mqueue.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450
  1. /*
  2. * POSIX message queues filesystem for Linux.
  3. *
  4. * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
  5. * Michal Wronski (michal.wronski@gmail.com)
  6. *
  7. * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
  8. * Lockless receive & send, fd based notify:
  9. * Manfred Spraul (manfred@colorfullife.com)
  10. *
  11. * Audit: George Wilson (ltcgcw@us.ibm.com)
  12. *
  13. * This file is released under the GPL.
  14. */
  15. #include <linux/capability.h>
  16. #include <linux/init.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/file.h>
  19. #include <linux/mount.h>
  20. #include <linux/namei.h>
  21. #include <linux/sysctl.h>
  22. #include <linux/poll.h>
  23. #include <linux/mqueue.h>
  24. #include <linux/msg.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/netlink.h>
  28. #include <linux/syscalls.h>
  29. #include <linux/audit.h>
  30. #include <linux/signal.h>
  31. #include <linux/mutex.h>
  32. #include <linux/nsproxy.h>
  33. #include <linux/pid.h>
  34. #include <linux/ipc_namespace.h>
  35. #include <linux/user_namespace.h>
  36. #include <linux/slab.h>
  37. #include <net/sock.h>
  38. #include "util.h"
  39. #define MQUEUE_MAGIC 0x19800202
  40. #define DIRENT_SIZE 20
  41. #define FILENT_SIZE 80
  42. #define SEND 0
  43. #define RECV 1
  44. #define STATE_NONE 0
  45. #define STATE_PENDING 1
  46. #define STATE_READY 2
  47. struct posix_msg_tree_node {
  48. struct rb_node rb_node;
  49. struct list_head msg_list;
  50. int priority;
  51. };
  52. struct ext_wait_queue { /* queue of sleeping tasks */
  53. struct task_struct *task;
  54. struct list_head list;
  55. struct msg_msg *msg; /* ptr of loaded message */
  56. int state; /* one of STATE_* values */
  57. };
  58. struct mqueue_inode_info {
  59. spinlock_t lock;
  60. struct inode vfs_inode;
  61. wait_queue_head_t wait_q;
  62. struct rb_root msg_tree;
  63. struct posix_msg_tree_node *node_cache;
  64. struct mq_attr attr;
  65. struct sigevent notify;
  66. struct pid* notify_owner;
  67. struct user_namespace *notify_user_ns;
  68. struct user_struct *user; /* user who created, for accounting */
  69. struct sock *notify_sock;
  70. struct sk_buff *notify_cookie;
  71. /* for tasks waiting for free space and messages, respectively */
  72. struct ext_wait_queue e_wait_q[2];
  73. unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  74. };
  75. static const struct inode_operations mqueue_dir_inode_operations;
  76. static const struct file_operations mqueue_file_operations;
  77. static const struct super_operations mqueue_super_ops;
  78. static void remove_notification(struct mqueue_inode_info *info);
  79. static struct kmem_cache *mqueue_inode_cachep;
  80. static struct ctl_table_header * mq_sysctl_table;
  81. static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  82. {
  83. return container_of(inode, struct mqueue_inode_info, vfs_inode);
  84. }
  85. /*
  86. * This routine should be called with the mq_lock held.
  87. */
  88. static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
  89. {
  90. return get_ipc_ns(inode->i_sb->s_fs_info);
  91. }
  92. static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
  93. {
  94. struct ipc_namespace *ns;
  95. spin_lock(&mq_lock);
  96. ns = __get_ns_from_inode(inode);
  97. spin_unlock(&mq_lock);
  98. return ns;
  99. }
  100. /* Auxiliary functions to manipulate messages' list */
  101. static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
  102. {
  103. struct rb_node **p, *parent = NULL;
  104. struct posix_msg_tree_node *leaf;
  105. p = &info->msg_tree.rb_node;
  106. while (*p) {
  107. parent = *p;
  108. leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
  109. if (likely(leaf->priority == msg->m_type))
  110. goto insert_msg;
  111. else if (msg->m_type < leaf->priority)
  112. p = &(*p)->rb_left;
  113. else
  114. p = &(*p)->rb_right;
  115. }
  116. if (info->node_cache) {
  117. leaf = info->node_cache;
  118. info->node_cache = NULL;
  119. } else {
  120. leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
  121. if (!leaf)
  122. return -ENOMEM;
  123. INIT_LIST_HEAD(&leaf->msg_list);
  124. info->qsize += sizeof(*leaf);
  125. }
  126. leaf->priority = msg->m_type;
  127. rb_link_node(&leaf->rb_node, parent, p);
  128. rb_insert_color(&leaf->rb_node, &info->msg_tree);
  129. insert_msg:
  130. info->attr.mq_curmsgs++;
  131. info->qsize += msg->m_ts;
  132. list_add_tail(&msg->m_list, &leaf->msg_list);
  133. return 0;
  134. }
  135. static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
  136. {
  137. struct rb_node **p, *parent = NULL;
  138. struct posix_msg_tree_node *leaf;
  139. struct msg_msg *msg;
  140. try_again:
  141. p = &info->msg_tree.rb_node;
  142. while (*p) {
  143. parent = *p;
  144. /*
  145. * During insert, low priorities go to the left and high to the
  146. * right. On receive, we want the highest priorities first, so
  147. * walk all the way to the right.
  148. */
  149. p = &(*p)->rb_right;
  150. }
  151. if (!parent) {
  152. if (info->attr.mq_curmsgs) {
  153. pr_warn_once("Inconsistency in POSIX message queue, "
  154. "no tree element, but supposedly messages "
  155. "should exist!\n");
  156. info->attr.mq_curmsgs = 0;
  157. }
  158. return NULL;
  159. }
  160. leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
  161. if (unlikely(list_empty(&leaf->msg_list))) {
  162. pr_warn_once("Inconsistency in POSIX message queue, "
  163. "empty leaf node but we haven't implemented "
  164. "lazy leaf delete!\n");
  165. rb_erase(&leaf->rb_node, &info->msg_tree);
  166. if (info->node_cache) {
  167. info->qsize -= sizeof(*leaf);
  168. kfree(leaf);
  169. } else {
  170. info->node_cache = leaf;
  171. }
  172. goto try_again;
  173. } else {
  174. msg = list_first_entry(&leaf->msg_list,
  175. struct msg_msg, m_list);
  176. list_del(&msg->m_list);
  177. if (list_empty(&leaf->msg_list)) {
  178. rb_erase(&leaf->rb_node, &info->msg_tree);
  179. if (info->node_cache) {
  180. info->qsize -= sizeof(*leaf);
  181. kfree(leaf);
  182. } else {
  183. info->node_cache = leaf;
  184. }
  185. }
  186. }
  187. info->attr.mq_curmsgs--;
  188. info->qsize -= msg->m_ts;
  189. return msg;
  190. }
  191. static struct inode *mqueue_get_inode(struct super_block *sb,
  192. struct ipc_namespace *ipc_ns, umode_t mode,
  193. struct mq_attr *attr)
  194. {
  195. struct user_struct *u = current_user();
  196. struct inode *inode;
  197. int ret = -ENOMEM;
  198. inode = new_inode(sb);
  199. if (!inode)
  200. goto err;
  201. inode->i_ino = get_next_ino();
  202. inode->i_mode = mode;
  203. inode->i_uid = current_fsuid();
  204. inode->i_gid = current_fsgid();
  205. inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
  206. if (S_ISREG(mode)) {
  207. struct mqueue_inode_info *info;
  208. unsigned long mq_bytes, mq_treesize;
  209. inode->i_fop = &mqueue_file_operations;
  210. inode->i_size = FILENT_SIZE;
  211. /* mqueue specific info */
  212. info = MQUEUE_I(inode);
  213. spin_lock_init(&info->lock);
  214. init_waitqueue_head(&info->wait_q);
  215. INIT_LIST_HEAD(&info->e_wait_q[0].list);
  216. INIT_LIST_HEAD(&info->e_wait_q[1].list);
  217. info->notify_owner = NULL;
  218. info->notify_user_ns = NULL;
  219. info->qsize = 0;
  220. info->user = NULL; /* set when all is ok */
  221. info->msg_tree = RB_ROOT;
  222. info->node_cache = NULL;
  223. memset(&info->attr, 0, sizeof(info->attr));
  224. info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
  225. ipc_ns->mq_msg_default);
  226. info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
  227. ipc_ns->mq_msgsize_default);
  228. if (attr) {
  229. info->attr.mq_maxmsg = attr->mq_maxmsg;
  230. info->attr.mq_msgsize = attr->mq_msgsize;
  231. }
  232. /*
  233. * We used to allocate a static array of pointers and account
  234. * the size of that array as well as one msg_msg struct per
  235. * possible message into the queue size. That's no longer
  236. * accurate as the queue is now an rbtree and will grow and
  237. * shrink depending on usage patterns. We can, however, still
  238. * account one msg_msg struct per message, but the nodes are
  239. * allocated depending on priority usage, and most programs
  240. * only use one, or a handful, of priorities. However, since
  241. * this is pinned memory, we need to assume worst case, so
  242. * that means the min(mq_maxmsg, max_priorities) * struct
  243. * posix_msg_tree_node.
  244. */
  245. mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
  246. min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
  247. sizeof(struct posix_msg_tree_node);
  248. mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
  249. info->attr.mq_msgsize);
  250. spin_lock(&mq_lock);
  251. if (u->mq_bytes + mq_bytes < u->mq_bytes ||
  252. u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
  253. spin_unlock(&mq_lock);
  254. /* mqueue_evict_inode() releases info->messages */
  255. ret = -EMFILE;
  256. goto out_inode;
  257. }
  258. u->mq_bytes += mq_bytes;
  259. spin_unlock(&mq_lock);
  260. /* all is ok */
  261. info->user = get_uid(u);
  262. } else if (S_ISDIR(mode)) {
  263. inc_nlink(inode);
  264. /* Some things misbehave if size == 0 on a directory */
  265. inode->i_size = 2 * DIRENT_SIZE;
  266. inode->i_op = &mqueue_dir_inode_operations;
  267. inode->i_fop = &simple_dir_operations;
  268. }
  269. return inode;
  270. out_inode:
  271. iput(inode);
  272. err:
  273. return ERR_PTR(ret);
  274. }
  275. static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
  276. {
  277. struct inode *inode;
  278. struct ipc_namespace *ns = data;
  279. sb->s_blocksize = PAGE_CACHE_SIZE;
  280. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  281. sb->s_magic = MQUEUE_MAGIC;
  282. sb->s_op = &mqueue_super_ops;
  283. inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
  284. if (IS_ERR(inode))
  285. return PTR_ERR(inode);
  286. sb->s_root = d_make_root(inode);
  287. if (!sb->s_root)
  288. return -ENOMEM;
  289. return 0;
  290. }
  291. static struct dentry *mqueue_mount(struct file_system_type *fs_type,
  292. int flags, const char *dev_name,
  293. void *data)
  294. {
  295. if (!(flags & MS_KERNMOUNT))
  296. data = current->nsproxy->ipc_ns;
  297. return mount_ns(fs_type, flags, data, mqueue_fill_super);
  298. }
  299. static void init_once(void *foo)
  300. {
  301. struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
  302. inode_init_once(&p->vfs_inode);
  303. }
  304. static struct inode *mqueue_alloc_inode(struct super_block *sb)
  305. {
  306. struct mqueue_inode_info *ei;
  307. ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
  308. if (!ei)
  309. return NULL;
  310. return &ei->vfs_inode;
  311. }
  312. static void mqueue_i_callback(struct rcu_head *head)
  313. {
  314. struct inode *inode = container_of(head, struct inode, i_rcu);
  315. kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
  316. }
  317. static void mqueue_destroy_inode(struct inode *inode)
  318. {
  319. call_rcu(&inode->i_rcu, mqueue_i_callback);
  320. }
  321. static void mqueue_evict_inode(struct inode *inode)
  322. {
  323. struct mqueue_inode_info *info;
  324. struct user_struct *user;
  325. unsigned long mq_bytes, mq_treesize;
  326. struct ipc_namespace *ipc_ns;
  327. struct msg_msg *msg;
  328. clear_inode(inode);
  329. if (S_ISDIR(inode->i_mode))
  330. return;
  331. ipc_ns = get_ns_from_inode(inode);
  332. info = MQUEUE_I(inode);
  333. spin_lock(&info->lock);
  334. while ((msg = msg_get(info)) != NULL)
  335. free_msg(msg);
  336. kfree(info->node_cache);
  337. spin_unlock(&info->lock);
  338. /* Total amount of bytes accounted for the mqueue */
  339. mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
  340. min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
  341. sizeof(struct posix_msg_tree_node);
  342. mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
  343. info->attr.mq_msgsize);
  344. user = info->user;
  345. if (user) {
  346. spin_lock(&mq_lock);
  347. user->mq_bytes -= mq_bytes;
  348. /*
  349. * get_ns_from_inode() ensures that the
  350. * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
  351. * to which we now hold a reference, or it is NULL.
  352. * We can't put it here under mq_lock, though.
  353. */
  354. if (ipc_ns)
  355. ipc_ns->mq_queues_count--;
  356. spin_unlock(&mq_lock);
  357. free_uid(user);
  358. }
  359. if (ipc_ns)
  360. put_ipc_ns(ipc_ns);
  361. }
  362. static int mqueue_create(struct inode *dir, struct dentry *dentry,
  363. umode_t mode, bool excl)
  364. {
  365. struct inode *inode;
  366. struct mq_attr *attr = dentry->d_fsdata;
  367. int error;
  368. struct ipc_namespace *ipc_ns;
  369. spin_lock(&mq_lock);
  370. ipc_ns = __get_ns_from_inode(dir);
  371. if (!ipc_ns) {
  372. error = -EACCES;
  373. goto out_unlock;
  374. }
  375. if (ipc_ns->mq_queues_count >= HARD_QUEUESMAX ||
  376. (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
  377. !capable(CAP_SYS_RESOURCE))) {
  378. error = -ENOSPC;
  379. goto out_unlock;
  380. }
  381. ipc_ns->mq_queues_count++;
  382. spin_unlock(&mq_lock);
  383. inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
  384. if (IS_ERR(inode)) {
  385. error = PTR_ERR(inode);
  386. spin_lock(&mq_lock);
  387. ipc_ns->mq_queues_count--;
  388. goto out_unlock;
  389. }
  390. put_ipc_ns(ipc_ns);
  391. dir->i_size += DIRENT_SIZE;
  392. dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
  393. d_instantiate(dentry, inode);
  394. dget(dentry);
  395. return 0;
  396. out_unlock:
  397. spin_unlock(&mq_lock);
  398. if (ipc_ns)
  399. put_ipc_ns(ipc_ns);
  400. return error;
  401. }
  402. static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
  403. {
  404. struct inode *inode = dentry->d_inode;
  405. dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
  406. dir->i_size -= DIRENT_SIZE;
  407. drop_nlink(inode);
  408. dput(dentry);
  409. return 0;
  410. }
  411. /*
  412. * This is routine for system read from queue file.
  413. * To avoid mess with doing here some sort of mq_receive we allow
  414. * to read only queue size & notification info (the only values
  415. * that are interesting from user point of view and aren't accessible
  416. * through std routines)
  417. */
  418. static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
  419. size_t count, loff_t *off)
  420. {
  421. struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
  422. char buffer[FILENT_SIZE];
  423. ssize_t ret;
  424. spin_lock(&info->lock);
  425. snprintf(buffer, sizeof(buffer),
  426. "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
  427. info->qsize,
  428. info->notify_owner ? info->notify.sigev_notify : 0,
  429. (info->notify_owner &&
  430. info->notify.sigev_notify == SIGEV_SIGNAL) ?
  431. info->notify.sigev_signo : 0,
  432. pid_vnr(info->notify_owner));
  433. spin_unlock(&info->lock);
  434. buffer[sizeof(buffer)-1] = '\0';
  435. ret = simple_read_from_buffer(u_data, count, off, buffer,
  436. strlen(buffer));
  437. if (ret <= 0)
  438. return ret;
  439. filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
  440. return ret;
  441. }
  442. static int mqueue_flush_file(struct file *filp, fl_owner_t id)
  443. {
  444. struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
  445. spin_lock(&info->lock);
  446. if (task_tgid(current) == info->notify_owner)
  447. remove_notification(info);
  448. spin_unlock(&info->lock);
  449. return 0;
  450. }
  451. static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
  452. {
  453. struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
  454. int retval = 0;
  455. poll_wait(filp, &info->wait_q, poll_tab);
  456. spin_lock(&info->lock);
  457. if (info->attr.mq_curmsgs)
  458. retval = POLLIN | POLLRDNORM;
  459. if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
  460. retval |= POLLOUT | POLLWRNORM;
  461. spin_unlock(&info->lock);
  462. return retval;
  463. }
  464. /* Adds current to info->e_wait_q[sr] before element with smaller prio */
  465. static void wq_add(struct mqueue_inode_info *info, int sr,
  466. struct ext_wait_queue *ewp)
  467. {
  468. struct ext_wait_queue *walk;
  469. ewp->task = current;
  470. list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
  471. if (walk->task->static_prio <= current->static_prio) {
  472. list_add_tail(&ewp->list, &walk->list);
  473. return;
  474. }
  475. }
  476. list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
  477. }
  478. /*
  479. * Puts current task to sleep. Caller must hold queue lock. After return
  480. * lock isn't held.
  481. * sr: SEND or RECV
  482. */
  483. static int wq_sleep(struct mqueue_inode_info *info, int sr,
  484. ktime_t *timeout, struct ext_wait_queue *ewp)
  485. {
  486. int retval;
  487. signed long time;
  488. wq_add(info, sr, ewp);
  489. for (;;) {
  490. set_current_state(TASK_INTERRUPTIBLE);
  491. spin_unlock(&info->lock);
  492. time = schedule_hrtimeout_range_clock(timeout, 0,
  493. HRTIMER_MODE_ABS, CLOCK_REALTIME);
  494. while (ewp->state == STATE_PENDING)
  495. cpu_relax();
  496. if (ewp->state == STATE_READY) {
  497. retval = 0;
  498. goto out;
  499. }
  500. spin_lock(&info->lock);
  501. if (ewp->state == STATE_READY) {
  502. retval = 0;
  503. goto out_unlock;
  504. }
  505. if (signal_pending(current)) {
  506. retval = -ERESTARTSYS;
  507. break;
  508. }
  509. if (time == 0) {
  510. retval = -ETIMEDOUT;
  511. break;
  512. }
  513. }
  514. list_del(&ewp->list);
  515. out_unlock:
  516. spin_unlock(&info->lock);
  517. out:
  518. return retval;
  519. }
  520. /*
  521. * Returns waiting task that should be serviced first or NULL if none exists
  522. */
  523. static struct ext_wait_queue *wq_get_first_waiter(
  524. struct mqueue_inode_info *info, int sr)
  525. {
  526. struct list_head *ptr;
  527. ptr = info->e_wait_q[sr].list.prev;
  528. if (ptr == &info->e_wait_q[sr].list)
  529. return NULL;
  530. return list_entry(ptr, struct ext_wait_queue, list);
  531. }
  532. static inline void set_cookie(struct sk_buff *skb, char code)
  533. {
  534. ((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
  535. }
  536. /*
  537. * The next function is only to split too long sys_mq_timedsend
  538. */
  539. static void __do_notify(struct mqueue_inode_info *info)
  540. {
  541. /* notification
  542. * invoked when there is registered process and there isn't process
  543. * waiting synchronously for message AND state of queue changed from
  544. * empty to not empty. Here we are sure that no one is waiting
  545. * synchronously. */
  546. if (info->notify_owner &&
  547. info->attr.mq_curmsgs == 1) {
  548. struct siginfo sig_i;
  549. switch (info->notify.sigev_notify) {
  550. case SIGEV_NONE:
  551. break;
  552. case SIGEV_SIGNAL:
  553. /* sends signal */
  554. sig_i.si_signo = info->notify.sigev_signo;
  555. sig_i.si_errno = 0;
  556. sig_i.si_code = SI_MESGQ;
  557. sig_i.si_value = info->notify.sigev_value;
  558. /* map current pid/uid into info->owner's namespaces */
  559. rcu_read_lock();
  560. sig_i.si_pid = task_tgid_nr_ns(current,
  561. ns_of_pid(info->notify_owner));
  562. sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
  563. rcu_read_unlock();
  564. kill_pid_info(info->notify.sigev_signo,
  565. &sig_i, info->notify_owner);
  566. break;
  567. case SIGEV_THREAD:
  568. set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
  569. netlink_sendskb(info->notify_sock, info->notify_cookie);
  570. break;
  571. }
  572. /* after notification unregisters process */
  573. put_pid(info->notify_owner);
  574. put_user_ns(info->notify_user_ns);
  575. info->notify_owner = NULL;
  576. info->notify_user_ns = NULL;
  577. }
  578. wake_up(&info->wait_q);
  579. }
  580. static int prepare_timeout(const struct timespec __user *u_abs_timeout,
  581. ktime_t *expires, struct timespec *ts)
  582. {
  583. if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
  584. return -EFAULT;
  585. if (!timespec_valid(ts))
  586. return -EINVAL;
  587. *expires = timespec_to_ktime(*ts);
  588. return 0;
  589. }
  590. static void remove_notification(struct mqueue_inode_info *info)
  591. {
  592. if (info->notify_owner != NULL &&
  593. info->notify.sigev_notify == SIGEV_THREAD) {
  594. set_cookie(info->notify_cookie, NOTIFY_REMOVED);
  595. netlink_sendskb(info->notify_sock, info->notify_cookie);
  596. }
  597. put_pid(info->notify_owner);
  598. put_user_ns(info->notify_user_ns);
  599. info->notify_owner = NULL;
  600. info->notify_user_ns = NULL;
  601. }
  602. static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
  603. {
  604. int mq_treesize;
  605. unsigned long total_size;
  606. if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
  607. return -EINVAL;
  608. if (capable(CAP_SYS_RESOURCE)) {
  609. if (attr->mq_maxmsg > HARD_MSGMAX ||
  610. attr->mq_msgsize > HARD_MSGSIZEMAX)
  611. return -EINVAL;
  612. } else {
  613. if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
  614. attr->mq_msgsize > ipc_ns->mq_msgsize_max)
  615. return -EINVAL;
  616. }
  617. /* check for overflow */
  618. if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
  619. return -EOVERFLOW;
  620. mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
  621. min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
  622. sizeof(struct posix_msg_tree_node);
  623. total_size = attr->mq_maxmsg * attr->mq_msgsize;
  624. if (total_size + mq_treesize < total_size)
  625. return -EOVERFLOW;
  626. return 0;
  627. }
  628. /*
  629. * Invoked when creating a new queue via sys_mq_open
  630. */
  631. static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
  632. struct path *path, int oflag, umode_t mode,
  633. struct mq_attr *attr)
  634. {
  635. const struct cred *cred = current_cred();
  636. int ret;
  637. if (attr) {
  638. ret = mq_attr_ok(ipc_ns, attr);
  639. if (ret)
  640. return ERR_PTR(ret);
  641. /* store for use during create */
  642. path->dentry->d_fsdata = attr;
  643. } else {
  644. struct mq_attr def_attr;
  645. def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
  646. ipc_ns->mq_msg_default);
  647. def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
  648. ipc_ns->mq_msgsize_default);
  649. ret = mq_attr_ok(ipc_ns, &def_attr);
  650. if (ret)
  651. return ERR_PTR(ret);
  652. }
  653. mode &= ~current_umask();
  654. ret = vfs_create(dir, path->dentry, mode, true);
  655. path->dentry->d_fsdata = NULL;
  656. if (ret)
  657. return ERR_PTR(ret);
  658. return dentry_open(path, oflag, cred);
  659. }
  660. /* Opens existing queue */
  661. static struct file *do_open(struct path *path, int oflag)
  662. {
  663. static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
  664. MAY_READ | MAY_WRITE };
  665. int acc;
  666. if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
  667. return ERR_PTR(-EINVAL);
  668. acc = oflag2acc[oflag & O_ACCMODE];
  669. if (inode_permission(path->dentry->d_inode, acc))
  670. return ERR_PTR(-EACCES);
  671. return dentry_open(path, oflag, current_cred());
  672. }
  673. SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
  674. struct mq_attr __user *, u_attr)
  675. {
  676. struct path path;
  677. struct file *filp;
  678. struct filename *name;
  679. struct mq_attr attr;
  680. int fd, error;
  681. struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
  682. struct vfsmount *mnt = ipc_ns->mq_mnt;
  683. struct dentry *root = mnt->mnt_root;
  684. int ro;
  685. if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
  686. return -EFAULT;
  687. audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
  688. if (IS_ERR(name = getname(u_name)))
  689. return PTR_ERR(name);
  690. fd = get_unused_fd_flags(O_CLOEXEC);
  691. if (fd < 0)
  692. goto out_putname;
  693. ro = mnt_want_write(mnt); /* we'll drop it in any case */
  694. error = 0;
  695. mutex_lock(&root->d_inode->i_mutex);
  696. path.dentry = lookup_one_len(name->name, root, strlen(name->name));
  697. if (IS_ERR(path.dentry)) {
  698. error = PTR_ERR(path.dentry);
  699. goto out_putfd;
  700. }
  701. path.mnt = mntget(mnt);
  702. if (oflag & O_CREAT) {
  703. if (path.dentry->d_inode) { /* entry already exists */
  704. audit_inode(name, path.dentry, 0);
  705. if (oflag & O_EXCL) {
  706. error = -EEXIST;
  707. goto out;
  708. }
  709. filp = do_open(&path, oflag);
  710. } else {
  711. if (ro) {
  712. error = ro;
  713. goto out;
  714. }
  715. filp = do_create(ipc_ns, root->d_inode,
  716. &path, oflag, mode,
  717. u_attr ? &attr : NULL);
  718. }
  719. } else {
  720. if (!path.dentry->d_inode) {
  721. error = -ENOENT;
  722. goto out;
  723. }
  724. audit_inode(name, path.dentry, 0);
  725. filp = do_open(&path, oflag);
  726. }
  727. if (!IS_ERR(filp))
  728. fd_install(fd, filp);
  729. else
  730. error = PTR_ERR(filp);
  731. out:
  732. path_put(&path);
  733. out_putfd:
  734. if (error) {
  735. put_unused_fd(fd);
  736. fd = error;
  737. }
  738. mutex_unlock(&root->d_inode->i_mutex);
  739. mnt_drop_write(mnt);
  740. out_putname:
  741. putname(name);
  742. return fd;
  743. }
  744. SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
  745. {
  746. int err;
  747. struct filename *name;
  748. struct dentry *dentry;
  749. struct inode *inode = NULL;
  750. struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
  751. struct vfsmount *mnt = ipc_ns->mq_mnt;
  752. name = getname(u_name);
  753. if (IS_ERR(name))
  754. return PTR_ERR(name);
  755. err = mnt_want_write(mnt);
  756. if (err)
  757. goto out_name;
  758. mutex_lock_nested(&mnt->mnt_root->d_inode->i_mutex, I_MUTEX_PARENT);
  759. dentry = lookup_one_len(name->name, mnt->mnt_root,
  760. strlen(name->name));
  761. if (IS_ERR(dentry)) {
  762. err = PTR_ERR(dentry);
  763. goto out_unlock;
  764. }
  765. inode = dentry->d_inode;
  766. if (!inode) {
  767. err = -ENOENT;
  768. } else {
  769. ihold(inode);
  770. err = vfs_unlink(dentry->d_parent->d_inode, dentry);
  771. }
  772. dput(dentry);
  773. out_unlock:
  774. mutex_unlock(&mnt->mnt_root->d_inode->i_mutex);
  775. if (inode)
  776. iput(inode);
  777. mnt_drop_write(mnt);
  778. out_name:
  779. putname(name);
  780. return err;
  781. }
  782. /* Pipelined send and receive functions.
  783. *
  784. * If a receiver finds no waiting message, then it registers itself in the
  785. * list of waiting receivers. A sender checks that list before adding the new
  786. * message into the message array. If there is a waiting receiver, then it
  787. * bypasses the message array and directly hands the message over to the
  788. * receiver.
  789. * The receiver accepts the message and returns without grabbing the queue
  790. * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
  791. * are necessary. The same algorithm is used for sysv semaphores, see
  792. * ipc/sem.c for more details.
  793. *
  794. * The same algorithm is used for senders.
  795. */
  796. /* pipelined_send() - send a message directly to the task waiting in
  797. * sys_mq_timedreceive() (without inserting message into a queue).
  798. */
  799. static inline void pipelined_send(struct mqueue_inode_info *info,
  800. struct msg_msg *message,
  801. struct ext_wait_queue *receiver)
  802. {
  803. receiver->msg = message;
  804. list_del(&receiver->list);
  805. receiver->state = STATE_PENDING;
  806. wake_up_process(receiver->task);
  807. smp_wmb();
  808. receiver->state = STATE_READY;
  809. }
  810. /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
  811. * gets its message and put to the queue (we have one free place for sure). */
  812. static inline void pipelined_receive(struct mqueue_inode_info *info)
  813. {
  814. struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
  815. if (!sender) {
  816. /* for poll */
  817. wake_up_interruptible(&info->wait_q);
  818. return;
  819. }
  820. if (msg_insert(sender->msg, info))
  821. return;
  822. list_del(&sender->list);
  823. sender->state = STATE_PENDING;
  824. wake_up_process(sender->task);
  825. smp_wmb();
  826. sender->state = STATE_READY;
  827. }
  828. SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
  829. size_t, msg_len, unsigned int, msg_prio,
  830. const struct timespec __user *, u_abs_timeout)
  831. {
  832. struct fd f;
  833. struct inode *inode;
  834. struct ext_wait_queue wait;
  835. struct ext_wait_queue *receiver;
  836. struct msg_msg *msg_ptr;
  837. struct mqueue_inode_info *info;
  838. ktime_t expires, *timeout = NULL;
  839. struct timespec ts;
  840. struct posix_msg_tree_node *new_leaf = NULL;
  841. int ret = 0;
  842. if (u_abs_timeout) {
  843. int res = prepare_timeout(u_abs_timeout, &expires, &ts);
  844. if (res)
  845. return res;
  846. timeout = &expires;
  847. }
  848. if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
  849. return -EINVAL;
  850. audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
  851. f = fdget(mqdes);
  852. if (unlikely(!f.file)) {
  853. ret = -EBADF;
  854. goto out;
  855. }
  856. inode = f.file->f_path.dentry->d_inode;
  857. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  858. ret = -EBADF;
  859. goto out_fput;
  860. }
  861. info = MQUEUE_I(inode);
  862. audit_inode(NULL, f.file->f_path.dentry, 0);
  863. if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
  864. ret = -EBADF;
  865. goto out_fput;
  866. }
  867. if (unlikely(msg_len > info->attr.mq_msgsize)) {
  868. ret = -EMSGSIZE;
  869. goto out_fput;
  870. }
  871. /* First try to allocate memory, before doing anything with
  872. * existing queues. */
  873. msg_ptr = load_msg(u_msg_ptr, msg_len);
  874. if (IS_ERR(msg_ptr)) {
  875. ret = PTR_ERR(msg_ptr);
  876. goto out_fput;
  877. }
  878. msg_ptr->m_ts = msg_len;
  879. msg_ptr->m_type = msg_prio;
  880. /*
  881. * msg_insert really wants us to have a valid, spare node struct so
  882. * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
  883. * fall back to that if necessary.
  884. */
  885. if (!info->node_cache)
  886. new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
  887. spin_lock(&info->lock);
  888. if (!info->node_cache && new_leaf) {
  889. /* Save our speculative allocation into the cache */
  890. INIT_LIST_HEAD(&new_leaf->msg_list);
  891. info->node_cache = new_leaf;
  892. info->qsize += sizeof(*new_leaf);
  893. new_leaf = NULL;
  894. } else {
  895. kfree(new_leaf);
  896. }
  897. if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
  898. if (f.file->f_flags & O_NONBLOCK) {
  899. ret = -EAGAIN;
  900. } else {
  901. wait.task = current;
  902. wait.msg = (void *) msg_ptr;
  903. wait.state = STATE_NONE;
  904. ret = wq_sleep(info, SEND, timeout, &wait);
  905. /*
  906. * wq_sleep must be called with info->lock held, and
  907. * returns with the lock released
  908. */
  909. goto out_free;
  910. }
  911. } else {
  912. receiver = wq_get_first_waiter(info, RECV);
  913. if (receiver) {
  914. pipelined_send(info, msg_ptr, receiver);
  915. } else {
  916. /* adds message to the queue */
  917. ret = msg_insert(msg_ptr, info);
  918. if (ret)
  919. goto out_unlock;
  920. __do_notify(info);
  921. }
  922. inode->i_atime = inode->i_mtime = inode->i_ctime =
  923. CURRENT_TIME;
  924. }
  925. out_unlock:
  926. spin_unlock(&info->lock);
  927. out_free:
  928. if (ret)
  929. free_msg(msg_ptr);
  930. out_fput:
  931. fdput(f);
  932. out:
  933. return ret;
  934. }
  935. SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
  936. size_t, msg_len, unsigned int __user *, u_msg_prio,
  937. const struct timespec __user *, u_abs_timeout)
  938. {
  939. ssize_t ret;
  940. struct msg_msg *msg_ptr;
  941. struct fd f;
  942. struct inode *inode;
  943. struct mqueue_inode_info *info;
  944. struct ext_wait_queue wait;
  945. ktime_t expires, *timeout = NULL;
  946. struct timespec ts;
  947. struct posix_msg_tree_node *new_leaf = NULL;
  948. if (u_abs_timeout) {
  949. int res = prepare_timeout(u_abs_timeout, &expires, &ts);
  950. if (res)
  951. return res;
  952. timeout = &expires;
  953. }
  954. audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
  955. f = fdget(mqdes);
  956. if (unlikely(!f.file)) {
  957. ret = -EBADF;
  958. goto out;
  959. }
  960. inode = f.file->f_path.dentry->d_inode;
  961. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  962. ret = -EBADF;
  963. goto out_fput;
  964. }
  965. info = MQUEUE_I(inode);
  966. audit_inode(NULL, f.file->f_path.dentry, 0);
  967. if (unlikely(!(f.file->f_mode & FMODE_READ))) {
  968. ret = -EBADF;
  969. goto out_fput;
  970. }
  971. /* checks if buffer is big enough */
  972. if (unlikely(msg_len < info->attr.mq_msgsize)) {
  973. ret = -EMSGSIZE;
  974. goto out_fput;
  975. }
  976. /*
  977. * msg_insert really wants us to have a valid, spare node struct so
  978. * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
  979. * fall back to that if necessary.
  980. */
  981. if (!info->node_cache)
  982. new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
  983. spin_lock(&info->lock);
  984. if (!info->node_cache && new_leaf) {
  985. /* Save our speculative allocation into the cache */
  986. INIT_LIST_HEAD(&new_leaf->msg_list);
  987. info->node_cache = new_leaf;
  988. info->qsize += sizeof(*new_leaf);
  989. } else {
  990. kfree(new_leaf);
  991. }
  992. if (info->attr.mq_curmsgs == 0) {
  993. if (f.file->f_flags & O_NONBLOCK) {
  994. spin_unlock(&info->lock);
  995. ret = -EAGAIN;
  996. } else {
  997. wait.task = current;
  998. wait.state = STATE_NONE;
  999. ret = wq_sleep(info, RECV, timeout, &wait);
  1000. msg_ptr = wait.msg;
  1001. }
  1002. } else {
  1003. msg_ptr = msg_get(info);
  1004. inode->i_atime = inode->i_mtime = inode->i_ctime =
  1005. CURRENT_TIME;
  1006. /* There is now free space in queue. */
  1007. pipelined_receive(info);
  1008. spin_unlock(&info->lock);
  1009. ret = 0;
  1010. }
  1011. if (ret == 0) {
  1012. ret = msg_ptr->m_ts;
  1013. if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
  1014. store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
  1015. ret = -EFAULT;
  1016. }
  1017. free_msg(msg_ptr);
  1018. }
  1019. out_fput:
  1020. fdput(f);
  1021. out:
  1022. return ret;
  1023. }
  1024. /*
  1025. * Notes: the case when user wants us to deregister (with NULL as pointer)
  1026. * and he isn't currently owner of notification, will be silently discarded.
  1027. * It isn't explicitly defined in the POSIX.
  1028. */
  1029. SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
  1030. const struct sigevent __user *, u_notification)
  1031. {
  1032. int ret;
  1033. struct fd f;
  1034. struct sock *sock;
  1035. struct inode *inode;
  1036. struct sigevent notification;
  1037. struct mqueue_inode_info *info;
  1038. struct sk_buff *nc;
  1039. if (u_notification) {
  1040. if (copy_from_user(&notification, u_notification,
  1041. sizeof(struct sigevent)))
  1042. return -EFAULT;
  1043. }
  1044. audit_mq_notify(mqdes, u_notification ? &notification : NULL);
  1045. nc = NULL;
  1046. sock = NULL;
  1047. if (u_notification != NULL) {
  1048. if (unlikely(notification.sigev_notify != SIGEV_NONE &&
  1049. notification.sigev_notify != SIGEV_SIGNAL &&
  1050. notification.sigev_notify != SIGEV_THREAD))
  1051. return -EINVAL;
  1052. if (notification.sigev_notify == SIGEV_SIGNAL &&
  1053. !valid_signal(notification.sigev_signo)) {
  1054. return -EINVAL;
  1055. }
  1056. if (notification.sigev_notify == SIGEV_THREAD) {
  1057. long timeo;
  1058. /* create the notify skb */
  1059. nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
  1060. if (!nc) {
  1061. ret = -ENOMEM;
  1062. goto out;
  1063. }
  1064. if (copy_from_user(nc->data,
  1065. notification.sigev_value.sival_ptr,
  1066. NOTIFY_COOKIE_LEN)) {
  1067. ret = -EFAULT;
  1068. goto out;
  1069. }
  1070. /* TODO: add a header? */
  1071. skb_put(nc, NOTIFY_COOKIE_LEN);
  1072. /* and attach it to the socket */
  1073. retry:
  1074. f = fdget(notification.sigev_signo);
  1075. if (!f.file) {
  1076. ret = -EBADF;
  1077. goto out;
  1078. }
  1079. sock = netlink_getsockbyfilp(f.file);
  1080. fdput(f);
  1081. if (IS_ERR(sock)) {
  1082. ret = PTR_ERR(sock);
  1083. sock = NULL;
  1084. goto out;
  1085. }
  1086. timeo = MAX_SCHEDULE_TIMEOUT;
  1087. ret = netlink_attachskb(sock, nc, &timeo, NULL);
  1088. if (ret == 1)
  1089. goto retry;
  1090. if (ret) {
  1091. sock = NULL;
  1092. nc = NULL;
  1093. goto out;
  1094. }
  1095. }
  1096. }
  1097. f = fdget(mqdes);
  1098. if (!f.file) {
  1099. ret = -EBADF;
  1100. goto out;
  1101. }
  1102. inode = f.file->f_path.dentry->d_inode;
  1103. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  1104. ret = -EBADF;
  1105. goto out_fput;
  1106. }
  1107. info = MQUEUE_I(inode);
  1108. ret = 0;
  1109. spin_lock(&info->lock);
  1110. if (u_notification == NULL) {
  1111. if (info->notify_owner == task_tgid(current)) {
  1112. remove_notification(info);
  1113. inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1114. }
  1115. } else if (info->notify_owner != NULL) {
  1116. ret = -EBUSY;
  1117. } else {
  1118. switch (notification.sigev_notify) {
  1119. case SIGEV_NONE:
  1120. info->notify.sigev_notify = SIGEV_NONE;
  1121. break;
  1122. case SIGEV_THREAD:
  1123. info->notify_sock = sock;
  1124. info->notify_cookie = nc;
  1125. sock = NULL;
  1126. nc = NULL;
  1127. info->notify.sigev_notify = SIGEV_THREAD;
  1128. break;
  1129. case SIGEV_SIGNAL:
  1130. info->notify.sigev_signo = notification.sigev_signo;
  1131. info->notify.sigev_value = notification.sigev_value;
  1132. info->notify.sigev_notify = SIGEV_SIGNAL;
  1133. break;
  1134. }
  1135. info->notify_owner = get_pid(task_tgid(current));
  1136. info->notify_user_ns = get_user_ns(current_user_ns());
  1137. inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1138. }
  1139. spin_unlock(&info->lock);
  1140. out_fput:
  1141. fdput(f);
  1142. out:
  1143. if (sock) {
  1144. netlink_detachskb(sock, nc);
  1145. } else if (nc) {
  1146. dev_kfree_skb(nc);
  1147. }
  1148. return ret;
  1149. }
  1150. SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
  1151. const struct mq_attr __user *, u_mqstat,
  1152. struct mq_attr __user *, u_omqstat)
  1153. {
  1154. int ret;
  1155. struct mq_attr mqstat, omqstat;
  1156. struct fd f;
  1157. struct inode *inode;
  1158. struct mqueue_inode_info *info;
  1159. if (u_mqstat != NULL) {
  1160. if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
  1161. return -EFAULT;
  1162. if (mqstat.mq_flags & (~O_NONBLOCK))
  1163. return -EINVAL;
  1164. }
  1165. f = fdget(mqdes);
  1166. if (!f.file) {
  1167. ret = -EBADF;
  1168. goto out;
  1169. }
  1170. inode = f.file->f_path.dentry->d_inode;
  1171. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  1172. ret = -EBADF;
  1173. goto out_fput;
  1174. }
  1175. info = MQUEUE_I(inode);
  1176. spin_lock(&info->lock);
  1177. omqstat = info->attr;
  1178. omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
  1179. if (u_mqstat) {
  1180. audit_mq_getsetattr(mqdes, &mqstat);
  1181. spin_lock(&f.file->f_lock);
  1182. if (mqstat.mq_flags & O_NONBLOCK)
  1183. f.file->f_flags |= O_NONBLOCK;
  1184. else
  1185. f.file->f_flags &= ~O_NONBLOCK;
  1186. spin_unlock(&f.file->f_lock);
  1187. inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1188. }
  1189. spin_unlock(&info->lock);
  1190. ret = 0;
  1191. if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
  1192. sizeof(struct mq_attr)))
  1193. ret = -EFAULT;
  1194. out_fput:
  1195. fdput(f);
  1196. out:
  1197. return ret;
  1198. }
  1199. static const struct inode_operations mqueue_dir_inode_operations = {
  1200. .lookup = simple_lookup,
  1201. .create = mqueue_create,
  1202. .unlink = mqueue_unlink,
  1203. };
  1204. static const struct file_operations mqueue_file_operations = {
  1205. .flush = mqueue_flush_file,
  1206. .poll = mqueue_poll_file,
  1207. .read = mqueue_read_file,
  1208. .llseek = default_llseek,
  1209. };
  1210. static const struct super_operations mqueue_super_ops = {
  1211. .alloc_inode = mqueue_alloc_inode,
  1212. .destroy_inode = mqueue_destroy_inode,
  1213. .evict_inode = mqueue_evict_inode,
  1214. .statfs = simple_statfs,
  1215. };
  1216. static struct file_system_type mqueue_fs_type = {
  1217. .name = "mqueue",
  1218. .mount = mqueue_mount,
  1219. .kill_sb = kill_litter_super,
  1220. };
  1221. int mq_init_ns(struct ipc_namespace *ns)
  1222. {
  1223. ns->mq_queues_count = 0;
  1224. ns->mq_queues_max = DFLT_QUEUESMAX;
  1225. ns->mq_msg_max = DFLT_MSGMAX;
  1226. ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
  1227. ns->mq_msg_default = DFLT_MSG;
  1228. ns->mq_msgsize_default = DFLT_MSGSIZE;
  1229. ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
  1230. if (IS_ERR(ns->mq_mnt)) {
  1231. int err = PTR_ERR(ns->mq_mnt);
  1232. ns->mq_mnt = NULL;
  1233. return err;
  1234. }
  1235. return 0;
  1236. }
  1237. void mq_clear_sbinfo(struct ipc_namespace *ns)
  1238. {
  1239. ns->mq_mnt->mnt_sb->s_fs_info = NULL;
  1240. }
  1241. void mq_put_mnt(struct ipc_namespace *ns)
  1242. {
  1243. kern_unmount(ns->mq_mnt);
  1244. }
  1245. static int __init init_mqueue_fs(void)
  1246. {
  1247. int error;
  1248. mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
  1249. sizeof(struct mqueue_inode_info), 0,
  1250. SLAB_HWCACHE_ALIGN, init_once);
  1251. if (mqueue_inode_cachep == NULL)
  1252. return -ENOMEM;
  1253. /* ignore failures - they are not fatal */
  1254. mq_sysctl_table = mq_register_sysctl_table();
  1255. error = register_filesystem(&mqueue_fs_type);
  1256. if (error)
  1257. goto out_sysctl;
  1258. spin_lock_init(&mq_lock);
  1259. error = mq_init_ns(&init_ipc_ns);
  1260. if (error)
  1261. goto out_filesystem;
  1262. return 0;
  1263. out_filesystem:
  1264. unregister_filesystem(&mqueue_fs_type);
  1265. out_sysctl:
  1266. if (mq_sysctl_table)
  1267. unregister_sysctl_table(mq_sysctl_table);
  1268. kmem_cache_destroy(mqueue_inode_cachep);
  1269. return error;
  1270. }
  1271. __initcall(init_mqueue_fs);