caamalg.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159
  1. /*
  2. * caam - Freescale FSL CAAM support for crypto API
  3. *
  4. * Copyright 2008-2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on talitos crypto API driver.
  7. *
  8. * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
  9. *
  10. * --------------- ---------------
  11. * | JobDesc #1 |-------------------->| ShareDesc |
  12. * | *(packet 1) | | (PDB) |
  13. * --------------- |------------->| (hashKey) |
  14. * . | | (cipherKey) |
  15. * . | |-------->| (operation) |
  16. * --------------- | | ---------------
  17. * | JobDesc #2 |------| |
  18. * | *(packet 2) | |
  19. * --------------- |
  20. * . |
  21. * . |
  22. * --------------- |
  23. * | JobDesc #3 |------------
  24. * | *(packet 3) |
  25. * ---------------
  26. *
  27. * The SharedDesc never changes for a connection unless rekeyed, but
  28. * each packet will likely be in a different place. So all we need
  29. * to know to process the packet is where the input is, where the
  30. * output goes, and what context we want to process with. Context is
  31. * in the SharedDesc, packet references in the JobDesc.
  32. *
  33. * So, a job desc looks like:
  34. *
  35. * ---------------------
  36. * | Header |
  37. * | ShareDesc Pointer |
  38. * | SEQ_OUT_PTR |
  39. * | (output buffer) |
  40. * | SEQ_IN_PTR |
  41. * | (input buffer) |
  42. * | LOAD (to DECO) |
  43. * ---------------------
  44. */
  45. #include "compat.h"
  46. #include "regs.h"
  47. #include "intern.h"
  48. #include "desc_constr.h"
  49. #include "jr.h"
  50. #include "error.h"
  51. /*
  52. * crypto alg
  53. */
  54. #define CAAM_CRA_PRIORITY 3000
  55. /* max key is sum of AES_MAX_KEY_SIZE, max split key size */
  56. #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
  57. SHA512_DIGEST_SIZE * 2)
  58. /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
  59. #define CAAM_MAX_IV_LENGTH 16
  60. #ifdef DEBUG
  61. /* for print_hex_dumps with line references */
  62. #define xstr(s) str(s)
  63. #define str(s) #s
  64. #define debug(format, arg...) printk(format, arg)
  65. #else
  66. #define debug(format, arg...)
  67. #endif
  68. /*
  69. * per-session context
  70. */
  71. struct caam_ctx {
  72. struct device *jrdev;
  73. u32 *sh_desc;
  74. dma_addr_t shared_desc_phys;
  75. u32 class1_alg_type;
  76. u32 class2_alg_type;
  77. u32 alg_op;
  78. u8 *key;
  79. dma_addr_t key_phys;
  80. unsigned int enckeylen;
  81. unsigned int authkeylen;
  82. unsigned int split_key_len;
  83. unsigned int split_key_pad_len;
  84. unsigned int authsize;
  85. };
  86. static int aead_authenc_setauthsize(struct crypto_aead *authenc,
  87. unsigned int authsize)
  88. {
  89. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  90. ctx->authsize = authsize;
  91. return 0;
  92. }
  93. struct split_key_result {
  94. struct completion completion;
  95. int err;
  96. };
  97. static void split_key_done(struct device *dev, u32 *desc, u32 err,
  98. void *context)
  99. {
  100. struct split_key_result *res = context;
  101. #ifdef DEBUG
  102. dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  103. #endif
  104. if (err) {
  105. char tmp[CAAM_ERROR_STR_MAX];
  106. dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  107. }
  108. res->err = err;
  109. complete(&res->completion);
  110. }
  111. /*
  112. get a split ipad/opad key
  113. Split key generation-----------------------------------------------
  114. [00] 0xb0810008 jobdesc: stidx=1 share=never len=8
  115. [01] 0x04000014 key: class2->keyreg len=20
  116. @0xffe01000
  117. [03] 0x84410014 operation: cls2-op sha1 hmac init dec
  118. [04] 0x24940000 fifold: class2 msgdata-last2 len=0 imm
  119. [05] 0xa4000001 jump: class2 local all ->1 [06]
  120. [06] 0x64260028 fifostr: class2 mdsplit-jdk len=40
  121. @0xffe04000
  122. */
  123. static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
  124. {
  125. struct device *jrdev = ctx->jrdev;
  126. u32 *desc;
  127. struct split_key_result result;
  128. dma_addr_t dma_addr_in, dma_addr_out;
  129. int ret = 0;
  130. desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  131. init_job_desc(desc, 0);
  132. dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
  133. DMA_TO_DEVICE);
  134. if (dma_mapping_error(jrdev, dma_addr_in)) {
  135. dev_err(jrdev, "unable to map key input memory\n");
  136. kfree(desc);
  137. return -ENOMEM;
  138. }
  139. append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
  140. KEY_DEST_CLASS_REG);
  141. /* Sets MDHA up into an HMAC-INIT */
  142. append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
  143. OP_ALG_AS_INIT);
  144. /*
  145. * do a FIFO_LOAD of zero, this will trigger the internal key expansion
  146. into both pads inside MDHA
  147. */
  148. append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
  149. FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);
  150. /*
  151. * FIFO_STORE with the explicit split-key content store
  152. * (0x26 output type)
  153. */
  154. dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  155. DMA_FROM_DEVICE);
  156. if (dma_mapping_error(jrdev, dma_addr_out)) {
  157. dev_err(jrdev, "unable to map key output memory\n");
  158. kfree(desc);
  159. return -ENOMEM;
  160. }
  161. append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
  162. LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
  163. #ifdef DEBUG
  164. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  165. DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
  166. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  167. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  168. #endif
  169. result.err = 0;
  170. init_completion(&result.completion);
  171. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  172. if (!ret) {
  173. /* in progress */
  174. wait_for_completion_interruptible(&result.completion);
  175. ret = result.err;
  176. #ifdef DEBUG
  177. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  178. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  179. ctx->split_key_pad_len, 1);
  180. #endif
  181. }
  182. dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
  183. DMA_FROM_DEVICE);
  184. dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);
  185. kfree(desc);
  186. return ret;
  187. }
  188. static int build_sh_desc_ipsec(struct caam_ctx *ctx)
  189. {
  190. struct device *jrdev = ctx->jrdev;
  191. u32 *sh_desc;
  192. u32 *jump_cmd;
  193. /* build shared descriptor for this session */
  194. sh_desc = kmalloc(CAAM_CMD_SZ * 4 + ctx->split_key_pad_len +
  195. ctx->enckeylen, GFP_DMA | GFP_KERNEL);
  196. if (!sh_desc) {
  197. dev_err(jrdev, "could not allocate shared descriptor\n");
  198. return -ENOMEM;
  199. }
  200. init_sh_desc(sh_desc, HDR_SAVECTX | HDR_SHARE_SERIAL);
  201. jump_cmd = append_jump(sh_desc, CLASS_BOTH | JUMP_TEST_ALL |
  202. JUMP_COND_SHRD | JUMP_COND_SELF);
  203. /* process keys, starting with class 2/authentication */
  204. append_key_as_imm(sh_desc, ctx->key, ctx->split_key_pad_len,
  205. ctx->split_key_len,
  206. CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC);
  207. append_key_as_imm(sh_desc, (void *)ctx->key + ctx->split_key_pad_len,
  208. ctx->enckeylen, ctx->enckeylen,
  209. CLASS_1 | KEY_DEST_CLASS_REG);
  210. /* update jump cmd now that we are at the jump target */
  211. set_jump_tgt_here(sh_desc, jump_cmd);
  212. ctx->shared_desc_phys = dma_map_single(jrdev, sh_desc,
  213. desc_bytes(sh_desc),
  214. DMA_TO_DEVICE);
  215. if (dma_mapping_error(jrdev, ctx->shared_desc_phys)) {
  216. dev_err(jrdev, "unable to map shared descriptor\n");
  217. kfree(sh_desc);
  218. return -ENOMEM;
  219. }
  220. ctx->sh_desc = sh_desc;
  221. return 0;
  222. }
  223. static int aead_authenc_setkey(struct crypto_aead *aead,
  224. const u8 *key, unsigned int keylen)
  225. {
  226. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  227. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  228. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  229. struct device *jrdev = ctx->jrdev;
  230. struct rtattr *rta = (void *)key;
  231. struct crypto_authenc_key_param *param;
  232. unsigned int authkeylen;
  233. unsigned int enckeylen;
  234. int ret = 0;
  235. param = RTA_DATA(rta);
  236. enckeylen = be32_to_cpu(param->enckeylen);
  237. key += RTA_ALIGN(rta->rta_len);
  238. keylen -= RTA_ALIGN(rta->rta_len);
  239. if (keylen < enckeylen)
  240. goto badkey;
  241. authkeylen = keylen - enckeylen;
  242. if (keylen > CAAM_MAX_KEY_SIZE)
  243. goto badkey;
  244. /* Pick class 2 key length from algorithm submask */
  245. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  246. OP_ALG_ALGSEL_SHIFT] * 2;
  247. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  248. #ifdef DEBUG
  249. printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
  250. keylen, enckeylen, authkeylen);
  251. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  252. ctx->split_key_len, ctx->split_key_pad_len);
  253. print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
  254. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  255. #endif
  256. ctx->key = kmalloc(ctx->split_key_pad_len + enckeylen,
  257. GFP_KERNEL | GFP_DMA);
  258. if (!ctx->key) {
  259. dev_err(jrdev, "could not allocate key output memory\n");
  260. return -ENOMEM;
  261. }
  262. ret = gen_split_key(ctx, key, authkeylen);
  263. if (ret) {
  264. kfree(ctx->key);
  265. goto badkey;
  266. }
  267. /* postpend encryption key to auth split key */
  268. memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
  269. ctx->key_phys = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
  270. enckeylen, DMA_TO_DEVICE);
  271. if (dma_mapping_error(jrdev, ctx->key_phys)) {
  272. dev_err(jrdev, "unable to map key i/o memory\n");
  273. kfree(ctx->key);
  274. return -ENOMEM;
  275. }
  276. #ifdef DEBUG
  277. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  278. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  279. ctx->split_key_pad_len + enckeylen, 1);
  280. #endif
  281. ctx->enckeylen = enckeylen;
  282. ctx->authkeylen = authkeylen;
  283. ret = build_sh_desc_ipsec(ctx);
  284. if (ret) {
  285. dma_unmap_single(jrdev, ctx->key_phys, ctx->split_key_pad_len +
  286. enckeylen, DMA_TO_DEVICE);
  287. kfree(ctx->key);
  288. }
  289. return ret;
  290. badkey:
  291. crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
  292. return -EINVAL;
  293. }
  294. struct link_tbl_entry {
  295. u64 ptr;
  296. u32 len;
  297. u8 reserved;
  298. u8 buf_pool_id;
  299. u16 offset;
  300. };
  301. /*
  302. * ipsec_esp_edesc - s/w-extended ipsec_esp descriptor
  303. * @src_nents: number of segments in input scatterlist
  304. * @dst_nents: number of segments in output scatterlist
  305. * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
  306. * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
  307. * @link_tbl_bytes: length of dma mapped link_tbl space
  308. * @link_tbl_dma: bus physical mapped address of h/w link table
  309. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  310. */
  311. struct ipsec_esp_edesc {
  312. int assoc_nents;
  313. int src_nents;
  314. int dst_nents;
  315. int link_tbl_bytes;
  316. dma_addr_t link_tbl_dma;
  317. struct link_tbl_entry *link_tbl;
  318. u32 hw_desc[0];
  319. };
  320. static void ipsec_esp_unmap(struct device *dev,
  321. struct ipsec_esp_edesc *edesc,
  322. struct aead_request *areq)
  323. {
  324. dma_unmap_sg(dev, areq->assoc, edesc->assoc_nents, DMA_TO_DEVICE);
  325. if (unlikely(areq->dst != areq->src)) {
  326. dma_unmap_sg(dev, areq->src, edesc->src_nents,
  327. DMA_TO_DEVICE);
  328. dma_unmap_sg(dev, areq->dst, edesc->dst_nents,
  329. DMA_FROM_DEVICE);
  330. } else {
  331. dma_unmap_sg(dev, areq->src, edesc->src_nents,
  332. DMA_BIDIRECTIONAL);
  333. }
  334. if (edesc->link_tbl_bytes)
  335. dma_unmap_single(dev, edesc->link_tbl_dma,
  336. edesc->link_tbl_bytes,
  337. DMA_TO_DEVICE);
  338. }
  339. /*
  340. * ipsec_esp descriptor callbacks
  341. */
  342. static void ipsec_esp_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
  343. void *context)
  344. {
  345. struct aead_request *areq = context;
  346. struct ipsec_esp_edesc *edesc;
  347. #ifdef DEBUG
  348. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  349. int ivsize = crypto_aead_ivsize(aead);
  350. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  351. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  352. #endif
  353. edesc = (struct ipsec_esp_edesc *)((char *)desc -
  354. offsetof(struct ipsec_esp_edesc, hw_desc));
  355. if (err) {
  356. char tmp[CAAM_ERROR_STR_MAX];
  357. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  358. }
  359. ipsec_esp_unmap(jrdev, edesc, areq);
  360. #ifdef DEBUG
  361. print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
  362. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
  363. areq->assoclen , 1);
  364. print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
  365. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
  366. edesc->src_nents ? 100 : ivsize, 1);
  367. print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
  368. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
  369. edesc->src_nents ? 100 : areq->cryptlen +
  370. ctx->authsize + 4, 1);
  371. #endif
  372. kfree(edesc);
  373. aead_request_complete(areq, err);
  374. }
  375. static void ipsec_esp_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
  376. void *context)
  377. {
  378. struct aead_request *areq = context;
  379. struct ipsec_esp_edesc *edesc;
  380. #ifdef DEBUG
  381. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  382. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  383. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  384. #endif
  385. edesc = (struct ipsec_esp_edesc *)((char *)desc -
  386. offsetof(struct ipsec_esp_edesc, hw_desc));
  387. if (err) {
  388. char tmp[CAAM_ERROR_STR_MAX];
  389. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  390. }
  391. ipsec_esp_unmap(jrdev, edesc, areq);
  392. /*
  393. * verify hw auth check passed else return -EBADMSG
  394. */
  395. if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
  396. err = -EBADMSG;
  397. #ifdef DEBUG
  398. print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
  399. DUMP_PREFIX_ADDRESS, 16, 4,
  400. ((char *)sg_virt(areq->assoc) - sizeof(struct iphdr)),
  401. sizeof(struct iphdr) + areq->assoclen +
  402. ((areq->cryptlen > 1500) ? 1500 : areq->cryptlen) +
  403. ctx->authsize + 36, 1);
  404. if (!err && edesc->link_tbl_bytes) {
  405. struct scatterlist *sg = sg_last(areq->src, edesc->src_nents);
  406. print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
  407. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
  408. sg->length + ctx->authsize + 16, 1);
  409. }
  410. #endif
  411. kfree(edesc);
  412. aead_request_complete(areq, err);
  413. }
  414. /*
  415. * convert scatterlist to h/w link table format
  416. * scatterlist must have been previously dma mapped
  417. */
  418. static void sg_to_link_tbl(struct scatterlist *sg, int sg_count,
  419. struct link_tbl_entry *link_tbl_ptr, u32 offset)
  420. {
  421. while (sg_count) {
  422. link_tbl_ptr->ptr = sg_dma_address(sg);
  423. link_tbl_ptr->len = sg_dma_len(sg);
  424. link_tbl_ptr->reserved = 0;
  425. link_tbl_ptr->buf_pool_id = 0;
  426. link_tbl_ptr->offset = offset;
  427. link_tbl_ptr++;
  428. sg = sg_next(sg);
  429. sg_count--;
  430. }
  431. /* set Final bit (marks end of link table) */
  432. link_tbl_ptr--;
  433. link_tbl_ptr->len |= 0x40000000;
  434. }
  435. /*
  436. * fill in and submit ipsec_esp job descriptor
  437. */
  438. static int ipsec_esp(struct ipsec_esp_edesc *edesc, struct aead_request *areq,
  439. u32 encrypt,
  440. void (*callback) (struct device *dev, u32 *desc,
  441. u32 err, void *context))
  442. {
  443. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  444. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  445. struct device *jrdev = ctx->jrdev;
  446. u32 *desc = edesc->hw_desc, options;
  447. int ret, sg_count, assoc_sg_count;
  448. int ivsize = crypto_aead_ivsize(aead);
  449. int authsize = ctx->authsize;
  450. dma_addr_t ptr, dst_dma, src_dma;
  451. #ifdef DEBUG
  452. u32 *sh_desc = ctx->sh_desc;
  453. debug("assoclen %d cryptlen %d authsize %d\n",
  454. areq->assoclen, areq->cryptlen, authsize);
  455. print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
  456. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
  457. areq->assoclen , 1);
  458. print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
  459. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
  460. edesc->src_nents ? 100 : ivsize, 1);
  461. print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
  462. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
  463. edesc->src_nents ? 100 : areq->cryptlen + authsize, 1);
  464. print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
  465. DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
  466. desc_bytes(sh_desc), 1);
  467. #endif
  468. assoc_sg_count = dma_map_sg(jrdev, areq->assoc, edesc->assoc_nents ?: 1,
  469. DMA_TO_DEVICE);
  470. if (areq->src == areq->dst)
  471. sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
  472. DMA_BIDIRECTIONAL);
  473. else
  474. sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
  475. DMA_TO_DEVICE);
  476. /* start auth operation */
  477. append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL |
  478. (encrypt ? : OP_ALG_ICV_ON));
  479. /* Load FIFO with data for Class 2 CHA */
  480. options = FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG;
  481. if (!edesc->assoc_nents) {
  482. ptr = sg_dma_address(areq->assoc);
  483. } else {
  484. sg_to_link_tbl(areq->assoc, edesc->assoc_nents,
  485. edesc->link_tbl, 0);
  486. ptr = edesc->link_tbl_dma;
  487. options |= LDST_SGF;
  488. }
  489. append_fifo_load(desc, ptr, areq->assoclen, options);
  490. /* copy iv from cipher/class1 input context to class2 infifo */
  491. append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);
  492. /* start class 1 (cipher) operation */
  493. append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL |
  494. encrypt);
  495. /* load payload & instruct to class2 to snoop class 1 if encrypting */
  496. options = 0;
  497. if (!edesc->src_nents) {
  498. src_dma = sg_dma_address(areq->src);
  499. } else {
  500. sg_to_link_tbl(areq->src, edesc->src_nents, edesc->link_tbl +
  501. edesc->assoc_nents, 0);
  502. src_dma = edesc->link_tbl_dma + edesc->assoc_nents *
  503. sizeof(struct link_tbl_entry);
  504. options |= LDST_SGF;
  505. }
  506. append_seq_in_ptr(desc, src_dma, areq->cryptlen + authsize, options);
  507. append_seq_fifo_load(desc, areq->cryptlen, FIFOLD_CLASS_BOTH |
  508. FIFOLD_TYPE_LASTBOTH |
  509. (encrypt ? FIFOLD_TYPE_MSG1OUT2
  510. : FIFOLD_TYPE_MSG));
  511. /* specify destination */
  512. if (areq->src == areq->dst) {
  513. dst_dma = src_dma;
  514. } else {
  515. sg_count = dma_map_sg(jrdev, areq->dst, edesc->dst_nents ? : 1,
  516. DMA_FROM_DEVICE);
  517. if (!edesc->dst_nents) {
  518. dst_dma = sg_dma_address(areq->dst);
  519. options = 0;
  520. } else {
  521. sg_to_link_tbl(areq->dst, edesc->dst_nents,
  522. edesc->link_tbl + edesc->assoc_nents +
  523. edesc->src_nents, 0);
  524. dst_dma = edesc->link_tbl_dma + (edesc->assoc_nents +
  525. edesc->src_nents) *
  526. sizeof(struct link_tbl_entry);
  527. options = LDST_SGF;
  528. }
  529. }
  530. append_seq_out_ptr(desc, dst_dma, areq->cryptlen + authsize, options);
  531. append_seq_fifo_store(desc, areq->cryptlen, FIFOST_TYPE_MESSAGE_DATA);
  532. /* ICV */
  533. if (encrypt)
  534. append_seq_store(desc, authsize, LDST_CLASS_2_CCB |
  535. LDST_SRCDST_BYTE_CONTEXT);
  536. else
  537. append_seq_fifo_load(desc, authsize, FIFOLD_CLASS_CLASS2 |
  538. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
  539. #ifdef DEBUG
  540. debug("job_desc_len %d\n", desc_len(desc));
  541. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  542. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc) , 1);
  543. print_hex_dump(KERN_ERR, "jdlinkt@"xstr(__LINE__)": ",
  544. DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
  545. edesc->link_tbl_bytes, 1);
  546. #endif
  547. ret = caam_jr_enqueue(jrdev, desc, callback, areq);
  548. if (!ret)
  549. ret = -EINPROGRESS;
  550. else {
  551. ipsec_esp_unmap(jrdev, edesc, areq);
  552. kfree(edesc);
  553. }
  554. return ret;
  555. }
  556. /*
  557. * derive number of elements in scatterlist
  558. */
  559. static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained)
  560. {
  561. struct scatterlist *sg = sg_list;
  562. int sg_nents = 0;
  563. *chained = 0;
  564. while (nbytes > 0) {
  565. sg_nents++;
  566. nbytes -= sg->length;
  567. if (!sg_is_last(sg) && (sg + 1)->length == 0)
  568. *chained = 1;
  569. sg = scatterwalk_sg_next(sg);
  570. }
  571. return sg_nents;
  572. }
  573. /*
  574. * allocate and map the ipsec_esp extended descriptor
  575. */
  576. static struct ipsec_esp_edesc *ipsec_esp_edesc_alloc(struct aead_request *areq,
  577. int desc_bytes)
  578. {
  579. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  580. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  581. struct device *jrdev = ctx->jrdev;
  582. gfp_t flags = areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
  583. GFP_ATOMIC;
  584. int assoc_nents, src_nents, dst_nents = 0, chained, link_tbl_bytes;
  585. struct ipsec_esp_edesc *edesc;
  586. assoc_nents = sg_count(areq->assoc, areq->assoclen, &chained);
  587. BUG_ON(chained);
  588. if (likely(assoc_nents == 1))
  589. assoc_nents = 0;
  590. src_nents = sg_count(areq->src, areq->cryptlen + ctx->authsize,
  591. &chained);
  592. BUG_ON(chained);
  593. if (src_nents == 1)
  594. src_nents = 0;
  595. if (unlikely(areq->dst != areq->src)) {
  596. dst_nents = sg_count(areq->dst, areq->cryptlen + ctx->authsize,
  597. &chained);
  598. BUG_ON(chained);
  599. if (dst_nents == 1)
  600. dst_nents = 0;
  601. }
  602. link_tbl_bytes = (assoc_nents + src_nents + dst_nents) *
  603. sizeof(struct link_tbl_entry);
  604. debug("link_tbl_bytes %d\n", link_tbl_bytes);
  605. /* allocate space for base edesc and hw desc commands, link tables */
  606. edesc = kmalloc(sizeof(struct ipsec_esp_edesc) + desc_bytes +
  607. link_tbl_bytes, GFP_DMA | flags);
  608. if (!edesc) {
  609. dev_err(jrdev, "could not allocate extended descriptor\n");
  610. return ERR_PTR(-ENOMEM);
  611. }
  612. edesc->assoc_nents = assoc_nents;
  613. edesc->src_nents = src_nents;
  614. edesc->dst_nents = dst_nents;
  615. edesc->link_tbl = (void *)edesc + sizeof(struct ipsec_esp_edesc) +
  616. desc_bytes;
  617. edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
  618. link_tbl_bytes, DMA_TO_DEVICE);
  619. edesc->link_tbl_bytes = link_tbl_bytes;
  620. return edesc;
  621. }
  622. static int aead_authenc_encrypt(struct aead_request *areq)
  623. {
  624. struct ipsec_esp_edesc *edesc;
  625. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  626. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  627. struct device *jrdev = ctx->jrdev;
  628. int ivsize = crypto_aead_ivsize(aead);
  629. u32 *desc;
  630. dma_addr_t iv_dma;
  631. /* allocate extended descriptor */
  632. edesc = ipsec_esp_edesc_alloc(areq, 21 * sizeof(u32));
  633. if (IS_ERR(edesc))
  634. return PTR_ERR(edesc);
  635. desc = edesc->hw_desc;
  636. /* insert shared descriptor pointer */
  637. init_job_desc_shared(desc, ctx->shared_desc_phys,
  638. desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
  639. iv_dma = dma_map_single(jrdev, areq->iv, ivsize, DMA_TO_DEVICE);
  640. /* check dma error */
  641. append_load(desc, iv_dma, ivsize,
  642. LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
  643. return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
  644. }
  645. static int aead_authenc_decrypt(struct aead_request *req)
  646. {
  647. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  648. int ivsize = crypto_aead_ivsize(aead);
  649. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  650. struct device *jrdev = ctx->jrdev;
  651. struct ipsec_esp_edesc *edesc;
  652. u32 *desc;
  653. dma_addr_t iv_dma;
  654. req->cryptlen -= ctx->authsize;
  655. /* allocate extended descriptor */
  656. edesc = ipsec_esp_edesc_alloc(req, 21 * sizeof(u32));
  657. if (IS_ERR(edesc))
  658. return PTR_ERR(edesc);
  659. desc = edesc->hw_desc;
  660. /* insert shared descriptor pointer */
  661. init_job_desc_shared(desc, ctx->shared_desc_phys,
  662. desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
  663. iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
  664. /* check dma error */
  665. append_load(desc, iv_dma, ivsize,
  666. LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
  667. return ipsec_esp(edesc, req, !OP_ALG_ENCRYPT, ipsec_esp_decrypt_done);
  668. }
  669. static int aead_authenc_givencrypt(struct aead_givcrypt_request *req)
  670. {
  671. struct aead_request *areq = &req->areq;
  672. struct ipsec_esp_edesc *edesc;
  673. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  674. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  675. struct device *jrdev = ctx->jrdev;
  676. int ivsize = crypto_aead_ivsize(aead);
  677. dma_addr_t iv_dma;
  678. u32 *desc;
  679. iv_dma = dma_map_single(jrdev, req->giv, ivsize, DMA_FROM_DEVICE);
  680. debug("%s: giv %p\n", __func__, req->giv);
  681. /* allocate extended descriptor */
  682. edesc = ipsec_esp_edesc_alloc(areq, 27 * sizeof(u32));
  683. if (IS_ERR(edesc))
  684. return PTR_ERR(edesc);
  685. desc = edesc->hw_desc;
  686. /* insert shared descriptor pointer */
  687. init_job_desc_shared(desc, ctx->shared_desc_phys,
  688. desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
  689. /*
  690. * LOAD IMM Info FIFO
  691. * to DECO, Last, Padding, Random, Message, 16 bytes
  692. */
  693. append_load_imm_u32(desc, NFIFOENTRY_DEST_DECO | NFIFOENTRY_LC1 |
  694. NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DTYPE_MSG |
  695. NFIFOENTRY_PTYPE_RND | ivsize,
  696. LDST_SRCDST_WORD_INFO_FIFO);
  697. /*
  698. * disable info fifo entries since the above serves as the entry
  699. * this way, the MOVE command won't generate an entry.
  700. * Note that this isn't required in more recent versions of
  701. * SEC as a MOVE that doesn't do info FIFO entries is available.
  702. */
  703. append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
  704. /* MOVE DECO Alignment -> C1 Context 16 bytes */
  705. append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | ivsize);
  706. /* re-enable info fifo entries */
  707. append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
  708. /* MOVE C1 Context -> OFIFO 16 bytes */
  709. append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | ivsize);
  710. append_fifo_store(desc, iv_dma, ivsize, FIFOST_TYPE_MESSAGE_DATA);
  711. return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
  712. }
  713. struct caam_alg_template {
  714. char name[CRYPTO_MAX_ALG_NAME];
  715. char driver_name[CRYPTO_MAX_ALG_NAME];
  716. unsigned int blocksize;
  717. struct aead_alg aead;
  718. u32 class1_alg_type;
  719. u32 class2_alg_type;
  720. u32 alg_op;
  721. };
  722. static struct caam_alg_template driver_algs[] = {
  723. /* single-pass ipsec_esp descriptor */
  724. {
  725. .name = "authenc(hmac(sha1),cbc(aes))",
  726. .driver_name = "authenc-hmac-sha1-cbc-aes-caam",
  727. .blocksize = AES_BLOCK_SIZE,
  728. .aead = {
  729. .setkey = aead_authenc_setkey,
  730. .setauthsize = aead_authenc_setauthsize,
  731. .encrypt = aead_authenc_encrypt,
  732. .decrypt = aead_authenc_decrypt,
  733. .givencrypt = aead_authenc_givencrypt,
  734. .geniv = "<built-in>",
  735. .ivsize = AES_BLOCK_SIZE,
  736. .maxauthsize = SHA1_DIGEST_SIZE,
  737. },
  738. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  739. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  740. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  741. },
  742. {
  743. .name = "authenc(hmac(sha256),cbc(aes))",
  744. .driver_name = "authenc-hmac-sha256-cbc-aes-caam",
  745. .blocksize = AES_BLOCK_SIZE,
  746. .aead = {
  747. .setkey = aead_authenc_setkey,
  748. .setauthsize = aead_authenc_setauthsize,
  749. .encrypt = aead_authenc_encrypt,
  750. .decrypt = aead_authenc_decrypt,
  751. .givencrypt = aead_authenc_givencrypt,
  752. .geniv = "<built-in>",
  753. .ivsize = AES_BLOCK_SIZE,
  754. .maxauthsize = SHA256_DIGEST_SIZE,
  755. },
  756. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  757. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  758. OP_ALG_AAI_HMAC_PRECOMP,
  759. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  760. },
  761. {
  762. .name = "authenc(hmac(sha1),cbc(des3_ede))",
  763. .driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
  764. .blocksize = DES3_EDE_BLOCK_SIZE,
  765. .aead = {
  766. .setkey = aead_authenc_setkey,
  767. .setauthsize = aead_authenc_setauthsize,
  768. .encrypt = aead_authenc_encrypt,
  769. .decrypt = aead_authenc_decrypt,
  770. .givencrypt = aead_authenc_givencrypt,
  771. .geniv = "<built-in>",
  772. .ivsize = DES3_EDE_BLOCK_SIZE,
  773. .maxauthsize = SHA1_DIGEST_SIZE,
  774. },
  775. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  776. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  777. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  778. },
  779. {
  780. .name = "authenc(hmac(sha256),cbc(des3_ede))",
  781. .driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
  782. .blocksize = DES3_EDE_BLOCK_SIZE,
  783. .aead = {
  784. .setkey = aead_authenc_setkey,
  785. .setauthsize = aead_authenc_setauthsize,
  786. .encrypt = aead_authenc_encrypt,
  787. .decrypt = aead_authenc_decrypt,
  788. .givencrypt = aead_authenc_givencrypt,
  789. .geniv = "<built-in>",
  790. .ivsize = DES3_EDE_BLOCK_SIZE,
  791. .maxauthsize = SHA256_DIGEST_SIZE,
  792. },
  793. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  794. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  795. OP_ALG_AAI_HMAC_PRECOMP,
  796. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  797. },
  798. {
  799. .name = "authenc(hmac(sha1),cbc(des))",
  800. .driver_name = "authenc-hmac-sha1-cbc-des-caam",
  801. .blocksize = DES_BLOCK_SIZE,
  802. .aead = {
  803. .setkey = aead_authenc_setkey,
  804. .setauthsize = aead_authenc_setauthsize,
  805. .encrypt = aead_authenc_encrypt,
  806. .decrypt = aead_authenc_decrypt,
  807. .givencrypt = aead_authenc_givencrypt,
  808. .geniv = "<built-in>",
  809. .ivsize = DES_BLOCK_SIZE,
  810. .maxauthsize = SHA1_DIGEST_SIZE,
  811. },
  812. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  813. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  814. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  815. },
  816. {
  817. .name = "authenc(hmac(sha256),cbc(des))",
  818. .driver_name = "authenc-hmac-sha256-cbc-des-caam",
  819. .blocksize = DES_BLOCK_SIZE,
  820. .aead = {
  821. .setkey = aead_authenc_setkey,
  822. .setauthsize = aead_authenc_setauthsize,
  823. .encrypt = aead_authenc_encrypt,
  824. .decrypt = aead_authenc_decrypt,
  825. .givencrypt = aead_authenc_givencrypt,
  826. .geniv = "<built-in>",
  827. .ivsize = DES_BLOCK_SIZE,
  828. .maxauthsize = SHA256_DIGEST_SIZE,
  829. },
  830. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  831. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  832. OP_ALG_AAI_HMAC_PRECOMP,
  833. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  834. },
  835. };
  836. struct caam_crypto_alg {
  837. struct list_head entry;
  838. struct device *ctrldev;
  839. int class1_alg_type;
  840. int class2_alg_type;
  841. int alg_op;
  842. struct crypto_alg crypto_alg;
  843. };
  844. static int caam_cra_init(struct crypto_tfm *tfm)
  845. {
  846. struct crypto_alg *alg = tfm->__crt_alg;
  847. struct caam_crypto_alg *caam_alg =
  848. container_of(alg, struct caam_crypto_alg, crypto_alg);
  849. struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
  850. struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
  851. int tgt_jr = atomic_inc_return(&priv->tfm_count);
  852. /*
  853. * distribute tfms across job rings to ensure in-order
  854. * crypto request processing per tfm
  855. */
  856. ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];
  857. /* copy descriptor header template value */
  858. ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
  859. ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
  860. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;
  861. return 0;
  862. }
  863. static void caam_cra_exit(struct crypto_tfm *tfm)
  864. {
  865. struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
  866. if (!dma_mapping_error(ctx->jrdev, ctx->shared_desc_phys))
  867. dma_unmap_single(ctx->jrdev, ctx->shared_desc_phys,
  868. desc_bytes(ctx->sh_desc), DMA_TO_DEVICE);
  869. kfree(ctx->sh_desc);
  870. }
  871. static void __exit caam_algapi_exit(void)
  872. {
  873. struct device_node *dev_node;
  874. struct platform_device *pdev;
  875. struct device *ctrldev;
  876. struct caam_drv_private *priv;
  877. struct caam_crypto_alg *t_alg, *n;
  878. int i, err;
  879. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  880. if (!dev_node)
  881. return;
  882. pdev = of_find_device_by_node(dev_node);
  883. if (!pdev)
  884. return;
  885. ctrldev = &pdev->dev;
  886. of_node_put(dev_node);
  887. priv = dev_get_drvdata(ctrldev);
  888. if (!priv->alg_list.next)
  889. return;
  890. list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
  891. crypto_unregister_alg(&t_alg->crypto_alg);
  892. list_del(&t_alg->entry);
  893. kfree(t_alg);
  894. }
  895. for (i = 0; i < priv->total_jobrs; i++) {
  896. err = caam_jr_deregister(priv->algapi_jr[i]);
  897. if (err < 0)
  898. break;
  899. }
  900. kfree(priv->algapi_jr);
  901. }
  902. static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
  903. struct caam_alg_template
  904. *template)
  905. {
  906. struct caam_crypto_alg *t_alg;
  907. struct crypto_alg *alg;
  908. t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
  909. if (!t_alg) {
  910. dev_err(ctrldev, "failed to allocate t_alg\n");
  911. return ERR_PTR(-ENOMEM);
  912. }
  913. alg = &t_alg->crypto_alg;
  914. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
  915. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  916. template->driver_name);
  917. alg->cra_module = THIS_MODULE;
  918. alg->cra_init = caam_cra_init;
  919. alg->cra_exit = caam_cra_exit;
  920. alg->cra_priority = CAAM_CRA_PRIORITY;
  921. alg->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
  922. alg->cra_blocksize = template->blocksize;
  923. alg->cra_alignmask = 0;
  924. alg->cra_type = &crypto_aead_type;
  925. alg->cra_ctxsize = sizeof(struct caam_ctx);
  926. alg->cra_u.aead = template->aead;
  927. t_alg->class1_alg_type = template->class1_alg_type;
  928. t_alg->class2_alg_type = template->class2_alg_type;
  929. t_alg->alg_op = template->alg_op;
  930. t_alg->ctrldev = ctrldev;
  931. return t_alg;
  932. }
  933. static int __init caam_algapi_init(void)
  934. {
  935. struct device_node *dev_node;
  936. struct platform_device *pdev;
  937. struct device *ctrldev, **jrdev;
  938. struct caam_drv_private *priv;
  939. int i = 0, err = 0;
  940. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  941. if (!dev_node)
  942. return -ENODEV;
  943. pdev = of_find_device_by_node(dev_node);
  944. if (!pdev)
  945. return -ENODEV;
  946. ctrldev = &pdev->dev;
  947. priv = dev_get_drvdata(ctrldev);
  948. of_node_put(dev_node);
  949. INIT_LIST_HEAD(&priv->alg_list);
  950. jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
  951. if (!jrdev)
  952. return -ENOMEM;
  953. for (i = 0; i < priv->total_jobrs; i++) {
  954. err = caam_jr_register(ctrldev, &jrdev[i]);
  955. if (err < 0)
  956. break;
  957. }
  958. if (err < 0 && i == 0) {
  959. dev_err(ctrldev, "algapi error in job ring registration: %d\n",
  960. err);
  961. kfree(jrdev);
  962. return err;
  963. }
  964. priv->num_jrs_for_algapi = i;
  965. priv->algapi_jr = jrdev;
  966. atomic_set(&priv->tfm_count, -1);
  967. /* register crypto algorithms the device supports */
  968. for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
  969. /* TODO: check if h/w supports alg */
  970. struct caam_crypto_alg *t_alg;
  971. t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
  972. if (IS_ERR(t_alg)) {
  973. err = PTR_ERR(t_alg);
  974. dev_warn(ctrldev, "%s alg allocation failed\n",
  975. driver_algs[i].driver_name);
  976. continue;
  977. }
  978. err = crypto_register_alg(&t_alg->crypto_alg);
  979. if (err) {
  980. dev_warn(ctrldev, "%s alg registration failed\n",
  981. t_alg->crypto_alg.cra_driver_name);
  982. kfree(t_alg);
  983. } else {
  984. list_add_tail(&t_alg->entry, &priv->alg_list);
  985. dev_info(ctrldev, "%s\n",
  986. t_alg->crypto_alg.cra_driver_name);
  987. }
  988. }
  989. return err;
  990. }
  991. module_init(caam_algapi_init);
  992. module_exit(caam_algapi_exit);
  993. MODULE_LICENSE("GPL");
  994. MODULE_DESCRIPTION("FSL CAAM support for crypto API");
  995. MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");