vma;
  1304. pgoff_t pgoff;
  1305. struct anon_vma_chain *avc;
  1306. int ret = SWAP_AGAIN;
  1307. anon_vma = page_lock_anon_vma(page);
  1308. if (!anon_vma)
  1309. return ret;
  1310. pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1311. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1312. struct vm_area_struct *vma = avc->vma;
  1313. unsigned long address;
  1314. /*
  1315. * During exec, a temporary VMA is setup and later moved.
  1316. * The VMA is moved under the anon_vma lock but not the
  1317. * page tables leading to a race where migration cannot
  1318. * find the migration ptes. Rather than increasing the
  1319. * locking requirements of exec(), migration skips
  1320. * temporary VMAs until after exec() completes.
  1321. */
  1322. if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
  1323. is_vma_temporary_stack(vma))
  1324. continue;
  1325. address = vma_address(page, vma);
  1326. ret = try_to_unmap_one(page, vma, address, flags);
  1327. if (ret != SWAP_AGAIN || !page_mapped(page))
  1328. break;
  1329. }
  1330. page_unlock_anon_vma(anon_vma);
  1331. return ret;
  1332. }
  1333. /**
  1334. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1335. * @page: the page to unmap/unlock
  1336. * @flags: action and flags
  1337. *
  1338. * Find all the mappings of a page using the mapping pointer and the vma chains
  1339. * contained in the address_space struct it points to.
  1340. *
  1341. * This function is only called from try_to_unmap/try_to_munlock for
  1342. * object-based pages.
  1343. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1344. * where the page was found will be held for write. So, we won't recheck
  1345. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1346. * 'LOCKED.
  1347. */
  1348. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1349. {
  1350. struct address_space *mapping = page->mapping;
  1351. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1352. struct vm_area_struct *vma;
  1353. int ret = SWAP_AGAIN;
  1354. unsigned long cursor;
  1355. unsigned long max_nl_cursor = 0;
  1356. unsigned long max_nl_size = 0;
  1357. unsigned int mapcount;
  1358. mutex_lock(&mapping->i_mmap_mutex);
  1359. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1360. unsigned long address = vma_address(page, vma);
  1361. ret = try_to_unmap_one(page, vma, address, flags);
  1362. if (ret != SWAP_AGAIN || !page_mapped(page))
  1363. goto out;
  1364. }
  1365. if (list_empty(&mapping->i_mmap_nonlinear))
  1366. goto out;
  1367. /*
  1368. * We don't bother to try to find the munlocked page in nonlinears.
  1369. * It's costly. Instead, later, page reclaim logic may call
  1370. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1371. */
  1372. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1373. goto out;
  1374. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1375. shared.nonlinear) {
  1376. cursor = (unsigned long) vma->vm_private_data;
  1377. if (cursor > max_nl_cursor)
  1378. max_nl_cursor = cursor;
  1379. cursor = vma->vm_end - vma->vm_start;
  1380. if (cursor > max_nl_size)
  1381. max_nl_size = cursor;
  1382. }
  1383. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1384. ret = SWAP_FAIL;
  1385. goto out;
  1386. }
  1387. /*
  1388. * We don't try to search for this page in the nonlinear vmas,
  1389. * and page_referenced wouldn't have found it anyway. Instead
  1390. * just walk the nonlinear vmas trying to age and unmap some.
  1391. * The mapcount of the page we came in with is irrelevant,
  1392. * but even so use it as a guide to how hard we should try?
  1393. */
  1394. mapcount = page_mapcount(page);
  1395. if (!mapcount)
  1396. goto out;
  1397. cond_resched();
  1398. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1399. if (max_nl_cursor == 0)
  1400. max_nl_cursor = CLUSTER_SIZE;
  1401. do {
  1402. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1403. shared.nonlinear) {
  1404. cursor = (unsigned long) vma->vm_private_data;
  1405. while ( cursor < max_nl_cursor &&
  1406. cursor < vma->vm_end - vma->vm_start) {
  1407. if (try_to_unmap_cluster(cursor, &mapcount,
  1408. vma, page) == SWAP_MLOCK)
  1409. ret = SWAP_MLOCK;
  1410. cursor += CLUSTER_SIZE;
  1411. vma->vm_private_data = (void *) cursor;
  1412. if ((int)mapcount <= 0)
  1413. goto out;
  1414. }
  1415. vma->vm_private_data = (void *) max_nl_cursor;
  1416. }
  1417. cond_resched();
  1418. max_nl_cursor += CLUSTER_SIZE;
  1419. } while (max_nl_cursor <= max_nl_size);
  1420. /*
  1421. * Don't loop forever (perhaps all the remaining pages are
  1422. * in locked vmas). Reset cursor on all unreserved nonlinear
  1423. * vmas, now forgetting on which ones it had fallen behind.
  1424. */
  1425. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
  1426. vma->vm_private_data = NULL;
  1427. out:
  1428. mutex_unlock(&mapping->i_mmap_mutex);
  1429. return ret;
  1430. }
  1431. /**
  1432. * try_to_unmap - try to remove all page table mappings to a page
  1433. * @page: the page to get unmapped
  1434. * @flags: action and flags
  1435. *
  1436. * Tries to remove all the page table entries which are mapping this
  1437. * page, used in the pageout path. Caller must hold the page lock.
  1438. * Return values are:
  1439. *
  1440. * SWAP_SUCCESS - we succeeded in removing all mappings
  1441. * SWAP_AGAIN - we missed a mapping, try again later
  1442. * SWAP_FAIL - the page is unswappable
  1443. * SWAP_MLOCK - page is mlocked.
  1444. */
  1445. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1446. {
  1447. int ret;
  1448. BUG_ON(!PageLocked(page));
  1449. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1450. if (unlikely(PageKsm(page)))
  1451. ret = try_to_unmap_ksm(page, flags);
  1452. else if (PageAnon(page))
  1453. ret = try_to_unmap_anon(page, flags);
  1454. else
  1455. ret = try_to_unmap_file(page, flags);
  1456. if (ret != SWAP_MLOCK && !page_mapped(page))
  1457. ret = SWAP_SUCCESS;
  1458. return ret;
  1459. }
  1460. /**
  1461. * try_to_munlock - try to munlock a page
  1462. * @page: the page to be munlocked
  1463. *
  1464. * Called from munlock code. Checks all of the VMAs mapping the page
  1465. * to make sure nobody else has this page mlocked. The page will be
  1466. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1467. *
  1468. * Return values are:
  1469. *
  1470. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1471. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1472. * SWAP_FAIL - page cannot be located at present
  1473. * SWAP_MLOCK - page is now mlocked.
  1474. */
  1475. int try_to_munlock(struct page *page)
  1476. {
  1477. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1478. if (unlikely(PageKsm(page)))
  1479. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1480. else if (PageAnon(page))
  1481. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1482. else
  1483. return try_to_unmap_file(page, TTU_MUNLOCK);
  1484. }
  1485. void __put_anon_vma(struct anon_vma *anon_vma)
  1486. {
  1487. struct anon_vma *root = anon_vma->root;
  1488. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1489. anon_vma_free(root);
  1490. anon_vma_free(anon_vma);
  1491. }
  1492. #ifdef CONFIG_MIGRATION
  1493. /*
  1494. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1495. * Called by migrate.c to remove migration ptes, but might be used more later.
  1496. */
  1497. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1498. struct vm_area_struct *, unsigned long, void *), void *arg)
  1499. {
  1500. struct anon_vma *anon_vma;
  1501. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1502. struct anon_vma_chain *avc;
  1503. int ret = SWAP_AGAIN;
  1504. /*
  1505. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1506. * because that depends on page_mapped(); but not all its usages
  1507. * are holding mmap_sem. Users without mmap_sem are required to
  1508. * take a reference count to prevent the anon_vma disappearing
  1509. */
  1510. anon_vma = page_anon_vma(page);
  1511. if (!anon_vma)
  1512. return ret;
  1513. anon_vma_lock(anon_vma);
  1514. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1515. struct vm_area_struct *vma = avc->vma;
  1516. unsigned long address = vma_address(page, vma);
  1517. ret = rmap_one(page, vma, address, arg);
  1518. if (ret != SWAP_AGAIN)
  1519. break;
  1520. }
  1521. anon_vma_unlock(anon_vma);
  1522. return ret;
  1523. }
  1524. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1525. struct vm_area_struct *, unsigned long, void *), void *arg)
  1526. {
  1527. struct address_space *mapping = page->mapping;
  1528. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1529. struct vm_area_struct *vma;
  1530. int ret = SWAP_AGAIN;
  1531. if (!mapping)
  1532. return ret;
  1533. mutex_lock(&mapping->i_mmap_mutex);
  1534. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1535. unsigned long address = vma_address(page, vma);
  1536. ret = rmap_one(page, vma, address, arg);
  1537. if (ret != SWAP_AGAIN)
  1538. break;
  1539. }
  1540. /*
  1541. * No nonlinear handling: being always shared, nonlinear vmas
  1542. * never contain migration ptes. Decide what to do about this
  1543. * limitation to linear when we need rmap_walk() on nonlinear.
  1544. */
  1545. mutex_unlock(&mapping->i_mmap_mutex);
  1546. return ret;
  1547. }
  1548. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1549. struct vm_area_struct *, unsigned long, void *), void *arg)
  1550. {
  1551. VM_BUG_ON(!PageLocked(page));
  1552. if (unlikely(PageKsm(page)))
  1553. return rmap_walk_ksm(page, rmap_one, arg);
  1554. else if (PageAnon(page))
  1555. return rmap_walk_anon(page, rmap_one, arg);
  1556. else
  1557. return rmap_walk_file(page, rmap_one, arg);
  1558. }
  1559. #endif /* CONFIG_MIGRATION */
  1560. #ifdef CONFIG_HUGETLB_PAGE
  1561. /*
  1562. * The following three functions are for anonymous (private mapped) hugepages.
  1563. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1564. * and no lru code, because we handle hugepages differently from common pages.
  1565. */
  1566. static void __hugepage_set_anon_rmap(struct page *page,
  1567. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1568. {
  1569. struct anon_vma *anon_vma = vma->anon_vma;
  1570. BUG_ON(!anon_vma);
  1571. if (PageAnon(page))
  1572. return;
  1573. if (!exclusive)
  1574. anon_vma = anon_vma->root;
  1575. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1576. page->mapping = (struct address_space *) anon_vma;
  1577. page->index = linear_page_index(vma, address);
  1578. }
  1579. void hugepage_add_anon_rmap(struct page *page,
  1580. struct vm_area_struct *vma, unsigned long address)
  1581. {
  1582. struct anon_vma *anon_vma = vma->anon_vma;
  1583. int first;
  1584. BUG_ON(!PageLocked(page));
  1585. BUG_ON(!anon_vma);
  1586. /* address might be in next vma when migration races vma_adjust */
  1587. first = atomic_inc_and_test(&page->_mapcount);
  1588. if (first)
  1589. __hugepage_set_anon_rmap(page, vma, address, 0);
  1590. }
  1591. void hugepage_add_new_anon_rmap(struct page *page,
  1592. struct vm_area_struct *vma, unsigned long address)
  1593. {
  1594. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1595. atomic_set(&page->_mapcount, 0);
  1596. __hugepage_set_anon_rmap(page, vma, address, 1);
  1597. }
  1598. #endif /* CONFIG_HUGETLB_PAGE */