tick-sched.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963
  1. /*
  2. * linux/kernel/time/tick-sched.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * No idle tick implementation for low and high resolution timers
  9. *
  10. * Started by: Thomas Gleixner and Ingo Molnar
  11. *
  12. * Distribute under GPLv2.
  13. */
  14. #include <linux/cpu.h>
  15. #include <linux/err.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/percpu.h>
  20. #include <linux/profile.h>
  21. #include <linux/sched.h>
  22. #include <linux/module.h>
  23. #include <asm/irq_regs.h>
  24. #include "tick-internal.h"
  25. /*
  26. * Per cpu nohz control structure
  27. */
  28. static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  29. /*
  30. * The time, when the last jiffy update happened. Protected by xtime_lock.
  31. */
  32. static ktime_t last_jiffies_update;
  33. struct tick_sched *tick_get_tick_sched(int cpu)
  34. {
  35. return &per_cpu(tick_cpu_sched, cpu);
  36. }
  37. /*
  38. * Must be called with interrupts disabled !
  39. */
  40. static void tick_do_update_jiffies64(ktime_t now)
  41. {
  42. unsigned long ticks = 0;
  43. ktime_t delta;
  44. /*
  45. * Do a quick check without holding xtime_lock:
  46. */
  47. delta = ktime_sub(now, last_jiffies_update);
  48. if (delta.tv64 < tick_period.tv64)
  49. return;
  50. /* Reevalute with xtime_lock held */
  51. write_seqlock(&xtime_lock);
  52. delta = ktime_sub(now, last_jiffies_update);
  53. if (delta.tv64 >= tick_period.tv64) {
  54. delta = ktime_sub(delta, tick_period);
  55. last_jiffies_update = ktime_add(last_jiffies_update,
  56. tick_period);
  57. /* Slow path for long timeouts */
  58. if (unlikely(delta.tv64 >= tick_period.tv64)) {
  59. s64 incr = ktime_to_ns(tick_period);
  60. ticks = ktime_divns(delta, incr);
  61. last_jiffies_update = ktime_add_ns(last_jiffies_update,
  62. incr * ticks);
  63. }
  64. do_timer(++ticks);
  65. /* Keep the tick_next_period variable up to date */
  66. tick_next_period = ktime_add(last_jiffies_update, tick_period);
  67. }
  68. write_sequnlock(&xtime_lock);
  69. }
  70. /*
  71. * Initialize and return retrieve the jiffies update.
  72. */
  73. static ktime_t tick_init_jiffy_update(void)
  74. {
  75. ktime_t period;
  76. write_seqlock(&xtime_lock);
  77. /* Did we start the jiffies update yet ? */
  78. if (last_jiffies_update.tv64 == 0)
  79. last_jiffies_update = tick_next_period;
  80. period = last_jiffies_update;
  81. write_sequnlock(&xtime_lock);
  82. return period;
  83. }
  84. /*
  85. * NOHZ - aka dynamic tick functionality
  86. */
  87. #ifdef CONFIG_NO_HZ
  88. /*
  89. * NO HZ enabled ?
  90. */
  91. int tick_nohz_enabled __read_mostly = 1;
  92. /*
  93. * Enable / Disable tickless mode
  94. */
  95. static int __init setup_tick_nohz(char *str)
  96. {
  97. if (!strcmp(str, "off"))
  98. tick_nohz_enabled = 0;
  99. else if (!strcmp(str, "on"))
  100. tick_nohz_enabled = 1;
  101. else
  102. return 0;
  103. return 1;
  104. }
  105. __setup("nohz=", setup_tick_nohz);
  106. /**
  107. * tick_nohz_update_jiffies - update jiffies when idle was interrupted
  108. *
  109. * Called from interrupt entry when the CPU was idle
  110. *
  111. * In case the sched_tick was stopped on this CPU, we have to check if jiffies
  112. * must be updated. Otherwise an interrupt handler could use a stale jiffy
  113. * value. We do this unconditionally on any cpu, as we don't know whether the
  114. * cpu, which has the update task assigned is in a long sleep.
  115. */
  116. static void tick_nohz_update_jiffies(ktime_t now)
  117. {
  118. int cpu = smp_processor_id();
  119. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  120. unsigned long flags;
  121. ts->idle_waketime = now;
  122. local_irq_save(flags);
  123. tick_do_update_jiffies64(now);
  124. local_irq_restore(flags);
  125. touch_softlockup_watchdog();
  126. }
  127. /*
  128. * Updates the per cpu time idle statistics counters
  129. */
  130. static void
  131. update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
  132. {
  133. ktime_t delta;
  134. if (ts->idle_active) {
  135. delta = ktime_sub(now, ts->idle_entrytime);
  136. if (nr_iowait_cpu(cpu) > 0)
  137. ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
  138. else
  139. ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
  140. ts->idle_entrytime = now;
  141. }
  142. if (last_update_time)
  143. *last_update_time = ktime_to_us(now);
  144. }
  145. static void tick_nohz_stop_idle(int cpu, ktime_t now)
  146. {
  147. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  148. update_ts_time_stats(cpu, ts, now, NULL);
  149. ts->idle_active = 0;
  150. sched_clock_idle_wakeup_event(0);
  151. }
  152. static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
  153. {
  154. ktime_t now = ktime_get();
  155. ts->idle_entrytime = now;
  156. ts->idle_active = 1;
  157. sched_clock_idle_sleep_event();
  158. return now;
  159. }
  160. /**
  161. * get_cpu_idle_time_us - get the total idle time of a cpu
  162. * @cpu: CPU number to query
  163. * @last_update_time: variable to store update time in. Do not update
  164. * counters if NULL.
  165. *
  166. * Return the cummulative idle time (since boot) for a given
  167. * CPU, in microseconds.
  168. *
  169. * This time is measured via accounting rather than sampling,
  170. * and is as accurate as ktime_get() is.
  171. *
  172. * This function returns -1 if NOHZ is not enabled.
  173. */
  174. u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
  175. {
  176. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  177. ktime_t now, idle;
  178. if (!tick_nohz_enabled)
  179. return -1;
  180. now = ktime_get();
  181. if (last_update_time) {
  182. update_ts_time_stats(cpu, ts, now, last_update_time);
  183. idle = ts->idle_sleeptime;
  184. } else {
  185. if (ts->idle_active && !nr_iowait_cpu(cpu)) {
  186. ktime_t delta = ktime_sub(now, ts->idle_entrytime);
  187. idle = ktime_add(ts->idle_sleeptime, delta);
  188. } else {
  189. idle = ts->idle_sleeptime;
  190. }
  191. }
  192. return ktime_to_us(idle);
  193. }
  194. EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
  195. /**
  196. * get_cpu_iowait_time_us - get the total iowait time of a cpu
  197. * @cpu: CPU number to query
  198. * @last_update_time: variable to store update time in. Do not update
  199. * counters if NULL.
  200. *
  201. * Return the cummulative iowait time (since boot) for a given
  202. * CPU, in microseconds.
  203. *
  204. * This time is measured via accounting rather than sampling,
  205. * and is as accurate as ktime_get() is.
  206. *
  207. * This function returns -1 if NOHZ is not enabled.
  208. */
  209. u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
  210. {
  211. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  212. ktime_t now, iowait;
  213. if (!tick_nohz_enabled)
  214. return -1;
  215. now = ktime_get();
  216. if (last_update_time) {
  217. update_ts_time_stats(cpu, ts, now, last_update_time);
  218. iowait = ts->iowait_sleeptime;
  219. } else {
  220. if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
  221. ktime_t delta = ktime_sub(now, ts->idle_entrytime);
  222. iowait = ktime_add(ts->iowait_sleeptime, delta);
  223. } else {
  224. iowait = ts->iowait_sleeptime;
  225. }
  226. }
  227. return ktime_to_us(iowait);
  228. }
  229. EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
  230. static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
  231. ktime_t now, int cpu)
  232. {
  233. unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
  234. ktime_t last_update, expires, ret = { .tv64 = 0 };
  235. unsigned long rcu_delta_jiffies;
  236. struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
  237. u64 time_delta;
  238. /* Read jiffies and the time when jiffies were updated last */
  239. do {
  240. seq = read_seqbegin(&xtime_lock);
  241. last_update = last_jiffies_update;
  242. last_jiffies = jiffies;
  243. time_delta = timekeeping_max_deferment();
  244. } while (read_seqretry(&xtime_lock, seq));
  245. if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
  246. arch_needs_cpu(cpu)) {
  247. next_jiffies = last_jiffies + 1;
  248. delta_jiffies = 1;
  249. } else {
  250. /* Get the next timer wheel timer */
  251. next_jiffies = get_next_timer_interrupt(last_jiffies);
  252. delta_jiffies = next_jiffies - last_jiffies;
  253. if (rcu_delta_jiffies < delta_jiffies) {
  254. next_jiffies = last_jiffies + rcu_delta_jiffies;
  255. delta_jiffies = rcu_delta_jiffies;
  256. }
  257. }
  258. /*
  259. * Do not stop the tick, if we are only one off
  260. * or if the cpu is required for rcu
  261. */
  262. if (!ts->tick_stopped && delta_jiffies == 1)
  263. goto out;
  264. /* Schedule the tick, if we are at least one jiffie off */
  265. if ((long)delta_jiffies >= 1) {
  266. /*
  267. * If this cpu is the one which updates jiffies, then
  268. * give up the assignment and let it be taken by the
  269. * cpu which runs the tick timer next, which might be
  270. * this cpu as well. If we don't drop this here the
  271. * jiffies might be stale and do_timer() never
  272. * invoked. Keep track of the fact that it was the one
  273. * which had the do_timer() duty last. If this cpu is
  274. * the one which had the do_timer() duty last, we
  275. * limit the sleep time to the timekeeping
  276. * max_deferement value which we retrieved
  277. * above. Otherwise we can sleep as long as we want.
  278. */
  279. if (cpu == tick_do_timer_cpu) {
  280. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  281. ts->do_timer_last = 1;
  282. } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
  283. time_delta = KTIME_MAX;
  284. ts->do_timer_last = 0;
  285. } else if (!ts->do_timer_last) {
  286. time_delta = KTIME_MAX;
  287. }
  288. /*
  289. * calculate the expiry time for the next timer wheel
  290. * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
  291. * that there is no timer pending or at least extremely
  292. * far into the future (12 days for HZ=1000). In this
  293. * case we set the expiry to the end of time.
  294. */
  295. if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
  296. /*
  297. * Calculate the time delta for the next timer event.
  298. * If the time delta exceeds the maximum time delta
  299. * permitted by the current clocksource then adjust
  300. * the time delta accordingly to ensure the
  301. * clocksource does not wrap.
  302. */
  303. time_delta = min_t(u64, time_delta,
  304. tick_period.tv64 * delta_jiffies);
  305. }
  306. if (time_delta < KTIME_MAX)
  307. expires = ktime_add_ns(last_update, time_delta);
  308. else
  309. expires.tv64 = KTIME_MAX;
  310. /* Skip reprogram of event if its not changed */
  311. if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
  312. goto out;
  313. ret = expires;
  314. /*
  315. * nohz_stop_sched_tick can be called several times before
  316. * the nohz_restart_sched_tick is called. This happens when
  317. * interrupts arrive which do not cause a reschedule. In the
  318. * first call we save the current tick time, so we can restart
  319. * the scheduler tick in nohz_restart_sched_tick.
  320. */
  321. if (!ts->tick_stopped) {
  322. nohz_balance_enter_idle(cpu);
  323. calc_load_enter_idle();
  324. ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
  325. ts->tick_stopped = 1;
  326. }
  327. /*
  328. * If the expiration time == KTIME_MAX, then
  329. * in this case we simply stop the tick timer.
  330. */
  331. if (unlikely(expires.tv64 == KTIME_MAX)) {
  332. if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
  333. hrtimer_cancel(&ts->sched_timer);
  334. goto out;
  335. }
  336. if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
  337. hrtimer_start(&ts->sched_timer, expires,
  338. HRTIMER_MODE_ABS_PINNED);
  339. /* Check, if the timer was already in the past */
  340. if (hrtimer_active(&ts->sched_timer))
  341. goto out;
  342. } else if (!tick_program_event(expires, 0))
  343. goto out;
  344. /*
  345. * We are past the event already. So we crossed a
  346. * jiffie boundary. Update jiffies and raise the
  347. * softirq.
  348. */
  349. tick_do_update_jiffies64(ktime_get());
  350. }
  351. raise_softirq_irqoff(TIMER_SOFTIRQ);
  352. out:
  353. ts->next_jiffies = next_jiffies;
  354. ts->last_jiffies = last_jiffies;
  355. ts->sleep_length = ktime_sub(dev->next_event, now);
  356. return ret;
  357. }
  358. static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
  359. {
  360. /*
  361. * If this cpu is offline and it is the one which updates
  362. * jiffies, then give up the assignment and let it be taken by
  363. * the cpu which runs the tick timer next. If we don't drop
  364. * this here the jiffies might be stale and do_timer() never
  365. * invoked.
  366. */
  367. if (unlikely(!cpu_online(cpu))) {
  368. if (cpu == tick_do_timer_cpu)
  369. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  370. }
  371. if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
  372. return false;
  373. if (need_resched())
  374. return false;
  375. if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
  376. static int ratelimit;
  377. if (ratelimit < 10 &&
  378. (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
  379. printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
  380. (unsigned int) local_softirq_pending());
  381. ratelimit++;
  382. }
  383. return false;
  384. }
  385. return true;
  386. }
  387. static void __tick_nohz_idle_enter(struct tick_sched *ts)
  388. {
  389. ktime_t now, expires;
  390. int cpu = smp_processor_id();
  391. now = tick_nohz_start_idle(cpu, ts);
  392. if (can_stop_idle_tick(cpu, ts)) {
  393. int was_stopped = ts->tick_stopped;
  394. ts->idle_calls++;
  395. expires = tick_nohz_stop_sched_tick(ts, now, cpu);
  396. if (expires.tv64 > 0LL) {
  397. ts->idle_sleeps++;
  398. ts->idle_expires = expires;
  399. }
  400. if (!was_stopped && ts->tick_stopped)
  401. ts->idle_jiffies = ts->last_jiffies;
  402. }
  403. }
  404. /**
  405. * tick_nohz_idle_enter - stop the idle tick from the idle task
  406. *
  407. * When the next event is more than a tick into the future, stop the idle tick
  408. * Called when we start the idle loop.
  409. *
  410. * The arch is responsible of calling:
  411. *
  412. * - rcu_idle_enter() after its last use of RCU before the CPU is put
  413. * to sleep.
  414. * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
  415. */
  416. void tick_nohz_idle_enter(void)
  417. {
  418. struct tick_sched *ts;
  419. WARN_ON_ONCE(irqs_disabled());
  420. /*
  421. * Update the idle state in the scheduler domain hierarchy
  422. * when tick_nohz_stop_sched_tick() is called from the idle loop.
  423. * State will be updated to busy during the first busy tick after
  424. * exiting idle.
  425. */
  426. set_cpu_sd_state_idle();
  427. local_irq_disable();
  428. ts = &__get_cpu_var(tick_cpu_sched);
  429. /*
  430. * set ts->inidle unconditionally. even if the system did not
  431. * switch to nohz mode the cpu frequency governers rely on the
  432. * update of the idle time accounting in tick_nohz_start_idle().
  433. */
  434. ts->inidle = 1;
  435. __tick_nohz_idle_enter(ts);
  436. local_irq_enable();
  437. }
  438. /**
  439. * tick_nohz_irq_exit - update next tick event from interrupt exit
  440. *
  441. * When an interrupt fires while we are idle and it doesn't cause
  442. * a reschedule, it may still add, modify or delete a timer, enqueue
  443. * an RCU callback, etc...
  444. * So we need to re-calculate and reprogram the next tick event.
  445. */
  446. void tick_nohz_irq_exit(void)
  447. {
  448. struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
  449. if (!ts->inidle)
  450. return;
  451. __tick_nohz_idle_enter(ts);
  452. }
  453. /**
  454. * tick_nohz_get_sleep_length - return the length of the current sleep
  455. *
  456. * Called from power state control code with interrupts disabled
  457. */
  458. ktime_t tick_nohz_get_sleep_length(void)
  459. {
  460. struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
  461. return ts->sleep_length;
  462. }
  463. static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
  464. {
  465. hrtimer_cancel(&ts->sched_timer);
  466. hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
  467. while (1) {
  468. /* Forward the time to expire in the future */
  469. hrtimer_forward(&ts->sched_timer, now, tick_period);
  470. if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
  471. hrtimer_start_expires(&ts->sched_timer,
  472. HRTIMER_MODE_ABS_PINNED);
  473. /* Check, if the timer was already in the past */
  474. if (hrtimer_active(&ts->sched_timer))
  475. break;
  476. } else {
  477. if (!tick_program_event(
  478. hrtimer_get_expires(&ts->sched_timer), 0))
  479. break;
  480. }
  481. /* Reread time and update jiffies */
  482. now = ktime_get();
  483. tick_do_update_jiffies64(now);
  484. }
  485. }
  486. static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
  487. {
  488. /* Update jiffies first */
  489. tick_do_update_jiffies64(now);
  490. update_cpu_load_nohz();
  491. calc_load_exit_idle();
  492. touch_softlockup_watchdog();
  493. /*
  494. * Cancel the scheduled timer and restore the tick
  495. */
  496. ts->tick_stopped = 0;
  497. ts->idle_exittime = now;
  498. tick_nohz_restart(ts, now);
  499. }
  500. static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
  501. {
  502. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  503. unsigned long ticks;
  504. /*
  505. * We stopped the tick in idle. Update process times would miss the
  506. * time we slept as update_process_times does only a 1 tick
  507. * accounting. Enforce that this is accounted to idle !
  508. */
  509. ticks = jiffies - ts->idle_jiffies;
  510. /*
  511. * We might be one off. Do not randomly account a huge number of ticks!
  512. */
  513. if (ticks && ticks < LONG_MAX)
  514. account_idle_ticks(ticks);
  515. #endif
  516. }
  517. /**
  518. * tick_nohz_idle_exit - restart the idle tick from the idle task
  519. *
  520. * Restart the idle tick when the CPU is woken up from idle
  521. * This also exit the RCU extended quiescent state. The CPU
  522. * can use RCU again after this function is called.
  523. */
  524. void tick_nohz_idle_exit(void)
  525. {
  526. int cpu = smp_processor_id();
  527. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  528. ktime_t now;
  529. local_irq_disable();
  530. WARN_ON_ONCE(!ts->inidle);
  531. ts->inidle = 0;
  532. if (ts->idle_active || ts->tick_stopped)
  533. now = ktime_get();
  534. if (ts->idle_active)
  535. tick_nohz_stop_idle(cpu, now);
  536. if (ts->tick_stopped) {
  537. tick_nohz_restart_sched_tick(ts, now);
  538. tick_nohz_account_idle_ticks(ts);
  539. }
  540. local_irq_enable();
  541. }
  542. static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
  543. {
  544. hrtimer_forward(&ts->sched_timer, now, tick_period);
  545. return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
  546. }
  547. /*
  548. * The nohz low res interrupt handler
  549. */
  550. static void tick_nohz_handler(struct clock_event_device *dev)
  551. {
  552. struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
  553. struct pt_regs *regs = get_irq_regs();
  554. int cpu = smp_processor_id();
  555. ktime_t now = ktime_get();
  556. dev->next_event.tv64 = KTIME_MAX;
  557. /*
  558. * Check if the do_timer duty was dropped. We don't care about
  559. * concurrency: This happens only when the cpu in charge went
  560. * into a long sleep. If two cpus happen to assign themself to
  561. * this duty, then the jiffies update is still serialized by
  562. * xtime_lock.
  563. */
  564. if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
  565. tick_do_timer_cpu = cpu;
  566. /* Check, if the jiffies need an update */
  567. if (tick_do_timer_cpu == cpu)
  568. tick_do_update_jiffies64(now);
  569. /*
  570. * When we are idle and the tick is stopped, we have to touch
  571. * the watchdog as we might not schedule for a really long
  572. * time. This happens on complete idle SMP systems while
  573. * waiting on the login prompt. We also increment the "start
  574. * of idle" jiffy stamp so the idle accounting adjustment we
  575. * do when we go busy again does not account too much ticks.
  576. */
  577. if (ts->tick_stopped) {
  578. touch_softlockup_watchdog();
  579. ts->idle_jiffies++;
  580. }
  581. update_process_times(user_mode(regs));
  582. profile_tick(CPU_PROFILING);
  583. while (tick_nohz_reprogram(ts, now)) {
  584. now = ktime_get();
  585. tick_do_update_jiffies64(now);
  586. }
  587. }
  588. /**
  589. * tick_nohz_switch_to_nohz - switch to nohz mode
  590. */
  591. static void tick_nohz_switch_to_nohz(void)
  592. {
  593. struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
  594. ktime_t next;
  595. if (!tick_nohz_enabled)
  596. return;
  597. local_irq_disable();
  598. if (tick_switch_to_oneshot(tick_nohz_handler)) {
  599. local_irq_enable();
  600. return;
  601. }
  602. ts->nohz_mode = NOHZ_MODE_LOWRES;
  603. /*
  604. * Recycle the hrtimer in ts, so we can share the
  605. * hrtimer_forward with the highres code.
  606. */
  607. hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  608. /* Get the next period */
  609. next = tick_init_jiffy_update();
  610. for (;;) {
  611. hrtimer_set_expires(&ts->sched_timer, next);
  612. if (!tick_program_event(next, 0))
  613. break;
  614. next = ktime_add(next, tick_period);
  615. }
  616. local_irq_enable();
  617. }
  618. /*
  619. * When NOHZ is enabled and the tick is stopped, we need to kick the
  620. * tick timer from irq_enter() so that the jiffies update is kept
  621. * alive during long running softirqs. That's ugly as hell, but
  622. * correctness is key even if we need to fix the offending softirq in
  623. * the first place.
  624. *
  625. * Note, this is different to tick_nohz_restart. We just kick the
  626. * timer and do not touch the other magic bits which need to be done
  627. * when idle is left.
  628. */
  629. static void tick_nohz_kick_tick(int cpu, ktime_t now)
  630. {
  631. #if 0
  632. /* Switch back to 2.6.27 behaviour */
  633. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  634. ktime_t delta;
  635. /*
  636. * Do not touch the tick device, when the next expiry is either
  637. * already reached or less/equal than the tick period.
  638. */
  639. delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
  640. if (delta.tv64 <= tick_period.tv64)
  641. return;
  642. tick_nohz_restart(ts, now);
  643. #endif
  644. }
  645. static inline void tick_check_nohz(int cpu)
  646. {
  647. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  648. ktime_t now;
  649. if (!ts->idle_active && !ts->tick_stopped)
  650. return;
  651. now = ktime_get();
  652. if (ts->idle_active)
  653. tick_nohz_stop_idle(cpu, now);
  654. if (ts->tick_stopped) {
  655. tick_nohz_update_jiffies(now);
  656. tick_nohz_kick_tick(cpu, now);
  657. }
  658. }
  659. #else
  660. static inline void tick_nohz_switch_to_nohz(void) { }
  661. static inline void tick_check_nohz(int cpu) { }
  662. #endif /* NO_HZ */
  663. /*
  664. * Called from irq_enter to notify about the possible interruption of idle()
  665. */
  666. void tick_check_idle(int cpu)
  667. {
  668. tick_check_oneshot_broadcast(cpu);
  669. tick_check_nohz(cpu);
  670. }
  671. /*
  672. * High resolution timer specific code
  673. */
  674. #ifdef CONFIG_HIGH_RES_TIMERS
  675. /*
  676. * We rearm the timer until we get disabled by the idle code.
  677. * Called with interrupts disabled and timer->base->cpu_base->lock held.
  678. */
  679. static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
  680. {
  681. struct tick_sched *ts =
  682. container_of(timer, struct tick_sched, sched_timer);
  683. struct pt_regs *regs = get_irq_regs();
  684. ktime_t now = ktime_get();
  685. int cpu = smp_processor_id();
  686. #ifdef CONFIG_NO_HZ
  687. /*
  688. * Check if the do_timer duty was dropped. We don't care about
  689. * concurrency: This happens only when the cpu in charge went
  690. * into a long sleep. If two cpus happen to assign themself to
  691. * this duty, then the jiffies update is still serialized by
  692. * xtime_lock.
  693. */
  694. if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
  695. tick_do_timer_cpu = cpu;
  696. #endif
  697. /* Check, if the jiffies need an update */
  698. if (tick_do_timer_cpu == cpu)
  699. tick_do_update_jiffies64(now);
  700. /*
  701. * Do not call, when we are not in irq context and have
  702. * no valid regs pointer
  703. */
  704. if (regs) {
  705. /*
  706. * When we are idle and the tick is stopped, we have to touch
  707. * the watchdog as we might not schedule for a really long
  708. * time. This happens on complete idle SMP systems while
  709. * waiting on the login prompt. We also increment the "start of
  710. * idle" jiffy stamp so the idle accounting adjustment we do
  711. * when we go busy again does not account too much ticks.
  712. */
  713. if (ts->tick_stopped) {
  714. touch_softlockup_watchdog();
  715. if (is_idle_task(current))
  716. ts->idle_jiffies++;
  717. }
  718. update_process_times(user_mode(regs));
  719. profile_tick(CPU_PROFILING);
  720. }
  721. hrtimer_forward(timer, now, tick_period);
  722. return HRTIMER_RESTART;
  723. }
  724. static int sched_skew_tick;
  725. static int __init skew_tick(char *str)
  726. {
  727. get_option(&str, &sched_skew_tick);
  728. return 0;
  729. }
  730. early_param("skew_tick", skew_tick);
  731. /**
  732. * tick_setup_sched_timer - setup the tick emulation timer
  733. */
  734. void tick_setup_sched_timer(void)
  735. {
  736. struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
  737. ktime_t now = ktime_get();
  738. /*
  739. * Emulate tick processing via per-CPU hrtimers:
  740. */
  741. hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  742. ts->sched_timer.function = tick_sched_timer;
  743. /* Get the next period (per cpu) */
  744. hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
  745. /* Offset the tick to avert xtime_lock contention. */
  746. if (sched_skew_tick) {
  747. u64 offset = ktime_to_ns(tick_period) >> 1;
  748. do_div(offset, num_possible_cpus());
  749. offset *= smp_processor_id();
  750. hrtimer_add_expires_ns(&ts->sched_timer, offset);
  751. }
  752. for (;;) {
  753. hrtimer_forward(&ts->sched_timer, now, tick_period);
  754. hrtimer_start_expires(&ts->sched_timer,
  755. HRTIMER_MODE_ABS_PINNED);
  756. /* Check, if the timer was already in the past */
  757. if (hrtimer_active(&ts->sched_timer))
  758. break;
  759. now = ktime_get();
  760. }
  761. #ifdef CONFIG_NO_HZ
  762. if (tick_nohz_enabled)
  763. ts->nohz_mode = NOHZ_MODE_HIGHRES;
  764. #endif
  765. }
  766. #endif /* HIGH_RES_TIMERS */
  767. #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
  768. void tick_cancel_sched_timer(int cpu)
  769. {
  770. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  771. # ifdef CONFIG_HIGH_RES_TIMERS
  772. if (ts->sched_timer.base)
  773. hrtimer_cancel(&ts->sched_timer);
  774. # endif
  775. ts->nohz_mode = NOHZ_MODE_INACTIVE;
  776. }
  777. #endif
  778. /**
  779. * Async notification about clocksource changes
  780. */
  781. void tick_clock_notify(void)
  782. {
  783. int cpu;
  784. for_each_possible_cpu(cpu)
  785. set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
  786. }
  787. /*
  788. * Async notification about clock event changes
  789. */
  790. void tick_oneshot_notify(void)
  791. {
  792. struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
  793. set_bit(0, &ts->check_clocks);
  794. }
  795. /**
  796. * Check, if a change happened, which makes oneshot possible.
  797. *
  798. * Called cyclic from the hrtimer softirq (driven by the timer
  799. * softirq) allow_nohz signals, that we can switch into low-res nohz
  800. * mode, because high resolution timers are disabled (either compile
  801. * or runtime).
  802. */
  803. int tick_check_oneshot_change(int allow_nohz)
  804. {
  805. struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
  806. if (!test_and_clear_bit(0, &ts->check_clocks))
  807. return 0;
  808. if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
  809. return 0;
  810. if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
  811. return 0;
  812. if (!allow_nohz)
  813. return 1;
  814. tick_nohz_switch_to_nohz();
  815. return 0;
  816. }