spi-sirf.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /*
  2. * SPI bus driver for CSR SiRFprimaII
  3. *
  4. * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
  5. *
  6. * Licensed under GPLv2 or later.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/clk.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/io.h>
  14. #include <linux/of.h>
  15. #include <linux/bitops.h>
  16. #include <linux/err.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/of_gpio.h>
  19. #include <linux/spi/spi.h>
  20. #include <linux/spi/spi_bitbang.h>
  21. #define DRIVER_NAME "sirfsoc_spi"
  22. #define SIRFSOC_SPI_CTRL 0x0000
  23. #define SIRFSOC_SPI_CMD 0x0004
  24. #define SIRFSOC_SPI_TX_RX_EN 0x0008
  25. #define SIRFSOC_SPI_INT_EN 0x000C
  26. #define SIRFSOC_SPI_INT_STATUS 0x0010
  27. #define SIRFSOC_SPI_TX_DMA_IO_CTRL 0x0100
  28. #define SIRFSOC_SPI_TX_DMA_IO_LEN 0x0104
  29. #define SIRFSOC_SPI_TXFIFO_CTRL 0x0108
  30. #define SIRFSOC_SPI_TXFIFO_LEVEL_CHK 0x010C
  31. #define SIRFSOC_SPI_TXFIFO_OP 0x0110
  32. #define SIRFSOC_SPI_TXFIFO_STATUS 0x0114
  33. #define SIRFSOC_SPI_TXFIFO_DATA 0x0118
  34. #define SIRFSOC_SPI_RX_DMA_IO_CTRL 0x0120
  35. #define SIRFSOC_SPI_RX_DMA_IO_LEN 0x0124
  36. #define SIRFSOC_SPI_RXFIFO_CTRL 0x0128
  37. #define SIRFSOC_SPI_RXFIFO_LEVEL_CHK 0x012C
  38. #define SIRFSOC_SPI_RXFIFO_OP 0x0130
  39. #define SIRFSOC_SPI_RXFIFO_STATUS 0x0134
  40. #define SIRFSOC_SPI_RXFIFO_DATA 0x0138
  41. #define SIRFSOC_SPI_DUMMY_DELAY_CTL 0x0144
  42. /* SPI CTRL register defines */
  43. #define SIRFSOC_SPI_SLV_MODE BIT(16)
  44. #define SIRFSOC_SPI_CMD_MODE BIT(17)
  45. #define SIRFSOC_SPI_CS_IO_OUT BIT(18)
  46. #define SIRFSOC_SPI_CS_IO_MODE BIT(19)
  47. #define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20)
  48. #define SIRFSOC_SPI_CS_IDLE_STAT BIT(21)
  49. #define SIRFSOC_SPI_TRAN_MSB BIT(22)
  50. #define SIRFSOC_SPI_DRV_POS_EDGE BIT(23)
  51. #define SIRFSOC_SPI_CS_HOLD_TIME BIT(24)
  52. #define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25)
  53. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26)
  54. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26)
  55. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26)
  56. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26)
  57. #define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28)
  58. #define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30)
  59. #define SIRFSOC_SPI_MUL_DAT_MODE BIT(31)
  60. /* Interrupt Enable */
  61. #define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0)
  62. #define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1)
  63. #define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2)
  64. #define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3)
  65. #define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4)
  66. #define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5)
  67. #define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6)
  68. #define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
  69. #define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8)
  70. #define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9)
  71. #define SIRFSOC_SPI_FRM_END_INT_EN BIT(10)
  72. #define SIRFSOC_SPI_INT_MASK_ALL 0x1FFF
  73. /* Interrupt status */
  74. #define SIRFSOC_SPI_RX_DONE BIT(0)
  75. #define SIRFSOC_SPI_TX_DONE BIT(1)
  76. #define SIRFSOC_SPI_RX_OFLOW BIT(2)
  77. #define SIRFSOC_SPI_TX_UFLOW BIT(3)
  78. #define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
  79. #define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
  80. #define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
  81. #define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9)
  82. #define SIRFSOC_SPI_FRM_END BIT(10)
  83. /* TX RX enable */
  84. #define SIRFSOC_SPI_RX_EN BIT(0)
  85. #define SIRFSOC_SPI_TX_EN BIT(1)
  86. #define SIRFSOC_SPI_CMD_TX_EN BIT(2)
  87. #define SIRFSOC_SPI_IO_MODE_SEL BIT(0)
  88. #define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2)
  89. /* FIFO OPs */
  90. #define SIRFSOC_SPI_FIFO_RESET BIT(0)
  91. #define SIRFSOC_SPI_FIFO_START BIT(1)
  92. /* FIFO CTRL */
  93. #define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0)
  94. #define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0)
  95. #define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0)
  96. /* FIFO Status */
  97. #define SIRFSOC_SPI_FIFO_LEVEL_MASK 0xFF
  98. #define SIRFSOC_SPI_FIFO_FULL BIT(8)
  99. #define SIRFSOC_SPI_FIFO_EMPTY BIT(9)
  100. /* 256 bytes rx/tx FIFO */
  101. #define SIRFSOC_SPI_FIFO_SIZE 256
  102. #define SIRFSOC_SPI_DAT_FRM_LEN_MAX (64 * 1024)
  103. #define SIRFSOC_SPI_FIFO_SC(x) ((x) & 0x3F)
  104. #define SIRFSOC_SPI_FIFO_LC(x) (((x) & 0x3F) << 10)
  105. #define SIRFSOC_SPI_FIFO_HC(x) (((x) & 0x3F) << 20)
  106. #define SIRFSOC_SPI_FIFO_THD(x) (((x) & 0xFF) << 2)
  107. struct sirfsoc_spi {
  108. struct spi_bitbang bitbang;
  109. struct completion done;
  110. void __iomem *base;
  111. u32 ctrl_freq; /* SPI controller clock speed */
  112. struct clk *clk;
  113. /* rx & tx bufs from the spi_transfer */
  114. const void *tx;
  115. void *rx;
  116. /* place received word into rx buffer */
  117. void (*rx_word) (struct sirfsoc_spi *);
  118. /* get word from tx buffer for sending */
  119. void (*tx_word) (struct sirfsoc_spi *);
  120. /* number of words left to be tranmitted/received */
  121. unsigned int left_tx_cnt;
  122. unsigned int left_rx_cnt;
  123. /* tasklet to push tx msg into FIFO */
  124. struct tasklet_struct tasklet_tx;
  125. int chipselect[0];
  126. };
  127. static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
  128. {
  129. u32 data;
  130. u8 *rx = sspi->rx;
  131. data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
  132. if (rx) {
  133. *rx++ = (u8) data;
  134. sspi->rx = rx;
  135. }
  136. sspi->left_rx_cnt--;
  137. }
  138. static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
  139. {
  140. u32 data = 0;
  141. const u8 *tx = sspi->tx;
  142. if (tx) {
  143. data = *tx++;
  144. sspi->tx = tx;
  145. }
  146. writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
  147. sspi->left_tx_cnt--;
  148. }
  149. static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
  150. {
  151. u32 data;
  152. u16 *rx = sspi->rx;
  153. data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
  154. if (rx) {
  155. *rx++ = (u16) data;
  156. sspi->rx = rx;
  157. }
  158. sspi->left_rx_cnt--;
  159. }
  160. static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
  161. {
  162. u32 data = 0;
  163. const u16 *tx = sspi->tx;
  164. if (tx) {
  165. data = *tx++;
  166. sspi->tx = tx;
  167. }
  168. writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
  169. sspi->left_tx_cnt--;
  170. }
  171. static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
  172. {
  173. u32 data;
  174. u32 *rx = sspi->rx;
  175. data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
  176. if (rx) {
  177. *rx++ = (u32) data;
  178. sspi->rx = rx;
  179. }
  180. sspi->left_rx_cnt--;
  181. }
  182. static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
  183. {
  184. u32 data = 0;
  185. const u32 *tx = sspi->tx;
  186. if (tx) {
  187. data = *tx++;
  188. sspi->tx = tx;
  189. }
  190. writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
  191. sspi->left_tx_cnt--;
  192. }
  193. static void spi_sirfsoc_tasklet_tx(unsigned long arg)
  194. {
  195. struct sirfsoc_spi *sspi = (struct sirfsoc_spi *)arg;
  196. /* Fill Tx FIFO while there are left words to be transmitted */
  197. while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS) &
  198. SIRFSOC_SPI_FIFO_FULL)) &&
  199. sspi->left_tx_cnt)
  200. sspi->tx_word(sspi);
  201. }
  202. static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
  203. {
  204. struct sirfsoc_spi *sspi = dev_id;
  205. u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
  206. writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
  207. /* Error Conditions */
  208. if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
  209. spi_stat & SIRFSOC_SPI_TX_UFLOW) {
  210. complete(&sspi->done);
  211. writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
  212. }
  213. if (spi_stat & SIRFSOC_SPI_FRM_END) {
  214. while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
  215. & SIRFSOC_SPI_FIFO_EMPTY)) &&
  216. sspi->left_rx_cnt)
  217. sspi->rx_word(sspi);
  218. /* Received all words */
  219. if ((sspi->left_rx_cnt == 0) && (sspi->left_tx_cnt == 0)) {
  220. complete(&sspi->done);
  221. writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
  222. }
  223. }
  224. if (spi_stat & SIRFSOC_SPI_RXFIFO_THD_REACH ||
  225. spi_stat & SIRFSOC_SPI_TXFIFO_THD_REACH ||
  226. spi_stat & SIRFSOC_SPI_RX_FIFO_FULL ||
  227. spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
  228. tasklet_schedule(&sspi->tasklet_tx);
  229. return IRQ_HANDLED;
  230. }
  231. static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
  232. {
  233. struct sirfsoc_spi *sspi;
  234. int timeout = t->len * 10;
  235. sspi = spi_master_get_devdata(spi->master);
  236. sspi->tx = t->tx_buf;
  237. sspi->rx = t->rx_buf;
  238. sspi->left_tx_cnt = sspi->left_rx_cnt = t->len;
  239. INIT_COMPLETION(sspi->done);
  240. writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
  241. if (t->len == 1) {
  242. writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
  243. SIRFSOC_SPI_ENA_AUTO_CLR,
  244. sspi->base + SIRFSOC_SPI_CTRL);
  245. writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
  246. writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
  247. } else if ((t->len > 1) && (t->len < SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
  248. writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
  249. SIRFSOC_SPI_MUL_DAT_MODE |
  250. SIRFSOC_SPI_ENA_AUTO_CLR,
  251. sspi->base + SIRFSOC_SPI_CTRL);
  252. writel(t->len - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
  253. writel(t->len - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
  254. } else {
  255. writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
  256. sspi->base + SIRFSOC_SPI_CTRL);
  257. writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
  258. writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
  259. }
  260. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  261. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  262. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  263. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  264. /* Send the first word to trigger the whole tx/rx process */
  265. sspi->tx_word(sspi);
  266. writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
  267. SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
  268. SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
  269. SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
  270. writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
  271. if (wait_for_completion_timeout(&sspi->done, timeout) == 0)
  272. dev_err(&spi->dev, "transfer timeout\n");
  273. /* TX, RX FIFO stop */
  274. writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  275. writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  276. writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
  277. writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
  278. return t->len - sspi->left_rx_cnt;
  279. }
  280. static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
  281. {
  282. struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
  283. if (sspi->chipselect[spi->chip_select] == 0) {
  284. u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
  285. regval |= SIRFSOC_SPI_CS_IO_OUT;
  286. switch (value) {
  287. case BITBANG_CS_ACTIVE:
  288. if (spi->mode & SPI_CS_HIGH)
  289. regval |= SIRFSOC_SPI_CS_IO_OUT;
  290. else
  291. regval &= ~SIRFSOC_SPI_CS_IO_OUT;
  292. break;
  293. case BITBANG_CS_INACTIVE:
  294. if (spi->mode & SPI_CS_HIGH)
  295. regval &= ~SIRFSOC_SPI_CS_IO_OUT;
  296. else
  297. regval |= SIRFSOC_SPI_CS_IO_OUT;
  298. break;
  299. }
  300. writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
  301. } else {
  302. int gpio = sspi->chipselect[spi->chip_select];
  303. gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
  304. }
  305. }
  306. static int
  307. spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
  308. {
  309. struct sirfsoc_spi *sspi;
  310. u8 bits_per_word = 0;
  311. int hz = 0;
  312. u32 regval;
  313. u32 txfifo_ctrl, rxfifo_ctrl;
  314. u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
  315. sspi = spi_master_get_devdata(spi->master);
  316. bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
  317. hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
  318. /* Enable IO mode for RX, TX */
  319. writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
  320. writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
  321. regval = (sspi->ctrl_freq / (2 * hz)) - 1;
  322. if (regval > 0xFFFF || regval < 0) {
  323. dev_err(&spi->dev, "Speed %d not supported\n", hz);
  324. return -EINVAL;
  325. }
  326. switch (bits_per_word) {
  327. case 8:
  328. regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
  329. sspi->rx_word = spi_sirfsoc_rx_word_u8;
  330. sspi->tx_word = spi_sirfsoc_tx_word_u8;
  331. txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  332. SIRFSOC_SPI_FIFO_WIDTH_BYTE;
  333. rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  334. SIRFSOC_SPI_FIFO_WIDTH_BYTE;
  335. break;
  336. case 12:
  337. case 16:
  338. regval |= (bits_per_word == 12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
  339. SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
  340. sspi->rx_word = spi_sirfsoc_rx_word_u16;
  341. sspi->tx_word = spi_sirfsoc_tx_word_u16;
  342. txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  343. SIRFSOC_SPI_FIFO_WIDTH_WORD;
  344. rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  345. SIRFSOC_SPI_FIFO_WIDTH_WORD;
  346. break;
  347. case 32:
  348. regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
  349. sspi->rx_word = spi_sirfsoc_rx_word_u32;
  350. sspi->tx_word = spi_sirfsoc_tx_word_u32;
  351. txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  352. SIRFSOC_SPI_FIFO_WIDTH_DWORD;
  353. rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  354. SIRFSOC_SPI_FIFO_WIDTH_DWORD;
  355. break;
  356. default:
  357. dev_err(&spi->dev, "Bits per word %d not supported\n",
  358. bits_per_word);
  359. return -EINVAL;
  360. }
  361. if (!(spi->mode & SPI_CS_HIGH))
  362. regval |= SIRFSOC_SPI_CS_IDLE_STAT;
  363. if (!(spi->mode & SPI_LSB_FIRST))
  364. regval |= SIRFSOC_SPI_TRAN_MSB;
  365. if (spi->mode & SPI_CPOL)
  366. regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
  367. /*
  368. * Data should be driven at least 1/2 cycle before the fetch edge to make
  369. * sure that data gets stable at the fetch edge.
  370. */
  371. if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
  372. (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
  373. regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
  374. else
  375. regval |= SIRFSOC_SPI_DRV_POS_EDGE;
  376. writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
  377. SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
  378. SIRFSOC_SPI_FIFO_HC(2),
  379. sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
  380. writel(SIRFSOC_SPI_FIFO_SC(2) |
  381. SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
  382. SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
  383. sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
  384. writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
  385. writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
  386. writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
  387. return 0;
  388. }
  389. static int spi_sirfsoc_setup(struct spi_device *spi)
  390. {
  391. struct sirfsoc_spi *sspi;
  392. if (!spi->max_speed_hz)
  393. return -EINVAL;
  394. sspi = spi_master_get_devdata(spi->master);
  395. if (!spi->bits_per_word)
  396. spi->bits_per_word = 8;
  397. return spi_sirfsoc_setup_transfer(spi, NULL);
  398. }
  399. static int spi_sirfsoc_probe(struct platform_device *pdev)
  400. {
  401. struct sirfsoc_spi *sspi;
  402. struct spi_master *master;
  403. struct resource *mem_res;
  404. int num_cs, cs_gpio, irq;
  405. int i;
  406. int ret;
  407. ret = of_property_read_u32(pdev->dev.of_node,
  408. "sirf,spi-num-chipselects", &num_cs);
  409. if (ret < 0) {
  410. dev_err(&pdev->dev, "Unable to get chip select number\n");
  411. goto err_cs;
  412. }
  413. master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
  414. if (!master) {
  415. dev_err(&pdev->dev, "Unable to allocate SPI master\n");
  416. return -ENOMEM;
  417. }
  418. platform_set_drvdata(pdev, master);
  419. sspi = spi_master_get_devdata(master);
  420. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  421. if (!mem_res) {
  422. dev_err(&pdev->dev, "Unable to get IO resource\n");
  423. ret = -ENODEV;
  424. goto free_master;
  425. }
  426. master->num_chipselect = num_cs;
  427. for (i = 0; i < master->num_chipselect; i++) {
  428. cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
  429. if (cs_gpio < 0) {
  430. dev_err(&pdev->dev, "can't get cs gpio from DT\n");
  431. ret = -ENODEV;
  432. goto free_master;
  433. }
  434. sspi->chipselect[i] = cs_gpio;
  435. if (cs_gpio == 0)
  436. continue; /* use cs from spi controller */
  437. ret = gpio_request(cs_gpio, DRIVER_NAME);
  438. if (ret) {
  439. while (i > 0) {
  440. i--;
  441. if (sspi->chipselect[i] > 0)
  442. gpio_free(sspi->chipselect[i]);
  443. }
  444. dev_err(&pdev->dev, "fail to request cs gpios\n");
  445. goto free_master;
  446. }
  447. }
  448. sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
  449. if (IS_ERR(sspi->base)) {
  450. ret = PTR_ERR(sspi->base);
  451. goto free_master;
  452. }
  453. irq = platform_get_irq(pdev, 0);
  454. if (irq < 0) {
  455. ret = -ENXIO;
  456. goto free_master;
  457. }
  458. ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
  459. DRIVER_NAME, sspi);
  460. if (ret)
  461. goto free_master;
  462. sspi->bitbang.master = spi_master_get(master);
  463. sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
  464. sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
  465. sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
  466. sspi->bitbang.master->setup = spi_sirfsoc_setup;
  467. master->bus_num = pdev->id;
  468. sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
  469. sspi->clk = clk_get(&pdev->dev, NULL);
  470. if (IS_ERR(sspi->clk)) {
  471. ret = -EINVAL;
  472. goto free_master;
  473. }
  474. clk_prepare_enable(sspi->clk);
  475. sspi->ctrl_freq = clk_get_rate(sspi->clk);
  476. init_completion(&sspi->done);
  477. tasklet_init(&sspi->tasklet_tx, spi_sirfsoc_tasklet_tx,
  478. (unsigned long)sspi);
  479. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  480. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  481. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  482. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  483. /* We are not using dummy delay between command and data */
  484. writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
  485. ret = spi_bitbang_start(&sspi->bitbang);
  486. if (ret)
  487. goto free_clk;
  488. dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
  489. return 0;
  490. free_clk:
  491. clk_disable_unprepare(sspi->clk);
  492. clk_put(sspi->clk);
  493. free_master:
  494. spi_master_put(master);
  495. err_cs:
  496. return ret;
  497. }
  498. static int spi_sirfsoc_remove(struct platform_device *pdev)
  499. {
  500. struct spi_master *master;
  501. struct sirfsoc_spi *sspi;
  502. int i;
  503. master = platform_get_drvdata(pdev);
  504. sspi = spi_master_get_devdata(master);
  505. spi_bitbang_stop(&sspi->bitbang);
  506. for (i = 0; i < master->num_chipselect; i++) {
  507. if (sspi->chipselect[i] > 0)
  508. gpio_free(sspi->chipselect[i]);
  509. }
  510. clk_disable_unprepare(sspi->clk);
  511. clk_put(sspi->clk);
  512. spi_master_put(master);
  513. return 0;
  514. }
  515. #ifdef CONFIG_PM
  516. static int spi_sirfsoc_suspend(struct device *dev)
  517. {
  518. struct platform_device *pdev = to_platform_device(dev);
  519. struct spi_master *master = platform_get_drvdata(pdev);
  520. struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
  521. clk_disable(sspi->clk);
  522. return 0;
  523. }
  524. static int spi_sirfsoc_resume(struct device *dev)
  525. {
  526. struct platform_device *pdev = to_platform_device(dev);
  527. struct spi_master *master = platform_get_drvdata(pdev);
  528. struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
  529. clk_enable(sspi->clk);
  530. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  531. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  532. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  533. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  534. return 0;
  535. }
  536. static const struct dev_pm_ops spi_sirfsoc_pm_ops = {
  537. .suspend = spi_sirfsoc_suspend,
  538. .resume = spi_sirfsoc_resume,
  539. };
  540. #endif
  541. static const struct of_device_id spi_sirfsoc_of_match[] = {
  542. { .compatible = "sirf,prima2-spi", },
  543. { .compatible = "sirf,marco-spi", },
  544. {}
  545. };
  546. MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
  547. static struct platform_driver spi_sirfsoc_driver = {
  548. .driver = {
  549. .name = DRIVER_NAME,
  550. .owner = THIS_MODULE,
  551. #ifdef CONFIG_PM
  552. .pm = &spi_sirfsoc_pm_ops,
  553. #endif
  554. .of_match_table = spi_sirfsoc_of_match,
  555. },
  556. .probe = spi_sirfsoc_probe,
  557. .remove = spi_sirfsoc_remove,
  558. };
  559. module_platform_driver(spi_sirfsoc_driver);
  560. MODULE_DESCRIPTION("SiRF SoC SPI master driver");
  561. MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
  562. "Barry Song <Baohua.Song@csr.com>");
  563. MODULE_LICENSE("GPL v2");