extent-tree.c 216 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/sort.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/kthread.h>
  25. #include <linux/slab.h>
  26. #include <linux/ratelimit.h>
  27. #include "compat.h"
  28. #include "hash.h"
  29. #include "ctree.h"
  30. #include "disk-io.h"
  31. #include "print-tree.h"
  32. #include "transaction.h"
  33. #include "volumes.h"
  34. #include "locking.h"
  35. #include "free-space-cache.h"
  36. #include "math.h"
  37. #undef SCRAMBLE_DELAYED_REFS
  38. /*
  39. * control flags for do_chunk_alloc's force field
  40. * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  41. * if we really need one.
  42. *
  43. * CHUNK_ALLOC_LIMITED means to only try and allocate one
  44. * if we have very few chunks already allocated. This is
  45. * used as part of the clustering code to help make sure
  46. * we have a good pool of storage to cluster in, without
  47. * filling the FS with empty chunks
  48. *
  49. * CHUNK_ALLOC_FORCE means it must try to allocate one
  50. *
  51. */
  52. enum {
  53. CHUNK_ALLOC_NO_FORCE = 0,
  54. CHUNK_ALLOC_LIMITED = 1,
  55. CHUNK_ALLOC_FORCE = 2,
  56. };
  57. /*
  58. * Control how reservations are dealt with.
  59. *
  60. * RESERVE_FREE - freeing a reservation.
  61. * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  62. * ENOSPC accounting
  63. * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  64. * bytes_may_use as the ENOSPC accounting is done elsewhere
  65. */
  66. enum {
  67. RESERVE_FREE = 0,
  68. RESERVE_ALLOC = 1,
  69. RESERVE_ALLOC_NO_ACCOUNT = 2,
  70. };
  71. static int update_block_group(struct btrfs_trans_handle *trans,
  72. struct btrfs_root *root,
  73. u64 bytenr, u64 num_bytes, int alloc);
  74. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  75. struct btrfs_root *root,
  76. u64 bytenr, u64 num_bytes, u64 parent,
  77. u64 root_objectid, u64 owner_objectid,
  78. u64 owner_offset, int refs_to_drop,
  79. struct btrfs_delayed_extent_op *extra_op);
  80. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  81. struct extent_buffer *leaf,
  82. struct btrfs_extent_item *ei);
  83. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  84. struct btrfs_root *root,
  85. u64 parent, u64 root_objectid,
  86. u64 flags, u64 owner, u64 offset,
  87. struct btrfs_key *ins, int ref_mod);
  88. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  89. struct btrfs_root *root,
  90. u64 parent, u64 root_objectid,
  91. u64 flags, struct btrfs_disk_key *key,
  92. int level, struct btrfs_key *ins);
  93. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  94. struct btrfs_root *extent_root, u64 flags,
  95. int force);
  96. static int find_next_key(struct btrfs_path *path, int level,
  97. struct btrfs_key *key);
  98. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  99. int dump_block_groups);
  100. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  101. u64 num_bytes, int reserve);
  102. static noinline int
  103. block_group_cache_done(struct btrfs_block_group_cache *cache)
  104. {
  105. smp_mb();
  106. return cache->cached == BTRFS_CACHE_FINISHED;
  107. }
  108. static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  109. {
  110. return (cache->flags & bits) == bits;
  111. }
  112. static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  113. {
  114. atomic_inc(&cache->count);
  115. }
  116. void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  117. {
  118. if (atomic_dec_and_test(&cache->count)) {
  119. WARN_ON(cache->pinned > 0);
  120. WARN_ON(cache->reserved > 0);
  121. kfree(cache->free_space_ctl);
  122. kfree(cache);
  123. }
  124. }
  125. /*
  126. * this adds the block group to the fs_info rb tree for the block group
  127. * cache
  128. */
  129. static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  130. struct btrfs_block_group_cache *block_group)
  131. {
  132. struct rb_node **p;
  133. struct rb_node *parent = NULL;
  134. struct btrfs_block_group_cache *cache;
  135. spin_lock(&info->block_group_cache_lock);
  136. p = &info->block_group_cache_tree.rb_node;
  137. while (*p) {
  138. parent = *p;
  139. cache = rb_entry(parent, struct btrfs_block_group_cache,
  140. cache_node);
  141. if (block_group->key.objectid < cache->key.objectid) {
  142. p = &(*p)->rb_left;
  143. } else if (block_group->key.objectid > cache->key.objectid) {
  144. p = &(*p)->rb_right;
  145. } else {
  146. spin_unlock(&info->block_group_cache_lock);
  147. return -EEXIST;
  148. }
  149. }
  150. rb_link_node(&block_group->cache_node, parent, p);
  151. rb_insert_color(&block_group->cache_node,
  152. &info->block_group_cache_tree);
  153. spin_unlock(&info->block_group_cache_lock);
  154. return 0;
  155. }
  156. /*
  157. * This will return the block group at or after bytenr if contains is 0, else
  158. * it will return the block group that contains the bytenr
  159. */
  160. static struct btrfs_block_group_cache *
  161. block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  162. int contains)
  163. {
  164. struct btrfs_block_group_cache *cache, *ret = NULL;
  165. struct rb_node *n;
  166. u64 end, start;
  167. spin_lock(&info->block_group_cache_lock);
  168. n = info->block_group_cache_tree.rb_node;
  169. while (n) {
  170. cache = rb_entry(n, struct btrfs_block_group_cache,
  171. cache_node);
  172. end = cache->key.objectid + cache->key.offset - 1;
  173. start = cache->key.objectid;
  174. if (bytenr < start) {
  175. if (!contains && (!ret || start < ret->key.objectid))
  176. ret = cache;
  177. n = n->rb_left;
  178. } else if (bytenr > start) {
  179. if (contains && bytenr <= end) {
  180. ret = cache;
  181. break;
  182. }
  183. n = n->rb_right;
  184. } else {
  185. ret = cache;
  186. break;
  187. }
  188. }
  189. if (ret)
  190. btrfs_get_block_group(ret);
  191. spin_unlock(&info->block_group_cache_lock);
  192. return ret;
  193. }
  194. static int add_excluded_extent(struct btrfs_root *root,
  195. u64 start, u64 num_bytes)
  196. {
  197. u64 end = start + num_bytes - 1;
  198. set_extent_bits(&root->fs_info->freed_extents[0],
  199. start, end, EXTENT_UPTODATE, GFP_NOFS);
  200. set_extent_bits(&root->fs_info->freed_extents[1],
  201. start, end, EXTENT_UPTODATE, GFP_NOFS);
  202. return 0;
  203. }
  204. static void free_excluded_extents(struct btrfs_root *root,
  205. struct btrfs_block_group_cache *cache)
  206. {
  207. u64 start, end;
  208. start = cache->key.objectid;
  209. end = start + cache->key.offset - 1;
  210. clear_extent_bits(&root->fs_info->freed_extents[0],
  211. start, end, EXTENT_UPTODATE, GFP_NOFS);
  212. clear_extent_bits(&root->fs_info->freed_extents[1],
  213. start, end, EXTENT_UPTODATE, GFP_NOFS);
  214. }
  215. static int exclude_super_stripes(struct btrfs_root *root,
  216. struct btrfs_block_group_cache *cache)
  217. {
  218. u64 bytenr;
  219. u64 *logical;
  220. int stripe_len;
  221. int i, nr, ret;
  222. if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  223. stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  224. cache->bytes_super += stripe_len;
  225. ret = add_excluded_extent(root, cache->key.objectid,
  226. stripe_len);
  227. BUG_ON(ret); /* -ENOMEM */
  228. }
  229. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  230. bytenr = btrfs_sb_offset(i);
  231. ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  232. cache->key.objectid, bytenr,
  233. 0, &logical, &nr, &stripe_len);
  234. BUG_ON(ret); /* -ENOMEM */
  235. while (nr--) {
  236. cache->bytes_super += stripe_len;
  237. ret = add_excluded_extent(root, logical[nr],
  238. stripe_len);
  239. BUG_ON(ret); /* -ENOMEM */
  240. }
  241. kfree(logical);
  242. }
  243. return 0;
  244. }
  245. static struct btrfs_caching_control *
  246. get_caching_control(struct btrfs_block_group_cache *cache)
  247. {
  248. struct btrfs_caching_control *ctl;
  249. spin_lock(&cache->lock);
  250. if (cache->cached != BTRFS_CACHE_STARTED) {
  251. spin_unlock(&cache->lock);
  252. return NULL;
  253. }
  254. /* We're loading it the fast way, so we don't have a caching_ctl. */
  255. if (!cache->caching_ctl) {
  256. spin_unlock(&cache->lock);
  257. return NULL;
  258. }
  259. ctl = cache->caching_ctl;
  260. atomic_inc(&ctl->count);
  261. spin_unlock(&cache->lock);
  262. return ctl;
  263. }
  264. static void put_caching_control(struct btrfs_caching_control *ctl)
  265. {
  266. if (atomic_dec_and_test(&ctl->count))
  267. kfree(ctl);
  268. }
  269. /*
  270. * this is only called by cache_block_group, since we could have freed extents
  271. * we need to check the pinned_extents for any extents that can't be used yet
  272. * since their free space will be released as soon as the transaction commits.
  273. */
  274. static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  275. struct btrfs_fs_info *info, u64 start, u64 end)
  276. {
  277. u64 extent_start, extent_end, size, total_added = 0;
  278. int ret;
  279. while (start < end) {
  280. ret = find_first_extent_bit(info->pinned_extents, start,
  281. &extent_start, &extent_end,
  282. EXTENT_DIRTY | EXTENT_UPTODATE,
  283. NULL);
  284. if (ret)
  285. break;
  286. if (extent_start <= start) {
  287. start = extent_end + 1;
  288. } else if (extent_start > start && extent_start < end) {
  289. size = extent_start - start;
  290. total_added += size;
  291. ret = btrfs_add_free_space(block_group, start,
  292. size);
  293. BUG_ON(ret); /* -ENOMEM or logic error */
  294. start = extent_end + 1;
  295. } else {
  296. break;
  297. }
  298. }
  299. if (start < end) {
  300. size = end - start;
  301. total_added += size;
  302. ret = btrfs_add_free_space(block_group, start, size);
  303. BUG_ON(ret); /* -ENOMEM or logic error */
  304. }
  305. return total_added;
  306. }
  307. static noinline void caching_thread(struct btrfs_work *work)
  308. {
  309. struct btrfs_block_group_cache *block_group;
  310. struct btrfs_fs_info *fs_info;
  311. struct btrfs_caching_control *caching_ctl;
  312. struct btrfs_root *extent_root;
  313. struct btrfs_path *path;
  314. struct extent_buffer *leaf;
  315. struct btrfs_key key;
  316. u64 total_found = 0;
  317. u64 last = 0;
  318. u32 nritems;
  319. int ret = 0;
  320. caching_ctl = container_of(work, struct btrfs_caching_control, work);
  321. block_group = caching_ctl->block_group;
  322. fs_info = block_group->fs_info;
  323. extent_root = fs_info->extent_root;
  324. path = btrfs_alloc_path();
  325. if (!path)
  326. goto out;
  327. last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  328. /*
  329. * We don't want to deadlock with somebody trying to allocate a new
  330. * extent for the extent root while also trying to search the extent
  331. * root to add free space. So we skip locking and search the commit
  332. * root, since its read-only
  333. */
  334. path->skip_locking = 1;
  335. path->search_commit_root = 1;
  336. path->reada = 1;
  337. key.objectid = last;
  338. key.offset = 0;
  339. key.type = BTRFS_EXTENT_ITEM_KEY;
  340. again:
  341. mutex_lock(&caching_ctl->mutex);
  342. /* need to make sure the commit_root doesn't disappear */
  343. down_read(&fs_info->extent_commit_sem);
  344. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  345. if (ret < 0)
  346. goto err;
  347. leaf = path->nodes[0];
  348. nritems = btrfs_header_nritems(leaf);
  349. while (1) {
  350. if (btrfs_fs_closing(fs_info) > 1) {
  351. last = (u64)-1;
  352. break;
  353. }
  354. if (path->slots[0] < nritems) {
  355. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  356. } else {
  357. ret = find_next_key(path, 0, &key);
  358. if (ret)
  359. break;
  360. if (need_resched() ||
  361. btrfs_next_leaf(extent_root, path)) {
  362. caching_ctl->progress = last;
  363. btrfs_release_path(path);
  364. up_read(&fs_info->extent_commit_sem);
  365. mutex_unlock(&caching_ctl->mutex);
  366. cond_resched();
  367. goto again;
  368. }
  369. leaf = path->nodes[0];
  370. nritems = btrfs_header_nritems(leaf);
  371. continue;
  372. }
  373. if (key.objectid < block_group->key.objectid) {
  374. path->slots[0]++;
  375. continue;
  376. }
  377. if (key.objectid >= block_group->key.objectid +
  378. block_group->key.offset)
  379. break;
  380. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  381. total_found += add_new_free_space(block_group,
  382. fs_info, last,
  383. key.objectid);
  384. last = key.objectid + key.offset;
  385. if (total_found > (1024 * 1024 * 2)) {
  386. total_found = 0;
  387. wake_up(&caching_ctl->wait);
  388. }
  389. }
  390. path->slots[0]++;
  391. }
  392. ret = 0;
  393. total_found += add_new_free_space(block_group, fs_info, last,
  394. block_group->key.objectid +
  395. block_group->key.offset);
  396. caching_ctl->progress = (u64)-1;
  397. spin_lock(&block_group->lock);
  398. block_group->caching_ctl = NULL;
  399. block_group->cached = BTRFS_CACHE_FINISHED;
  400. spin_unlock(&block_group->lock);
  401. err:
  402. btrfs_free_path(path);
  403. up_read(&fs_info->extent_commit_sem);
  404. free_excluded_extents(extent_root, block_group);
  405. mutex_unlock(&caching_ctl->mutex);
  406. out:
  407. wake_up(&caching_ctl->wait);
  408. put_caching_control(caching_ctl);
  409. btrfs_put_block_group(block_group);
  410. }
  411. static int cache_block_group(struct btrfs_block_group_cache *cache,
  412. struct btrfs_trans_handle *trans,
  413. struct btrfs_root *root,
  414. int load_cache_only)
  415. {
  416. DEFINE_WAIT(wait);
  417. struct btrfs_fs_info *fs_info = cache->fs_info;
  418. struct btrfs_caching_control *caching_ctl;
  419. int ret = 0;
  420. caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  421. if (!caching_ctl)
  422. return -ENOMEM;
  423. INIT_LIST_HEAD(&caching_ctl->list);
  424. mutex_init(&caching_ctl->mutex);
  425. init_waitqueue_head(&caching_ctl->wait);
  426. caching_ctl->block_group = cache;
  427. caching_ctl->progress = cache->key.objectid;
  428. atomic_set(&caching_ctl->count, 1);
  429. caching_ctl->work.func = caching_thread;
  430. spin_lock(&cache->lock);
  431. /*
  432. * This should be a rare occasion, but this could happen I think in the
  433. * case where one thread starts to load the space cache info, and then
  434. * some other thread starts a transaction commit which tries to do an
  435. * allocation while the other thread is still loading the space cache
  436. * info. The previous loop should have kept us from choosing this block
  437. * group, but if we've moved to the state where we will wait on caching
  438. * block groups we need to first check if we're doing a fast load here,
  439. * so we can wait for it to finish, otherwise we could end up allocating
  440. * from a block group who's cache gets evicted for one reason or
  441. * another.
  442. */
  443. while (cache->cached == BTRFS_CACHE_FAST) {
  444. struct btrfs_caching_control *ctl;
  445. ctl = cache->caching_ctl;
  446. atomic_inc(&ctl->count);
  447. prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  448. spin_unlock(&cache->lock);
  449. schedule();
  450. finish_wait(&ctl->wait, &wait);
  451. put_caching_control(ctl);
  452. spin_lock(&cache->lock);
  453. }
  454. if (cache->cached != BTRFS_CACHE_NO) {
  455. spin_unlock(&cache->lock);
  456. kfree(caching_ctl);
  457. return 0;
  458. }
  459. WARN_ON(cache->caching_ctl);
  460. cache->caching_ctl = caching_ctl;
  461. cache->cached = BTRFS_CACHE_FAST;
  462. spin_unlock(&cache->lock);
  463. /*
  464. * We can't do the read from on-disk cache during a commit since we need
  465. * to have the normal tree locking. Also if we are currently trying to
  466. * allocate blocks for the tree root we can't do the fast caching since
  467. * we likely hold important locks.
  468. */
  469. if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
  470. ret = load_free_space_cache(fs_info, cache);
  471. spin_lock(&cache->lock);
  472. if (ret == 1) {
  473. cache->caching_ctl = NULL;
  474. cache->cached = BTRFS_CACHE_FINISHED;
  475. cache->last_byte_to_unpin = (u64)-1;
  476. } else {
  477. if (load_cache_only) {
  478. cache->caching_ctl = NULL;
  479. cache->cached = BTRFS_CACHE_NO;
  480. } else {
  481. cache->cached = BTRFS_CACHE_STARTED;
  482. }
  483. }
  484. spin_unlock(&cache->lock);
  485. wake_up(&caching_ctl->wait);
  486. if (ret == 1) {
  487. put_caching_control(caching_ctl);
  488. free_excluded_extents(fs_info->extent_root, cache);
  489. return 0;
  490. }
  491. } else {
  492. /*
  493. * We are not going to do the fast caching, set cached to the
  494. * appropriate value and wakeup any waiters.
  495. */
  496. spin_lock(&cache->lock);
  497. if (load_cache_only) {
  498. cache->caching_ctl = NULL;
  499. cache->cached = BTRFS_CACHE_NO;
  500. } else {
  501. cache->cached = BTRFS_CACHE_STARTED;
  502. }
  503. spin_unlock(&cache->lock);
  504. wake_up(&caching_ctl->wait);
  505. }
  506. if (load_cache_only) {
  507. put_caching_control(caching_ctl);
  508. return 0;
  509. }
  510. down_write(&fs_info->extent_commit_sem);
  511. atomic_inc(&caching_ctl->count);
  512. list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  513. up_write(&fs_info->extent_commit_sem);
  514. btrfs_get_block_group(cache);
  515. btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
  516. return ret;
  517. }
  518. /*
  519. * return the block group that starts at or after bytenr
  520. */
  521. static struct btrfs_block_group_cache *
  522. btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  523. {
  524. struct btrfs_block_group_cache *cache;
  525. cache = block_group_cache_tree_search(info, bytenr, 0);
  526. return cache;
  527. }
  528. /*
  529. * return the block group that contains the given bytenr
  530. */
  531. struct btrfs_block_group_cache *btrfs_lookup_block_group(
  532. struct btrfs_fs_info *info,
  533. u64 bytenr)
  534. {
  535. struct btrfs_block_group_cache *cache;
  536. cache = block_group_cache_tree_search(info, bytenr, 1);
  537. return cache;
  538. }
  539. static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  540. u64 flags)
  541. {
  542. struct list_head *head = &info->space_info;
  543. struct btrfs_space_info *found;
  544. flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
  545. rcu_read_lock();
  546. list_for_each_entry_rcu(found, head, list) {
  547. if (found->flags & flags) {
  548. rcu_read_unlock();
  549. return found;
  550. }
  551. }
  552. rcu_read_unlock();
  553. return NULL;
  554. }
  555. /*
  556. * after adding space to the filesystem, we need to clear the full flags
  557. * on all the space infos.
  558. */
  559. void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  560. {
  561. struct list_head *head = &info->space_info;
  562. struct btrfs_space_info *found;
  563. rcu_read_lock();
  564. list_for_each_entry_rcu(found, head, list)
  565. found->full = 0;
  566. rcu_read_unlock();
  567. }
  568. u64 btrfs_find_block_group(struct btrfs_root *root,
  569. u64 search_start, u64 search_hint, int owner)
  570. {
  571. struct btrfs_block_group_cache *cache;
  572. u64 used;
  573. u64 last = max(search_hint, search_start);
  574. u64 group_start = 0;
  575. int full_search = 0;
  576. int factor = 9;
  577. int wrapped = 0;
  578. again:
  579. while (1) {
  580. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  581. if (!cache)
  582. break;
  583. spin_lock(&cache->lock);
  584. last = cache->key.objectid + cache->key.offset;
  585. used = btrfs_block_group_used(&cache->item);
  586. if ((full_search || !cache->ro) &&
  587. block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
  588. if (used + cache->pinned + cache->reserved <
  589. div_factor(cache->key.offset, factor)) {
  590. group_start = cache->key.objectid;
  591. spin_unlock(&cache->lock);
  592. btrfs_put_block_group(cache);
  593. goto found;
  594. }
  595. }
  596. spin_unlock(&cache->lock);
  597. btrfs_put_block_group(cache);
  598. cond_resched();
  599. }
  600. if (!wrapped) {
  601. last = search_start;
  602. wrapped = 1;
  603. goto again;
  604. }
  605. if (!full_search && factor < 10) {
  606. last = search_start;
  607. full_search = 1;
  608. factor = 10;
  609. goto again;
  610. }
  611. found:
  612. return group_start;
  613. }
  614. /* simple helper to search for an existing extent at a given offset */
  615. int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
  616. {
  617. int ret;
  618. struct btrfs_key key;
  619. struct btrfs_path *path;
  620. path = btrfs_alloc_path();
  621. if (!path)
  622. return -ENOMEM;
  623. key.objectid = start;
  624. key.offset = len;
  625. btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
  626. ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  627. 0, 0);
  628. btrfs_free_path(path);
  629. return ret;
  630. }
  631. /*
  632. * helper function to lookup reference count and flags of extent.
  633. *
  634. * the head node for delayed ref is used to store the sum of all the
  635. * reference count modifications queued up in the rbtree. the head
  636. * node may also store the extent flags to set. This way you can check
  637. * to see what the reference count and extent flags would be if all of
  638. * the delayed refs are not processed.
  639. */
  640. int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  641. struct btrfs_root *root, u64 bytenr,
  642. u64 num_bytes, u64 *refs, u64 *flags)
  643. {
  644. struct btrfs_delayed_ref_head *head;
  645. struct btrfs_delayed_ref_root *delayed_refs;
  646. struct btrfs_path *path;
  647. struct btrfs_extent_item *ei;
  648. struct extent_buffer *leaf;
  649. struct btrfs_key key;
  650. u32 item_size;
  651. u64 num_refs;
  652. u64 extent_flags;
  653. int ret;
  654. path = btrfs_alloc_path();
  655. if (!path)
  656. return -ENOMEM;
  657. key.objectid = bytenr;
  658. key.type = BTRFS_EXTENT_ITEM_KEY;
  659. key.offset = num_bytes;
  660. if (!trans) {
  661. path->skip_locking = 1;
  662. path->search_commit_root = 1;
  663. }
  664. again:
  665. ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  666. &key, path, 0, 0);
  667. if (ret < 0)
  668. goto out_free;
  669. if (ret == 0) {
  670. leaf = path->nodes[0];
  671. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  672. if (item_size >= sizeof(*ei)) {
  673. ei = btrfs_item_ptr(leaf, path->slots[0],
  674. struct btrfs_extent_item);
  675. num_refs = btrfs_extent_refs(leaf, ei);
  676. extent_flags = btrfs_extent_flags(leaf, ei);
  677. } else {
  678. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  679. struct btrfs_extent_item_v0 *ei0;
  680. BUG_ON(item_size != sizeof(*ei0));
  681. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  682. struct btrfs_extent_item_v0);
  683. num_refs = btrfs_extent_refs_v0(leaf, ei0);
  684. /* FIXME: this isn't correct for data */
  685. extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  686. #else
  687. BUG();
  688. #endif
  689. }
  690. BUG_ON(num_refs == 0);
  691. } else {
  692. num_refs = 0;
  693. extent_flags = 0;
  694. ret = 0;
  695. }
  696. if (!trans)
  697. goto out;
  698. delayed_refs = &trans->transaction->delayed_refs;
  699. spin_lock(&delayed_refs->lock);
  700. head = btrfs_find_delayed_ref_head(trans, bytenr);
  701. if (head) {
  702. if (!mutex_trylock(&head->mutex)) {
  703. atomic_inc(&head->node.refs);
  704. spin_unlock(&delayed_refs->lock);
  705. btrfs_release_path(path);
  706. /*
  707. * Mutex was contended, block until it's released and try
  708. * again
  709. */
  710. mutex_lock(&head->mutex);
  711. mutex_unlock(&head->mutex);
  712. btrfs_put_delayed_ref(&head->node);
  713. goto again;
  714. }
  715. if (head->extent_op && head->extent_op->update_flags)
  716. extent_flags |= head->extent_op->flags_to_set;
  717. else
  718. BUG_ON(num_refs == 0);
  719. num_refs += head->node.ref_mod;
  720. mutex_unlock(&head->mutex);
  721. }
  722. spin_unlock(&delayed_refs->lock);
  723. out:
  724. WARN_ON(num_refs == 0);
  725. if (refs)
  726. *refs = num_refs;
  727. if (flags)
  728. *flags = extent_flags;
  729. out_free:
  730. btrfs_free_path(path);
  731. return ret;
  732. }
  733. /*
  734. * Back reference rules. Back refs have three main goals:
  735. *
  736. * 1) differentiate between all holders of references to an extent so that
  737. * when a reference is dropped we can make sure it was a valid reference
  738. * before freeing the extent.
  739. *
  740. * 2) Provide enough information to quickly find the holders of an extent
  741. * if we notice a given block is corrupted or bad.
  742. *
  743. * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  744. * maintenance. This is actually the same as #2, but with a slightly
  745. * different use case.
  746. *
  747. * There are two kinds of back refs. The implicit back refs is optimized
  748. * for pointers in non-shared tree blocks. For a given pointer in a block,
  749. * back refs of this kind provide information about the block's owner tree
  750. * and the pointer's key. These information allow us to find the block by
  751. * b-tree searching. The full back refs is for pointers in tree blocks not
  752. * referenced by their owner trees. The location of tree block is recorded
  753. * in the back refs. Actually the full back refs is generic, and can be
  754. * used in all cases the implicit back refs is used. The major shortcoming
  755. * of the full back refs is its overhead. Every time a tree block gets
  756. * COWed, we have to update back refs entry for all pointers in it.
  757. *
  758. * For a newly allocated tree block, we use implicit back refs for
  759. * pointers in it. This means most tree related operations only involve
  760. * implicit back refs. For a tree block created in old transaction, the
  761. * only way to drop a reference to it is COW it. So we can detect the
  762. * event that tree block loses its owner tree's reference and do the
  763. * back refs conversion.
  764. *
  765. * When a tree block is COW'd through a tree, there are four cases:
  766. *
  767. * The reference count of the block is one and the tree is the block's
  768. * owner tree. Nothing to do in this case.
  769. *
  770. * The reference count of the block is one and the tree is not the
  771. * block's owner tree. In this case, full back refs is used for pointers
  772. * in the block. Remove these full back refs, add implicit back refs for
  773. * every pointers in the new block.
  774. *
  775. * The reference count of the block is greater than one and the tree is
  776. * the block's owner tree. In this case, implicit back refs is used for
  777. * pointers in the block. Add full back refs for every pointers in the
  778. * block, increase lower level extents' reference counts. The original
  779. * implicit back refs are entailed to the new block.
  780. *
  781. * The reference count of the block is greater than one and the tree is
  782. * not the block's owner tree. Add implicit back refs for every pointer in
  783. * the new block, increase lower level extents' reference count.
  784. *
  785. * Back Reference Key composing:
  786. *
  787. * The key objectid corresponds to the first byte in the extent,
  788. * The key type is used to differentiate between types of back refs.
  789. * There are different meanings of the key offset for different types
  790. * of back refs.
  791. *
  792. * File extents can be referenced by:
  793. *
  794. * - multiple snapshots, subvolumes, or different generations in one subvol
  795. * - different files inside a single subvolume
  796. * - different offsets inside a file (bookend extents in file.c)
  797. *
  798. * The extent ref structure for the implicit back refs has fields for:
  799. *
  800. * - Objectid of the subvolume root
  801. * - objectid of the file holding the reference
  802. * - original offset in the file
  803. * - how many bookend extents
  804. *
  805. * The key offset for the implicit back refs is hash of the first
  806. * three fields.
  807. *
  808. * The extent ref structure for the full back refs has field for:
  809. *
  810. * - number of pointers in the tree leaf
  811. *
  812. * The key offset for the implicit back refs is the first byte of
  813. * the tree leaf
  814. *
  815. * When a file extent is allocated, The implicit back refs is used.
  816. * the fields are filled in:
  817. *
  818. * (root_key.objectid, inode objectid, offset in file, 1)
  819. *
  820. * When a file extent is removed file truncation, we find the
  821. * corresponding implicit back refs and check the following fields:
  822. *
  823. * (btrfs_header_owner(leaf), inode objectid, offset in file)
  824. *
  825. * Btree extents can be referenced by:
  826. *
  827. * - Different subvolumes
  828. *
  829. * Both the implicit back refs and the full back refs for tree blocks
  830. * only consist of key. The key offset for the implicit back refs is
  831. * objectid of block's owner tree. The key offset for the full back refs
  832. * is the first byte of parent block.
  833. *
  834. * When implicit back refs is used, information about the lowest key and
  835. * level of the tree block are required. These information are stored in
  836. * tree block info structure.
  837. */
  838. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  839. static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
  840. struct btrfs_root *root,
  841. struct btrfs_path *path,
  842. u64 owner, u32 extra_size)
  843. {
  844. struct btrfs_extent_item *item;
  845. struct btrfs_extent_item_v0 *ei0;
  846. struct btrfs_extent_ref_v0 *ref0;
  847. struct btrfs_tree_block_info *bi;
  848. struct extent_buffer *leaf;
  849. struct btrfs_key key;
  850. struct btrfs_key found_key;
  851. u32 new_size = sizeof(*item);
  852. u64 refs;
  853. int ret;
  854. leaf = path->nodes[0];
  855. BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
  856. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  857. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  858. struct btrfs_extent_item_v0);
  859. refs = btrfs_extent_refs_v0(leaf, ei0);
  860. if (owner == (u64)-1) {
  861. while (1) {
  862. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  863. ret = btrfs_next_leaf(root, path);
  864. if (ret < 0)
  865. return ret;
  866. BUG_ON(ret > 0); /* Corruption */
  867. leaf = path->nodes[0];
  868. }
  869. btrfs_item_key_to_cpu(leaf, &found_key,
  870. path->slots[0]);
  871. BUG_ON(key.objectid != found_key.objectid);
  872. if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
  873. path->slots[0]++;
  874. continue;
  875. }
  876. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  877. struct btrfs_extent_ref_v0);
  878. owner = btrfs_ref_objectid_v0(leaf, ref0);
  879. break;
  880. }
  881. }
  882. btrfs_release_path(path);
  883. if (owner < BTRFS_FIRST_FREE_OBJECTID)
  884. new_size += sizeof(*bi);
  885. new_size -= sizeof(*ei0);
  886. ret = btrfs_search_slot(trans, root, &key, path,
  887. new_size + extra_size, 1);
  888. if (ret < 0)
  889. return ret;
  890. BUG_ON(ret); /* Corruption */
  891. btrfs_extend_item(trans, root, path, new_size);
  892. leaf = path->nodes[0];
  893. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  894. btrfs_set_extent_refs(leaf, item, refs);
  895. /* FIXME: get real generation */
  896. btrfs_set_extent_generation(leaf, item, 0);
  897. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  898. btrfs_set_extent_flags(leaf, item,
  899. BTRFS_EXTENT_FLAG_TREE_BLOCK |
  900. BTRFS_BLOCK_FLAG_FULL_BACKREF);
  901. bi = (struct btrfs_tree_block_info *)(item + 1);
  902. /* FIXME: get first key of the block */
  903. memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
  904. btrfs_set_tree_block_level(leaf, bi, (int)owner);
  905. } else {
  906. btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
  907. }
  908. btrfs_mark_buffer_dirty(leaf);
  909. return 0;
  910. }
  911. #endif
  912. static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
  913. {
  914. u32 high_crc = ~(u32)0;
  915. u32 low_crc = ~(u32)0;
  916. __le64 lenum;
  917. lenum = cpu_to_le64(root_objectid);
  918. high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
  919. lenum = cpu_to_le64(owner);
  920. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  921. lenum = cpu_to_le64(offset);
  922. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  923. return ((u64)high_crc << 31) ^ (u64)low_crc;
  924. }
  925. static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
  926. struct btrfs_extent_data_ref *ref)
  927. {
  928. return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
  929. btrfs_extent_data_ref_objectid(leaf, ref),
  930. btrfs_extent_data_ref_offset(leaf, ref));
  931. }
  932. static int match_extent_data_ref(struct extent_buffer *leaf,
  933. struct btrfs_extent_data_ref *ref,
  934. u64 root_objectid, u64 owner, u64 offset)
  935. {
  936. if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
  937. btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
  938. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  939. return 0;
  940. return 1;
  941. }
  942. static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
  943. struct btrfs_root *root,
  944. struct btrfs_path *path,
  945. u64 bytenr, u64 parent,
  946. u64 root_objectid,
  947. u64 owner, u64 offset)
  948. {
  949. struct btrfs_key key;
  950. struct btrfs_extent_data_ref *ref;
  951. struct extent_buffer *leaf;
  952. u32 nritems;
  953. int ret;
  954. int recow;
  955. int err = -ENOENT;
  956. key.objectid = bytenr;
  957. if (parent) {
  958. key.type = BTRFS_SHARED_DATA_REF_KEY;
  959. key.offset = parent;
  960. } else {
  961. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  962. key.offset = hash_extent_data_ref(root_objectid,
  963. owner, offset);
  964. }
  965. again:
  966. recow = 0;
  967. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  968. if (ret < 0) {
  969. err = ret;
  970. goto fail;
  971. }
  972. if (parent) {
  973. if (!ret)
  974. return 0;
  975. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  976. key.type = BTRFS_EXTENT_REF_V0_KEY;
  977. btrfs_release_path(path);
  978. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  979. if (ret < 0) {
  980. err = ret;
  981. goto fail;
  982. }
  983. if (!ret)
  984. return 0;
  985. #endif
  986. goto fail;
  987. }
  988. leaf = path->nodes[0];
  989. nritems = btrfs_header_nritems(leaf);
  990. while (1) {
  991. if (path->slots[0] >= nritems) {
  992. ret = btrfs_next_leaf(root, path);
  993. if (ret < 0)
  994. err = ret;
  995. if (ret)
  996. goto fail;
  997. leaf = path->nodes[0];
  998. nritems = btrfs_header_nritems(leaf);
  999. recow = 1;
  1000. }
  1001. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1002. if (key.objectid != bytenr ||
  1003. key.type != BTRFS_EXTENT_DATA_REF_KEY)
  1004. goto fail;
  1005. ref = btrfs_item_ptr(leaf, path->slots[0],
  1006. struct btrfs_extent_data_ref);
  1007. if (match_extent_data_ref(leaf, ref, root_objectid,
  1008. owner, offset)) {
  1009. if (recow) {
  1010. btrfs_release_path(path);
  1011. goto again;
  1012. }
  1013. err = 0;
  1014. break;
  1015. }
  1016. path->slots[0]++;
  1017. }
  1018. fail:
  1019. return err;
  1020. }
  1021. static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
  1022. struct btrfs_root *root,
  1023. struct btrfs_path *path,
  1024. u64 bytenr, u64 parent,
  1025. u64 root_objectid, u64 owner,
  1026. u64 offset, int refs_to_add)
  1027. {
  1028. struct btrfs_key key;
  1029. struct extent_buffer *leaf;
  1030. u32 size;
  1031. u32 num_refs;
  1032. int ret;
  1033. key.objectid = bytenr;
  1034. if (parent) {
  1035. key.type = BTRFS_SHARED_DATA_REF_KEY;
  1036. key.offset = parent;
  1037. size = sizeof(struct btrfs_shared_data_ref);
  1038. } else {
  1039. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1040. key.offset = hash_extent_data_ref(root_objectid,
  1041. owner, offset);
  1042. size = sizeof(struct btrfs_extent_data_ref);
  1043. }
  1044. ret = btrfs_insert_empty_item(trans, root, path, &key, size);
  1045. if (ret && ret != -EEXIST)
  1046. goto fail;
  1047. leaf = path->nodes[0];
  1048. if (parent) {
  1049. struct btrfs_shared_data_ref *ref;
  1050. ref = btrfs_item_ptr(leaf, path->slots[0],
  1051. struct btrfs_shared_data_ref);
  1052. if (ret == 0) {
  1053. btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
  1054. } else {
  1055. num_refs = btrfs_shared_data_ref_count(leaf, ref);
  1056. num_refs += refs_to_add;
  1057. btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
  1058. }
  1059. } else {
  1060. struct btrfs_extent_data_ref *ref;
  1061. while (ret == -EEXIST) {
  1062. ref = btrfs_item_ptr(leaf, path->slots[0],
  1063. struct btrfs_extent_data_ref);
  1064. if (match_extent_data_ref(leaf, ref, root_objectid,
  1065. owner, offset))
  1066. break;
  1067. btrfs_release_path(path);
  1068. key.offset++;
  1069. ret = btrfs_insert_empty_item(trans, root, path, &key,
  1070. size);
  1071. if (ret && ret != -EEXIST)
  1072. goto fail;
  1073. leaf = path->nodes[0];
  1074. }
  1075. ref = btrfs_item_ptr(leaf, path->slots[0],
  1076. struct btrfs_extent_data_ref);
  1077. if (ret == 0) {
  1078. btrfs_set_extent_data_ref_root(leaf, ref,
  1079. root_objectid);
  1080. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  1081. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  1082. btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
  1083. } else {
  1084. num_refs = btrfs_extent_data_ref_count(leaf, ref);
  1085. num_refs += refs_to_add;
  1086. btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
  1087. }
  1088. }
  1089. btrfs_mark_buffer_dirty(leaf);
  1090. ret = 0;
  1091. fail:
  1092. btrfs_release_path(path);
  1093. return ret;
  1094. }
  1095. static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
  1096. struct btrfs_root *root,
  1097. struct btrfs_path *path,
  1098. int refs_to_drop)
  1099. {
  1100. struct btrfs_key key;
  1101. struct btrfs_extent_data_ref *ref1 = NULL;
  1102. struct btrfs_shared_data_ref *ref2 = NULL;
  1103. struct extent_buffer *leaf;
  1104. u32 num_refs = 0;
  1105. int ret = 0;
  1106. leaf = path->nodes[0];
  1107. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1108. if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1109. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1110. struct btrfs_extent_data_ref);
  1111. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1112. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1113. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1114. struct btrfs_shared_data_ref);
  1115. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1116. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1117. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1118. struct btrfs_extent_ref_v0 *ref0;
  1119. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1120. struct btrfs_extent_ref_v0);
  1121. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1122. #endif
  1123. } else {
  1124. BUG();
  1125. }
  1126. BUG_ON(num_refs < refs_to_drop);
  1127. num_refs -= refs_to_drop;
  1128. if (num_refs == 0) {
  1129. ret = btrfs_del_item(trans, root, path);
  1130. } else {
  1131. if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
  1132. btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
  1133. else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
  1134. btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
  1135. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1136. else {
  1137. struct btrfs_extent_ref_v0 *ref0;
  1138. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1139. struct btrfs_extent_ref_v0);
  1140. btrfs_set_ref_count_v0(leaf, ref0, num_refs);
  1141. }
  1142. #endif
  1143. btrfs_mark_buffer_dirty(leaf);
  1144. }
  1145. return ret;
  1146. }
  1147. static noinline u32 extent_data_ref_count(struct btrfs_root *root,
  1148. struct btrfs_path *path,
  1149. struct btrfs_extent_inline_ref *iref)
  1150. {
  1151. struct btrfs_key key;
  1152. struct extent_buffer *leaf;
  1153. struct btrfs_extent_data_ref *ref1;
  1154. struct btrfs_shared_data_ref *ref2;
  1155. u32 num_refs = 0;
  1156. leaf = path->nodes[0];
  1157. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1158. if (iref) {
  1159. if (btrfs_extent_inline_ref_type(leaf, iref) ==
  1160. BTRFS_EXTENT_DATA_REF_KEY) {
  1161. ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
  1162. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1163. } else {
  1164. ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
  1165. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1166. }
  1167. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1168. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1169. struct btrfs_extent_data_ref);
  1170. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1171. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1172. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1173. struct btrfs_shared_data_ref);
  1174. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1175. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1176. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1177. struct btrfs_extent_ref_v0 *ref0;
  1178. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1179. struct btrfs_extent_ref_v0);
  1180. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1181. #endif
  1182. } else {
  1183. WARN_ON(1);
  1184. }
  1185. return num_refs;
  1186. }
  1187. static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
  1188. struct btrfs_root *root,
  1189. struct btrfs_path *path,
  1190. u64 bytenr, u64 parent,
  1191. u64 root_objectid)
  1192. {
  1193. struct btrfs_key key;
  1194. int ret;
  1195. key.objectid = bytenr;
  1196. if (parent) {
  1197. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1198. key.offset = parent;
  1199. } else {
  1200. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1201. key.offset = root_objectid;
  1202. }
  1203. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1204. if (ret > 0)
  1205. ret = -ENOENT;
  1206. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1207. if (ret == -ENOENT && parent) {
  1208. btrfs_release_path(path);
  1209. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1210. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1211. if (ret > 0)
  1212. ret = -ENOENT;
  1213. }
  1214. #endif
  1215. return ret;
  1216. }
  1217. static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
  1218. struct btrfs_root *root,
  1219. struct btrfs_path *path,
  1220. u64 bytenr, u64 parent,
  1221. u64 root_objectid)
  1222. {
  1223. struct btrfs_key key;
  1224. int ret;
  1225. key.objectid = bytenr;
  1226. if (parent) {
  1227. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1228. key.offset = parent;
  1229. } else {
  1230. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1231. key.offset = root_objectid;
  1232. }
  1233. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1234. btrfs_release_path(path);
  1235. return ret;
  1236. }
  1237. static inline int extent_ref_type(u64 parent, u64 owner)
  1238. {
  1239. int type;
  1240. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1241. if (parent > 0)
  1242. type = BTRFS_SHARED_BLOCK_REF_KEY;
  1243. else
  1244. type = BTRFS_TREE_BLOCK_REF_KEY;
  1245. } else {
  1246. if (parent > 0)
  1247. type = BTRFS_SHARED_DATA_REF_KEY;
  1248. else
  1249. type = BTRFS_EXTENT_DATA_REF_KEY;
  1250. }
  1251. return type;
  1252. }
  1253. static int find_next_key(struct btrfs_path *path, int level,
  1254. struct btrfs_key *key)
  1255. {
  1256. for (; level < BTRFS_MAX_LEVEL; level++) {
  1257. if (!path->nodes[level])
  1258. break;
  1259. if (path->slots[level] + 1 >=
  1260. btrfs_header_nritems(path->nodes[level]))
  1261. continue;
  1262. if (level == 0)
  1263. btrfs_item_key_to_cpu(path->nodes[level], key,
  1264. path->slots[level] + 1);
  1265. else
  1266. btrfs_node_key_to_cpu(path->nodes[level], key,
  1267. path->slots[level] + 1);
  1268. return 0;
  1269. }
  1270. return 1;
  1271. }
  1272. /*
  1273. * look for inline back ref. if back ref is found, *ref_ret is set
  1274. * to the address of inline back ref, and 0 is returned.
  1275. *
  1276. * if back ref isn't found, *ref_ret is set to the address where it
  1277. * should be inserted, and -ENOENT is returned.
  1278. *
  1279. * if insert is true and there are too many inline back refs, the path
  1280. * points to the extent item, and -EAGAIN is returned.
  1281. *
  1282. * NOTE: inline back refs are ordered in the same way that back ref
  1283. * items in the tree are ordered.
  1284. */
  1285. static noinline_for_stack
  1286. int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1287. struct btrfs_root *root,
  1288. struct btrfs_path *path,
  1289. struct btrfs_extent_inline_ref **ref_ret,
  1290. u64 bytenr, u64 num_bytes,
  1291. u64 parent, u64 root_objectid,
  1292. u64 owner, u64 offset, int insert)
  1293. {
  1294. struct btrfs_key key;
  1295. struct extent_buffer *leaf;
  1296. struct btrfs_extent_item *ei;
  1297. struct btrfs_extent_inline_ref *iref;
  1298. u64 flags;
  1299. u64 item_size;
  1300. unsigned long ptr;
  1301. unsigned long end;
  1302. int extra_size;
  1303. int type;
  1304. int want;
  1305. int ret;
  1306. int err = 0;
  1307. key.objectid = bytenr;
  1308. key.type = BTRFS_EXTENT_ITEM_KEY;
  1309. key.offset = num_bytes;
  1310. want = extent_ref_type(parent, owner);
  1311. if (insert) {
  1312. extra_size = btrfs_extent_inline_ref_size(want);
  1313. path->keep_locks = 1;
  1314. } else
  1315. extra_size = -1;
  1316. ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
  1317. if (ret < 0) {
  1318. err = ret;
  1319. goto out;
  1320. }
  1321. if (ret && !insert) {
  1322. err = -ENOENT;
  1323. goto out;
  1324. }
  1325. BUG_ON(ret); /* Corruption */
  1326. leaf = path->nodes[0];
  1327. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1328. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1329. if (item_size < sizeof(*ei)) {
  1330. if (!insert) {
  1331. err = -ENOENT;
  1332. goto out;
  1333. }
  1334. ret = convert_extent_item_v0(trans, root, path, owner,
  1335. extra_size);
  1336. if (ret < 0) {
  1337. err = ret;
  1338. goto out;
  1339. }
  1340. leaf = path->nodes[0];
  1341. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1342. }
  1343. #endif
  1344. BUG_ON(item_size < sizeof(*ei));
  1345. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1346. flags = btrfs_extent_flags(leaf, ei);
  1347. ptr = (unsigned long)(ei + 1);
  1348. end = (unsigned long)ei + item_size;
  1349. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1350. ptr += sizeof(struct btrfs_tree_block_info);
  1351. BUG_ON(ptr > end);
  1352. } else {
  1353. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  1354. }
  1355. err = -ENOENT;
  1356. while (1) {
  1357. if (ptr >= end) {
  1358. WARN_ON(ptr > end);
  1359. break;
  1360. }
  1361. iref = (struct btrfs_extent_inline_ref *)ptr;
  1362. type = btrfs_extent_inline_ref_type(leaf, iref);
  1363. if (want < type)
  1364. break;
  1365. if (want > type) {
  1366. ptr += btrfs_extent_inline_ref_size(type);
  1367. continue;
  1368. }
  1369. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1370. struct btrfs_extent_data_ref *dref;
  1371. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1372. if (match_extent_data_ref(leaf, dref, root_objectid,
  1373. owner, offset)) {
  1374. err = 0;
  1375. break;
  1376. }
  1377. if (hash_extent_data_ref_item(leaf, dref) <
  1378. hash_extent_data_ref(root_objectid, owner, offset))
  1379. break;
  1380. } else {
  1381. u64 ref_offset;
  1382. ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
  1383. if (parent > 0) {
  1384. if (parent == ref_offset) {
  1385. err = 0;
  1386. break;
  1387. }
  1388. if (ref_offset < parent)
  1389. break;
  1390. } else {
  1391. if (root_objectid == ref_offset) {
  1392. err = 0;
  1393. break;
  1394. }
  1395. if (ref_offset < root_objectid)
  1396. break;
  1397. }
  1398. }
  1399. ptr += btrfs_extent_inline_ref_size(type);
  1400. }
  1401. if (err == -ENOENT && insert) {
  1402. if (item_size + extra_size >=
  1403. BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
  1404. err = -EAGAIN;
  1405. goto out;
  1406. }
  1407. /*
  1408. * To add new inline back ref, we have to make sure
  1409. * there is no corresponding back ref item.
  1410. * For simplicity, we just do not add new inline back
  1411. * ref if there is any kind of item for this block
  1412. */
  1413. if (find_next_key(path, 0, &key) == 0 &&
  1414. key.objectid == bytenr &&
  1415. key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
  1416. err = -EAGAIN;
  1417. goto out;
  1418. }
  1419. }
  1420. *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
  1421. out:
  1422. if (insert) {
  1423. path->keep_locks = 0;
  1424. btrfs_unlock_up_safe(path, 1);
  1425. }
  1426. return err;
  1427. }
  1428. /*
  1429. * helper to add new inline back ref
  1430. */
  1431. static noinline_for_stack
  1432. void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1433. struct btrfs_root *root,
  1434. struct btrfs_path *path,
  1435. struct btrfs_extent_inline_ref *iref,
  1436. u64 parent, u64 root_objectid,
  1437. u64 owner, u64 offset, int refs_to_add,
  1438. struct btrfs_delayed_extent_op *extent_op)
  1439. {
  1440. struct extent_buffer *leaf;
  1441. struct btrfs_extent_item *ei;
  1442. unsigned long ptr;
  1443. unsigned long end;
  1444. unsigned long item_offset;
  1445. u64 refs;
  1446. int size;
  1447. int type;
  1448. leaf = path->nodes[0];
  1449. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1450. item_offset = (unsigned long)iref - (unsigned long)ei;
  1451. type = extent_ref_type(parent, owner);
  1452. size = btrfs_extent_inline_ref_size(type);
  1453. btrfs_extend_item(trans, root, path, size);
  1454. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1455. refs = btrfs_extent_refs(leaf, ei);
  1456. refs += refs_to_add;
  1457. btrfs_set_extent_refs(leaf, ei, refs);
  1458. if (extent_op)
  1459. __run_delayed_extent_op(extent_op, leaf, ei);
  1460. ptr = (unsigned long)ei + item_offset;
  1461. end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
  1462. if (ptr < end - size)
  1463. memmove_extent_buffer(leaf, ptr + size, ptr,
  1464. end - size - ptr);
  1465. iref = (struct btrfs_extent_inline_ref *)ptr;
  1466. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  1467. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1468. struct btrfs_extent_data_ref *dref;
  1469. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1470. btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
  1471. btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
  1472. btrfs_set_extent_data_ref_offset(leaf, dref, offset);
  1473. btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
  1474. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1475. struct btrfs_shared_data_ref *sref;
  1476. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1477. btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
  1478. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1479. } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
  1480. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1481. } else {
  1482. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  1483. }
  1484. btrfs_mark_buffer_dirty(leaf);
  1485. }
  1486. static int lookup_extent_backref(struct btrfs_trans_handle *trans,
  1487. struct btrfs_root *root,
  1488. struct btrfs_path *path,
  1489. struct btrfs_extent_inline_ref **ref_ret,
  1490. u64 bytenr, u64 num_bytes, u64 parent,
  1491. u64 root_objectid, u64 owner, u64 offset)
  1492. {
  1493. int ret;
  1494. ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
  1495. bytenr, num_bytes, parent,
  1496. root_objectid, owner, offset, 0);
  1497. if (ret != -ENOENT)
  1498. return ret;
  1499. btrfs_release_path(path);
  1500. *ref_ret = NULL;
  1501. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1502. ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
  1503. root_objectid);
  1504. } else {
  1505. ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
  1506. root_objectid, owner, offset);
  1507. }
  1508. return ret;
  1509. }
  1510. /*
  1511. * helper to update/remove inline back ref
  1512. */
  1513. static noinline_for_stack
  1514. void update_inline_extent_backref(struct btrfs_trans_handle *trans,
  1515. struct btrfs_root *root,
  1516. struct btrfs_path *path,
  1517. struct btrfs_extent_inline_ref *iref,
  1518. int refs_to_mod,
  1519. struct btrfs_delayed_extent_op *extent_op)
  1520. {
  1521. struct extent_buffer *leaf;
  1522. struct btrfs_extent_item *ei;
  1523. struct btrfs_extent_data_ref *dref = NULL;
  1524. struct btrfs_shared_data_ref *sref = NULL;
  1525. unsigned long ptr;
  1526. unsigned long end;
  1527. u32 item_size;
  1528. int size;
  1529. int type;
  1530. u64 refs;
  1531. leaf = path->nodes[0];
  1532. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1533. refs = btrfs_extent_refs(leaf, ei);
  1534. WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
  1535. refs += refs_to_mod;
  1536. btrfs_set_extent_refs(leaf, ei, refs);
  1537. if (extent_op)
  1538. __run_delayed_extent_op(extent_op, leaf, ei);
  1539. type = btrfs_extent_inline_ref_type(leaf, iref);
  1540. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1541. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1542. refs = btrfs_extent_data_ref_count(leaf, dref);
  1543. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1544. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1545. refs = btrfs_shared_data_ref_count(leaf, sref);
  1546. } else {
  1547. refs = 1;
  1548. BUG_ON(refs_to_mod != -1);
  1549. }
  1550. BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
  1551. refs += refs_to_mod;
  1552. if (refs > 0) {
  1553. if (type == BTRFS_EXTENT_DATA_REF_KEY)
  1554. btrfs_set_extent_data_ref_count(leaf, dref, refs);
  1555. else
  1556. btrfs_set_shared_data_ref_count(leaf, sref, refs);
  1557. } else {
  1558. size = btrfs_extent_inline_ref_size(type);
  1559. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1560. ptr = (unsigned long)iref;
  1561. end = (unsigned long)ei + item_size;
  1562. if (ptr + size < end)
  1563. memmove_extent_buffer(leaf, ptr, ptr + size,
  1564. end - ptr - size);
  1565. item_size -= size;
  1566. btrfs_truncate_item(trans, root, path, item_size, 1);
  1567. }
  1568. btrfs_mark_buffer_dirty(leaf);
  1569. }
  1570. static noinline_for_stack
  1571. int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
  1572. struct btrfs_root *root,
  1573. struct btrfs_path *path,
  1574. u64 bytenr, u64 num_bytes, u64 parent,
  1575. u64 root_objectid, u64 owner,
  1576. u64 offset, int refs_to_add,
  1577. struct btrfs_delayed_extent_op *extent_op)
  1578. {
  1579. struct btrfs_extent_inline_ref *iref;
  1580. int ret;
  1581. ret = lookup_inline_extent_backref(trans, root, path, &iref,
  1582. bytenr, num_bytes, parent,
  1583. root_objectid, owner, offset, 1);
  1584. if (ret == 0) {
  1585. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
  1586. update_inline_extent_backref(trans, root, path, iref,
  1587. refs_to_add, extent_op);
  1588. } else if (ret == -ENOENT) {
  1589. setup_inline_extent_backref(trans, root, path, iref, parent,
  1590. root_objectid, owner, offset,
  1591. refs_to_add, extent_op);
  1592. ret = 0;
  1593. }
  1594. return ret;
  1595. }
  1596. static int insert_extent_backref(struct btrfs_trans_handle *trans,
  1597. struct btrfs_root *root,
  1598. struct btrfs_path *path,
  1599. u64 bytenr, u64 parent, u64 root_objectid,
  1600. u64 owner, u64 offset, int refs_to_add)
  1601. {
  1602. int ret;
  1603. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1604. BUG_ON(refs_to_add != 1);
  1605. ret = insert_tree_block_ref(trans, root, path, bytenr,
  1606. parent, root_objectid);
  1607. } else {
  1608. ret = insert_extent_data_ref(trans, root, path, bytenr,
  1609. parent, root_objectid,
  1610. owner, offset, refs_to_add);
  1611. }
  1612. return ret;
  1613. }
  1614. static int remove_extent_backref(struct btrfs_trans_handle *trans,
  1615. struct btrfs_root *root,
  1616. struct btrfs_path *path,
  1617. struct btrfs_extent_inline_ref *iref,
  1618. int refs_to_drop, int is_data)
  1619. {
  1620. int ret = 0;
  1621. BUG_ON(!is_data && refs_to_drop != 1);
  1622. if (iref) {
  1623. update_inline_extent_backref(trans, root, path, iref,
  1624. -refs_to_drop, NULL);
  1625. } else if (is_data) {
  1626. ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
  1627. } else {
  1628. ret = btrfs_del_item(trans, root, path);
  1629. }
  1630. return ret;
  1631. }
  1632. static int btrfs_issue_discard(struct block_device *bdev,
  1633. u64 start, u64 len)
  1634. {
  1635. return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
  1636. }
  1637. static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
  1638. u64 num_bytes, u64 *actual_bytes)
  1639. {
  1640. int ret;
  1641. u64 discarded_bytes = 0;
  1642. struct btrfs_bio *bbio = NULL;
  1643. /* Tell the block device(s) that the sectors can be discarded */
  1644. ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
  1645. bytenr, &num_bytes, &bbio, 0);
  1646. /* Error condition is -ENOMEM */
  1647. if (!ret) {
  1648. struct btrfs_bio_stripe *stripe = bbio->stripes;
  1649. int i;
  1650. for (i = 0; i < bbio->num_stripes; i++, stripe++) {
  1651. if (!stripe->dev->can_discard)
  1652. continue;
  1653. ret = btrfs_issue_discard(stripe->dev->bdev,
  1654. stripe->physical,
  1655. stripe->length);
  1656. if (!ret)
  1657. discarded_bytes += stripe->length;
  1658. else if (ret != -EOPNOTSUPP)
  1659. break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
  1660. /*
  1661. * Just in case we get back EOPNOTSUPP for some reason,
  1662. * just ignore the return value so we don't screw up
  1663. * people calling discard_extent.
  1664. */
  1665. ret = 0;
  1666. }
  1667. kfree(bbio);
  1668. }
  1669. if (actual_bytes)
  1670. *actual_bytes = discarded_bytes;
  1671. return ret;
  1672. }
  1673. /* Can return -ENOMEM */
  1674. int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1675. struct btrfs_root *root,
  1676. u64 bytenr, u64 num_bytes, u64 parent,
  1677. u64 root_objectid, u64 owner, u64 offset, int for_cow)
  1678. {
  1679. int ret;
  1680. struct btrfs_fs_info *fs_info = root->fs_info;
  1681. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
  1682. root_objectid == BTRFS_TREE_LOG_OBJECTID);
  1683. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1684. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  1685. num_bytes,
  1686. parent, root_objectid, (int)owner,
  1687. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1688. } else {
  1689. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  1690. num_bytes,
  1691. parent, root_objectid, owner, offset,
  1692. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1693. }
  1694. return ret;
  1695. }
  1696. static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1697. struct btrfs_root *root,
  1698. u64 bytenr, u64 num_bytes,
  1699. u64 parent, u64 root_objectid,
  1700. u64 owner, u64 offset, int refs_to_add,
  1701. struct btrfs_delayed_extent_op *extent_op)
  1702. {
  1703. struct btrfs_path *path;
  1704. struct extent_buffer *leaf;
  1705. struct btrfs_extent_item *item;
  1706. u64 refs;
  1707. int ret;
  1708. int err = 0;
  1709. path = btrfs_alloc_path();
  1710. if (!path)
  1711. return -ENOMEM;
  1712. path->reada = 1;
  1713. path->leave_spinning = 1;
  1714. /* this will setup the path even if it fails to insert the back ref */
  1715. ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
  1716. path, bytenr, num_bytes, parent,
  1717. root_objectid, owner, offset,
  1718. refs_to_add, extent_op);
  1719. if (ret == 0)
  1720. goto out;
  1721. if (ret != -EAGAIN) {
  1722. err = ret;
  1723. goto out;
  1724. }
  1725. leaf = path->nodes[0];
  1726. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1727. refs = btrfs_extent_refs(leaf, item);
  1728. btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
  1729. if (extent_op)
  1730. __run_delayed_extent_op(extent_op, leaf, item);
  1731. btrfs_mark_buffer_dirty(leaf);
  1732. btrfs_release_path(path);
  1733. path->reada = 1;
  1734. path->leave_spinning = 1;
  1735. /* now insert the actual backref */
  1736. ret = insert_extent_backref(trans, root->fs_info->extent_root,
  1737. path, bytenr, parent, root_objectid,
  1738. owner, offset, refs_to_add);
  1739. if (ret)
  1740. btrfs_abort_transaction(trans, root, ret);
  1741. out:
  1742. btrfs_free_path(path);
  1743. return err;
  1744. }
  1745. static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
  1746. struct btrfs_root *root,
  1747. struct btrfs_delayed_ref_node *node,
  1748. struct btrfs_delayed_extent_op *extent_op,
  1749. int insert_reserved)
  1750. {
  1751. int ret = 0;
  1752. struct btrfs_delayed_data_ref *ref;
  1753. struct btrfs_key ins;
  1754. u64 parent = 0;
  1755. u64 ref_root = 0;
  1756. u64 flags = 0;
  1757. ins.objectid = node->bytenr;
  1758. ins.offset = node->num_bytes;
  1759. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1760. ref = btrfs_delayed_node_to_data_ref(node);
  1761. if (node->type == BTRFS_SHARED_DATA_REF_KEY)
  1762. parent = ref->parent;
  1763. else
  1764. ref_root = ref->root;
  1765. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1766. if (extent_op) {
  1767. BUG_ON(extent_op->update_key);
  1768. flags |= extent_op->flags_to_set;
  1769. }
  1770. ret = alloc_reserved_file_extent(trans, root,
  1771. parent, ref_root, flags,
  1772. ref->objectid, ref->offset,
  1773. &ins, node->ref_mod);
  1774. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1775. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1776. node->num_bytes, parent,
  1777. ref_root, ref->objectid,
  1778. ref->offset, node->ref_mod,
  1779. extent_op);
  1780. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1781. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1782. node->num_bytes, parent,
  1783. ref_root, ref->objectid,
  1784. ref->offset, node->ref_mod,
  1785. extent_op);
  1786. } else {
  1787. BUG();
  1788. }
  1789. return ret;
  1790. }
  1791. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  1792. struct extent_buffer *leaf,
  1793. struct btrfs_extent_item *ei)
  1794. {
  1795. u64 flags = btrfs_extent_flags(leaf, ei);
  1796. if (extent_op->update_flags) {
  1797. flags |= extent_op->flags_to_set;
  1798. btrfs_set_extent_flags(leaf, ei, flags);
  1799. }
  1800. if (extent_op->update_key) {
  1801. struct btrfs_tree_block_info *bi;
  1802. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  1803. bi = (struct btrfs_tree_block_info *)(ei + 1);
  1804. btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
  1805. }
  1806. }
  1807. static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
  1808. struct btrfs_root *root,
  1809. struct btrfs_delayed_ref_node *node,
  1810. struct btrfs_delayed_extent_op *extent_op)
  1811. {
  1812. struct btrfs_key key;
  1813. struct btrfs_path *path;
  1814. struct btrfs_extent_item *ei;
  1815. struct extent_buffer *leaf;
  1816. u32 item_size;
  1817. int ret;
  1818. int err = 0;
  1819. if (trans->aborted)
  1820. return 0;
  1821. path = btrfs_alloc_path();
  1822. if (!path)
  1823. return -ENOMEM;
  1824. key.objectid = node->bytenr;
  1825. key.type = BTRFS_EXTENT_ITEM_KEY;
  1826. key.offset = node->num_bytes;
  1827. path->reada = 1;
  1828. path->leave_spinning = 1;
  1829. ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
  1830. path, 0, 1);
  1831. if (ret < 0) {
  1832. err = ret;
  1833. goto out;
  1834. }
  1835. if (ret > 0) {
  1836. err = -EIO;
  1837. goto out;
  1838. }
  1839. leaf = path->nodes[0];
  1840. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1841. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1842. if (item_size < sizeof(*ei)) {
  1843. ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
  1844. path, (u64)-1, 0);
  1845. if (ret < 0) {
  1846. err = ret;
  1847. goto out;
  1848. }
  1849. leaf = path->nodes[0];
  1850. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1851. }
  1852. #endif
  1853. BUG_ON(item_size < sizeof(*ei));
  1854. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1855. __run_delayed_extent_op(extent_op, leaf, ei);
  1856. btrfs_mark_buffer_dirty(leaf);
  1857. out:
  1858. btrfs_free_path(path);
  1859. return err;
  1860. }
  1861. static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
  1862. struct btrfs_root *root,
  1863. struct btrfs_delayed_ref_node *node,
  1864. struct btrfs_delayed_extent_op *extent_op,
  1865. int insert_reserved)
  1866. {
  1867. int ret = 0;
  1868. struct btrfs_delayed_tree_ref *ref;
  1869. struct btrfs_key ins;
  1870. u64 parent = 0;
  1871. u64 ref_root = 0;
  1872. ins.objectid = node->bytenr;
  1873. ins.offset = node->num_bytes;
  1874. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1875. ref = btrfs_delayed_node_to_tree_ref(node);
  1876. if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1877. parent = ref->parent;
  1878. else
  1879. ref_root = ref->root;
  1880. BUG_ON(node->ref_mod != 1);
  1881. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1882. BUG_ON(!extent_op || !extent_op->update_flags ||
  1883. !extent_op->update_key);
  1884. ret = alloc_reserved_tree_block(trans, root,
  1885. parent, ref_root,
  1886. extent_op->flags_to_set,
  1887. &extent_op->key,
  1888. ref->level, &ins);
  1889. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1890. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1891. node->num_bytes, parent, ref_root,
  1892. ref->level, 0, 1, extent_op);
  1893. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1894. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1895. node->num_bytes, parent, ref_root,
  1896. ref->level, 0, 1, extent_op);
  1897. } else {
  1898. BUG();
  1899. }
  1900. return ret;
  1901. }
  1902. /* helper function to actually process a single delayed ref entry */
  1903. static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
  1904. struct btrfs_root *root,
  1905. struct btrfs_delayed_ref_node *node,
  1906. struct btrfs_delayed_extent_op *extent_op,
  1907. int insert_reserved)
  1908. {
  1909. int ret = 0;
  1910. if (trans->aborted)
  1911. return 0;
  1912. if (btrfs_delayed_ref_is_head(node)) {
  1913. struct btrfs_delayed_ref_head *head;
  1914. /*
  1915. * we've hit the end of the chain and we were supposed
  1916. * to insert this extent into the tree. But, it got
  1917. * deleted before we ever needed to insert it, so all
  1918. * we have to do is clean up the accounting
  1919. */
  1920. BUG_ON(extent_op);
  1921. head = btrfs_delayed_node_to_head(node);
  1922. if (insert_reserved) {
  1923. btrfs_pin_extent(root, node->bytenr,
  1924. node->num_bytes, 1);
  1925. if (head->is_data) {
  1926. ret = btrfs_del_csums(trans, root,
  1927. node->bytenr,
  1928. node->num_bytes);
  1929. }
  1930. }
  1931. mutex_unlock(&head->mutex);
  1932. return ret;
  1933. }
  1934. if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
  1935. node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1936. ret = run_delayed_tree_ref(trans, root, node, extent_op,
  1937. insert_reserved);
  1938. else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
  1939. node->type == BTRFS_SHARED_DATA_REF_KEY)
  1940. ret = run_delayed_data_ref(trans, root, node, extent_op,
  1941. insert_reserved);
  1942. else
  1943. BUG();
  1944. return ret;
  1945. }
  1946. static noinline struct btrfs_delayed_ref_node *
  1947. select_delayed_ref(struct btrfs_delayed_ref_head *head)
  1948. {
  1949. struct rb_node *node;
  1950. struct btrfs_delayed_ref_node *ref;
  1951. int action = BTRFS_ADD_DELAYED_REF;
  1952. again:
  1953. /*
  1954. * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
  1955. * this prevents ref count from going down to zero when
  1956. * there still are pending delayed ref.
  1957. */
  1958. node = rb_prev(&head->node.rb_node);
  1959. while (1) {
  1960. if (!node)
  1961. break;
  1962. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  1963. rb_node);
  1964. if (ref->bytenr != head->node.bytenr)
  1965. break;
  1966. if (ref->action == action)
  1967. return ref;
  1968. node = rb_prev(node);
  1969. }
  1970. if (action == BTRFS_ADD_DELAYED_REF) {
  1971. action = BTRFS_DROP_DELAYED_REF;
  1972. goto again;
  1973. }
  1974. return NULL;
  1975. }
  1976. /*
  1977. * Returns 0 on success or if called with an already aborted transaction.
  1978. * Returns -ENOMEM or -EIO on failure and will abort the transaction.
  1979. */
  1980. static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
  1981. struct btrfs_root *root,
  1982. struct list_head *cluster)
  1983. {
  1984. struct btrfs_delayed_ref_root *delayed_refs;
  1985. struct btrfs_delayed_ref_node *ref;
  1986. struct btrfs_delayed_ref_head *locked_ref = NULL;
  1987. struct btrfs_delayed_extent_op *extent_op;
  1988. struct btrfs_fs_info *fs_info = root->fs_info;
  1989. int ret;
  1990. int count = 0;
  1991. int must_insert_reserved = 0;
  1992. delayed_refs = &trans->transaction->delayed_refs;
  1993. while (1) {
  1994. if (!locked_ref) {
  1995. /* pick a new head ref from the cluster list */
  1996. if (list_empty(cluster))
  1997. break;
  1998. locked_ref = list_entry(cluster->next,
  1999. struct btrfs_delayed_ref_head, cluster);
  2000. /* grab the lock that says we are going to process
  2001. * all the refs for this head */
  2002. ret = btrfs_delayed_ref_lock(trans, locked_ref);
  2003. /*
  2004. * we may have dropped the spin lock to get the head
  2005. * mutex lock, and that might have given someone else
  2006. * time to free the head. If that's true, it has been
  2007. * removed from our list and we can move on.
  2008. */
  2009. if (ret == -EAGAIN) {
  2010. locked_ref = NULL;
  2011. count++;
  2012. continue;
  2013. }
  2014. }
  2015. /*
  2016. * We need to try and merge add/drops of the same ref since we
  2017. * can run into issues with relocate dropping the implicit ref
  2018. * and then it being added back again before the drop can
  2019. * finish. If we merged anything we need to re-loop so we can
  2020. * get a good ref.
  2021. */
  2022. btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
  2023. locked_ref);
  2024. /*
  2025. * locked_ref is the head node, so we have to go one
  2026. * node back for any delayed ref updates
  2027. */
  2028. ref = select_delayed_ref(locked_ref);
  2029. if (ref && ref->seq &&
  2030. btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
  2031. /*
  2032. * there are still refs with lower seq numbers in the
  2033. * process of being added. Don't run this ref yet.
  2034. */
  2035. list_del_init(&locked_ref->cluster);
  2036. mutex_unlock(&locked_ref->mutex);
  2037. locked_ref = NULL;
  2038. delayed_refs->num_heads_ready++;
  2039. spin_unlock(&delayed_refs->lock);
  2040. cond_resched();
  2041. spin_lock(&delayed_refs->lock);
  2042. continue;
  2043. }
  2044. /*
  2045. * record the must insert reserved flag before we
  2046. * drop the spin lock.
  2047. */
  2048. must_insert_reserved = locked_ref->must_insert_reserved;
  2049. locked_ref->must_insert_reserved = 0;
  2050. extent_op = locked_ref->extent_op;
  2051. locked_ref->extent_op = NULL;
  2052. if (!ref) {
  2053. /* All delayed refs have been processed, Go ahead
  2054. * and send the head node to run_one_delayed_ref,
  2055. * so that any accounting fixes can happen
  2056. */
  2057. ref = &locked_ref->node;
  2058. if (extent_op && must_insert_reserved) {
  2059. kfree(extent_op);
  2060. extent_op = NULL;
  2061. }
  2062. if (extent_op) {
  2063. spin_unlock(&delayed_refs->lock);
  2064. ret = run_delayed_extent_op(trans, root,
  2065. ref, extent_op);
  2066. kfree(extent_op);
  2067. if (ret) {
  2068. list_del_init(&locked_ref->cluster);
  2069. mutex_unlock(&locked_ref->mutex);
  2070. printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
  2071. spin_lock(&delayed_refs->lock);
  2072. return ret;
  2073. }
  2074. goto next;
  2075. }
  2076. list_del_init(&locked_ref->cluster);
  2077. locked_ref = NULL;
  2078. }
  2079. ref->in_tree = 0;
  2080. rb_erase(&ref->rb_node, &delayed_refs->root);
  2081. delayed_refs->num_entries--;
  2082. if (locked_ref) {
  2083. /*
  2084. * when we play the delayed ref, also correct the
  2085. * ref_mod on head
  2086. */
  2087. switch (ref->action) {
  2088. case BTRFS_ADD_DELAYED_REF:
  2089. case BTRFS_ADD_DELAYED_EXTENT:
  2090. locked_ref->node.ref_mod -= ref->ref_mod;
  2091. break;
  2092. case BTRFS_DROP_DELAYED_REF:
  2093. locked_ref->node.ref_mod += ref->ref_mod;
  2094. break;
  2095. default:
  2096. WARN_ON(1);
  2097. }
  2098. }
  2099. spin_unlock(&delayed_refs->lock);
  2100. ret = run_one_delayed_ref(trans, root, ref, extent_op,
  2101. must_insert_reserved);
  2102. btrfs_put_delayed_ref(ref);
  2103. kfree(extent_op);
  2104. count++;
  2105. if (ret) {
  2106. if (locked_ref) {
  2107. list_del_init(&locked_ref->cluster);
  2108. mutex_unlock(&locked_ref->mutex);
  2109. }
  2110. printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
  2111. spin_lock(&delayed_refs->lock);
  2112. return ret;
  2113. }
  2114. next:
  2115. cond_resched();
  2116. spin_lock(&delayed_refs->lock);
  2117. }
  2118. return count;
  2119. }
  2120. #ifdef SCRAMBLE_DELAYED_REFS
  2121. /*
  2122. * Normally delayed refs get processed in ascending bytenr order. This
  2123. * correlates in most cases to the order added. To expose dependencies on this
  2124. * order, we start to process the tree in the middle instead of the beginning
  2125. */
  2126. static u64 find_middle(struct rb_root *root)
  2127. {
  2128. struct rb_node *n = root->rb_node;
  2129. struct btrfs_delayed_ref_node *entry;
  2130. int alt = 1;
  2131. u64 middle;
  2132. u64 first = 0, last = 0;
  2133. n = rb_first(root);
  2134. if (n) {
  2135. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2136. first = entry->bytenr;
  2137. }
  2138. n = rb_last(root);
  2139. if (n) {
  2140. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2141. last = entry->bytenr;
  2142. }
  2143. n = root->rb_node;
  2144. while (n) {
  2145. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2146. WARN_ON(!entry->in_tree);
  2147. middle = entry->bytenr;
  2148. if (alt)
  2149. n = n->rb_left;
  2150. else
  2151. n = n->rb_right;
  2152. alt = 1 - alt;
  2153. }
  2154. return middle;
  2155. }
  2156. #endif
  2157. int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
  2158. struct btrfs_fs_info *fs_info)
  2159. {
  2160. struct qgroup_update *qgroup_update;
  2161. int ret = 0;
  2162. if (list_empty(&trans->qgroup_ref_list) !=
  2163. !trans->delayed_ref_elem.seq) {
  2164. /* list without seq or seq without list */
  2165. printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
  2166. list_empty(&trans->qgroup_ref_list) ? "" : " not",
  2167. trans->delayed_ref_elem.seq);
  2168. BUG();
  2169. }
  2170. if (!trans->delayed_ref_elem.seq)
  2171. return 0;
  2172. while (!list_empty(&trans->qgroup_ref_list)) {
  2173. qgroup_update = list_first_entry(&trans->qgroup_ref_list,
  2174. struct qgroup_update, list);
  2175. list_del(&qgroup_update->list);
  2176. if (!ret)
  2177. ret = btrfs_qgroup_account_ref(
  2178. trans, fs_info, qgroup_update->node,
  2179. qgroup_update->extent_op);
  2180. kfree(qgroup_update);
  2181. }
  2182. btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
  2183. return ret;
  2184. }
  2185. /*
  2186. * this starts processing the delayed reference count updates and
  2187. * extent insertions we have queued up so far. count can be
  2188. * 0, which means to process everything in the tree at the start
  2189. * of the run (but not newly added entries), or it can be some target
  2190. * number you'd like to process.
  2191. *
  2192. * Returns 0 on success or if called with an aborted transaction
  2193. * Returns <0 on error and aborts the transaction
  2194. */
  2195. int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2196. struct btrfs_root *root, unsigned long count)
  2197. {
  2198. struct rb_node *node;
  2199. struct btrfs_delayed_ref_root *delayed_refs;
  2200. struct btrfs_delayed_ref_node *ref;
  2201. struct list_head cluster;
  2202. int ret;
  2203. u64 delayed_start;
  2204. int run_all = count == (unsigned long)-1;
  2205. int run_most = 0;
  2206. int loops;
  2207. /* We'll clean this up in btrfs_cleanup_transaction */
  2208. if (trans->aborted)
  2209. return 0;
  2210. if (root == root->fs_info->extent_root)
  2211. root = root->fs_info->tree_root;
  2212. btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
  2213. delayed_refs = &trans->transaction->delayed_refs;
  2214. INIT_LIST_HEAD(&cluster);
  2215. again:
  2216. loops = 0;
  2217. spin_lock(&delayed_refs->lock);
  2218. #ifdef SCRAMBLE_DELAYED_REFS
  2219. delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
  2220. #endif
  2221. if (count == 0) {
  2222. count = delayed_refs->num_entries * 2;
  2223. run_most = 1;
  2224. }
  2225. while (1) {
  2226. if (!(run_all || run_most) &&
  2227. delayed_refs->num_heads_ready < 64)
  2228. break;
  2229. /*
  2230. * go find something we can process in the rbtree. We start at
  2231. * the beginning of the tree, and then build a cluster
  2232. * of refs to process starting at the first one we are able to
  2233. * lock
  2234. */
  2235. delayed_start = delayed_refs->run_delayed_start;
  2236. ret = btrfs_find_ref_cluster(trans, &cluster,
  2237. delayed_refs->run_delayed_start);
  2238. if (ret)
  2239. break;
  2240. ret = run_clustered_refs(trans, root, &cluster);
  2241. if (ret < 0) {
  2242. spin_unlock(&delayed_refs->lock);
  2243. btrfs_abort_transaction(trans, root, ret);
  2244. return ret;
  2245. }
  2246. count -= min_t(unsigned long, ret, count);
  2247. if (count == 0)
  2248. break;
  2249. if (delayed_start >= delayed_refs->run_delayed_start) {
  2250. if (loops == 0) {
  2251. /*
  2252. * btrfs_find_ref_cluster looped. let's do one
  2253. * more cycle. if we don't run any delayed ref
  2254. * during that cycle (because we can't because
  2255. * all of them are blocked), bail out.
  2256. */
  2257. loops = 1;
  2258. } else {
  2259. /*
  2260. * no runnable refs left, stop trying
  2261. */
  2262. BUG_ON(run_all);
  2263. break;
  2264. }
  2265. }
  2266. if (ret) {
  2267. /* refs were run, let's reset staleness detection */
  2268. loops = 0;
  2269. }
  2270. }
  2271. if (run_all) {
  2272. if (!list_empty(&trans->new_bgs)) {
  2273. spin_unlock(&delayed_refs->lock);
  2274. btrfs_create_pending_block_groups(trans, root);
  2275. spin_lock(&delayed_refs->lock);
  2276. }
  2277. node = rb_first(&delayed_refs->root);
  2278. if (!node)
  2279. goto out;
  2280. count = (unsigned long)-1;
  2281. while (node) {
  2282. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  2283. rb_node);
  2284. if (btrfs_delayed_ref_is_head(ref)) {
  2285. struct btrfs_delayed_ref_head *head;
  2286. head = btrfs_delayed_node_to_head(ref);
  2287. atomic_inc(&ref->refs);
  2288. spin_unlock(&delayed_refs->lock);
  2289. /*
  2290. * Mutex was contended, block until it's
  2291. * released and try again
  2292. */
  2293. mutex_lock(&head->mutex);
  2294. mutex_unlock(&head->mutex);
  2295. btrfs_put_delayed_ref(ref);
  2296. cond_resched();
  2297. goto again;
  2298. }
  2299. node = rb_next(node);
  2300. }
  2301. spin_unlock(&delayed_refs->lock);
  2302. schedule_timeout(1);
  2303. goto again;
  2304. }
  2305. out:
  2306. spin_unlock(&delayed_refs->lock);
  2307. assert_qgroups_uptodate(trans);
  2308. return 0;
  2309. }
  2310. int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
  2311. struct btrfs_root *root,
  2312. u64 bytenr, u64 num_bytes, u64 flags,
  2313. int is_data)
  2314. {
  2315. struct btrfs_delayed_extent_op *extent_op;
  2316. int ret;
  2317. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  2318. if (!extent_op)
  2319. return -ENOMEM;
  2320. extent_op->flags_to_set = flags;
  2321. extent_op->update_flags = 1;
  2322. extent_op->update_key = 0;
  2323. extent_op->is_data = is_data ? 1 : 0;
  2324. ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
  2325. num_bytes, extent_op);
  2326. if (ret)
  2327. kfree(extent_op);
  2328. return ret;
  2329. }
  2330. static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
  2331. struct btrfs_root *root,
  2332. struct btrfs_path *path,
  2333. u64 objectid, u64 offset, u64 bytenr)
  2334. {
  2335. struct btrfs_delayed_ref_head *head;
  2336. struct btrfs_delayed_ref_node *ref;
  2337. struct btrfs_delayed_data_ref *data_ref;
  2338. struct btrfs_delayed_ref_root *delayed_refs;
  2339. struct rb_node *node;
  2340. int ret = 0;
  2341. ret = -ENOENT;
  2342. delayed_refs = &trans->transaction->delayed_refs;
  2343. spin_lock(&delayed_refs->lock);
  2344. head = btrfs_find_delayed_ref_head(trans, bytenr);
  2345. if (!head)
  2346. goto out;
  2347. if (!mutex_trylock(&head->mutex)) {
  2348. atomic_inc(&head->node.refs);
  2349. spin_unlock(&delayed_refs->lock);
  2350. btrfs_release_path(path);
  2351. /*
  2352. * Mutex was contended, block until it's released and let
  2353. * caller try again
  2354. */
  2355. mutex_lock(&head->mutex);
  2356. mutex_unlock(&head->mutex);
  2357. btrfs_put_delayed_ref(&head->node);
  2358. return -EAGAIN;
  2359. }
  2360. node = rb_prev(&head->node.rb_node);
  2361. if (!node)
  2362. goto out_unlock;
  2363. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2364. if (ref->bytenr != bytenr)
  2365. goto out_unlock;
  2366. ret = 1;
  2367. if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
  2368. goto out_unlock;
  2369. data_ref = btrfs_delayed_node_to_data_ref(ref);
  2370. node = rb_prev(node);
  2371. if (node) {
  2372. int seq = ref->seq;
  2373. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2374. if (ref->bytenr == bytenr && ref->seq == seq)
  2375. goto out_unlock;
  2376. }
  2377. if (data_ref->root != root->root_key.objectid ||
  2378. data_ref->objectid != objectid || data_ref->offset != offset)
  2379. goto out_unlock;
  2380. ret = 0;
  2381. out_unlock:
  2382. mutex_unlock(&head->mutex);
  2383. out:
  2384. spin_unlock(&delayed_refs->lock);
  2385. return ret;
  2386. }
  2387. static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
  2388. struct btrfs_root *root,
  2389. struct btrfs_path *path,
  2390. u64 objectid, u64 offset, u64 bytenr)
  2391. {
  2392. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2393. struct extent_buffer *leaf;
  2394. struct btrfs_extent_data_ref *ref;
  2395. struct btrfs_extent_inline_ref *iref;
  2396. struct btrfs_extent_item *ei;
  2397. struct btrfs_key key;
  2398. u32 item_size;
  2399. int ret;
  2400. key.objectid = bytenr;
  2401. key.offset = (u64)-1;
  2402. key.type = BTRFS_EXTENT_ITEM_KEY;
  2403. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  2404. if (ret < 0)
  2405. goto out;
  2406. BUG_ON(ret == 0); /* Corruption */
  2407. ret = -ENOENT;
  2408. if (path->slots[0] == 0)
  2409. goto out;
  2410. path->slots[0]--;
  2411. leaf = path->nodes[0];
  2412. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2413. if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
  2414. goto out;
  2415. ret = 1;
  2416. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2417. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2418. if (item_size < sizeof(*ei)) {
  2419. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2420. goto out;
  2421. }
  2422. #endif
  2423. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2424. if (item_size != sizeof(*ei) +
  2425. btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
  2426. goto out;
  2427. if (btrfs_extent_generation(leaf, ei) <=
  2428. btrfs_root_last_snapshot(&root->root_item))
  2429. goto out;
  2430. iref = (struct btrfs_extent_inline_ref *)(ei + 1);
  2431. if (btrfs_extent_inline_ref_type(leaf, iref) !=
  2432. BTRFS_EXTENT_DATA_REF_KEY)
  2433. goto out;
  2434. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2435. if (btrfs_extent_refs(leaf, ei) !=
  2436. btrfs_extent_data_ref_count(leaf, ref) ||
  2437. btrfs_extent_data_ref_root(leaf, ref) !=
  2438. root->root_key.objectid ||
  2439. btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
  2440. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  2441. goto out;
  2442. ret = 0;
  2443. out:
  2444. return ret;
  2445. }
  2446. int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
  2447. struct btrfs_root *root,
  2448. u64 objectid, u64 offset, u64 bytenr)
  2449. {
  2450. struct btrfs_path *path;
  2451. int ret;
  2452. int ret2;
  2453. path = btrfs_alloc_path();
  2454. if (!path)
  2455. return -ENOENT;
  2456. do {
  2457. ret = check_committed_ref(trans, root, path, objectid,
  2458. offset, bytenr);
  2459. if (ret && ret != -ENOENT)
  2460. goto out;
  2461. ret2 = check_delayed_ref(trans, root, path, objectid,
  2462. offset, bytenr);
  2463. } while (ret2 == -EAGAIN);
  2464. if (ret2 && ret2 != -ENOENT) {
  2465. ret = ret2;
  2466. goto out;
  2467. }
  2468. if (ret != -ENOENT || ret2 != -ENOENT)
  2469. ret = 0;
  2470. out:
  2471. btrfs_free_path(path);
  2472. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  2473. WARN_ON(ret > 0);
  2474. return ret;
  2475. }
  2476. static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
  2477. struct btrfs_root *root,
  2478. struct extent_buffer *buf,
  2479. int full_backref, int inc, int for_cow)
  2480. {
  2481. u64 bytenr;
  2482. u64 num_bytes;
  2483. u64 parent;
  2484. u64 ref_root;
  2485. u32 nritems;
  2486. struct btrfs_key key;
  2487. struct btrfs_file_extent_item *fi;
  2488. int i;
  2489. int level;
  2490. int ret = 0;
  2491. int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
  2492. u64, u64, u64, u64, u64, u64, int);
  2493. ref_root = btrfs_header_owner(buf);
  2494. nritems = btrfs_header_nritems(buf);
  2495. level = btrfs_header_level(buf);
  2496. if (!root->ref_cows && level == 0)
  2497. return 0;
  2498. if (inc)
  2499. process_func = btrfs_inc_extent_ref;
  2500. else
  2501. process_func = btrfs_free_extent;
  2502. if (full_backref)
  2503. parent = buf->start;
  2504. else
  2505. parent = 0;
  2506. for (i = 0; i < nritems; i++) {
  2507. if (level == 0) {
  2508. btrfs_item_key_to_cpu(buf, &key, i);
  2509. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  2510. continue;
  2511. fi = btrfs_item_ptr(buf, i,
  2512. struct btrfs_file_extent_item);
  2513. if (btrfs_file_extent_type(buf, fi) ==
  2514. BTRFS_FILE_EXTENT_INLINE)
  2515. continue;
  2516. bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2517. if (bytenr == 0)
  2518. continue;
  2519. num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
  2520. key.offset -= btrfs_file_extent_offset(buf, fi);
  2521. ret = process_func(trans, root, bytenr, num_bytes,
  2522. parent, ref_root, key.objectid,
  2523. key.offset, for_cow);
  2524. if (ret)
  2525. goto fail;
  2526. } else {
  2527. bytenr = btrfs_node_blockptr(buf, i);
  2528. num_bytes = btrfs_level_size(root, level - 1);
  2529. ret = process_func(trans, root, bytenr, num_bytes,
  2530. parent, ref_root, level - 1, 0,
  2531. for_cow);
  2532. if (ret)
  2533. goto fail;
  2534. }
  2535. }
  2536. return 0;
  2537. fail:
  2538. return ret;
  2539. }
  2540. int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2541. struct extent_buffer *buf, int full_backref, int for_cow)
  2542. {
  2543. return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
  2544. }
  2545. int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2546. struct extent_buffer *buf, int full_backref, int for_cow)
  2547. {
  2548. return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
  2549. }
  2550. static int write_one_cache_group(struct btrfs_trans_handle *trans,
  2551. struct btrfs_root *root,
  2552. struct btrfs_path *path,
  2553. struct btrfs_block_group_cache *cache)
  2554. {
  2555. int ret;
  2556. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2557. unsigned long bi;
  2558. struct extent_buffer *leaf;
  2559. ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
  2560. if (ret < 0)
  2561. goto fail;
  2562. BUG_ON(ret); /* Corruption */
  2563. leaf = path->nodes[0];
  2564. bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2565. write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
  2566. btrfs_mark_buffer_dirty(leaf);
  2567. btrfs_release_path(path);
  2568. fail:
  2569. if (ret) {
  2570. btrfs_abort_transaction(trans, root, ret);
  2571. return ret;
  2572. }
  2573. return 0;
  2574. }
  2575. static struct btrfs_block_group_cache *
  2576. next_block_group(struct btrfs_root *root,
  2577. struct btrfs_block_group_cache *cache)
  2578. {
  2579. struct rb_node *node;
  2580. spin_lock(&root->fs_info->block_group_cache_lock);
  2581. node = rb_next(&cache->cache_node);
  2582. btrfs_put_block_group(cache);
  2583. if (node) {
  2584. cache = rb_entry(node, struct btrfs_block_group_cache,
  2585. cache_node);
  2586. btrfs_get_block_group(cache);
  2587. } else
  2588. cache = NULL;
  2589. spin_unlock(&root->fs_info->block_group_cache_lock);
  2590. return cache;
  2591. }
  2592. static int cache_save_setup(struct btrfs_block_group_cache *block_group,
  2593. struct btrfs_trans_handle *trans,
  2594. struct btrfs_path *path)
  2595. {
  2596. struct btrfs_root *root = block_group->fs_info->tree_root;
  2597. struct inode *inode = NULL;
  2598. u64 alloc_hint = 0;
  2599. int dcs = BTRFS_DC_ERROR;
  2600. int num_pages = 0;
  2601. int retries = 0;
  2602. int ret = 0;
  2603. /*
  2604. * If this block group is smaller than 100 megs don't bother caching the
  2605. * block group.
  2606. */
  2607. if (block_group->key.offset < (100 * 1024 * 1024)) {
  2608. spin_lock(&block_group->lock);
  2609. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  2610. spin_unlock(&block_group->lock);
  2611. return 0;
  2612. }
  2613. again:
  2614. inode = lookup_free_space_inode(root, block_group, path);
  2615. if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
  2616. ret = PTR_ERR(inode);
  2617. btrfs_release_path(path);
  2618. goto out;
  2619. }
  2620. if (IS_ERR(inode)) {
  2621. BUG_ON(retries);
  2622. retries++;
  2623. if (block_group->ro)
  2624. goto out_free;
  2625. ret = create_free_space_inode(root, trans, block_group, path);
  2626. if (ret)
  2627. goto out_free;
  2628. goto again;
  2629. }
  2630. /* We've already setup this transaction, go ahead and exit */
  2631. if (block_group->cache_generation == trans->transid &&
  2632. i_size_read(inode)) {
  2633. dcs = BTRFS_DC_SETUP;
  2634. goto out_put;
  2635. }
  2636. /*
  2637. * We want to set the generation to 0, that way if anything goes wrong
  2638. * from here on out we know not to trust this cache when we load up next
  2639. * time.
  2640. */
  2641. BTRFS_I(inode)->generation = 0;
  2642. ret = btrfs_update_inode(trans, root, inode);
  2643. WARN_ON(ret);
  2644. if (i_size_read(inode) > 0) {
  2645. ret = btrfs_truncate_free_space_cache(root, trans, path,
  2646. inode);
  2647. if (ret)
  2648. goto out_put;
  2649. }
  2650. spin_lock(&block_group->lock);
  2651. if (block_group->cached != BTRFS_CACHE_FINISHED ||
  2652. !btrfs_test_opt(root, SPACE_CACHE)) {
  2653. /*
  2654. * don't bother trying to write stuff out _if_
  2655. * a) we're not cached,
  2656. * b) we're with nospace_cache mount option.
  2657. */
  2658. dcs = BTRFS_DC_WRITTEN;
  2659. spin_unlock(&block_group->lock);
  2660. goto out_put;
  2661. }
  2662. spin_unlock(&block_group->lock);
  2663. /*
  2664. * Try to preallocate enough space based on how big the block group is.
  2665. * Keep in mind this has to include any pinned space which could end up
  2666. * taking up quite a bit since it's not folded into the other space
  2667. * cache.
  2668. */
  2669. num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
  2670. if (!num_pages)
  2671. num_pages = 1;
  2672. num_pages *= 16;
  2673. num_pages *= PAGE_CACHE_SIZE;
  2674. ret = btrfs_check_data_free_space(inode, num_pages);
  2675. if (ret)
  2676. goto out_put;
  2677. ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
  2678. num_pages, num_pages,
  2679. &alloc_hint);
  2680. if (!ret)
  2681. dcs = BTRFS_DC_SETUP;
  2682. btrfs_free_reserved_data_space(inode, num_pages);
  2683. out_put:
  2684. iput(inode);
  2685. out_free:
  2686. btrfs_release_path(path);
  2687. out:
  2688. spin_lock(&block_group->lock);
  2689. if (!ret && dcs == BTRFS_DC_SETUP)
  2690. block_group->cache_generation = trans->transid;
  2691. block_group->disk_cache_state = dcs;
  2692. spin_unlock(&block_group->lock);
  2693. return ret;
  2694. }
  2695. int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
  2696. struct btrfs_root *root)
  2697. {
  2698. struct btrfs_block_group_cache *cache;
  2699. int err = 0;
  2700. struct btrfs_path *path;
  2701. u64 last = 0;
  2702. path = btrfs_alloc_path();
  2703. if (!path)
  2704. return -ENOMEM;
  2705. again:
  2706. while (1) {
  2707. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2708. while (cache) {
  2709. if (cache->disk_cache_state == BTRFS_DC_CLEAR)
  2710. break;
  2711. cache = next_block_group(root, cache);
  2712. }
  2713. if (!cache) {
  2714. if (last == 0)
  2715. break;
  2716. last = 0;
  2717. continue;
  2718. }
  2719. err = cache_save_setup(cache, trans, path);
  2720. last = cache->key.objectid + cache->key.offset;
  2721. btrfs_put_block_group(cache);
  2722. }
  2723. while (1) {
  2724. if (last == 0) {
  2725. err = btrfs_run_delayed_refs(trans, root,
  2726. (unsigned long)-1);
  2727. if (err) /* File system offline */
  2728. goto out;
  2729. }
  2730. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2731. while (cache) {
  2732. if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
  2733. btrfs_put_block_group(cache);
  2734. goto again;
  2735. }
  2736. if (cache->dirty)
  2737. break;
  2738. cache = next_block_group(root, cache);
  2739. }
  2740. if (!cache) {
  2741. if (last == 0)
  2742. break;
  2743. last = 0;
  2744. continue;
  2745. }
  2746. if (cache->disk_cache_state == BTRFS_DC_SETUP)
  2747. cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
  2748. cache->dirty = 0;
  2749. last = cache->key.objectid + cache->key.offset;
  2750. err = write_one_cache_group(trans, root, path, cache);
  2751. if (err) /* File system offline */
  2752. goto out;
  2753. btrfs_put_block_group(cache);
  2754. }
  2755. while (1) {
  2756. /*
  2757. * I don't think this is needed since we're just marking our
  2758. * preallocated extent as written, but just in case it can't
  2759. * hurt.
  2760. */
  2761. if (last == 0) {
  2762. err = btrfs_run_delayed_refs(trans, root,
  2763. (unsigned long)-1);
  2764. if (err) /* File system offline */
  2765. goto out;
  2766. }
  2767. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2768. while (cache) {
  2769. /*
  2770. * Really this shouldn't happen, but it could if we
  2771. * couldn't write the entire preallocated extent and
  2772. * splitting the extent resulted in a new block.
  2773. */
  2774. if (cache->dirty) {
  2775. btrfs_put_block_group(cache);
  2776. goto again;
  2777. }
  2778. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2779. break;
  2780. cache = next_block_group(root, cache);
  2781. }
  2782. if (!cache) {
  2783. if (last == 0)
  2784. break;
  2785. last = 0;
  2786. continue;
  2787. }
  2788. err = btrfs_write_out_cache(root, trans, cache, path);
  2789. /*
  2790. * If we didn't have an error then the cache state is still
  2791. * NEED_WRITE, so we can set it to WRITTEN.
  2792. */
  2793. if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2794. cache->disk_cache_state = BTRFS_DC_WRITTEN;
  2795. last = cache->key.objectid + cache->key.offset;
  2796. btrfs_put_block_group(cache);
  2797. }
  2798. out:
  2799. btrfs_free_path(path);
  2800. return err;
  2801. }
  2802. int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
  2803. {
  2804. struct btrfs_block_group_cache *block_group;
  2805. int readonly = 0;
  2806. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  2807. if (!block_group || block_group->ro)
  2808. readonly = 1;
  2809. if (block_group)
  2810. btrfs_put_block_group(block_group);
  2811. return readonly;
  2812. }
  2813. static int update_space_info(struct btrfs_fs_info *info, u64 flags,
  2814. u64 total_bytes, u64 bytes_used,
  2815. struct btrfs_space_info **space_info)
  2816. {
  2817. struct btrfs_space_info *found;
  2818. int i;
  2819. int factor;
  2820. if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
  2821. BTRFS_BLOCK_GROUP_RAID10))
  2822. factor = 2;
  2823. else
  2824. factor = 1;
  2825. found = __find_space_info(info, flags);
  2826. if (found) {
  2827. spin_lock(&found->lock);
  2828. found->total_bytes += total_bytes;
  2829. found->disk_total += total_bytes * factor;
  2830. found->bytes_used += bytes_used;
  2831. found->disk_used += bytes_used * factor;
  2832. found->full = 0;
  2833. spin_unlock(&found->lock);
  2834. *space_info = found;
  2835. return 0;
  2836. }
  2837. found = kzalloc(sizeof(*found), GFP_NOFS);
  2838. if (!found)
  2839. return -ENOMEM;
  2840. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  2841. INIT_LIST_HEAD(&found->block_groups[i]);
  2842. init_rwsem(&found->groups_sem);
  2843. spin_lock_init(&found->lock);
  2844. found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  2845. found->total_bytes = total_bytes;
  2846. found->disk_total = total_bytes * factor;
  2847. found->bytes_used = bytes_used;
  2848. found->disk_used = bytes_used * factor;
  2849. found->bytes_pinned = 0;
  2850. found->bytes_reserved = 0;
  2851. found->bytes_readonly = 0;
  2852. found->bytes_may_use = 0;
  2853. found->full = 0;
  2854. found->force_alloc = CHUNK_ALLOC_NO_FORCE;
  2855. found->chunk_alloc = 0;
  2856. found->flush = 0;
  2857. init_waitqueue_head(&found->wait);
  2858. *space_info = found;
  2859. list_add_rcu(&found->list, &info->space_info);
  2860. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2861. info->data_sinfo = found;
  2862. return 0;
  2863. }
  2864. static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  2865. {
  2866. u64 extra_flags = chunk_to_extended(flags) &
  2867. BTRFS_EXTENDED_PROFILE_MASK;
  2868. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2869. fs_info->avail_data_alloc_bits |= extra_flags;
  2870. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2871. fs_info->avail_metadata_alloc_bits |= extra_flags;
  2872. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2873. fs_info->avail_system_alloc_bits |= extra_flags;
  2874. }
  2875. /*
  2876. * returns target flags in extended format or 0 if restripe for this
  2877. * chunk_type is not in progress
  2878. *
  2879. * should be called with either volume_mutex or balance_lock held
  2880. */
  2881. static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  2882. {
  2883. struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  2884. u64 target = 0;
  2885. if (!bctl)
  2886. return 0;
  2887. if (flags & BTRFS_BLOCK_GROUP_DATA &&
  2888. bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  2889. target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  2890. } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  2891. bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  2892. target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  2893. } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  2894. bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  2895. target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  2896. }
  2897. return target;
  2898. }
  2899. /*
  2900. * @flags: available profiles in extended format (see ctree.h)
  2901. *
  2902. * Returns reduced profile in chunk format. If profile changing is in
  2903. * progress (either running or paused) picks the target profile (if it's
  2904. * already available), otherwise falls back to plain reducing.
  2905. */
  2906. u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
  2907. {
  2908. /*
  2909. * we add in the count of missing devices because we want
  2910. * to make sure that any RAID levels on a degraded FS
  2911. * continue to be honored.
  2912. */
  2913. u64 num_devices = root->fs_info->fs_devices->rw_devices +
  2914. root->fs_info->fs_devices->missing_devices;
  2915. u64 target;
  2916. /*
  2917. * see if restripe for this chunk_type is in progress, if so
  2918. * try to reduce to the target profile
  2919. */
  2920. spin_lock(&root->fs_info->balance_lock);
  2921. target = get_restripe_target(root->fs_info, flags);
  2922. if (target) {
  2923. /* pick target profile only if it's already available */
  2924. if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
  2925. spin_unlock(&root->fs_info->balance_lock);
  2926. return extended_to_chunk(target);
  2927. }
  2928. }
  2929. spin_unlock(&root->fs_info->balance_lock);
  2930. if (num_devices == 1)
  2931. flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
  2932. if (num_devices < 4)
  2933. flags &= ~BTRFS_BLOCK_GROUP_RAID10;
  2934. if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
  2935. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2936. BTRFS_BLOCK_GROUP_RAID10))) {
  2937. flags &= ~BTRFS_BLOCK_GROUP_DUP;
  2938. }
  2939. if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
  2940. (flags & BTRFS_BLOCK_GROUP_RAID10)) {
  2941. flags &= ~BTRFS_BLOCK_GROUP_RAID1;
  2942. }
  2943. if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
  2944. ((flags & BTRFS_BLOCK_GROUP_RAID1) |
  2945. (flags & BTRFS_BLOCK_GROUP_RAID10) |
  2946. (flags & BTRFS_BLOCK_GROUP_DUP))) {
  2947. flags &= ~BTRFS_BLOCK_GROUP_RAID0;
  2948. }
  2949. return extended_to_chunk(flags);
  2950. }
  2951. static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
  2952. {
  2953. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2954. flags |= root->fs_info->avail_data_alloc_bits;
  2955. else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2956. flags |= root->fs_info->avail_system_alloc_bits;
  2957. else if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2958. flags |= root->fs_info->avail_metadata_alloc_bits;
  2959. return btrfs_reduce_alloc_profile(root, flags);
  2960. }
  2961. u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
  2962. {
  2963. u64 flags;
  2964. if (data)
  2965. flags = BTRFS_BLOCK_GROUP_DATA;
  2966. else if (root == root->fs_info->chunk_root)
  2967. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  2968. else
  2969. flags = BTRFS_BLOCK_GROUP_METADATA;
  2970. return get_alloc_profile(root, flags);
  2971. }
  2972. /*
  2973. * This will check the space that the inode allocates from to make sure we have
  2974. * enough space for bytes.
  2975. */
  2976. int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
  2977. {
  2978. struct btrfs_space_info *data_sinfo;
  2979. struct btrfs_root *root = BTRFS_I(inode)->root;
  2980. struct btrfs_fs_info *fs_info = root->fs_info;
  2981. u64 used;
  2982. int ret = 0, committed = 0, alloc_chunk = 1;
  2983. /* make sure bytes are sectorsize aligned */
  2984. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  2985. if (root == root->fs_info->tree_root ||
  2986. BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
  2987. alloc_chunk = 0;
  2988. committed = 1;
  2989. }
  2990. data_sinfo = fs_info->data_sinfo;
  2991. if (!data_sinfo)
  2992. goto alloc;
  2993. again:
  2994. /* make sure we have enough space to handle the data first */
  2995. spin_lock(&data_sinfo->lock);
  2996. used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
  2997. data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
  2998. data_sinfo->bytes_may_use;
  2999. if (used + bytes > data_sinfo->total_bytes) {
  3000. struct btrfs_trans_handle *trans;
  3001. /*
  3002. * if we don't have enough free bytes in this space then we need
  3003. * to alloc a new chunk.
  3004. */
  3005. if (!data_sinfo->full && alloc_chunk) {
  3006. u64 alloc_target;
  3007. data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
  3008. spin_unlock(&data_sinfo->lock);
  3009. alloc:
  3010. alloc_target = btrfs_get_alloc_profile(root, 1);
  3011. trans = btrfs_join_transaction(root);
  3012. if (IS_ERR(trans))
  3013. return PTR_ERR(trans);
  3014. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  3015. alloc_target,
  3016. CHUNK_ALLOC_NO_FORCE);
  3017. btrfs_end_transaction(trans, root);
  3018. if (ret < 0) {
  3019. if (ret != -ENOSPC)
  3020. return ret;
  3021. else
  3022. goto commit_trans;
  3023. }
  3024. if (!data_sinfo)
  3025. data_sinfo = fs_info->data_sinfo;
  3026. goto again;
  3027. }
  3028. /*
  3029. * If we have less pinned bytes than we want to allocate then
  3030. * don't bother committing the transaction, it won't help us.
  3031. */
  3032. if (data_sinfo->bytes_pinned < bytes)
  3033. committed = 1;
  3034. spin_unlock(&data_sinfo->lock);
  3035. /* commit the current transaction and try again */
  3036. commit_trans:
  3037. if (!committed &&
  3038. !atomic_read(&root->fs_info->open_ioctl_trans)) {
  3039. committed = 1;
  3040. trans = btrfs_join_transaction(root);
  3041. if (IS_ERR(trans))
  3042. return PTR_ERR(trans);
  3043. ret = btrfs_commit_transaction(trans, root);
  3044. if (ret)
  3045. return ret;
  3046. goto again;
  3047. }
  3048. return -ENOSPC;
  3049. }
  3050. data_sinfo->bytes_may_use += bytes;
  3051. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3052. data_sinfo->flags, bytes, 1);
  3053. spin_unlock(&data_sinfo->lock);
  3054. return 0;
  3055. }
  3056. /*
  3057. * Called if we need to clear a data reservation for this inode.
  3058. */
  3059. void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
  3060. {
  3061. struct btrfs_root *root = BTRFS_I(inode)->root;
  3062. struct btrfs_space_info *data_sinfo;
  3063. /* make sure bytes are sectorsize aligned */
  3064. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  3065. data_sinfo = root->fs_info->data_sinfo;
  3066. spin_lock(&data_sinfo->lock);
  3067. data_sinfo->bytes_may_use -= bytes;
  3068. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3069. data_sinfo->flags, bytes, 0);
  3070. spin_unlock(&data_sinfo->lock);
  3071. }
  3072. static void force_metadata_allocation(struct btrfs_fs_info *info)
  3073. {
  3074. struct list_head *head = &info->space_info;
  3075. struct btrfs_space_info *found;
  3076. rcu_read_lock();
  3077. list_for_each_entry_rcu(found, head, list) {
  3078. if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
  3079. found->force_alloc = CHUNK_ALLOC_FORCE;
  3080. }
  3081. rcu_read_unlock();
  3082. }
  3083. static int should_alloc_chunk(struct btrfs_root *root,
  3084. struct btrfs_space_info *sinfo, int force)
  3085. {
  3086. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3087. u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
  3088. u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
  3089. u64 thresh;
  3090. if (force == CHUNK_ALLOC_FORCE)
  3091. return 1;
  3092. /*
  3093. * We need to take into account the global rsv because for all intents
  3094. * and purposes it's used space. Don't worry about locking the
  3095. * global_rsv, it doesn't change except when the transaction commits.
  3096. */
  3097. if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
  3098. num_allocated += global_rsv->size;
  3099. /*
  3100. * in limited mode, we want to have some free space up to
  3101. * about 1% of the FS size.
  3102. */
  3103. if (force == CHUNK_ALLOC_LIMITED) {
  3104. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  3105. thresh = max_t(u64, 64 * 1024 * 1024,
  3106. div_factor_fine(thresh, 1));
  3107. if (num_bytes - num_allocated < thresh)
  3108. return 1;
  3109. }
  3110. if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
  3111. return 0;
  3112. return 1;
  3113. }
  3114. static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
  3115. {
  3116. u64 num_dev;
  3117. if (type & BTRFS_BLOCK_GROUP_RAID10 ||
  3118. type & BTRFS_BLOCK_GROUP_RAID0)
  3119. num_dev = root->fs_info->fs_devices->rw_devices;
  3120. else if (type & BTRFS_BLOCK_GROUP_RAID1)
  3121. num_dev = 2;
  3122. else
  3123. num_dev = 1; /* DUP or single */
  3124. /* metadata for updaing devices and chunk tree */
  3125. return btrfs_calc_trans_metadata_size(root, num_dev + 1);
  3126. }
  3127. static void check_system_chunk(struct btrfs_trans_handle *trans,
  3128. struct btrfs_root *root, u64 type)
  3129. {
  3130. struct btrfs_space_info *info;
  3131. u64 left;
  3132. u64 thresh;
  3133. info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3134. spin_lock(&info->lock);
  3135. left = info->total_bytes - info->bytes_used - info->bytes_pinned -
  3136. info->bytes_reserved - info->bytes_readonly;
  3137. spin_unlock(&info->lock);
  3138. thresh = get_system_chunk_thresh(root, type);
  3139. if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
  3140. printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
  3141. left, thresh, type);
  3142. dump_space_info(info, 0, 0);
  3143. }
  3144. if (left < thresh) {
  3145. u64 flags;
  3146. flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
  3147. btrfs_alloc_chunk(trans, root, flags);
  3148. }
  3149. }
  3150. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  3151. struct btrfs_root *extent_root, u64 flags, int force)
  3152. {
  3153. struct btrfs_space_info *space_info;
  3154. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  3155. int wait_for_alloc = 0;
  3156. int ret = 0;
  3157. space_info = __find_space_info(extent_root->fs_info, flags);
  3158. if (!space_info) {
  3159. ret = update_space_info(extent_root->fs_info, flags,
  3160. 0, 0, &space_info);
  3161. BUG_ON(ret); /* -ENOMEM */
  3162. }
  3163. BUG_ON(!space_info); /* Logic error */
  3164. again:
  3165. spin_lock(&space_info->lock);
  3166. if (force < space_info->force_alloc)
  3167. force = space_info->force_alloc;
  3168. if (space_info->full) {
  3169. spin_unlock(&space_info->lock);
  3170. return 0;
  3171. }
  3172. if (!should_alloc_chunk(extent_root, space_info, force)) {
  3173. spin_unlock(&space_info->lock);
  3174. return 0;
  3175. } else if (space_info->chunk_alloc) {
  3176. wait_for_alloc = 1;
  3177. } else {
  3178. space_info->chunk_alloc = 1;
  3179. }
  3180. spin_unlock(&space_info->lock);
  3181. mutex_lock(&fs_info->chunk_mutex);
  3182. /*
  3183. * The chunk_mutex is held throughout the entirety of a chunk
  3184. * allocation, so once we've acquired the chunk_mutex we know that the
  3185. * other guy is done and we need to recheck and see if we should
  3186. * allocate.
  3187. */
  3188. if (wait_for_alloc) {
  3189. mutex_unlock(&fs_info->chunk_mutex);
  3190. wait_for_alloc = 0;
  3191. goto again;
  3192. }
  3193. /*
  3194. * If we have mixed data/metadata chunks we want to make sure we keep
  3195. * allocating mixed chunks instead of individual chunks.
  3196. */
  3197. if (btrfs_mixed_space_info(space_info))
  3198. flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
  3199. /*
  3200. * if we're doing a data chunk, go ahead and make sure that
  3201. * we keep a reasonable number of metadata chunks allocated in the
  3202. * FS as well.
  3203. */
  3204. if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
  3205. fs_info->data_chunk_allocations++;
  3206. if (!(fs_info->data_chunk_allocations %
  3207. fs_info->metadata_ratio))
  3208. force_metadata_allocation(fs_info);
  3209. }
  3210. /*
  3211. * Check if we have enough space in SYSTEM chunk because we may need
  3212. * to update devices.
  3213. */
  3214. check_system_chunk(trans, extent_root, flags);
  3215. ret = btrfs_alloc_chunk(trans, extent_root, flags);
  3216. if (ret < 0 && ret != -ENOSPC)
  3217. goto out;
  3218. spin_lock(&space_info->lock);
  3219. if (ret)
  3220. space_info->full = 1;
  3221. else
  3222. ret = 1;
  3223. space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  3224. space_info->chunk_alloc = 0;
  3225. spin_unlock(&space_info->lock);
  3226. out:
  3227. mutex_unlock(&fs_info->chunk_mutex);
  3228. return ret;
  3229. }
  3230. static int can_overcommit(struct btrfs_root *root,
  3231. struct btrfs_space_info *space_info, u64 bytes,
  3232. enum btrfs_reserve_flush_enum flush)
  3233. {
  3234. u64 profile = btrfs_get_alloc_profile(root, 0);
  3235. u64 avail;
  3236. u64 used;
  3237. used = space_info->bytes_used + space_info->bytes_reserved +
  3238. space_info->bytes_pinned + space_info->bytes_readonly +
  3239. space_info->bytes_may_use;
  3240. spin_lock(&root->fs_info->free_chunk_lock);
  3241. avail = root->fs_info->free_chunk_space;
  3242. spin_unlock(&root->fs_info->free_chunk_lock);
  3243. /*
  3244. * If we have dup, raid1 or raid10 then only half of the free
  3245. * space is actually useable.
  3246. */
  3247. if (profile & (BTRFS_BLOCK_GROUP_DUP |
  3248. BTRFS_BLOCK_GROUP_RAID1 |
  3249. BTRFS_BLOCK_GROUP_RAID10))
  3250. avail >>= 1;
  3251. /*
  3252. * If we aren't flushing all things, let us overcommit up to
  3253. * 1/2th of the space. If we can flush, don't let us overcommit
  3254. * too much, let it overcommit up to 1/8 of the space.
  3255. */
  3256. if (flush == BTRFS_RESERVE_FLUSH_ALL)
  3257. avail >>= 3;
  3258. else
  3259. avail >>= 1;
  3260. if (used + bytes < space_info->total_bytes + avail)
  3261. return 1;
  3262. return 0;
  3263. }
  3264. /*
  3265. * shrink metadata reservation for delalloc
  3266. */
  3267. static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
  3268. bool wait_ordered)
  3269. {
  3270. struct btrfs_block_rsv *block_rsv;
  3271. struct btrfs_space_info *space_info;
  3272. struct btrfs_trans_handle *trans;
  3273. u64 delalloc_bytes;
  3274. u64 max_reclaim;
  3275. long time_left;
  3276. unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
  3277. int loops = 0;
  3278. enum btrfs_reserve_flush_enum flush;
  3279. trans = (struct btrfs_trans_handle *)current->journal_info;
  3280. block_rsv = &root->fs_info->delalloc_block_rsv;
  3281. space_info = block_rsv->space_info;
  3282. smp_mb();
  3283. delalloc_bytes = root->fs_info->delalloc_bytes;
  3284. if (delalloc_bytes == 0) {
  3285. if (trans)
  3286. return;
  3287. btrfs_wait_ordered_extents(root, 0);
  3288. return;
  3289. }
  3290. while (delalloc_bytes && loops < 3) {
  3291. max_reclaim = min(delalloc_bytes, to_reclaim);
  3292. nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
  3293. try_to_writeback_inodes_sb_nr(root->fs_info->sb,
  3294. nr_pages,
  3295. WB_REASON_FS_FREE_SPACE);
  3296. /*
  3297. * We need to wait for the async pages to actually start before
  3298. * we do anything.
  3299. */
  3300. wait_event(root->fs_info->async_submit_wait,
  3301. !atomic_read(&root->fs_info->async_delalloc_pages));
  3302. if (!trans)
  3303. flush = BTRFS_RESERVE_FLUSH_ALL;
  3304. else
  3305. flush = BTRFS_RESERVE_NO_FLUSH;
  3306. spin_lock(&space_info->lock);
  3307. if (can_overcommit(root, space_info, orig, flush)) {
  3308. spin_unlock(&space_info->lock);
  3309. break;
  3310. }
  3311. spin_unlock(&space_info->lock);
  3312. loops++;
  3313. if (wait_ordered && !trans) {
  3314. btrfs_wait_ordered_extents(root, 0);
  3315. } else {
  3316. time_left = schedule_timeout_killable(1);
  3317. if (time_left)
  3318. break;
  3319. }
  3320. smp_mb();
  3321. delalloc_bytes = root->fs_info->delalloc_bytes;
  3322. }
  3323. }
  3324. /**
  3325. * maybe_commit_transaction - possibly commit the transaction if its ok to
  3326. * @root - the root we're allocating for
  3327. * @bytes - the number of bytes we want to reserve
  3328. * @force - force the commit
  3329. *
  3330. * This will check to make sure that committing the transaction will actually
  3331. * get us somewhere and then commit the transaction if it does. Otherwise it
  3332. * will return -ENOSPC.
  3333. */
  3334. static int may_commit_transaction(struct btrfs_root *root,
  3335. struct btrfs_space_info *space_info,
  3336. u64 bytes, int force)
  3337. {
  3338. struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
  3339. struct btrfs_trans_handle *trans;
  3340. trans = (struct btrfs_trans_handle *)current->journal_info;
  3341. if (trans)
  3342. return -EAGAIN;
  3343. if (force)
  3344. goto commit;
  3345. /* See if there is enough pinned space to make this reservation */
  3346. spin_lock(&space_info->lock);
  3347. if (space_info->bytes_pinned >= bytes) {
  3348. spin_unlock(&space_info->lock);
  3349. goto commit;
  3350. }
  3351. spin_unlock(&space_info->lock);
  3352. /*
  3353. * See if there is some space in the delayed insertion reservation for
  3354. * this reservation.
  3355. */
  3356. if (space_info != delayed_rsv->space_info)
  3357. return -ENOSPC;
  3358. spin_lock(&space_info->lock);
  3359. spin_lock(&delayed_rsv->lock);
  3360. if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
  3361. spin_unlock(&delayed_rsv->lock);
  3362. spin_unlock(&space_info->lock);
  3363. return -ENOSPC;
  3364. }
  3365. spin_unlock(&delayed_rsv->lock);
  3366. spin_unlock(&space_info->lock);
  3367. commit:
  3368. trans = btrfs_join_transaction(root);
  3369. if (IS_ERR(trans))
  3370. return -ENOSPC;
  3371. return btrfs_commit_transaction(trans, root);
  3372. }
  3373. enum flush_state {
  3374. FLUSH_DELAYED_ITEMS_NR = 1,
  3375. FLUSH_DELAYED_ITEMS = 2,
  3376. FLUSH_DELALLOC = 3,
  3377. FLUSH_DELALLOC_WAIT = 4,
  3378. ALLOC_CHUNK = 5,
  3379. COMMIT_TRANS = 6,
  3380. };
  3381. static int flush_space(struct btrfs_root *root,
  3382. struct btrfs_space_info *space_info, u64 num_bytes,
  3383. u64 orig_bytes, int state)
  3384. {
  3385. struct btrfs_trans_handle *trans;
  3386. int nr;
  3387. int ret = 0;
  3388. switch (state) {
  3389. case FLUSH_DELAYED_ITEMS_NR:
  3390. case FLUSH_DELAYED_ITEMS:
  3391. if (state == FLUSH_DELAYED_ITEMS_NR) {
  3392. u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
  3393. nr = (int)div64_u64(num_bytes, bytes);
  3394. if (!nr)
  3395. nr = 1;
  3396. nr *= 2;
  3397. } else {
  3398. nr = -1;
  3399. }
  3400. trans = btrfs_join_transaction(root);
  3401. if (IS_ERR(trans)) {
  3402. ret = PTR_ERR(trans);
  3403. break;
  3404. }
  3405. ret = btrfs_run_delayed_items_nr(trans, root, nr);
  3406. btrfs_end_transaction(trans, root);
  3407. break;
  3408. case FLUSH_DELALLOC:
  3409. case FLUSH_DELALLOC_WAIT:
  3410. shrink_delalloc(root, num_bytes, orig_bytes,
  3411. state == FLUSH_DELALLOC_WAIT);
  3412. break;
  3413. case ALLOC_CHUNK:
  3414. trans = btrfs_join_transaction(root);
  3415. if (IS_ERR(trans)) {
  3416. ret = PTR_ERR(trans);
  3417. break;
  3418. }
  3419. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  3420. btrfs_get_alloc_profile(root, 0),
  3421. CHUNK_ALLOC_NO_FORCE);
  3422. btrfs_end_transaction(trans, root);
  3423. if (ret == -ENOSPC)
  3424. ret = 0;
  3425. break;
  3426. case COMMIT_TRANS:
  3427. ret = may_commit_transaction(root, space_info, orig_bytes, 0);
  3428. break;
  3429. default:
  3430. ret = -ENOSPC;
  3431. break;
  3432. }
  3433. return ret;
  3434. }
  3435. /**
  3436. * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
  3437. * @root - the root we're allocating for
  3438. * @block_rsv - the block_rsv we're allocating for
  3439. * @orig_bytes - the number of bytes we want
  3440. * @flush - whether or not we can flush to make our reservation
  3441. *
  3442. * This will reserve orgi_bytes number of bytes from the space info associated
  3443. * with the block_rsv. If there is not enough space it will make an attempt to
  3444. * flush out space to make room. It will do this by flushing delalloc if
  3445. * possible or committing the transaction. If flush is 0 then no attempts to
  3446. * regain reservations will be made and this will fail if there is not enough
  3447. * space already.
  3448. */
  3449. static int reserve_metadata_bytes(struct btrfs_root *root,
  3450. struct btrfs_block_rsv *block_rsv,
  3451. u64 orig_bytes,
  3452. enum btrfs_reserve_flush_enum flush)
  3453. {
  3454. struct btrfs_space_info *space_info = block_rsv->space_info;
  3455. u64 used;
  3456. u64 num_bytes = orig_bytes;
  3457. int flush_state = FLUSH_DELAYED_ITEMS_NR;
  3458. int ret = 0;
  3459. bool flushing = false;
  3460. again:
  3461. ret = 0;
  3462. spin_lock(&space_info->lock);
  3463. /*
  3464. * We only want to wait if somebody other than us is flushing and we
  3465. * are actually allowed to flush all things.
  3466. */
  3467. while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
  3468. space_info->flush) {
  3469. spin_unlock(&space_info->lock);
  3470. /*
  3471. * If we have a trans handle we can't wait because the flusher
  3472. * may have to commit the transaction, which would mean we would
  3473. * deadlock since we are waiting for the flusher to finish, but
  3474. * hold the current transaction open.
  3475. */
  3476. if (current->journal_info)
  3477. return -EAGAIN;
  3478. ret = wait_event_killable(space_info->wait, !space_info->flush);
  3479. /* Must have been killed, return */
  3480. if (ret)
  3481. return -EINTR;
  3482. spin_lock(&space_info->lock);
  3483. }
  3484. ret = -ENOSPC;
  3485. used = space_info->bytes_used + space_info->bytes_reserved +
  3486. space_info->bytes_pinned + space_info->bytes_readonly +
  3487. space_info->bytes_may_use;
  3488. /*
  3489. * The idea here is that we've not already over-reserved the block group
  3490. * then we can go ahead and save our reservation first and then start
  3491. * flushing if we need to. Otherwise if we've already overcommitted
  3492. * lets start flushing stuff first and then come back and try to make
  3493. * our reservation.
  3494. */
  3495. if (used <= space_info->total_bytes) {
  3496. if (used + orig_bytes <= space_info->total_bytes) {
  3497. space_info->bytes_may_use += orig_bytes;
  3498. trace_btrfs_space_reservation(root->fs_info,
  3499. "space_info", space_info->flags, orig_bytes, 1);
  3500. ret = 0;
  3501. } else {
  3502. /*
  3503. * Ok set num_bytes to orig_bytes since we aren't
  3504. * overocmmitted, this way we only try and reclaim what
  3505. * we need.
  3506. */
  3507. num_bytes = orig_bytes;
  3508. }
  3509. } else {
  3510. /*
  3511. * Ok we're over committed, set num_bytes to the overcommitted
  3512. * amount plus the amount of bytes that we need for this
  3513. * reservation.
  3514. */
  3515. num_bytes = used - space_info->total_bytes +
  3516. (orig_bytes * 2);
  3517. }
  3518. if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
  3519. space_info->bytes_may_use += orig_bytes;
  3520. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3521. space_info->flags, orig_bytes,
  3522. 1);
  3523. ret = 0;
  3524. }
  3525. /*
  3526. * Couldn't make our reservation, save our place so while we're trying
  3527. * to reclaim space we can actually use it instead of somebody else
  3528. * stealing it from us.
  3529. *
  3530. * We make the other tasks wait for the flush only when we can flush
  3531. * all things.
  3532. */
  3533. if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
  3534. flushing = true;
  3535. space_info->flush = 1;
  3536. }
  3537. spin_unlock(&space_info->lock);
  3538. if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
  3539. goto out;
  3540. ret = flush_space(root, space_info, num_bytes, orig_bytes,
  3541. flush_state);
  3542. flush_state++;
  3543. /*
  3544. * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
  3545. * would happen. So skip delalloc flush.
  3546. */
  3547. if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
  3548. (flush_state == FLUSH_DELALLOC ||
  3549. flush_state == FLUSH_DELALLOC_WAIT))
  3550. flush_state = ALLOC_CHUNK;
  3551. if (!ret)
  3552. goto again;
  3553. else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
  3554. flush_state < COMMIT_TRANS)
  3555. goto again;
  3556. else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
  3557. flush_state <= COMMIT_TRANS)
  3558. goto again;
  3559. out:
  3560. if (flushing) {
  3561. spin_lock(&space_info->lock);
  3562. space_info->flush = 0;
  3563. wake_up_all(&space_info->wait);
  3564. spin_unlock(&space_info->lock);
  3565. }
  3566. return ret;
  3567. }
  3568. static struct btrfs_block_rsv *get_block_rsv(
  3569. const struct btrfs_trans_handle *trans,
  3570. const struct btrfs_root *root)
  3571. {
  3572. struct btrfs_block_rsv *block_rsv = NULL;
  3573. if (root->ref_cows)
  3574. block_rsv = trans->block_rsv;
  3575. if (root == root->fs_info->csum_root && trans->adding_csums)
  3576. block_rsv = trans->block_rsv;
  3577. if (!block_rsv)
  3578. block_rsv = root->block_rsv;
  3579. if (!block_rsv)
  3580. block_rsv = &root->fs_info->empty_block_rsv;
  3581. return block_rsv;
  3582. }
  3583. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  3584. u64 num_bytes)
  3585. {
  3586. int ret = -ENOSPC;
  3587. spin_lock(&block_rsv->lock);
  3588. if (block_rsv->reserved >= num_bytes) {
  3589. block_rsv->reserved -= num_bytes;
  3590. if (block_rsv->reserved < block_rsv->size)
  3591. block_rsv->full = 0;
  3592. ret = 0;
  3593. }
  3594. spin_unlock(&block_rsv->lock);
  3595. return ret;
  3596. }
  3597. static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
  3598. u64 num_bytes, int update_size)
  3599. {
  3600. spin_lock(&block_rsv->lock);
  3601. block_rsv->reserved += num_bytes;
  3602. if (update_size)
  3603. block_rsv->size += num_bytes;
  3604. else if (block_rsv->reserved >= block_rsv->size)
  3605. block_rsv->full = 1;
  3606. spin_unlock(&block_rsv->lock);
  3607. }
  3608. static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
  3609. struct btrfs_block_rsv *block_rsv,
  3610. struct btrfs_block_rsv *dest, u64 num_bytes)
  3611. {
  3612. struct btrfs_space_info *space_info = block_rsv->space_info;
  3613. spin_lock(&block_rsv->lock);
  3614. if (num_bytes == (u64)-1)
  3615. num_bytes = block_rsv->size;
  3616. block_rsv->size -= num_bytes;
  3617. if (block_rsv->reserved >= block_rsv->size) {
  3618. num_bytes = block_rsv->reserved - block_rsv->size;
  3619. block_rsv->reserved = block_rsv->size;
  3620. block_rsv->full = 1;
  3621. } else {
  3622. num_bytes = 0;
  3623. }
  3624. spin_unlock(&block_rsv->lock);
  3625. if (num_bytes > 0) {
  3626. if (dest) {
  3627. spin_lock(&dest->lock);
  3628. if (!dest->full) {
  3629. u64 bytes_to_add;
  3630. bytes_to_add = dest->size - dest->reserved;
  3631. bytes_to_add = min(num_bytes, bytes_to_add);
  3632. dest->reserved += bytes_to_add;
  3633. if (dest->reserved >= dest->size)
  3634. dest->full = 1;
  3635. num_bytes -= bytes_to_add;
  3636. }
  3637. spin_unlock(&dest->lock);
  3638. }
  3639. if (num_bytes) {
  3640. spin_lock(&space_info->lock);
  3641. space_info->bytes_may_use -= num_bytes;
  3642. trace_btrfs_space_reservation(fs_info, "space_info",
  3643. space_info->flags, num_bytes, 0);
  3644. space_info->reservation_progress++;
  3645. spin_unlock(&space_info->lock);
  3646. }
  3647. }
  3648. }
  3649. static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
  3650. struct btrfs_block_rsv *dst, u64 num_bytes)
  3651. {
  3652. int ret;
  3653. ret = block_rsv_use_bytes(src, num_bytes);
  3654. if (ret)
  3655. return ret;
  3656. block_rsv_add_bytes(dst, num_bytes, 1);
  3657. return 0;
  3658. }
  3659. void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
  3660. {
  3661. memset(rsv, 0, sizeof(*rsv));
  3662. spin_lock_init(&rsv->lock);
  3663. rsv->type = type;
  3664. }
  3665. struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
  3666. unsigned short type)
  3667. {
  3668. struct btrfs_block_rsv *block_rsv;
  3669. struct btrfs_fs_info *fs_info = root->fs_info;
  3670. block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
  3671. if (!block_rsv)
  3672. return NULL;
  3673. btrfs_init_block_rsv(block_rsv, type);
  3674. block_rsv->space_info = __find_space_info(fs_info,
  3675. BTRFS_BLOCK_GROUP_METADATA);
  3676. return block_rsv;
  3677. }
  3678. void btrfs_free_block_rsv(struct btrfs_root *root,
  3679. struct btrfs_block_rsv *rsv)
  3680. {
  3681. if (!rsv)
  3682. return;
  3683. btrfs_block_rsv_release(root, rsv, (u64)-1);
  3684. kfree(rsv);
  3685. }
  3686. int btrfs_block_rsv_add(struct btrfs_root *root,
  3687. struct btrfs_block_rsv *block_rsv, u64 num_bytes,
  3688. enum btrfs_reserve_flush_enum flush)
  3689. {
  3690. int ret;
  3691. if (num_bytes == 0)
  3692. return 0;
  3693. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3694. if (!ret) {
  3695. block_rsv_add_bytes(block_rsv, num_bytes, 1);
  3696. return 0;
  3697. }
  3698. return ret;
  3699. }
  3700. int btrfs_block_rsv_check(struct btrfs_root *root,
  3701. struct btrfs_block_rsv *block_rsv, int min_factor)
  3702. {
  3703. u64 num_bytes = 0;
  3704. int ret = -ENOSPC;
  3705. if (!block_rsv)
  3706. return 0;
  3707. spin_lock(&block_rsv->lock);
  3708. num_bytes = div_factor(block_rsv->size, min_factor);
  3709. if (block_rsv->reserved >= num_bytes)
  3710. ret = 0;
  3711. spin_unlock(&block_rsv->lock);
  3712. return ret;
  3713. }
  3714. int btrfs_block_rsv_refill(struct btrfs_root *root,
  3715. struct btrfs_block_rsv *block_rsv, u64 min_reserved,
  3716. enum btrfs_reserve_flush_enum flush)
  3717. {
  3718. u64 num_bytes = 0;
  3719. int ret = -ENOSPC;
  3720. if (!block_rsv)
  3721. return 0;
  3722. spin_lock(&block_rsv->lock);
  3723. num_bytes = min_reserved;
  3724. if (block_rsv->reserved >= num_bytes)
  3725. ret = 0;
  3726. else
  3727. num_bytes -= block_rsv->reserved;
  3728. spin_unlock(&block_rsv->lock);
  3729. if (!ret)
  3730. return 0;
  3731. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3732. if (!ret) {
  3733. block_rsv_add_bytes(block_rsv, num_bytes, 0);
  3734. return 0;
  3735. }
  3736. return ret;
  3737. }
  3738. int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
  3739. struct btrfs_block_rsv *dst_rsv,
  3740. u64 num_bytes)
  3741. {
  3742. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3743. }
  3744. void btrfs_block_rsv_release(struct btrfs_root *root,
  3745. struct btrfs_block_rsv *block_rsv,
  3746. u64 num_bytes)
  3747. {
  3748. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3749. if (global_rsv->full || global_rsv == block_rsv ||
  3750. block_rsv->space_info != global_rsv->space_info)
  3751. global_rsv = NULL;
  3752. block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
  3753. num_bytes);
  3754. }
  3755. /*
  3756. * helper to calculate size of global block reservation.
  3757. * the desired value is sum of space used by extent tree,
  3758. * checksum tree and root tree
  3759. */
  3760. static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
  3761. {
  3762. struct btrfs_space_info *sinfo;
  3763. u64 num_bytes;
  3764. u64 meta_used;
  3765. u64 data_used;
  3766. int csum_size = btrfs_super_csum_size(fs_info->super_copy);
  3767. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
  3768. spin_lock(&sinfo->lock);
  3769. data_used = sinfo->bytes_used;
  3770. spin_unlock(&sinfo->lock);
  3771. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3772. spin_lock(&sinfo->lock);
  3773. if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
  3774. data_used = 0;
  3775. meta_used = sinfo->bytes_used;
  3776. spin_unlock(&sinfo->lock);
  3777. num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
  3778. csum_size * 2;
  3779. num_bytes += div64_u64(data_used + meta_used, 50);
  3780. if (num_bytes * 3 > meta_used)
  3781. num_bytes = div64_u64(meta_used, 3);
  3782. return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
  3783. }
  3784. static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
  3785. {
  3786. struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
  3787. struct btrfs_space_info *sinfo = block_rsv->space_info;
  3788. u64 num_bytes;
  3789. num_bytes = calc_global_metadata_size(fs_info);
  3790. spin_lock(&sinfo->lock);
  3791. spin_lock(&block_rsv->lock);
  3792. block_rsv->size = num_bytes;
  3793. num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
  3794. sinfo->bytes_reserved + sinfo->bytes_readonly +
  3795. sinfo->bytes_may_use;
  3796. if (sinfo->total_bytes > num_bytes) {
  3797. num_bytes = sinfo->total_bytes - num_bytes;
  3798. block_rsv->reserved += num_bytes;
  3799. sinfo->bytes_may_use += num_bytes;
  3800. trace_btrfs_space_reservation(fs_info, "space_info",
  3801. sinfo->flags, num_bytes, 1);
  3802. }
  3803. if (block_rsv->reserved >= block_rsv->size) {
  3804. num_bytes = block_rsv->reserved - block_rsv->size;
  3805. sinfo->bytes_may_use -= num_bytes;
  3806. trace_btrfs_space_reservation(fs_info, "space_info",
  3807. sinfo->flags, num_bytes, 0);
  3808. sinfo->reservation_progress++;
  3809. block_rsv->reserved = block_rsv->size;
  3810. block_rsv->full = 1;
  3811. }
  3812. spin_unlock(&block_rsv->lock);
  3813. spin_unlock(&sinfo->lock);
  3814. }
  3815. static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
  3816. {
  3817. struct btrfs_space_info *space_info;
  3818. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3819. fs_info->chunk_block_rsv.space_info = space_info;
  3820. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3821. fs_info->global_block_rsv.space_info = space_info;
  3822. fs_info->delalloc_block_rsv.space_info = space_info;
  3823. fs_info->trans_block_rsv.space_info = space_info;
  3824. fs_info->empty_block_rsv.space_info = space_info;
  3825. fs_info->delayed_block_rsv.space_info = space_info;
  3826. fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
  3827. fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
  3828. fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
  3829. fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
  3830. fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
  3831. update_global_block_rsv(fs_info);
  3832. }
  3833. static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
  3834. {
  3835. block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
  3836. (u64)-1);
  3837. WARN_ON(fs_info->delalloc_block_rsv.size > 0);
  3838. WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
  3839. WARN_ON(fs_info->trans_block_rsv.size > 0);
  3840. WARN_ON(fs_info->trans_block_rsv.reserved > 0);
  3841. WARN_ON(fs_info->chunk_block_rsv.size > 0);
  3842. WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
  3843. WARN_ON(fs_info->delayed_block_rsv.size > 0);
  3844. WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
  3845. }
  3846. void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
  3847. struct btrfs_root *root)
  3848. {
  3849. if (!trans->block_rsv)
  3850. return;
  3851. if (!trans->bytes_reserved)
  3852. return;
  3853. trace_btrfs_space_reservation(root->fs_info, "transaction",
  3854. trans->transid, trans->bytes_reserved, 0);
  3855. btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
  3856. trans->bytes_reserved = 0;
  3857. }
  3858. /* Can only return 0 or -ENOSPC */
  3859. int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
  3860. struct inode *inode)
  3861. {
  3862. struct btrfs_root *root = BTRFS_I(inode)->root;
  3863. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3864. struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
  3865. /*
  3866. * We need to hold space in order to delete our orphan item once we've
  3867. * added it, so this takes the reservation so we can release it later
  3868. * when we are truly done with the orphan item.
  3869. */
  3870. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3871. trace_btrfs_space_reservation(root->fs_info, "orphan",
  3872. btrfs_ino(inode), num_bytes, 1);
  3873. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3874. }
  3875. void btrfs_orphan_release_metadata(struct inode *inode)
  3876. {
  3877. struct btrfs_root *root = BTRFS_I(inode)->root;
  3878. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3879. trace_btrfs_space_reservation(root->fs_info, "orphan",
  3880. btrfs_ino(inode), num_bytes, 0);
  3881. btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
  3882. }
  3883. int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
  3884. struct btrfs_pending_snapshot *pending)
  3885. {
  3886. struct btrfs_root *root = pending->root;
  3887. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3888. struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
  3889. /*
  3890. * two for root back/forward refs, two for directory entries,
  3891. * one for root of the snapshot and one for parent inode.
  3892. */
  3893. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6);
  3894. dst_rsv->space_info = src_rsv->space_info;
  3895. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3896. }
  3897. /**
  3898. * drop_outstanding_extent - drop an outstanding extent
  3899. * @inode: the inode we're dropping the extent for
  3900. *
  3901. * This is called when we are freeing up an outstanding extent, either called
  3902. * after an error or after an extent is written. This will return the number of
  3903. * reserved extents that need to be freed. This must be called with
  3904. * BTRFS_I(inode)->lock held.
  3905. */
  3906. static unsigned drop_outstanding_extent(struct inode *inode)
  3907. {
  3908. unsigned drop_inode_space = 0;
  3909. unsigned dropped_extents = 0;
  3910. BUG_ON(!BTRFS_I(inode)->outstanding_extents);
  3911. BTRFS_I(inode)->outstanding_extents--;
  3912. if (BTRFS_I(inode)->outstanding_extents == 0 &&
  3913. test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  3914. &BTRFS_I(inode)->runtime_flags))
  3915. drop_inode_space = 1;
  3916. /*
  3917. * If we have more or the same amount of outsanding extents than we have
  3918. * reserved then we need to leave the reserved extents count alone.
  3919. */
  3920. if (BTRFS_I(inode)->outstanding_extents >=
  3921. BTRFS_I(inode)->reserved_extents)
  3922. return drop_inode_space;
  3923. dropped_extents = BTRFS_I(inode)->reserved_extents -
  3924. BTRFS_I(inode)->outstanding_extents;
  3925. BTRFS_I(inode)->reserved_extents -= dropped_extents;
  3926. return dropped_extents + drop_inode_space;
  3927. }
  3928. /**
  3929. * calc_csum_metadata_size - return the amount of metada space that must be
  3930. * reserved/free'd for the given bytes.
  3931. * @inode: the inode we're manipulating
  3932. * @num_bytes: the number of bytes in question
  3933. * @reserve: 1 if we are reserving space, 0 if we are freeing space
  3934. *
  3935. * This adjusts the number of csum_bytes in the inode and then returns the
  3936. * correct amount of metadata that must either be reserved or freed. We
  3937. * calculate how many checksums we can fit into one leaf and then divide the
  3938. * number of bytes that will need to be checksumed by this value to figure out
  3939. * how many checksums will be required. If we are adding bytes then the number
  3940. * may go up and we will return the number of additional bytes that must be
  3941. * reserved. If it is going down we will return the number of bytes that must
  3942. * be freed.
  3943. *
  3944. * This must be called with BTRFS_I(inode)->lock held.
  3945. */
  3946. static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
  3947. int reserve)
  3948. {
  3949. struct btrfs_root *root = BTRFS_I(inode)->root;
  3950. u64 csum_size;
  3951. int num_csums_per_leaf;
  3952. int num_csums;
  3953. int old_csums;
  3954. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
  3955. BTRFS_I(inode)->csum_bytes == 0)
  3956. return 0;
  3957. old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3958. if (reserve)
  3959. BTRFS_I(inode)->csum_bytes += num_bytes;
  3960. else
  3961. BTRFS_I(inode)->csum_bytes -= num_bytes;
  3962. csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
  3963. num_csums_per_leaf = (int)div64_u64(csum_size,
  3964. sizeof(struct btrfs_csum_item) +
  3965. sizeof(struct btrfs_disk_key));
  3966. num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3967. num_csums = num_csums + num_csums_per_leaf - 1;
  3968. num_csums = num_csums / num_csums_per_leaf;
  3969. old_csums = old_csums + num_csums_per_leaf - 1;
  3970. old_csums = old_csums / num_csums_per_leaf;
  3971. /* No change, no need to reserve more */
  3972. if (old_csums == num_csums)
  3973. return 0;
  3974. if (reserve)
  3975. return btrfs_calc_trans_metadata_size(root,
  3976. num_csums - old_csums);
  3977. return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
  3978. }
  3979. int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
  3980. {
  3981. struct btrfs_root *root = BTRFS_I(inode)->root;
  3982. struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
  3983. u64 to_reserve = 0;
  3984. u64 csum_bytes;
  3985. unsigned nr_extents = 0;
  3986. int extra_reserve = 0;
  3987. enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
  3988. int ret = 0;
  3989. bool delalloc_lock = true;
  3990. /* If we are a free space inode we need to not flush since we will be in
  3991. * the middle of a transaction commit. We also don't need the delalloc
  3992. * mutex since we won't race with anybody. We need this mostly to make
  3993. * lockdep shut its filthy mouth.
  3994. */
  3995. if (btrfs_is_free_space_inode(inode)) {
  3996. flush = BTRFS_RESERVE_NO_FLUSH;
  3997. delalloc_lock = false;
  3998. }
  3999. if (flush != BTRFS_RESERVE_NO_FLUSH &&
  4000. btrfs_transaction_in_commit(root->fs_info))
  4001. schedule_timeout(1);
  4002. if (delalloc_lock)
  4003. mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
  4004. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4005. spin_lock(&BTRFS_I(inode)->lock);
  4006. BTRFS_I(inode)->outstanding_extents++;
  4007. if (BTRFS_I(inode)->outstanding_extents >
  4008. BTRFS_I(inode)->reserved_extents)
  4009. nr_extents = BTRFS_I(inode)->outstanding_extents -
  4010. BTRFS_I(inode)->reserved_extents;
  4011. /*
  4012. * Add an item to reserve for updating the inode when we complete the
  4013. * delalloc io.
  4014. */
  4015. if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4016. &BTRFS_I(inode)->runtime_flags)) {
  4017. nr_extents++;
  4018. extra_reserve = 1;
  4019. }
  4020. to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
  4021. to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
  4022. csum_bytes = BTRFS_I(inode)->csum_bytes;
  4023. spin_unlock(&BTRFS_I(inode)->lock);
  4024. if (root->fs_info->quota_enabled)
  4025. ret = btrfs_qgroup_reserve(root, num_bytes +
  4026. nr_extents * root->leafsize);
  4027. /*
  4028. * ret != 0 here means the qgroup reservation failed, we go straight to
  4029. * the shared error handling then.
  4030. */
  4031. if (ret == 0)
  4032. ret = reserve_metadata_bytes(root, block_rsv,
  4033. to_reserve, flush);
  4034. if (ret) {
  4035. u64 to_free = 0;
  4036. unsigned dropped;
  4037. spin_lock(&BTRFS_I(inode)->lock);
  4038. dropped = drop_outstanding_extent(inode);
  4039. /*
  4040. * If the inodes csum_bytes is the same as the original
  4041. * csum_bytes then we know we haven't raced with any free()ers
  4042. * so we can just reduce our inodes csum bytes and carry on.
  4043. * Otherwise we have to do the normal free thing to account for
  4044. * the case that the free side didn't free up its reserve
  4045. * because of this outstanding reservation.
  4046. */
  4047. if (BTRFS_I(inode)->csum_bytes == csum_bytes)
  4048. calc_csum_metadata_size(inode, num_bytes, 0);
  4049. else
  4050. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  4051. spin_unlock(&BTRFS_I(inode)->lock);
  4052. if (dropped)
  4053. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4054. if (to_free) {
  4055. btrfs_block_rsv_release(root, block_rsv, to_free);
  4056. trace_btrfs_space_reservation(root->fs_info,
  4057. "delalloc",
  4058. btrfs_ino(inode),
  4059. to_free, 0);
  4060. }
  4061. if (root->fs_info->quota_enabled) {
  4062. btrfs_qgroup_free(root, num_bytes +
  4063. nr_extents * root->leafsize);
  4064. }
  4065. if (delalloc_lock)
  4066. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4067. return ret;
  4068. }
  4069. spin_lock(&BTRFS_I(inode)->lock);
  4070. if (extra_reserve) {
  4071. set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4072. &BTRFS_I(inode)->runtime_flags);
  4073. nr_extents--;
  4074. }
  4075. BTRFS_I(inode)->reserved_extents += nr_extents;
  4076. spin_unlock(&BTRFS_I(inode)->lock);
  4077. if (delalloc_lock)
  4078. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4079. if (to_reserve)
  4080. trace_btrfs_space_reservation(root->fs_info,"delalloc",
  4081. btrfs_ino(inode), to_reserve, 1);
  4082. block_rsv_add_bytes(block_rsv, to_reserve, 1);
  4083. return 0;
  4084. }
  4085. /**
  4086. * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
  4087. * @inode: the inode to release the reservation for
  4088. * @num_bytes: the number of bytes we're releasing
  4089. *
  4090. * This will release the metadata reservation for an inode. This can be called
  4091. * once we complete IO for a given set of bytes to release their metadata
  4092. * reservations.
  4093. */
  4094. void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
  4095. {
  4096. struct btrfs_root *root = BTRFS_I(inode)->root;
  4097. u64 to_free = 0;
  4098. unsigned dropped;
  4099. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4100. spin_lock(&BTRFS_I(inode)->lock);
  4101. dropped = drop_outstanding_extent(inode);
  4102. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  4103. spin_unlock(&BTRFS_I(inode)->lock);
  4104. if (dropped > 0)
  4105. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4106. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  4107. btrfs_ino(inode), to_free, 0);
  4108. if (root->fs_info->quota_enabled) {
  4109. btrfs_qgroup_free(root, num_bytes +
  4110. dropped * root->leafsize);
  4111. }
  4112. btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
  4113. to_free);
  4114. }
  4115. /**
  4116. * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
  4117. * @inode: inode we're writing to
  4118. * @num_bytes: the number of bytes we want to allocate
  4119. *
  4120. * This will do the following things
  4121. *
  4122. * o reserve space in the data space info for num_bytes
  4123. * o reserve space in the metadata space info based on number of outstanding
  4124. * extents and how much csums will be needed
  4125. * o add to the inodes ->delalloc_bytes
  4126. * o add it to the fs_info's delalloc inodes list.
  4127. *
  4128. * This will return 0 for success and -ENOSPC if there is no space left.
  4129. */
  4130. int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
  4131. {
  4132. int ret;
  4133. ret = btrfs_check_data_free_space(inode, num_bytes);
  4134. if (ret)
  4135. return ret;
  4136. ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
  4137. if (ret) {
  4138. btrfs_free_reserved_data_space(inode, num_bytes);
  4139. return ret;
  4140. }
  4141. return 0;
  4142. }
  4143. /**
  4144. * btrfs_delalloc_release_space - release data and metadata space for delalloc
  4145. * @inode: inode we're releasing space for
  4146. * @num_bytes: the number of bytes we want to free up
  4147. *
  4148. * This must be matched with a call to btrfs_delalloc_reserve_space. This is
  4149. * called in the case that we don't need the metadata AND data reservations
  4150. * anymore. So if there is an error or we insert an inline extent.
  4151. *
  4152. * This function will release the metadata space that was not used and will
  4153. * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
  4154. * list if there are no delalloc bytes left.
  4155. */
  4156. void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
  4157. {
  4158. btrfs_delalloc_release_metadata(inode, num_bytes);
  4159. btrfs_free_reserved_data_space(inode, num_bytes);
  4160. }
  4161. static int update_block_group(struct btrfs_trans_handle *trans,
  4162. struct btrfs_root *root,
  4163. u64 bytenr, u64 num_bytes, int alloc)
  4164. {
  4165. struct btrfs_block_group_cache *cache = NULL;
  4166. struct btrfs_fs_info *info = root->fs_info;
  4167. u64 total = num_bytes;
  4168. u64 old_val;
  4169. u64 byte_in_group;
  4170. int factor;
  4171. /* block accounting for super block */
  4172. spin_lock(&info->delalloc_lock);
  4173. old_val = btrfs_super_bytes_used(info->super_copy);
  4174. if (alloc)
  4175. old_val += num_bytes;
  4176. else
  4177. old_val -= num_bytes;
  4178. btrfs_set_super_bytes_used(info->super_copy, old_val);
  4179. spin_unlock(&info->delalloc_lock);
  4180. while (total) {
  4181. cache = btrfs_lookup_block_group(info, bytenr);
  4182. if (!cache)
  4183. return -ENOENT;
  4184. if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
  4185. BTRFS_BLOCK_GROUP_RAID1 |
  4186. BTRFS_BLOCK_GROUP_RAID10))
  4187. factor = 2;
  4188. else
  4189. factor = 1;
  4190. /*
  4191. * If this block group has free space cache written out, we
  4192. * need to make sure to load it if we are removing space. This
  4193. * is because we need the unpinning stage to actually add the
  4194. * space back to the block group, otherwise we will leak space.
  4195. */
  4196. if (!alloc && cache->cached == BTRFS_CACHE_NO)
  4197. cache_block_group(cache, trans, NULL, 1);
  4198. byte_in_group = bytenr - cache->key.objectid;
  4199. WARN_ON(byte_in_group > cache->key.offset);
  4200. spin_lock(&cache->space_info->lock);
  4201. spin_lock(&cache->lock);
  4202. if (btrfs_test_opt(root, SPACE_CACHE) &&
  4203. cache->disk_cache_state < BTRFS_DC_CLEAR)
  4204. cache->disk_cache_state = BTRFS_DC_CLEAR;
  4205. cache->dirty = 1;
  4206. old_val = btrfs_block_group_used(&cache->item);
  4207. num_bytes = min(total, cache->key.offset - byte_in_group);
  4208. if (alloc) {
  4209. old_val += num_bytes;
  4210. btrfs_set_block_group_used(&cache->item, old_val);
  4211. cache->reserved -= num_bytes;
  4212. cache->space_info->bytes_reserved -= num_bytes;
  4213. cache->space_info->bytes_used += num_bytes;
  4214. cache->space_info->disk_used += num_bytes * factor;
  4215. spin_unlock(&cache->lock);
  4216. spin_unlock(&cache->space_info->lock);
  4217. } else {
  4218. old_val -= num_bytes;
  4219. btrfs_set_block_group_used(&cache->item, old_val);
  4220. cache->pinned += num_bytes;
  4221. cache->space_info->bytes_pinned += num_bytes;
  4222. cache->space_info->bytes_used -= num_bytes;
  4223. cache->space_info->disk_used -= num_bytes * factor;
  4224. spin_unlock(&cache->lock);
  4225. spin_unlock(&cache->space_info->lock);
  4226. set_extent_dirty(info->pinned_extents,
  4227. bytenr, bytenr + num_bytes - 1,
  4228. GFP_NOFS | __GFP_NOFAIL);
  4229. }
  4230. btrfs_put_block_group(cache);
  4231. total -= num_bytes;
  4232. bytenr += num_bytes;
  4233. }
  4234. return 0;
  4235. }
  4236. static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
  4237. {
  4238. struct btrfs_block_group_cache *cache;
  4239. u64 bytenr;
  4240. cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
  4241. if (!cache)
  4242. return 0;
  4243. bytenr = cache->key.objectid;
  4244. btrfs_put_block_group(cache);
  4245. return bytenr;
  4246. }
  4247. static int pin_down_extent(struct btrfs_root *root,
  4248. struct btrfs_block_group_cache *cache,
  4249. u64 bytenr, u64 num_bytes, int reserved)
  4250. {
  4251. spin_lock(&cache->space_info->lock);
  4252. spin_lock(&cache->lock);
  4253. cache->pinned += num_bytes;
  4254. cache->space_info->bytes_pinned += num_bytes;
  4255. if (reserved) {
  4256. cache->reserved -= num_bytes;
  4257. cache->space_info->bytes_reserved -= num_bytes;
  4258. }
  4259. spin_unlock(&cache->lock);
  4260. spin_unlock(&cache->space_info->lock);
  4261. set_extent_dirty(root->fs_info->pinned_extents, bytenr,
  4262. bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
  4263. return 0;
  4264. }
  4265. /*
  4266. * this function must be called within transaction
  4267. */
  4268. int btrfs_pin_extent(struct btrfs_root *root,
  4269. u64 bytenr, u64 num_bytes, int reserved)
  4270. {
  4271. struct btrfs_block_group_cache *cache;
  4272. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4273. BUG_ON(!cache); /* Logic error */
  4274. pin_down_extent(root, cache, bytenr, num_bytes, reserved);
  4275. btrfs_put_block_group(cache);
  4276. return 0;
  4277. }
  4278. /*
  4279. * this function must be called within transaction
  4280. */
  4281. int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
  4282. struct btrfs_root *root,
  4283. u64 bytenr, u64 num_bytes)
  4284. {
  4285. struct btrfs_block_group_cache *cache;
  4286. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4287. BUG_ON(!cache); /* Logic error */
  4288. /*
  4289. * pull in the free space cache (if any) so that our pin
  4290. * removes the free space from the cache. We have load_only set
  4291. * to one because the slow code to read in the free extents does check
  4292. * the pinned extents.
  4293. */
  4294. cache_block_group(cache, trans, root, 1);
  4295. pin_down_extent(root, cache, bytenr, num_bytes, 0);
  4296. /* remove us from the free space cache (if we're there at all) */
  4297. btrfs_remove_free_space(cache, bytenr, num_bytes);
  4298. btrfs_put_block_group(cache);
  4299. return 0;
  4300. }
  4301. /**
  4302. * btrfs_update_reserved_bytes - update the block_group and space info counters
  4303. * @cache: The cache we are manipulating
  4304. * @num_bytes: The number of bytes in question
  4305. * @reserve: One of the reservation enums
  4306. *
  4307. * This is called by the allocator when it reserves space, or by somebody who is
  4308. * freeing space that was never actually used on disk. For example if you
  4309. * reserve some space for a new leaf in transaction A and before transaction A
  4310. * commits you free that leaf, you call this with reserve set to 0 in order to
  4311. * clear the reservation.
  4312. *
  4313. * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
  4314. * ENOSPC accounting. For data we handle the reservation through clearing the
  4315. * delalloc bits in the io_tree. We have to do this since we could end up
  4316. * allocating less disk space for the amount of data we have reserved in the
  4317. * case of compression.
  4318. *
  4319. * If this is a reservation and the block group has become read only we cannot
  4320. * make the reservation and return -EAGAIN, otherwise this function always
  4321. * succeeds.
  4322. */
  4323. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  4324. u64 num_bytes, int reserve)
  4325. {
  4326. struct btrfs_space_info *space_info = cache->space_info;
  4327. int ret = 0;
  4328. spin_lock(&space_info->lock);
  4329. spin_lock(&cache->lock);
  4330. if (reserve != RESERVE_FREE) {
  4331. if (cache->ro) {
  4332. ret = -EAGAIN;
  4333. } else {
  4334. cache->reserved += num_bytes;
  4335. space_info->bytes_reserved += num_bytes;
  4336. if (reserve == RESERVE_ALLOC) {
  4337. trace_btrfs_space_reservation(cache->fs_info,
  4338. "space_info", space_info->flags,
  4339. num_bytes, 0);
  4340. space_info->bytes_may_use -= num_bytes;
  4341. }
  4342. }
  4343. } else {
  4344. if (cache->ro)
  4345. space_info->bytes_readonly += num_bytes;
  4346. cache->reserved -= num_bytes;
  4347. space_info->bytes_reserved -= num_bytes;
  4348. space_info->reservation_progress++;
  4349. }
  4350. spin_unlock(&cache->lock);
  4351. spin_unlock(&space_info->lock);
  4352. return ret;
  4353. }
  4354. void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
  4355. struct btrfs_root *root)
  4356. {
  4357. struct btrfs_fs_info *fs_info = root->fs_info;
  4358. struct btrfs_caching_control *next;
  4359. struct btrfs_caching_control *caching_ctl;
  4360. struct btrfs_block_group_cache *cache;
  4361. down_write(&fs_info->extent_commit_sem);
  4362. list_for_each_entry_safe(caching_ctl, next,
  4363. &fs_info->caching_block_groups, list) {
  4364. cache = caching_ctl->block_group;
  4365. if (block_group_cache_done(cache)) {
  4366. cache->last_byte_to_unpin = (u64)-1;
  4367. list_del_init(&caching_ctl->list);
  4368. put_caching_control(caching_ctl);
  4369. } else {
  4370. cache->last_byte_to_unpin = caching_ctl->progress;
  4371. }
  4372. }
  4373. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4374. fs_info->pinned_extents = &fs_info->freed_extents[1];
  4375. else
  4376. fs_info->pinned_extents = &fs_info->freed_extents[0];
  4377. up_write(&fs_info->extent_commit_sem);
  4378. update_global_block_rsv(fs_info);
  4379. }
  4380. static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  4381. {
  4382. struct btrfs_fs_info *fs_info = root->fs_info;
  4383. struct btrfs_block_group_cache *cache = NULL;
  4384. struct btrfs_space_info *space_info;
  4385. struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  4386. u64 len;
  4387. bool readonly;
  4388. while (start <= end) {
  4389. readonly = false;
  4390. if (!cache ||
  4391. start >= cache->key.objectid + cache->key.offset) {
  4392. if (cache)
  4393. btrfs_put_block_group(cache);
  4394. cache = btrfs_lookup_block_group(fs_info, start);
  4395. BUG_ON(!cache); /* Logic error */
  4396. }
  4397. len = cache->key.objectid + cache->key.offset - start;
  4398. len = min(len, end + 1 - start);
  4399. if (start < cache->last_byte_to_unpin) {
  4400. len = min(len, cache->last_byte_to_unpin - start);
  4401. btrfs_add_free_space(cache, start, len);
  4402. }
  4403. start += len;
  4404. space_info = cache->space_info;
  4405. spin_lock(&space_info->lock);
  4406. spin_lock(&cache->lock);
  4407. cache->pinned -= len;
  4408. space_info->bytes_pinned -= len;
  4409. if (cache->ro) {
  4410. space_info->bytes_readonly += len;
  4411. readonly = true;
  4412. }
  4413. spin_unlock(&cache->lock);
  4414. if (!readonly && global_rsv->space_info == space_info) {
  4415. spin_lock(&global_rsv->lock);
  4416. if (!global_rsv->full) {
  4417. len = min(len, global_rsv->size -
  4418. global_rsv->reserved);
  4419. global_rsv->reserved += len;
  4420. space_info->bytes_may_use += len;
  4421. if (global_rsv->reserved >= global_rsv->size)
  4422. global_rsv->full = 1;
  4423. }
  4424. spin_unlock(&global_rsv->lock);
  4425. }
  4426. spin_unlock(&space_info->lock);
  4427. }
  4428. if (cache)
  4429. btrfs_put_block_group(cache);
  4430. return 0;
  4431. }
  4432. int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
  4433. struct btrfs_root *root)
  4434. {
  4435. struct btrfs_fs_info *fs_info = root->fs_info;
  4436. struct extent_io_tree *unpin;
  4437. u64 start;
  4438. u64 end;
  4439. int ret;
  4440. if (trans->aborted)
  4441. return 0;
  4442. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4443. unpin = &fs_info->freed_extents[1];
  4444. else
  4445. unpin = &fs_info->freed_extents[0];
  4446. while (1) {
  4447. ret = find_first_extent_bit(unpin, 0, &start, &end,
  4448. EXTENT_DIRTY, NULL);
  4449. if (ret)
  4450. break;
  4451. if (btrfs_test_opt(root, DISCARD))
  4452. ret = btrfs_discard_extent(root, start,
  4453. end + 1 - start, NULL);
  4454. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  4455. unpin_extent_range(root, start, end);
  4456. cond_resched();
  4457. }
  4458. return 0;
  4459. }
  4460. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  4461. struct btrfs_root *root,
  4462. u64 bytenr, u64 num_bytes, u64 parent,
  4463. u64 root_objectid, u64 owner_objectid,
  4464. u64 owner_offset, int refs_to_drop,
  4465. struct btrfs_delayed_extent_op *extent_op)
  4466. {
  4467. struct btrfs_key key;
  4468. struct btrfs_path *path;
  4469. struct btrfs_fs_info *info = root->fs_info;
  4470. struct btrfs_root *extent_root = info->extent_root;
  4471. struct extent_buffer *leaf;
  4472. struct btrfs_extent_item *ei;
  4473. struct btrfs_extent_inline_ref *iref;
  4474. int ret;
  4475. int is_data;
  4476. int extent_slot = 0;
  4477. int found_extent = 0;
  4478. int num_to_del = 1;
  4479. u32 item_size;
  4480. u64 refs;
  4481. path = btrfs_alloc_path();
  4482. if (!path)
  4483. return -ENOMEM;
  4484. path->reada = 1;
  4485. path->leave_spinning = 1;
  4486. is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
  4487. BUG_ON(!is_data && refs_to_drop != 1);
  4488. ret = lookup_extent_backref(trans, extent_root, path, &iref,
  4489. bytenr, num_bytes, parent,
  4490. root_objectid, owner_objectid,
  4491. owner_offset);
  4492. if (ret == 0) {
  4493. extent_slot = path->slots[0];
  4494. while (extent_slot >= 0) {
  4495. btrfs_item_key_to_cpu(path->nodes[0], &key,
  4496. extent_slot);
  4497. if (key.objectid != bytenr)
  4498. break;
  4499. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  4500. key.offset == num_bytes) {
  4501. found_extent = 1;
  4502. break;
  4503. }
  4504. if (path->slots[0] - extent_slot > 5)
  4505. break;
  4506. extent_slot--;
  4507. }
  4508. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4509. item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
  4510. if (found_extent && item_size < sizeof(*ei))
  4511. found_extent = 0;
  4512. #endif
  4513. if (!found_extent) {
  4514. BUG_ON(iref);
  4515. ret = remove_extent_backref(trans, extent_root, path,
  4516. NULL, refs_to_drop,
  4517. is_data);
  4518. if (ret) {
  4519. btrfs_abort_transaction(trans, extent_root, ret);
  4520. goto out;
  4521. }
  4522. btrfs_release_path(path);
  4523. path->leave_spinning = 1;
  4524. key.objectid = bytenr;
  4525. key.type = BTRFS_EXTENT_ITEM_KEY;
  4526. key.offset = num_bytes;
  4527. ret = btrfs_search_slot(trans, extent_root,
  4528. &key, path, -1, 1);
  4529. if (ret) {
  4530. printk(KERN_ERR "umm, got %d back from search"
  4531. ", was looking for %llu\n", ret,
  4532. (unsigned long long)bytenr);
  4533. if (ret > 0)
  4534. btrfs_print_leaf(extent_root,
  4535. path->nodes[0]);
  4536. }
  4537. if (ret < 0) {
  4538. btrfs_abort_transaction(trans, extent_root, ret);
  4539. goto out;
  4540. }
  4541. extent_slot = path->slots[0];
  4542. }
  4543. } else if (ret == -ENOENT) {
  4544. btrfs_print_leaf(extent_root, path->nodes[0]);
  4545. WARN_ON(1);
  4546. printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
  4547. "parent %llu root %llu owner %llu offset %llu\n",
  4548. (unsigned long long)bytenr,
  4549. (unsigned long long)parent,
  4550. (unsigned long long)root_objectid,
  4551. (unsigned long long)owner_objectid,
  4552. (unsigned long long)owner_offset);
  4553. } else {
  4554. btrfs_abort_transaction(trans, extent_root, ret);
  4555. goto out;
  4556. }
  4557. leaf = path->nodes[0];
  4558. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4559. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4560. if (item_size < sizeof(*ei)) {
  4561. BUG_ON(found_extent || extent_slot != path->slots[0]);
  4562. ret = convert_extent_item_v0(trans, extent_root, path,
  4563. owner_objectid, 0);
  4564. if (ret < 0) {
  4565. btrfs_abort_transaction(trans, extent_root, ret);
  4566. goto out;
  4567. }
  4568. btrfs_release_path(path);
  4569. path->leave_spinning = 1;
  4570. key.objectid = bytenr;
  4571. key.type = BTRFS_EXTENT_ITEM_KEY;
  4572. key.offset = num_bytes;
  4573. ret = btrfs_search_slot(trans, extent_root, &key, path,
  4574. -1, 1);
  4575. if (ret) {
  4576. printk(KERN_ERR "umm, got %d back from search"
  4577. ", was looking for %llu\n", ret,
  4578. (unsigned long long)bytenr);
  4579. btrfs_print_leaf(extent_root, path->nodes[0]);
  4580. }
  4581. if (ret < 0) {
  4582. btrfs_abort_transaction(trans, extent_root, ret);
  4583. goto out;
  4584. }
  4585. extent_slot = path->slots[0];
  4586. leaf = path->nodes[0];
  4587. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4588. }
  4589. #endif
  4590. BUG_ON(item_size < sizeof(*ei));
  4591. ei = btrfs_item_ptr(leaf, extent_slot,
  4592. struct btrfs_extent_item);
  4593. if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
  4594. struct btrfs_tree_block_info *bi;
  4595. BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
  4596. bi = (struct btrfs_tree_block_info *)(ei + 1);
  4597. WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
  4598. }
  4599. refs = btrfs_extent_refs(leaf, ei);
  4600. BUG_ON(refs < refs_to_drop);
  4601. refs -= refs_to_drop;
  4602. if (refs > 0) {
  4603. if (extent_op)
  4604. __run_delayed_extent_op(extent_op, leaf, ei);
  4605. /*
  4606. * In the case of inline back ref, reference count will
  4607. * be updated by remove_extent_backref
  4608. */
  4609. if (iref) {
  4610. BUG_ON(!found_extent);
  4611. } else {
  4612. btrfs_set_extent_refs(leaf, ei, refs);
  4613. btrfs_mark_buffer_dirty(leaf);
  4614. }
  4615. if (found_extent) {
  4616. ret = remove_extent_backref(trans, extent_root, path,
  4617. iref, refs_to_drop,
  4618. is_data);
  4619. if (ret) {
  4620. btrfs_abort_transaction(trans, extent_root, ret);
  4621. goto out;
  4622. }
  4623. }
  4624. } else {
  4625. if (found_extent) {
  4626. BUG_ON(is_data && refs_to_drop !=
  4627. extent_data_ref_count(root, path, iref));
  4628. if (iref) {
  4629. BUG_ON(path->slots[0] != extent_slot);
  4630. } else {
  4631. BUG_ON(path->slots[0] != extent_slot + 1);
  4632. path->slots[0] = extent_slot;
  4633. num_to_del = 2;
  4634. }
  4635. }
  4636. ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
  4637. num_to_del);
  4638. if (ret) {
  4639. btrfs_abort_transaction(trans, extent_root, ret);
  4640. goto out;
  4641. }
  4642. btrfs_release_path(path);
  4643. if (is_data) {
  4644. ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
  4645. if (ret) {
  4646. btrfs_abort_transaction(trans, extent_root, ret);
  4647. goto out;
  4648. }
  4649. }
  4650. ret = update_block_group(trans, root, bytenr, num_bytes, 0);
  4651. if (ret) {
  4652. btrfs_abort_transaction(trans, extent_root, ret);
  4653. goto out;
  4654. }
  4655. }
  4656. out:
  4657. btrfs_free_path(path);
  4658. return ret;
  4659. }
  4660. /*
  4661. * when we free an block, it is possible (and likely) that we free the last
  4662. * delayed ref for that extent as well. This searches the delayed ref tree for
  4663. * a given extent, and if there are no other delayed refs to be processed, it
  4664. * removes it from the tree.
  4665. */
  4666. static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
  4667. struct btrfs_root *root, u64 bytenr)
  4668. {
  4669. struct btrfs_delayed_ref_head *head;
  4670. struct btrfs_delayed_ref_root *delayed_refs;
  4671. struct btrfs_delayed_ref_node *ref;
  4672. struct rb_node *node;
  4673. int ret = 0;
  4674. delayed_refs = &trans->transaction->delayed_refs;
  4675. spin_lock(&delayed_refs->lock);
  4676. head = btrfs_find_delayed_ref_head(trans, bytenr);
  4677. if (!head)
  4678. goto out;
  4679. node = rb_prev(&head->node.rb_node);
  4680. if (!node)
  4681. goto out;
  4682. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  4683. /* there are still entries for this ref, we can't drop it */
  4684. if (ref->bytenr == bytenr)
  4685. goto out;
  4686. if (head->extent_op) {
  4687. if (!head->must_insert_reserved)
  4688. goto out;
  4689. kfree(head->extent_op);
  4690. head->extent_op = NULL;
  4691. }
  4692. /*
  4693. * waiting for the lock here would deadlock. If someone else has it
  4694. * locked they are already in the process of dropping it anyway
  4695. */
  4696. if (!mutex_trylock(&head->mutex))
  4697. goto out;
  4698. /*
  4699. * at this point we have a head with no other entries. Go
  4700. * ahead and process it.
  4701. */
  4702. head->node.in_tree = 0;
  4703. rb_erase(&head->node.rb_node, &delayed_refs->root);
  4704. delayed_refs->num_entries--;
  4705. /*
  4706. * we don't take a ref on the node because we're removing it from the
  4707. * tree, so we just steal the ref the tree was holding.
  4708. */
  4709. delayed_refs->num_heads--;
  4710. if (list_empty(&head->cluster))
  4711. delayed_refs->num_heads_ready--;
  4712. list_del_init(&head->cluster);
  4713. spin_unlock(&delayed_refs->lock);
  4714. BUG_ON(head->extent_op);
  4715. if (head->must_insert_reserved)
  4716. ret = 1;
  4717. mutex_unlock(&head->mutex);
  4718. btrfs_put_delayed_ref(&head->node);
  4719. return ret;
  4720. out:
  4721. spin_unlock(&delayed_refs->lock);
  4722. return 0;
  4723. }
  4724. void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
  4725. struct btrfs_root *root,
  4726. struct extent_buffer *buf,
  4727. u64 parent, int last_ref)
  4728. {
  4729. struct btrfs_block_group_cache *cache = NULL;
  4730. int ret;
  4731. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4732. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  4733. buf->start, buf->len,
  4734. parent, root->root_key.objectid,
  4735. btrfs_header_level(buf),
  4736. BTRFS_DROP_DELAYED_REF, NULL, 0);
  4737. BUG_ON(ret); /* -ENOMEM */
  4738. }
  4739. if (!last_ref)
  4740. return;
  4741. cache = btrfs_lookup_block_group(root->fs_info, buf->start);
  4742. if (btrfs_header_generation(buf) == trans->transid) {
  4743. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4744. ret = check_ref_cleanup(trans, root, buf->start);
  4745. if (!ret)
  4746. goto out;
  4747. }
  4748. if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  4749. pin_down_extent(root, cache, buf->start, buf->len, 1);
  4750. goto out;
  4751. }
  4752. WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
  4753. btrfs_add_free_space(cache, buf->start, buf->len);
  4754. btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
  4755. }
  4756. out:
  4757. /*
  4758. * Deleting the buffer, clear the corrupt flag since it doesn't matter
  4759. * anymore.
  4760. */
  4761. clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
  4762. btrfs_put_block_group(cache);
  4763. }
  4764. /* Can return -ENOMEM */
  4765. int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  4766. u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
  4767. u64 owner, u64 offset, int for_cow)
  4768. {
  4769. int ret;
  4770. struct btrfs_fs_info *fs_info = root->fs_info;
  4771. /*
  4772. * tree log blocks never actually go into the extent allocation
  4773. * tree, just update pinning info and exit early.
  4774. */
  4775. if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
  4776. WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
  4777. /* unlocks the pinned mutex */
  4778. btrfs_pin_extent(root, bytenr, num_bytes, 1);
  4779. ret = 0;
  4780. } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  4781. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  4782. num_bytes,
  4783. parent, root_objectid, (int)owner,
  4784. BTRFS_DROP_DELAYED_REF, NULL, for_cow);
  4785. } else {
  4786. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  4787. num_bytes,
  4788. parent, root_objectid, owner,
  4789. offset, BTRFS_DROP_DELAYED_REF,
  4790. NULL, for_cow);
  4791. }
  4792. return ret;
  4793. }
  4794. static u64 stripe_align(struct btrfs_root *root, u64 val)
  4795. {
  4796. u64 mask = ((u64)root->stripesize - 1);
  4797. u64 ret = (val + mask) & ~mask;
  4798. return ret;
  4799. }
  4800. /*
  4801. * when we wait for progress in the block group caching, its because
  4802. * our allocation attempt failed at least once. So, we must sleep
  4803. * and let some progress happen before we try again.
  4804. *
  4805. * This function will sleep at least once waiting for new free space to
  4806. * show up, and then it will check the block group free space numbers
  4807. * for our min num_bytes. Another option is to have it go ahead
  4808. * and look in the rbtree for a free extent of a given size, but this
  4809. * is a good start.
  4810. */
  4811. static noinline int
  4812. wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
  4813. u64 num_bytes)
  4814. {
  4815. struct btrfs_caching_control *caching_ctl;
  4816. DEFINE_WAIT(wait);
  4817. caching_ctl = get_caching_control(cache);
  4818. if (!caching_ctl)
  4819. return 0;
  4820. wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
  4821. (cache->free_space_ctl->free_space >= num_bytes));
  4822. put_caching_control(caching_ctl);
  4823. return 0;
  4824. }
  4825. static noinline int
  4826. wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
  4827. {
  4828. struct btrfs_caching_control *caching_ctl;
  4829. DEFINE_WAIT(wait);
  4830. caching_ctl = get_caching_control(cache);
  4831. if (!caching_ctl)
  4832. return 0;
  4833. wait_event(caching_ctl->wait, block_group_cache_done(cache));
  4834. put_caching_control(caching_ctl);
  4835. return 0;
  4836. }
  4837. int __get_raid_index(u64 flags)
  4838. {
  4839. int index;
  4840. if (flags & BTRFS_BLOCK_GROUP_RAID10)
  4841. index = 0;
  4842. else if (flags & BTRFS_BLOCK_GROUP_RAID1)
  4843. index = 1;
  4844. else if (flags & BTRFS_BLOCK_GROUP_DUP)
  4845. index = 2;
  4846. else if (flags & BTRFS_BLOCK_GROUP_RAID0)
  4847. index = 3;
  4848. else
  4849. index = 4;
  4850. return index;
  4851. }
  4852. static int get_block_group_index(struct btrfs_block_group_cache *cache)
  4853. {
  4854. return __get_raid_index(cache->flags);
  4855. }
  4856. enum btrfs_loop_type {
  4857. LOOP_CACHING_NOWAIT = 0,
  4858. LOOP_CACHING_WAIT = 1,
  4859. LOOP_ALLOC_CHUNK = 2,
  4860. LOOP_NO_EMPTY_SIZE = 3,
  4861. };
  4862. /*
  4863. * walks the btree of allocated extents and find a hole of a given size.
  4864. * The key ins is changed to record the hole:
  4865. * ins->objectid == block start
  4866. * ins->flags = BTRFS_EXTENT_ITEM_KEY
  4867. * ins->offset == number of blocks
  4868. * Any available blocks before search_start are skipped.
  4869. */
  4870. static noinline int find_free_extent(struct btrfs_trans_handle *trans,
  4871. struct btrfs_root *orig_root,
  4872. u64 num_bytes, u64 empty_size,
  4873. u64 hint_byte, struct btrfs_key *ins,
  4874. u64 data)
  4875. {
  4876. int ret = 0;
  4877. struct btrfs_root *root = orig_root->fs_info->extent_root;
  4878. struct btrfs_free_cluster *last_ptr = NULL;
  4879. struct btrfs_block_group_cache *block_group = NULL;
  4880. struct btrfs_block_group_cache *used_block_group;
  4881. u64 search_start = 0;
  4882. int empty_cluster = 2 * 1024 * 1024;
  4883. struct btrfs_space_info *space_info;
  4884. int loop = 0;
  4885. int index = __get_raid_index(data);
  4886. int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
  4887. RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
  4888. bool found_uncached_bg = false;
  4889. bool failed_cluster_refill = false;
  4890. bool failed_alloc = false;
  4891. bool use_cluster = true;
  4892. bool have_caching_bg = false;
  4893. WARN_ON(num_bytes < root->sectorsize);
  4894. btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
  4895. ins->objectid = 0;
  4896. ins->offset = 0;
  4897. trace_find_free_extent(orig_root, num_bytes, empty_size, data);
  4898. space_info = __find_space_info(root->fs_info, data);
  4899. if (!space_info) {
  4900. printk(KERN_ERR "No space info for %llu\n", data);
  4901. return -ENOSPC;
  4902. }
  4903. /*
  4904. * If the space info is for both data and metadata it means we have a
  4905. * small filesystem and we can't use the clustering stuff.
  4906. */
  4907. if (btrfs_mixed_space_info(space_info))
  4908. use_cluster = false;
  4909. if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
  4910. last_ptr = &root->fs_info->meta_alloc_cluster;
  4911. if (!btrfs_test_opt(root, SSD))
  4912. empty_cluster = 64 * 1024;
  4913. }
  4914. if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
  4915. btrfs_test_opt(root, SSD)) {
  4916. last_ptr = &root->fs_info->data_alloc_cluster;
  4917. }
  4918. if (last_ptr) {
  4919. spin_lock(&last_ptr->lock);
  4920. if (last_ptr->block_group)
  4921. hint_byte = last_ptr->window_start;
  4922. spin_unlock(&last_ptr->lock);
  4923. }
  4924. search_start = max(search_start, first_logical_byte(root, 0));
  4925. search_start = max(search_start, hint_byte);
  4926. if (!last_ptr)
  4927. empty_cluster = 0;
  4928. if (search_start == hint_byte) {
  4929. block_group = btrfs_lookup_block_group(root->fs_info,
  4930. search_start);
  4931. used_block_group = block_group;
  4932. /*
  4933. * we don't want to use the block group if it doesn't match our
  4934. * allocation bits, or if its not cached.
  4935. *
  4936. * However if we are re-searching with an ideal block group
  4937. * picked out then we don't care that the block group is cached.
  4938. */
  4939. if (block_group && block_group_bits(block_group, data) &&
  4940. block_group->cached != BTRFS_CACHE_NO) {
  4941. down_read(&space_info->groups_sem);
  4942. if (list_empty(&block_group->list) ||
  4943. block_group->ro) {
  4944. /*
  4945. * someone is removing this block group,
  4946. * we can't jump into the have_block_group
  4947. * target because our list pointers are not
  4948. * valid
  4949. */
  4950. btrfs_put_block_group(block_group);
  4951. up_read(&space_info->groups_sem);
  4952. } else {
  4953. index = get_block_group_index(block_group);
  4954. goto have_block_group;
  4955. }
  4956. } else if (block_group) {
  4957. btrfs_put_block_group(block_group);
  4958. }
  4959. }
  4960. search:
  4961. have_caching_bg = false;
  4962. down_read(&space_info->groups_sem);
  4963. list_for_each_entry(block_group, &space_info->block_groups[index],
  4964. list) {
  4965. u64 offset;
  4966. int cached;
  4967. used_block_group = block_group;
  4968. btrfs_get_block_group(block_group);
  4969. search_start = block_group->key.objectid;
  4970. /*
  4971. * this can happen if we end up cycling through all the
  4972. * raid types, but we want to make sure we only allocate
  4973. * for the proper type.
  4974. */
  4975. if (!block_group_bits(block_group, data)) {
  4976. u64 extra = BTRFS_BLOCK_GROUP_DUP |
  4977. BTRFS_BLOCK_GROUP_RAID1 |
  4978. BTRFS_BLOCK_GROUP_RAID10;
  4979. /*
  4980. * if they asked for extra copies and this block group
  4981. * doesn't provide them, bail. This does allow us to
  4982. * fill raid0 from raid1.
  4983. */
  4984. if ((data & extra) && !(block_group->flags & extra))
  4985. goto loop;
  4986. }
  4987. have_block_group:
  4988. cached = block_group_cache_done(block_group);
  4989. if (unlikely(!cached)) {
  4990. found_uncached_bg = true;
  4991. ret = cache_block_group(block_group, trans,
  4992. orig_root, 0);
  4993. BUG_ON(ret < 0);
  4994. ret = 0;
  4995. }
  4996. if (unlikely(block_group->ro))
  4997. goto loop;
  4998. /*
  4999. * Ok we want to try and use the cluster allocator, so
  5000. * lets look there
  5001. */
  5002. if (last_ptr) {
  5003. /*
  5004. * the refill lock keeps out other
  5005. * people trying to start a new cluster
  5006. */
  5007. spin_lock(&last_ptr->refill_lock);
  5008. used_block_group = last_ptr->block_group;
  5009. if (used_block_group != block_group &&
  5010. (!used_block_group ||
  5011. used_block_group->ro ||
  5012. !block_group_bits(used_block_group, data))) {
  5013. used_block_group = block_group;
  5014. goto refill_cluster;
  5015. }
  5016. if (used_block_group != block_group)
  5017. btrfs_get_block_group(used_block_group);
  5018. offset = btrfs_alloc_from_cluster(used_block_group,
  5019. last_ptr, num_bytes, used_block_group->key.objectid);
  5020. if (offset) {
  5021. /* we have a block, we're done */
  5022. spin_unlock(&last_ptr->refill_lock);
  5023. trace_btrfs_reserve_extent_cluster(root,
  5024. block_group, search_start, num_bytes);
  5025. goto checks;
  5026. }
  5027. WARN_ON(last_ptr->block_group != used_block_group);
  5028. if (used_block_group != block_group) {
  5029. btrfs_put_block_group(used_block_group);
  5030. used_block_group = block_group;
  5031. }
  5032. refill_cluster:
  5033. BUG_ON(used_block_group != block_group);
  5034. /* If we are on LOOP_NO_EMPTY_SIZE, we can't
  5035. * set up a new clusters, so lets just skip it
  5036. * and let the allocator find whatever block
  5037. * it can find. If we reach this point, we
  5038. * will have tried the cluster allocator
  5039. * plenty of times and not have found
  5040. * anything, so we are likely way too
  5041. * fragmented for the clustering stuff to find
  5042. * anything.
  5043. *
  5044. * However, if the cluster is taken from the
  5045. * current block group, release the cluster
  5046. * first, so that we stand a better chance of
  5047. * succeeding in the unclustered
  5048. * allocation. */
  5049. if (loop >= LOOP_NO_EMPTY_SIZE &&
  5050. last_ptr->block_group != block_group) {
  5051. spin_unlock(&last_ptr->refill_lock);
  5052. goto unclustered_alloc;
  5053. }
  5054. /*
  5055. * this cluster didn't work out, free it and
  5056. * start over
  5057. */
  5058. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5059. if (loop >= LOOP_NO_EMPTY_SIZE) {
  5060. spin_unlock(&last_ptr->refill_lock);
  5061. goto unclustered_alloc;
  5062. }
  5063. /* allocate a cluster in this block group */
  5064. ret = btrfs_find_space_cluster(trans, root,
  5065. block_group, last_ptr,
  5066. search_start, num_bytes,
  5067. empty_cluster + empty_size);
  5068. if (ret == 0) {
  5069. /*
  5070. * now pull our allocation out of this
  5071. * cluster
  5072. */
  5073. offset = btrfs_alloc_from_cluster(block_group,
  5074. last_ptr, num_bytes,
  5075. search_start);
  5076. if (offset) {
  5077. /* we found one, proceed */
  5078. spin_unlock(&last_ptr->refill_lock);
  5079. trace_btrfs_reserve_extent_cluster(root,
  5080. block_group, search_start,
  5081. num_bytes);
  5082. goto checks;
  5083. }
  5084. } else if (!cached && loop > LOOP_CACHING_NOWAIT
  5085. && !failed_cluster_refill) {
  5086. spin_unlock(&last_ptr->refill_lock);
  5087. failed_cluster_refill = true;
  5088. wait_block_group_cache_progress(block_group,
  5089. num_bytes + empty_cluster + empty_size);
  5090. goto have_block_group;
  5091. }
  5092. /*
  5093. * at this point we either didn't find a cluster
  5094. * or we weren't able to allocate a block from our
  5095. * cluster. Free the cluster we've been trying
  5096. * to use, and go to the next block group
  5097. */
  5098. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5099. spin_unlock(&last_ptr->refill_lock);
  5100. goto loop;
  5101. }
  5102. unclustered_alloc:
  5103. spin_lock(&block_group->free_space_ctl->tree_lock);
  5104. if (cached &&
  5105. block_group->free_space_ctl->free_space <
  5106. num_bytes + empty_cluster + empty_size) {
  5107. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5108. goto loop;
  5109. }
  5110. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5111. offset = btrfs_find_space_for_alloc(block_group, search_start,
  5112. num_bytes, empty_size);
  5113. /*
  5114. * If we didn't find a chunk, and we haven't failed on this
  5115. * block group before, and this block group is in the middle of
  5116. * caching and we are ok with waiting, then go ahead and wait
  5117. * for progress to be made, and set failed_alloc to true.
  5118. *
  5119. * If failed_alloc is true then we've already waited on this
  5120. * block group once and should move on to the next block group.
  5121. */
  5122. if (!offset && !failed_alloc && !cached &&
  5123. loop > LOOP_CACHING_NOWAIT) {
  5124. wait_block_group_cache_progress(block_group,
  5125. num_bytes + empty_size);
  5126. failed_alloc = true;
  5127. goto have_block_group;
  5128. } else if (!offset) {
  5129. if (!cached)
  5130. have_caching_bg = true;
  5131. goto loop;
  5132. }
  5133. checks:
  5134. search_start = stripe_align(root, offset);
  5135. /* move on to the next group */
  5136. if (search_start + num_bytes >
  5137. used_block_group->key.objectid + used_block_group->key.offset) {
  5138. btrfs_add_free_space(used_block_group, offset, num_bytes);
  5139. goto loop;
  5140. }
  5141. if (offset < search_start)
  5142. btrfs_add_free_space(used_block_group, offset,
  5143. search_start - offset);
  5144. BUG_ON(offset > search_start);
  5145. ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
  5146. alloc_type);
  5147. if (ret == -EAGAIN) {
  5148. btrfs_add_free_space(used_block_group, offset, num_bytes);
  5149. goto loop;
  5150. }
  5151. /* we are all good, lets return */
  5152. ins->objectid = search_start;
  5153. ins->offset = num_bytes;
  5154. trace_btrfs_reserve_extent(orig_root, block_group,
  5155. search_start, num_bytes);
  5156. if (used_block_group != block_group)
  5157. btrfs_put_block_group(used_block_group);
  5158. btrfs_put_block_group(block_group);
  5159. break;
  5160. loop:
  5161. failed_cluster_refill = false;
  5162. failed_alloc = false;
  5163. BUG_ON(index != get_block_group_index(block_group));
  5164. if (used_block_group != block_group)
  5165. btrfs_put_block_group(used_block_group);
  5166. btrfs_put_block_group(block_group);
  5167. }
  5168. up_read(&space_info->groups_sem);
  5169. if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
  5170. goto search;
  5171. if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
  5172. goto search;
  5173. /*
  5174. * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
  5175. * caching kthreads as we move along
  5176. * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
  5177. * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
  5178. * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
  5179. * again
  5180. */
  5181. if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
  5182. index = 0;
  5183. loop++;
  5184. if (loop == LOOP_ALLOC_CHUNK) {
  5185. ret = do_chunk_alloc(trans, root, data,
  5186. CHUNK_ALLOC_FORCE);
  5187. /*
  5188. * Do not bail out on ENOSPC since we
  5189. * can do more things.
  5190. */
  5191. if (ret < 0 && ret != -ENOSPC) {
  5192. btrfs_abort_transaction(trans,
  5193. root, ret);
  5194. goto out;
  5195. }
  5196. }
  5197. if (loop == LOOP_NO_EMPTY_SIZE) {
  5198. empty_size = 0;
  5199. empty_cluster = 0;
  5200. }
  5201. goto search;
  5202. } else if (!ins->objectid) {
  5203. ret = -ENOSPC;
  5204. } else if (ins->objectid) {
  5205. ret = 0;
  5206. }
  5207. out:
  5208. return ret;
  5209. }
  5210. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  5211. int dump_block_groups)
  5212. {
  5213. struct btrfs_block_group_cache *cache;
  5214. int index = 0;
  5215. spin_lock(&info->lock);
  5216. printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
  5217. (unsigned long long)info->flags,
  5218. (unsigned long long)(info->total_bytes - info->bytes_used -
  5219. info->bytes_pinned - info->bytes_reserved -
  5220. info->bytes_readonly),
  5221. (info->full) ? "" : "not ");
  5222. printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
  5223. "reserved=%llu, may_use=%llu, readonly=%llu\n",
  5224. (unsigned long long)info->total_bytes,
  5225. (unsigned long long)info->bytes_used,
  5226. (unsigned long long)info->bytes_pinned,
  5227. (unsigned long long)info->bytes_reserved,
  5228. (unsigned long long)info->bytes_may_use,
  5229. (unsigned long long)info->bytes_readonly);
  5230. spin_unlock(&info->lock);
  5231. if (!dump_block_groups)
  5232. return;
  5233. down_read(&info->groups_sem);
  5234. again:
  5235. list_for_each_entry(cache, &info->block_groups[index], list) {
  5236. spin_lock(&cache->lock);
  5237. printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
  5238. (unsigned long long)cache->key.objectid,
  5239. (unsigned long long)cache->key.offset,
  5240. (unsigned long long)btrfs_block_group_used(&cache->item),
  5241. (unsigned long long)cache->pinned,
  5242. (unsigned long long)cache->reserved,
  5243. cache->ro ? "[readonly]" : "");
  5244. btrfs_dump_free_space(cache, bytes);
  5245. spin_unlock(&cache->lock);
  5246. }
  5247. if (++index < BTRFS_NR_RAID_TYPES)
  5248. goto again;
  5249. up_read(&info->groups_sem);
  5250. }
  5251. int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
  5252. struct btrfs_root *root,
  5253. u64 num_bytes, u64 min_alloc_size,
  5254. u64 empty_size, u64 hint_byte,
  5255. struct btrfs_key *ins, u64 data)
  5256. {
  5257. bool final_tried = false;
  5258. int ret;
  5259. data = btrfs_get_alloc_profile(root, data);
  5260. again:
  5261. WARN_ON(num_bytes < root->sectorsize);
  5262. ret = find_free_extent(trans, root, num_bytes, empty_size,
  5263. hint_byte, ins, data);
  5264. if (ret == -ENOSPC) {
  5265. if (!final_tried) {
  5266. num_bytes = num_bytes >> 1;
  5267. num_bytes = num_bytes & ~(root->sectorsize - 1);
  5268. num_bytes = max(num_bytes, min_alloc_size);
  5269. if (num_bytes == min_alloc_size)
  5270. final_tried = true;
  5271. goto again;
  5272. } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  5273. struct btrfs_space_info *sinfo;
  5274. sinfo = __find_space_info(root->fs_info, data);
  5275. printk(KERN_ERR "btrfs allocation failed flags %llu, "
  5276. "wanted %llu\n", (unsigned long long)data,
  5277. (unsigned long long)num_bytes);
  5278. if (sinfo)
  5279. dump_space_info(sinfo, num_bytes, 1);
  5280. }
  5281. }
  5282. trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
  5283. return ret;
  5284. }
  5285. static int __btrfs_free_reserved_extent(struct btrfs_root *root,
  5286. u64 start, u64 len, int pin)
  5287. {
  5288. struct btrfs_block_group_cache *cache;
  5289. int ret = 0;
  5290. cache = btrfs_lookup_block_group(root->fs_info, start);
  5291. if (!cache) {
  5292. printk(KERN_ERR "Unable to find block group for %llu\n",
  5293. (unsigned long long)start);
  5294. return -ENOSPC;
  5295. }
  5296. if (btrfs_test_opt(root, DISCARD))
  5297. ret = btrfs_discard_extent(root, start, len, NULL);
  5298. if (pin)
  5299. pin_down_extent(root, cache, start, len, 1);
  5300. else {
  5301. btrfs_add_free_space(cache, start, len);
  5302. btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
  5303. }
  5304. btrfs_put_block_group(cache);
  5305. trace_btrfs_reserved_extent_free(root, start, len);
  5306. return ret;
  5307. }
  5308. int btrfs_free_reserved_extent(struct btrfs_root *root,
  5309. u64 start, u64 len)
  5310. {
  5311. return __btrfs_free_reserved_extent(root, start, len, 0);
  5312. }
  5313. int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
  5314. u64 start, u64 len)
  5315. {
  5316. return __btrfs_free_reserved_extent(root, start, len, 1);
  5317. }
  5318. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5319. struct btrfs_root *root,
  5320. u64 parent, u64 root_objectid,
  5321. u64 flags, u64 owner, u64 offset,
  5322. struct btrfs_key *ins, int ref_mod)
  5323. {
  5324. int ret;
  5325. struct btrfs_fs_info *fs_info = root->fs_info;
  5326. struct btrfs_extent_item *extent_item;
  5327. struct btrfs_extent_inline_ref *iref;
  5328. struct btrfs_path *path;
  5329. struct extent_buffer *leaf;
  5330. int type;
  5331. u32 size;
  5332. if (parent > 0)
  5333. type = BTRFS_SHARED_DATA_REF_KEY;
  5334. else
  5335. type = BTRFS_EXTENT_DATA_REF_KEY;
  5336. size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
  5337. path = btrfs_alloc_path();
  5338. if (!path)
  5339. return -ENOMEM;
  5340. path->leave_spinning = 1;
  5341. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5342. ins, size);
  5343. if (ret) {
  5344. btrfs_free_path(path);
  5345. return ret;
  5346. }
  5347. leaf = path->nodes[0];
  5348. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5349. struct btrfs_extent_item);
  5350. btrfs_set_extent_refs(leaf, extent_item, ref_mod);
  5351. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5352. btrfs_set_extent_flags(leaf, extent_item,
  5353. flags | BTRFS_EXTENT_FLAG_DATA);
  5354. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  5355. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  5356. if (parent > 0) {
  5357. struct btrfs_shared_data_ref *ref;
  5358. ref = (struct btrfs_shared_data_ref *)(iref + 1);
  5359. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5360. btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
  5361. } else {
  5362. struct btrfs_extent_data_ref *ref;
  5363. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  5364. btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
  5365. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  5366. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  5367. btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
  5368. }
  5369. btrfs_mark_buffer_dirty(path->nodes[0]);
  5370. btrfs_free_path(path);
  5371. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5372. if (ret) { /* -ENOENT, logic error */
  5373. printk(KERN_ERR "btrfs update block group failed for %llu "
  5374. "%llu\n", (unsigned long long)ins->objectid,
  5375. (unsigned long long)ins->offset);
  5376. BUG();
  5377. }
  5378. return ret;
  5379. }
  5380. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  5381. struct btrfs_root *root,
  5382. u64 parent, u64 root_objectid,
  5383. u64 flags, struct btrfs_disk_key *key,
  5384. int level, struct btrfs_key *ins)
  5385. {
  5386. int ret;
  5387. struct btrfs_fs_info *fs_info = root->fs_info;
  5388. struct btrfs_extent_item *extent_item;
  5389. struct btrfs_tree_block_info *block_info;
  5390. struct btrfs_extent_inline_ref *iref;
  5391. struct btrfs_path *path;
  5392. struct extent_buffer *leaf;
  5393. u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
  5394. path = btrfs_alloc_path();
  5395. if (!path)
  5396. return -ENOMEM;
  5397. path->leave_spinning = 1;
  5398. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5399. ins, size);
  5400. if (ret) {
  5401. btrfs_free_path(path);
  5402. return ret;
  5403. }
  5404. leaf = path->nodes[0];
  5405. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5406. struct btrfs_extent_item);
  5407. btrfs_set_extent_refs(leaf, extent_item, 1);
  5408. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5409. btrfs_set_extent_flags(leaf, extent_item,
  5410. flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
  5411. block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
  5412. btrfs_set_tree_block_key(leaf, block_info, key);
  5413. btrfs_set_tree_block_level(leaf, block_info, level);
  5414. iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
  5415. if (parent > 0) {
  5416. BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  5417. btrfs_set_extent_inline_ref_type(leaf, iref,
  5418. BTRFS_SHARED_BLOCK_REF_KEY);
  5419. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5420. } else {
  5421. btrfs_set_extent_inline_ref_type(leaf, iref,
  5422. BTRFS_TREE_BLOCK_REF_KEY);
  5423. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  5424. }
  5425. btrfs_mark_buffer_dirty(leaf);
  5426. btrfs_free_path(path);
  5427. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5428. if (ret) { /* -ENOENT, logic error */
  5429. printk(KERN_ERR "btrfs update block group failed for %llu "
  5430. "%llu\n", (unsigned long long)ins->objectid,
  5431. (unsigned long long)ins->offset);
  5432. BUG();
  5433. }
  5434. return ret;
  5435. }
  5436. int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5437. struct btrfs_root *root,
  5438. u64 root_objectid, u64 owner,
  5439. u64 offset, struct btrfs_key *ins)
  5440. {
  5441. int ret;
  5442. BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
  5443. ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
  5444. ins->offset, 0,
  5445. root_objectid, owner, offset,
  5446. BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
  5447. return ret;
  5448. }
  5449. /*
  5450. * this is used by the tree logging recovery code. It records that
  5451. * an extent has been allocated and makes sure to clear the free
  5452. * space cache bits as well
  5453. */
  5454. int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
  5455. struct btrfs_root *root,
  5456. u64 root_objectid, u64 owner, u64 offset,
  5457. struct btrfs_key *ins)
  5458. {
  5459. int ret;
  5460. struct btrfs_block_group_cache *block_group;
  5461. struct btrfs_caching_control *caching_ctl;
  5462. u64 start = ins->objectid;
  5463. u64 num_bytes = ins->offset;
  5464. block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
  5465. cache_block_group(block_group, trans, NULL, 0);
  5466. caching_ctl = get_caching_control(block_group);
  5467. if (!caching_ctl) {
  5468. BUG_ON(!block_group_cache_done(block_group));
  5469. ret = btrfs_remove_free_space(block_group, start, num_bytes);
  5470. BUG_ON(ret); /* -ENOMEM */
  5471. } else {
  5472. mutex_lock(&caching_ctl->mutex);
  5473. if (start >= caching_ctl->progress) {
  5474. ret = add_excluded_extent(root, start, num_bytes);
  5475. BUG_ON(ret); /* -ENOMEM */
  5476. } else if (start + num_bytes <= caching_ctl->progress) {
  5477. ret = btrfs_remove_free_space(block_group,
  5478. start, num_bytes);
  5479. BUG_ON(ret); /* -ENOMEM */
  5480. } else {
  5481. num_bytes = caching_ctl->progress - start;
  5482. ret = btrfs_remove_free_space(block_group,
  5483. start, num_bytes);
  5484. BUG_ON(ret); /* -ENOMEM */
  5485. start = caching_ctl->progress;
  5486. num_bytes = ins->objectid + ins->offset -
  5487. caching_ctl->progress;
  5488. ret = add_excluded_extent(root, start, num_bytes);
  5489. BUG_ON(ret); /* -ENOMEM */
  5490. }
  5491. mutex_unlock(&caching_ctl->mutex);
  5492. put_caching_control(caching_ctl);
  5493. }
  5494. ret = btrfs_update_reserved_bytes(block_group, ins->offset,
  5495. RESERVE_ALLOC_NO_ACCOUNT);
  5496. BUG_ON(ret); /* logic error */
  5497. btrfs_put_block_group(block_group);
  5498. ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
  5499. 0, owner, offset, ins, 1);
  5500. return ret;
  5501. }
  5502. struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
  5503. struct btrfs_root *root,
  5504. u64 bytenr, u32 blocksize,
  5505. int level)
  5506. {
  5507. struct extent_buffer *buf;
  5508. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5509. if (!buf)
  5510. return ERR_PTR(-ENOMEM);
  5511. btrfs_set_header_generation(buf, trans->transid);
  5512. btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
  5513. btrfs_tree_lock(buf);
  5514. clean_tree_block(trans, root, buf);
  5515. clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
  5516. btrfs_set_lock_blocking(buf);
  5517. btrfs_set_buffer_uptodate(buf);
  5518. if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
  5519. /*
  5520. * we allow two log transactions at a time, use different
  5521. * EXENT bit to differentiate dirty pages.
  5522. */
  5523. if (root->log_transid % 2 == 0)
  5524. set_extent_dirty(&root->dirty_log_pages, buf->start,
  5525. buf->start + buf->len - 1, GFP_NOFS);
  5526. else
  5527. set_extent_new(&root->dirty_log_pages, buf->start,
  5528. buf->start + buf->len - 1, GFP_NOFS);
  5529. } else {
  5530. set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
  5531. buf->start + buf->len - 1, GFP_NOFS);
  5532. }
  5533. trans->blocks_used++;
  5534. /* this returns a buffer locked for blocking */
  5535. return buf;
  5536. }
  5537. static struct btrfs_block_rsv *
  5538. use_block_rsv(struct btrfs_trans_handle *trans,
  5539. struct btrfs_root *root, u32 blocksize)
  5540. {
  5541. struct btrfs_block_rsv *block_rsv;
  5542. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  5543. int ret;
  5544. block_rsv = get_block_rsv(trans, root);
  5545. if (block_rsv->size == 0) {
  5546. ret = reserve_metadata_bytes(root, block_rsv, blocksize,
  5547. BTRFS_RESERVE_NO_FLUSH);
  5548. /*
  5549. * If we couldn't reserve metadata bytes try and use some from
  5550. * the global reserve.
  5551. */
  5552. if (ret && block_rsv != global_rsv) {
  5553. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5554. if (!ret)
  5555. return global_rsv;
  5556. return ERR_PTR(ret);
  5557. } else if (ret) {
  5558. return ERR_PTR(ret);
  5559. }
  5560. return block_rsv;
  5561. }
  5562. ret = block_rsv_use_bytes(block_rsv, blocksize);
  5563. if (!ret)
  5564. return block_rsv;
  5565. if (ret && !block_rsv->failfast) {
  5566. static DEFINE_RATELIMIT_STATE(_rs,
  5567. DEFAULT_RATELIMIT_INTERVAL,
  5568. /*DEFAULT_RATELIMIT_BURST*/ 2);
  5569. if (__ratelimit(&_rs))
  5570. WARN(1, KERN_DEBUG "btrfs: block rsv returned %d\n",
  5571. ret);
  5572. ret = reserve_metadata_bytes(root, block_rsv, blocksize,
  5573. BTRFS_RESERVE_NO_FLUSH);
  5574. if (!ret) {
  5575. return block_rsv;
  5576. } else if (ret && block_rsv != global_rsv) {
  5577. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5578. if (!ret)
  5579. return global_rsv;
  5580. }
  5581. }
  5582. return ERR_PTR(-ENOSPC);
  5583. }
  5584. static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
  5585. struct btrfs_block_rsv *block_rsv, u32 blocksize)
  5586. {
  5587. block_rsv_add_bytes(block_rsv, blocksize, 0);
  5588. block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
  5589. }
  5590. /*
  5591. * finds a free extent and does all the dirty work required for allocation
  5592. * returns the key for the extent through ins, and a tree buffer for
  5593. * the first block of the extent through buf.
  5594. *
  5595. * returns the tree buffer or NULL.
  5596. */
  5597. struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
  5598. struct btrfs_root *root, u32 blocksize,
  5599. u64 parent, u64 root_objectid,
  5600. struct btrfs_disk_key *key, int level,
  5601. u64 hint, u64 empty_size)
  5602. {
  5603. struct btrfs_key ins;
  5604. struct btrfs_block_rsv *block_rsv;
  5605. struct extent_buffer *buf;
  5606. u64 flags = 0;
  5607. int ret;
  5608. block_rsv = use_block_rsv(trans, root, blocksize);
  5609. if (IS_ERR(block_rsv))
  5610. return ERR_CAST(block_rsv);
  5611. ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
  5612. empty_size, hint, &ins, 0);
  5613. if (ret) {
  5614. unuse_block_rsv(root->fs_info, block_rsv, blocksize);
  5615. return ERR_PTR(ret);
  5616. }
  5617. buf = btrfs_init_new_buffer(trans, root, ins.objectid,
  5618. blocksize, level);
  5619. BUG_ON(IS_ERR(buf)); /* -ENOMEM */
  5620. if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
  5621. if (parent == 0)
  5622. parent = ins.objectid;
  5623. flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5624. } else
  5625. BUG_ON(parent > 0);
  5626. if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
  5627. struct btrfs_delayed_extent_op *extent_op;
  5628. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  5629. BUG_ON(!extent_op); /* -ENOMEM */
  5630. if (key)
  5631. memcpy(&extent_op->key, key, sizeof(extent_op->key));
  5632. else
  5633. memset(&extent_op->key, 0, sizeof(extent_op->key));
  5634. extent_op->flags_to_set = flags;
  5635. extent_op->update_key = 1;
  5636. extent_op->update_flags = 1;
  5637. extent_op->is_data = 0;
  5638. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  5639. ins.objectid,
  5640. ins.offset, parent, root_objectid,
  5641. level, BTRFS_ADD_DELAYED_EXTENT,
  5642. extent_op, 0);
  5643. BUG_ON(ret); /* -ENOMEM */
  5644. }
  5645. return buf;
  5646. }
  5647. struct walk_control {
  5648. u64 refs[BTRFS_MAX_LEVEL];
  5649. u64 flags[BTRFS_MAX_LEVEL];
  5650. struct btrfs_key update_progress;
  5651. int stage;
  5652. int level;
  5653. int shared_level;
  5654. int update_ref;
  5655. int keep_locks;
  5656. int reada_slot;
  5657. int reada_count;
  5658. int for_reloc;
  5659. };
  5660. #define DROP_REFERENCE 1
  5661. #define UPDATE_BACKREF 2
  5662. static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
  5663. struct btrfs_root *root,
  5664. struct walk_control *wc,
  5665. struct btrfs_path *path)
  5666. {
  5667. u64 bytenr;
  5668. u64 generation;
  5669. u64 refs;
  5670. u64 flags;
  5671. u32 nritems;
  5672. u32 blocksize;
  5673. struct btrfs_key key;
  5674. struct extent_buffer *eb;
  5675. int ret;
  5676. int slot;
  5677. int nread = 0;
  5678. if (path->slots[wc->level] < wc->reada_slot) {
  5679. wc->reada_count = wc->reada_count * 2 / 3;
  5680. wc->reada_count = max(wc->reada_count, 2);
  5681. } else {
  5682. wc->reada_count = wc->reada_count * 3 / 2;
  5683. wc->reada_count = min_t(int, wc->reada_count,
  5684. BTRFS_NODEPTRS_PER_BLOCK(root));
  5685. }
  5686. eb = path->nodes[wc->level];
  5687. nritems = btrfs_header_nritems(eb);
  5688. blocksize = btrfs_level_size(root, wc->level - 1);
  5689. for (slot = path->slots[wc->level]; slot < nritems; slot++) {
  5690. if (nread >= wc->reada_count)
  5691. break;
  5692. cond_resched();
  5693. bytenr = btrfs_node_blockptr(eb, slot);
  5694. generation = btrfs_node_ptr_generation(eb, slot);
  5695. if (slot == path->slots[wc->level])
  5696. goto reada;
  5697. if (wc->stage == UPDATE_BACKREF &&
  5698. generation <= root->root_key.offset)
  5699. continue;
  5700. /* We don't lock the tree block, it's OK to be racy here */
  5701. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5702. &refs, &flags);
  5703. /* We don't care about errors in readahead. */
  5704. if (ret < 0)
  5705. continue;
  5706. BUG_ON(refs == 0);
  5707. if (wc->stage == DROP_REFERENCE) {
  5708. if (refs == 1)
  5709. goto reada;
  5710. if (wc->level == 1 &&
  5711. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5712. continue;
  5713. if (!wc->update_ref ||
  5714. generation <= root->root_key.offset)
  5715. continue;
  5716. btrfs_node_key_to_cpu(eb, &key, slot);
  5717. ret = btrfs_comp_cpu_keys(&key,
  5718. &wc->update_progress);
  5719. if (ret < 0)
  5720. continue;
  5721. } else {
  5722. if (wc->level == 1 &&
  5723. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5724. continue;
  5725. }
  5726. reada:
  5727. ret = readahead_tree_block(root, bytenr, blocksize,
  5728. generation);
  5729. if (ret)
  5730. break;
  5731. nread++;
  5732. }
  5733. wc->reada_slot = slot;
  5734. }
  5735. /*
  5736. * helper to process tree block while walking down the tree.
  5737. *
  5738. * when wc->stage == UPDATE_BACKREF, this function updates
  5739. * back refs for pointers in the block.
  5740. *
  5741. * NOTE: return value 1 means we should stop walking down.
  5742. */
  5743. static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
  5744. struct btrfs_root *root,
  5745. struct btrfs_path *path,
  5746. struct walk_control *wc, int lookup_info)
  5747. {
  5748. int level = wc->level;
  5749. struct extent_buffer *eb = path->nodes[level];
  5750. u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5751. int ret;
  5752. if (wc->stage == UPDATE_BACKREF &&
  5753. btrfs_header_owner(eb) != root->root_key.objectid)
  5754. return 1;
  5755. /*
  5756. * when reference count of tree block is 1, it won't increase
  5757. * again. once full backref flag is set, we never clear it.
  5758. */
  5759. if (lookup_info &&
  5760. ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
  5761. (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
  5762. BUG_ON(!path->locks[level]);
  5763. ret = btrfs_lookup_extent_info(trans, root,
  5764. eb->start, eb->len,
  5765. &wc->refs[level],
  5766. &wc->flags[level]);
  5767. BUG_ON(ret == -ENOMEM);
  5768. if (ret)
  5769. return ret;
  5770. BUG_ON(wc->refs[level] == 0);
  5771. }
  5772. if (wc->stage == DROP_REFERENCE) {
  5773. if (wc->refs[level] > 1)
  5774. return 1;
  5775. if (path->locks[level] && !wc->keep_locks) {
  5776. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5777. path->locks[level] = 0;
  5778. }
  5779. return 0;
  5780. }
  5781. /* wc->stage == UPDATE_BACKREF */
  5782. if (!(wc->flags[level] & flag)) {
  5783. BUG_ON(!path->locks[level]);
  5784. ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
  5785. BUG_ON(ret); /* -ENOMEM */
  5786. ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
  5787. BUG_ON(ret); /* -ENOMEM */
  5788. ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
  5789. eb->len, flag, 0);
  5790. BUG_ON(ret); /* -ENOMEM */
  5791. wc->flags[level] |= flag;
  5792. }
  5793. /*
  5794. * the block is shared by multiple trees, so it's not good to
  5795. * keep the tree lock
  5796. */
  5797. if (path->locks[level] && level > 0) {
  5798. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5799. path->locks[level] = 0;
  5800. }
  5801. return 0;
  5802. }
  5803. /*
  5804. * helper to process tree block pointer.
  5805. *
  5806. * when wc->stage == DROP_REFERENCE, this function checks
  5807. * reference count of the block pointed to. if the block
  5808. * is shared and we need update back refs for the subtree
  5809. * rooted at the block, this function changes wc->stage to
  5810. * UPDATE_BACKREF. if the block is shared and there is no
  5811. * need to update back, this function drops the reference
  5812. * to the block.
  5813. *
  5814. * NOTE: return value 1 means we should stop walking down.
  5815. */
  5816. static noinline int do_walk_down(struct btrfs_trans_handle *trans,
  5817. struct btrfs_root *root,
  5818. struct btrfs_path *path,
  5819. struct walk_control *wc, int *lookup_info)
  5820. {
  5821. u64 bytenr;
  5822. u64 generation;
  5823. u64 parent;
  5824. u32 blocksize;
  5825. struct btrfs_key key;
  5826. struct extent_buffer *next;
  5827. int level = wc->level;
  5828. int reada = 0;
  5829. int ret = 0;
  5830. generation = btrfs_node_ptr_generation(path->nodes[level],
  5831. path->slots[level]);
  5832. /*
  5833. * if the lower level block was created before the snapshot
  5834. * was created, we know there is no need to update back refs
  5835. * for the subtree
  5836. */
  5837. if (wc->stage == UPDATE_BACKREF &&
  5838. generation <= root->root_key.offset) {
  5839. *lookup_info = 1;
  5840. return 1;
  5841. }
  5842. bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
  5843. blocksize = btrfs_level_size(root, level - 1);
  5844. next = btrfs_find_tree_block(root, bytenr, blocksize);
  5845. if (!next) {
  5846. next = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5847. if (!next)
  5848. return -ENOMEM;
  5849. reada = 1;
  5850. }
  5851. btrfs_tree_lock(next);
  5852. btrfs_set_lock_blocking(next);
  5853. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5854. &wc->refs[level - 1],
  5855. &wc->flags[level - 1]);
  5856. if (ret < 0) {
  5857. btrfs_tree_unlock(next);
  5858. return ret;
  5859. }
  5860. BUG_ON(wc->refs[level - 1] == 0);
  5861. *lookup_info = 0;
  5862. if (wc->stage == DROP_REFERENCE) {
  5863. if (wc->refs[level - 1] > 1) {
  5864. if (level == 1 &&
  5865. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5866. goto skip;
  5867. if (!wc->update_ref ||
  5868. generation <= root->root_key.offset)
  5869. goto skip;
  5870. btrfs_node_key_to_cpu(path->nodes[level], &key,
  5871. path->slots[level]);
  5872. ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
  5873. if (ret < 0)
  5874. goto skip;
  5875. wc->stage = UPDATE_BACKREF;
  5876. wc->shared_level = level - 1;
  5877. }
  5878. } else {
  5879. if (level == 1 &&
  5880. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5881. goto skip;
  5882. }
  5883. if (!btrfs_buffer_uptodate(next, generation, 0)) {
  5884. btrfs_tree_unlock(next);
  5885. free_extent_buffer(next);
  5886. next = NULL;
  5887. *lookup_info = 1;
  5888. }
  5889. if (!next) {
  5890. if (reada && level == 1)
  5891. reada_walk_down(trans, root, wc, path);
  5892. next = read_tree_block(root, bytenr, blocksize, generation);
  5893. if (!next)
  5894. return -EIO;
  5895. btrfs_tree_lock(next);
  5896. btrfs_set_lock_blocking(next);
  5897. }
  5898. level--;
  5899. BUG_ON(level != btrfs_header_level(next));
  5900. path->nodes[level] = next;
  5901. path->slots[level] = 0;
  5902. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5903. wc->level = level;
  5904. if (wc->level == 1)
  5905. wc->reada_slot = 0;
  5906. return 0;
  5907. skip:
  5908. wc->refs[level - 1] = 0;
  5909. wc->flags[level - 1] = 0;
  5910. if (wc->stage == DROP_REFERENCE) {
  5911. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  5912. parent = path->nodes[level]->start;
  5913. } else {
  5914. BUG_ON(root->root_key.objectid !=
  5915. btrfs_header_owner(path->nodes[level]));
  5916. parent = 0;
  5917. }
  5918. ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
  5919. root->root_key.objectid, level - 1, 0, 0);
  5920. BUG_ON(ret); /* -ENOMEM */
  5921. }
  5922. btrfs_tree_unlock(next);
  5923. free_extent_buffer(next);
  5924. *lookup_info = 1;
  5925. return 1;
  5926. }
  5927. /*
  5928. * helper to process tree block while walking up the tree.
  5929. *
  5930. * when wc->stage == DROP_REFERENCE, this function drops
  5931. * reference count on the block.
  5932. *
  5933. * when wc->stage == UPDATE_BACKREF, this function changes
  5934. * wc->stage back to DROP_REFERENCE if we changed wc->stage
  5935. * to UPDATE_BACKREF previously while processing the block.
  5936. *
  5937. * NOTE: return value 1 means we should stop walking up.
  5938. */
  5939. static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
  5940. struct btrfs_root *root,
  5941. struct btrfs_path *path,
  5942. struct walk_control *wc)
  5943. {
  5944. int ret;
  5945. int level = wc->level;
  5946. struct extent_buffer *eb = path->nodes[level];
  5947. u64 parent = 0;
  5948. if (wc->stage == UPDATE_BACKREF) {
  5949. BUG_ON(wc->shared_level < level);
  5950. if (level < wc->shared_level)
  5951. goto out;
  5952. ret = find_next_key(path, level + 1, &wc->update_progress);
  5953. if (ret > 0)
  5954. wc->update_ref = 0;
  5955. wc->stage = DROP_REFERENCE;
  5956. wc->shared_level = -1;
  5957. path->slots[level] = 0;
  5958. /*
  5959. * check reference count again if the block isn't locked.
  5960. * we should start walking down the tree again if reference
  5961. * count is one.
  5962. */
  5963. if (!path->locks[level]) {
  5964. BUG_ON(level == 0);
  5965. btrfs_tree_lock(eb);
  5966. btrfs_set_lock_blocking(eb);
  5967. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5968. ret = btrfs_lookup_extent_info(trans, root,
  5969. eb->start, eb->len,
  5970. &wc->refs[level],
  5971. &wc->flags[level]);
  5972. if (ret < 0) {
  5973. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5974. path->locks[level] = 0;
  5975. return ret;
  5976. }
  5977. BUG_ON(wc->refs[level] == 0);
  5978. if (wc->refs[level] == 1) {
  5979. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5980. path->locks[level] = 0;
  5981. return 1;
  5982. }
  5983. }
  5984. }
  5985. /* wc->stage == DROP_REFERENCE */
  5986. BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
  5987. if (wc->refs[level] == 1) {
  5988. if (level == 0) {
  5989. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5990. ret = btrfs_dec_ref(trans, root, eb, 1,
  5991. wc->for_reloc);
  5992. else
  5993. ret = btrfs_dec_ref(trans, root, eb, 0,
  5994. wc->for_reloc);
  5995. BUG_ON(ret); /* -ENOMEM */
  5996. }
  5997. /* make block locked assertion in clean_tree_block happy */
  5998. if (!path->locks[level] &&
  5999. btrfs_header_generation(eb) == trans->transid) {
  6000. btrfs_tree_lock(eb);
  6001. btrfs_set_lock_blocking(eb);
  6002. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6003. }
  6004. clean_tree_block(trans, root, eb);
  6005. }
  6006. if (eb == root->node) {
  6007. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6008. parent = eb->start;
  6009. else
  6010. BUG_ON(root->root_key.objectid !=
  6011. btrfs_header_owner(eb));
  6012. } else {
  6013. if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6014. parent = path->nodes[level + 1]->start;
  6015. else
  6016. BUG_ON(root->root_key.objectid !=
  6017. btrfs_header_owner(path->nodes[level + 1]));
  6018. }
  6019. btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
  6020. out:
  6021. wc->refs[level] = 0;
  6022. wc->flags[level] = 0;
  6023. return 0;
  6024. }
  6025. static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
  6026. struct btrfs_root *root,
  6027. struct btrfs_path *path,
  6028. struct walk_control *wc)
  6029. {
  6030. int level = wc->level;
  6031. int lookup_info = 1;
  6032. int ret;
  6033. while (level >= 0) {
  6034. ret = walk_down_proc(trans, root, path, wc, lookup_info);
  6035. if (ret > 0)
  6036. break;
  6037. if (level == 0)
  6038. break;
  6039. if (path->slots[level] >=
  6040. btrfs_header_nritems(path->nodes[level]))
  6041. break;
  6042. ret = do_walk_down(trans, root, path, wc, &lookup_info);
  6043. if (ret > 0) {
  6044. path->slots[level]++;
  6045. continue;
  6046. } else if (ret < 0)
  6047. return ret;
  6048. level = wc->level;
  6049. }
  6050. return 0;
  6051. }
  6052. static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
  6053. struct btrfs_root *root,
  6054. struct btrfs_path *path,
  6055. struct walk_control *wc, int max_level)
  6056. {
  6057. int level = wc->level;
  6058. int ret;
  6059. path->slots[level] = btrfs_header_nritems(path->nodes[level]);
  6060. while (level < max_level && path->nodes[level]) {
  6061. wc->level = level;
  6062. if (path->slots[level] + 1 <
  6063. btrfs_header_nritems(path->nodes[level])) {
  6064. path->slots[level]++;
  6065. return 0;
  6066. } else {
  6067. ret = walk_up_proc(trans, root, path, wc);
  6068. if (ret > 0)
  6069. return 0;
  6070. if (path->locks[level]) {
  6071. btrfs_tree_unlock_rw(path->nodes[level],
  6072. path->locks[level]);
  6073. path->locks[level] = 0;
  6074. }
  6075. free_extent_buffer(path->nodes[level]);
  6076. path->nodes[level] = NULL;
  6077. level++;
  6078. }
  6079. }
  6080. return 1;
  6081. }
  6082. /*
  6083. * drop a subvolume tree.
  6084. *
  6085. * this function traverses the tree freeing any blocks that only
  6086. * referenced by the tree.
  6087. *
  6088. * when a shared tree block is found. this function decreases its
  6089. * reference count by one. if update_ref is true, this function
  6090. * also make sure backrefs for the shared block and all lower level
  6091. * blocks are properly updated.
  6092. */
  6093. int btrfs_drop_snapshot(struct btrfs_root *root,
  6094. struct btrfs_block_rsv *block_rsv, int update_ref,
  6095. int for_reloc)
  6096. {
  6097. struct btrfs_path *path;
  6098. struct btrfs_trans_handle *trans;
  6099. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6100. struct btrfs_root_item *root_item = &root->root_item;
  6101. struct walk_control *wc;
  6102. struct btrfs_key key;
  6103. int err = 0;
  6104. int ret;
  6105. int level;
  6106. path = btrfs_alloc_path();
  6107. if (!path) {
  6108. err = -ENOMEM;
  6109. goto out;
  6110. }
  6111. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6112. if (!wc) {
  6113. btrfs_free_path(path);
  6114. err = -ENOMEM;
  6115. goto out;
  6116. }
  6117. trans = btrfs_start_transaction(tree_root, 0);
  6118. if (IS_ERR(trans)) {
  6119. err = PTR_ERR(trans);
  6120. goto out_free;
  6121. }
  6122. if (block_rsv)
  6123. trans->block_rsv = block_rsv;
  6124. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  6125. level = btrfs_header_level(root->node);
  6126. path->nodes[level] = btrfs_lock_root_node(root);
  6127. btrfs_set_lock_blocking(path->nodes[level]);
  6128. path->slots[level] = 0;
  6129. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6130. memset(&wc->update_progress, 0,
  6131. sizeof(wc->update_progress));
  6132. } else {
  6133. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  6134. memcpy(&wc->update_progress, &key,
  6135. sizeof(wc->update_progress));
  6136. level = root_item->drop_level;
  6137. BUG_ON(level == 0);
  6138. path->lowest_level = level;
  6139. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  6140. path->lowest_level = 0;
  6141. if (ret < 0) {
  6142. err = ret;
  6143. goto out_end_trans;
  6144. }
  6145. WARN_ON(ret > 0);
  6146. /*
  6147. * unlock our path, this is safe because only this
  6148. * function is allowed to delete this snapshot
  6149. */
  6150. btrfs_unlock_up_safe(path, 0);
  6151. level = btrfs_header_level(root->node);
  6152. while (1) {
  6153. btrfs_tree_lock(path->nodes[level]);
  6154. btrfs_set_lock_blocking(path->nodes[level]);
  6155. ret = btrfs_lookup_extent_info(trans, root,
  6156. path->nodes[level]->start,
  6157. path->nodes[level]->len,
  6158. &wc->refs[level],
  6159. &wc->flags[level]);
  6160. if (ret < 0) {
  6161. err = ret;
  6162. goto out_end_trans;
  6163. }
  6164. BUG_ON(wc->refs[level] == 0);
  6165. if (level == root_item->drop_level)
  6166. break;
  6167. btrfs_tree_unlock(path->nodes[level]);
  6168. WARN_ON(wc->refs[level] != 1);
  6169. level--;
  6170. }
  6171. }
  6172. wc->level = level;
  6173. wc->shared_level = -1;
  6174. wc->stage = DROP_REFERENCE;
  6175. wc->update_ref = update_ref;
  6176. wc->keep_locks = 0;
  6177. wc->for_reloc = for_reloc;
  6178. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6179. while (1) {
  6180. ret = walk_down_tree(trans, root, path, wc);
  6181. if (ret < 0) {
  6182. err = ret;
  6183. break;
  6184. }
  6185. ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
  6186. if (ret < 0) {
  6187. err = ret;
  6188. break;
  6189. }
  6190. if (ret > 0) {
  6191. BUG_ON(wc->stage != DROP_REFERENCE);
  6192. break;
  6193. }
  6194. if (wc->stage == DROP_REFERENCE) {
  6195. level = wc->level;
  6196. btrfs_node_key(path->nodes[level],
  6197. &root_item->drop_progress,
  6198. path->slots[level]);
  6199. root_item->drop_level = level;
  6200. }
  6201. BUG_ON(wc->level == 0);
  6202. if (btrfs_should_end_transaction(trans, tree_root)) {
  6203. ret = btrfs_update_root(trans, tree_root,
  6204. &root->root_key,
  6205. root_item);
  6206. if (ret) {
  6207. btrfs_abort_transaction(trans, tree_root, ret);
  6208. err = ret;
  6209. goto out_end_trans;
  6210. }
  6211. btrfs_end_transaction_throttle(trans, tree_root);
  6212. trans = btrfs_start_transaction(tree_root, 0);
  6213. if (IS_ERR(trans)) {
  6214. err = PTR_ERR(trans);
  6215. goto out_free;
  6216. }
  6217. if (block_rsv)
  6218. trans->block_rsv = block_rsv;
  6219. }
  6220. }
  6221. btrfs_release_path(path);
  6222. if (err)
  6223. goto out_end_trans;
  6224. ret = btrfs_del_root(trans, tree_root, &root->root_key);
  6225. if (ret) {
  6226. btrfs_abort_transaction(trans, tree_root, ret);
  6227. goto out_end_trans;
  6228. }
  6229. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  6230. ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
  6231. NULL, NULL);
  6232. if (ret < 0) {
  6233. btrfs_abort_transaction(trans, tree_root, ret);
  6234. err = ret;
  6235. goto out_end_trans;
  6236. } else if (ret > 0) {
  6237. /* if we fail to delete the orphan item this time
  6238. * around, it'll get picked up the next time.
  6239. *
  6240. * The most common failure here is just -ENOENT.
  6241. */
  6242. btrfs_del_orphan_item(trans, tree_root,
  6243. root->root_key.objectid);
  6244. }
  6245. }
  6246. if (root->in_radix) {
  6247. btrfs_free_fs_root(tree_root->fs_info, root);
  6248. } else {
  6249. free_extent_buffer(root->node);
  6250. free_extent_buffer(root->commit_root);
  6251. kfree(root);
  6252. }
  6253. out_end_trans:
  6254. btrfs_end_transaction_throttle(trans, tree_root);
  6255. out_free:
  6256. kfree(wc);
  6257. btrfs_free_path(path);
  6258. out:
  6259. if (err)
  6260. btrfs_std_error(root->fs_info, err);
  6261. return err;
  6262. }
  6263. /*
  6264. * drop subtree rooted at tree block 'node'.
  6265. *
  6266. * NOTE: this function will unlock and release tree block 'node'
  6267. * only used by relocation code
  6268. */
  6269. int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
  6270. struct btrfs_root *root,
  6271. struct extent_buffer *node,
  6272. struct extent_buffer *parent)
  6273. {
  6274. struct btrfs_path *path;
  6275. struct walk_control *wc;
  6276. int level;
  6277. int parent_level;
  6278. int ret = 0;
  6279. int wret;
  6280. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  6281. path = btrfs_alloc_path();
  6282. if (!path)
  6283. return -ENOMEM;
  6284. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6285. if (!wc) {
  6286. btrfs_free_path(path);
  6287. return -ENOMEM;
  6288. }
  6289. btrfs_assert_tree_locked(parent);
  6290. parent_level = btrfs_header_level(parent);
  6291. extent_buffer_get(parent);
  6292. path->nodes[parent_level] = parent;
  6293. path->slots[parent_level] = btrfs_header_nritems(parent);
  6294. btrfs_assert_tree_locked(node);
  6295. level = btrfs_header_level(node);
  6296. path->nodes[level] = node;
  6297. path->slots[level] = 0;
  6298. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6299. wc->refs[parent_level] = 1;
  6300. wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  6301. wc->level = level;
  6302. wc->shared_level = -1;
  6303. wc->stage = DROP_REFERENCE;
  6304. wc->update_ref = 0;
  6305. wc->keep_locks = 1;
  6306. wc->for_reloc = 1;
  6307. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6308. while (1) {
  6309. wret = walk_down_tree(trans, root, path, wc);
  6310. if (wret < 0) {
  6311. ret = wret;
  6312. break;
  6313. }
  6314. wret = walk_up_tree(trans, root, path, wc, parent_level);
  6315. if (wret < 0)
  6316. ret = wret;
  6317. if (wret != 0)
  6318. break;
  6319. }
  6320. kfree(wc);
  6321. btrfs_free_path(path);
  6322. return ret;
  6323. }
  6324. static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
  6325. {
  6326. u64 num_devices;
  6327. u64 stripped;
  6328. /*
  6329. * if restripe for this chunk_type is on pick target profile and
  6330. * return, otherwise do the usual balance
  6331. */
  6332. stripped = get_restripe_target(root->fs_info, flags);
  6333. if (stripped)
  6334. return extended_to_chunk(stripped);
  6335. /*
  6336. * we add in the count of missing devices because we want
  6337. * to make sure that any RAID levels on a degraded FS
  6338. * continue to be honored.
  6339. */
  6340. num_devices = root->fs_info->fs_devices->rw_devices +
  6341. root->fs_info->fs_devices->missing_devices;
  6342. stripped = BTRFS_BLOCK_GROUP_RAID0 |
  6343. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
  6344. if (num_devices == 1) {
  6345. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6346. stripped = flags & ~stripped;
  6347. /* turn raid0 into single device chunks */
  6348. if (flags & BTRFS_BLOCK_GROUP_RAID0)
  6349. return stripped;
  6350. /* turn mirroring into duplication */
  6351. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6352. BTRFS_BLOCK_GROUP_RAID10))
  6353. return stripped | BTRFS_BLOCK_GROUP_DUP;
  6354. } else {
  6355. /* they already had raid on here, just return */
  6356. if (flags & stripped)
  6357. return flags;
  6358. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6359. stripped = flags & ~stripped;
  6360. /* switch duplicated blocks with raid1 */
  6361. if (flags & BTRFS_BLOCK_GROUP_DUP)
  6362. return stripped | BTRFS_BLOCK_GROUP_RAID1;
  6363. /* this is drive concat, leave it alone */
  6364. }
  6365. return flags;
  6366. }
  6367. static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
  6368. {
  6369. struct btrfs_space_info *sinfo = cache->space_info;
  6370. u64 num_bytes;
  6371. u64 min_allocable_bytes;
  6372. int ret = -ENOSPC;
  6373. /*
  6374. * We need some metadata space and system metadata space for
  6375. * allocating chunks in some corner cases until we force to set
  6376. * it to be readonly.
  6377. */
  6378. if ((sinfo->flags &
  6379. (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
  6380. !force)
  6381. min_allocable_bytes = 1 * 1024 * 1024;
  6382. else
  6383. min_allocable_bytes = 0;
  6384. spin_lock(&sinfo->lock);
  6385. spin_lock(&cache->lock);
  6386. if (cache->ro) {
  6387. ret = 0;
  6388. goto out;
  6389. }
  6390. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6391. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6392. if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
  6393. sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
  6394. min_allocable_bytes <= sinfo->total_bytes) {
  6395. sinfo->bytes_readonly += num_bytes;
  6396. cache->ro = 1;
  6397. ret = 0;
  6398. }
  6399. out:
  6400. spin_unlock(&cache->lock);
  6401. spin_unlock(&sinfo->lock);
  6402. return ret;
  6403. }
  6404. int btrfs_set_block_group_ro(struct btrfs_root *root,
  6405. struct btrfs_block_group_cache *cache)
  6406. {
  6407. struct btrfs_trans_handle *trans;
  6408. u64 alloc_flags;
  6409. int ret;
  6410. BUG_ON(cache->ro);
  6411. trans = btrfs_join_transaction(root);
  6412. if (IS_ERR(trans))
  6413. return PTR_ERR(trans);
  6414. alloc_flags = update_block_group_flags(root, cache->flags);
  6415. if (alloc_flags != cache->flags) {
  6416. ret = do_chunk_alloc(trans, root, alloc_flags,
  6417. CHUNK_ALLOC_FORCE);
  6418. if (ret < 0)
  6419. goto out;
  6420. }
  6421. ret = set_block_group_ro(cache, 0);
  6422. if (!ret)
  6423. goto out;
  6424. alloc_flags = get_alloc_profile(root, cache->space_info->flags);
  6425. ret = do_chunk_alloc(trans, root, alloc_flags,
  6426. CHUNK_ALLOC_FORCE);
  6427. if (ret < 0)
  6428. goto out;
  6429. ret = set_block_group_ro(cache, 0);
  6430. out:
  6431. btrfs_end_transaction(trans, root);
  6432. return ret;
  6433. }
  6434. int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
  6435. struct btrfs_root *root, u64 type)
  6436. {
  6437. u64 alloc_flags = get_alloc_profile(root, type);
  6438. return do_chunk_alloc(trans, root, alloc_flags,
  6439. CHUNK_ALLOC_FORCE);
  6440. }
  6441. /*
  6442. * helper to account the unused space of all the readonly block group in the
  6443. * list. takes mirrors into account.
  6444. */
  6445. static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
  6446. {
  6447. struct btrfs_block_group_cache *block_group;
  6448. u64 free_bytes = 0;
  6449. int factor;
  6450. list_for_each_entry(block_group, groups_list, list) {
  6451. spin_lock(&block_group->lock);
  6452. if (!block_group->ro) {
  6453. spin_unlock(&block_group->lock);
  6454. continue;
  6455. }
  6456. if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6457. BTRFS_BLOCK_GROUP_RAID10 |
  6458. BTRFS_BLOCK_GROUP_DUP))
  6459. factor = 2;
  6460. else
  6461. factor = 1;
  6462. free_bytes += (block_group->key.offset -
  6463. btrfs_block_group_used(&block_group->item)) *
  6464. factor;
  6465. spin_unlock(&block_group->lock);
  6466. }
  6467. return free_bytes;
  6468. }
  6469. /*
  6470. * helper to account the unused space of all the readonly block group in the
  6471. * space_info. takes mirrors into account.
  6472. */
  6473. u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
  6474. {
  6475. int i;
  6476. u64 free_bytes = 0;
  6477. spin_lock(&sinfo->lock);
  6478. for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  6479. if (!list_empty(&sinfo->block_groups[i]))
  6480. free_bytes += __btrfs_get_ro_block_group_free_space(
  6481. &sinfo->block_groups[i]);
  6482. spin_unlock(&sinfo->lock);
  6483. return free_bytes;
  6484. }
  6485. void btrfs_set_block_group_rw(struct btrfs_root *root,
  6486. struct btrfs_block_group_cache *cache)
  6487. {
  6488. struct btrfs_space_info *sinfo = cache->space_info;
  6489. u64 num_bytes;
  6490. BUG_ON(!cache->ro);
  6491. spin_lock(&sinfo->lock);
  6492. spin_lock(&cache->lock);
  6493. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6494. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6495. sinfo->bytes_readonly -= num_bytes;
  6496. cache->ro = 0;
  6497. spin_unlock(&cache->lock);
  6498. spin_unlock(&sinfo->lock);
  6499. }
  6500. /*
  6501. * checks to see if its even possible to relocate this block group.
  6502. *
  6503. * @return - -1 if it's not a good idea to relocate this block group, 0 if its
  6504. * ok to go ahead and try.
  6505. */
  6506. int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
  6507. {
  6508. struct btrfs_block_group_cache *block_group;
  6509. struct btrfs_space_info *space_info;
  6510. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  6511. struct btrfs_device *device;
  6512. u64 min_free;
  6513. u64 dev_min = 1;
  6514. u64 dev_nr = 0;
  6515. u64 target;
  6516. int index;
  6517. int full = 0;
  6518. int ret = 0;
  6519. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  6520. /* odd, couldn't find the block group, leave it alone */
  6521. if (!block_group)
  6522. return -1;
  6523. min_free = btrfs_block_group_used(&block_group->item);
  6524. /* no bytes used, we're good */
  6525. if (!min_free)
  6526. goto out;
  6527. space_info = block_group->space_info;
  6528. spin_lock(&space_info->lock);
  6529. full = space_info->full;
  6530. /*
  6531. * if this is the last block group we have in this space, we can't
  6532. * relocate it unless we're able to allocate a new chunk below.
  6533. *
  6534. * Otherwise, we need to make sure we have room in the space to handle
  6535. * all of the extents from this block group. If we can, we're good
  6536. */
  6537. if ((space_info->total_bytes != block_group->key.offset) &&
  6538. (space_info->bytes_used + space_info->bytes_reserved +
  6539. space_info->bytes_pinned + space_info->bytes_readonly +
  6540. min_free < space_info->total_bytes)) {
  6541. spin_unlock(&space_info->lock);
  6542. goto out;
  6543. }
  6544. spin_unlock(&space_info->lock);
  6545. /*
  6546. * ok we don't have enough space, but maybe we have free space on our
  6547. * devices to allocate new chunks for relocation, so loop through our
  6548. * alloc devices and guess if we have enough space. if this block
  6549. * group is going to be restriped, run checks against the target
  6550. * profile instead of the current one.
  6551. */
  6552. ret = -1;
  6553. /*
  6554. * index:
  6555. * 0: raid10
  6556. * 1: raid1
  6557. * 2: dup
  6558. * 3: raid0
  6559. * 4: single
  6560. */
  6561. target = get_restripe_target(root->fs_info, block_group->flags);
  6562. if (target) {
  6563. index = __get_raid_index(extended_to_chunk(target));
  6564. } else {
  6565. /*
  6566. * this is just a balance, so if we were marked as full
  6567. * we know there is no space for a new chunk
  6568. */
  6569. if (full)
  6570. goto out;
  6571. index = get_block_group_index(block_group);
  6572. }
  6573. if (index == 0) {
  6574. dev_min = 4;
  6575. /* Divide by 2 */
  6576. min_free >>= 1;
  6577. } else if (index == 1) {
  6578. dev_min = 2;
  6579. } else if (index == 2) {
  6580. /* Multiply by 2 */
  6581. min_free <<= 1;
  6582. } else if (index == 3) {
  6583. dev_min = fs_devices->rw_devices;
  6584. do_div(min_free, dev_min);
  6585. }
  6586. mutex_lock(&root->fs_info->chunk_mutex);
  6587. list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
  6588. u64 dev_offset;
  6589. /*
  6590. * check to make sure we can actually find a chunk with enough
  6591. * space to fit our block group in.
  6592. */
  6593. if (device->total_bytes > device->bytes_used + min_free &&
  6594. !device->is_tgtdev_for_dev_replace) {
  6595. ret = find_free_dev_extent(device, min_free,
  6596. &dev_offset, NULL);
  6597. if (!ret)
  6598. dev_nr++;
  6599. if (dev_nr >= dev_min)
  6600. break;
  6601. ret = -1;
  6602. }
  6603. }
  6604. mutex_unlock(&root->fs_info->chunk_mutex);
  6605. out:
  6606. btrfs_put_block_group(block_group);
  6607. return ret;
  6608. }
  6609. static int find_first_block_group(struct btrfs_root *root,
  6610. struct btrfs_path *path, struct btrfs_key *key)
  6611. {
  6612. int ret = 0;
  6613. struct btrfs_key found_key;
  6614. struct extent_buffer *leaf;
  6615. int slot;
  6616. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  6617. if (ret < 0)
  6618. goto out;
  6619. while (1) {
  6620. slot = path->slots[0];
  6621. leaf = path->nodes[0];
  6622. if (slot >= btrfs_header_nritems(leaf)) {
  6623. ret = btrfs_next_leaf(root, path);
  6624. if (ret == 0)
  6625. continue;
  6626. if (ret < 0)
  6627. goto out;
  6628. break;
  6629. }
  6630. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  6631. if (found_key.objectid >= key->objectid &&
  6632. found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
  6633. ret = 0;
  6634. goto out;
  6635. }
  6636. path->slots[0]++;
  6637. }
  6638. out:
  6639. return ret;
  6640. }
  6641. void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
  6642. {
  6643. struct btrfs_block_group_cache *block_group;
  6644. u64 last = 0;
  6645. while (1) {
  6646. struct inode *inode;
  6647. block_group = btrfs_lookup_first_block_group(info, last);
  6648. while (block_group) {
  6649. spin_lock(&block_group->lock);
  6650. if (block_group->iref)
  6651. break;
  6652. spin_unlock(&block_group->lock);
  6653. block_group = next_block_group(info->tree_root,
  6654. block_group);
  6655. }
  6656. if (!block_group) {
  6657. if (last == 0)
  6658. break;
  6659. last = 0;
  6660. continue;
  6661. }
  6662. inode = block_group->inode;
  6663. block_group->iref = 0;
  6664. block_group->inode = NULL;
  6665. spin_unlock(&block_group->lock);
  6666. iput(inode);
  6667. last = block_group->key.objectid + block_group->key.offset;
  6668. btrfs_put_block_group(block_group);
  6669. }
  6670. }
  6671. int btrfs_free_block_groups(struct btrfs_fs_info *info)
  6672. {
  6673. struct btrfs_block_group_cache *block_group;
  6674. struct btrfs_space_info *space_info;
  6675. struct btrfs_caching_control *caching_ctl;
  6676. struct rb_node *n;
  6677. down_write(&info->extent_commit_sem);
  6678. while (!list_empty(&info->caching_block_groups)) {
  6679. caching_ctl = list_entry(info->caching_block_groups.next,
  6680. struct btrfs_caching_control, list);
  6681. list_del(&caching_ctl->list);
  6682. put_caching_control(caching_ctl);
  6683. }
  6684. up_write(&info->extent_commit_sem);
  6685. spin_lock(&info->block_group_cache_lock);
  6686. while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
  6687. block_group = rb_entry(n, struct btrfs_block_group_cache,
  6688. cache_node);
  6689. rb_erase(&block_group->cache_node,
  6690. &info->block_group_cache_tree);
  6691. spin_unlock(&info->block_group_cache_lock);
  6692. down_write(&block_group->space_info->groups_sem);
  6693. list_del(&block_group->list);
  6694. up_write(&block_group->space_info->groups_sem);
  6695. if (block_group->cached == BTRFS_CACHE_STARTED)
  6696. wait_block_group_cache_done(block_group);
  6697. /*
  6698. * We haven't cached this block group, which means we could
  6699. * possibly have excluded extents on this block group.
  6700. */
  6701. if (block_group->cached == BTRFS_CACHE_NO)
  6702. free_excluded_extents(info->extent_root, block_group);
  6703. btrfs_remove_free_space_cache(block_group);
  6704. btrfs_put_block_group(block_group);
  6705. spin_lock(&info->block_group_cache_lock);
  6706. }
  6707. spin_unlock(&info->block_group_cache_lock);
  6708. /* now that all the block groups are freed, go through and
  6709. * free all the space_info structs. This is only called during
  6710. * the final stages of unmount, and so we know nobody is
  6711. * using them. We call synchronize_rcu() once before we start,
  6712. * just to be on the safe side.
  6713. */
  6714. synchronize_rcu();
  6715. release_global_block_rsv(info);
  6716. while(!list_empty(&info->space_info)) {
  6717. space_info = list_entry(info->space_info.next,
  6718. struct btrfs_space_info,
  6719. list);
  6720. if (space_info->bytes_pinned > 0 ||
  6721. space_info->bytes_reserved > 0 ||
  6722. space_info->bytes_may_use > 0) {
  6723. WARN_ON(1);
  6724. dump_space_info(space_info, 0, 0);
  6725. }
  6726. list_del(&space_info->list);
  6727. kfree(space_info);
  6728. }
  6729. return 0;
  6730. }
  6731. static void __link_block_group(struct btrfs_space_info *space_info,
  6732. struct btrfs_block_group_cache *cache)
  6733. {
  6734. int index = get_block_group_index(cache);
  6735. down_write(&space_info->groups_sem);
  6736. list_add_tail(&cache->list, &space_info->block_groups[index]);
  6737. up_write(&space_info->groups_sem);
  6738. }
  6739. int btrfs_read_block_groups(struct btrfs_root *root)
  6740. {
  6741. struct btrfs_path *path;
  6742. int ret;
  6743. struct btrfs_block_group_cache *cache;
  6744. struct btrfs_fs_info *info = root->fs_info;
  6745. struct btrfs_space_info *space_info;
  6746. struct btrfs_key key;
  6747. struct btrfs_key found_key;
  6748. struct extent_buffer *leaf;
  6749. int need_clear = 0;
  6750. u64 cache_gen;
  6751. root = info->extent_root;
  6752. key.objectid = 0;
  6753. key.offset = 0;
  6754. btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
  6755. path = btrfs_alloc_path();
  6756. if (!path)
  6757. return -ENOMEM;
  6758. path->reada = 1;
  6759. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  6760. if (btrfs_test_opt(root, SPACE_CACHE) &&
  6761. btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
  6762. need_clear = 1;
  6763. if (btrfs_test_opt(root, CLEAR_CACHE))
  6764. need_clear = 1;
  6765. while (1) {
  6766. ret = find_first_block_group(root, path, &key);
  6767. if (ret > 0)
  6768. break;
  6769. if (ret != 0)
  6770. goto error;
  6771. leaf = path->nodes[0];
  6772. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  6773. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6774. if (!cache) {
  6775. ret = -ENOMEM;
  6776. goto error;
  6777. }
  6778. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6779. GFP_NOFS);
  6780. if (!cache->free_space_ctl) {
  6781. kfree(cache);
  6782. ret = -ENOMEM;
  6783. goto error;
  6784. }
  6785. atomic_set(&cache->count, 1);
  6786. spin_lock_init(&cache->lock);
  6787. cache->fs_info = info;
  6788. INIT_LIST_HEAD(&cache->list);
  6789. INIT_LIST_HEAD(&cache->cluster_list);
  6790. if (need_clear) {
  6791. /*
  6792. * When we mount with old space cache, we need to
  6793. * set BTRFS_DC_CLEAR and set dirty flag.
  6794. *
  6795. * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
  6796. * truncate the old free space cache inode and
  6797. * setup a new one.
  6798. * b) Setting 'dirty flag' makes sure that we flush
  6799. * the new space cache info onto disk.
  6800. */
  6801. cache->disk_cache_state = BTRFS_DC_CLEAR;
  6802. if (btrfs_test_opt(root, SPACE_CACHE))
  6803. cache->dirty = 1;
  6804. }
  6805. read_extent_buffer(leaf, &cache->item,
  6806. btrfs_item_ptr_offset(leaf, path->slots[0]),
  6807. sizeof(cache->item));
  6808. memcpy(&cache->key, &found_key, sizeof(found_key));
  6809. key.objectid = found_key.objectid + found_key.offset;
  6810. btrfs_release_path(path);
  6811. cache->flags = btrfs_block_group_flags(&cache->item);
  6812. cache->sectorsize = root->sectorsize;
  6813. btrfs_init_free_space_ctl(cache);
  6814. /*
  6815. * We need to exclude the super stripes now so that the space
  6816. * info has super bytes accounted for, otherwise we'll think
  6817. * we have more space than we actually do.
  6818. */
  6819. exclude_super_stripes(root, cache);
  6820. /*
  6821. * check for two cases, either we are full, and therefore
  6822. * don't need to bother with the caching work since we won't
  6823. * find any space, or we are empty, and we can just add all
  6824. * the space in and be done with it. This saves us _alot_ of
  6825. * time, particularly in the full case.
  6826. */
  6827. if (found_key.offset == btrfs_block_group_used(&cache->item)) {
  6828. cache->last_byte_to_unpin = (u64)-1;
  6829. cache->cached = BTRFS_CACHE_FINISHED;
  6830. free_excluded_extents(root, cache);
  6831. } else if (btrfs_block_group_used(&cache->item) == 0) {
  6832. cache->last_byte_to_unpin = (u64)-1;
  6833. cache->cached = BTRFS_CACHE_FINISHED;
  6834. add_new_free_space(cache, root->fs_info,
  6835. found_key.objectid,
  6836. found_key.objectid +
  6837. found_key.offset);
  6838. free_excluded_extents(root, cache);
  6839. }
  6840. ret = update_space_info(info, cache->flags, found_key.offset,
  6841. btrfs_block_group_used(&cache->item),
  6842. &space_info);
  6843. BUG_ON(ret); /* -ENOMEM */
  6844. cache->space_info = space_info;
  6845. spin_lock(&cache->space_info->lock);
  6846. cache->space_info->bytes_readonly += cache->bytes_super;
  6847. spin_unlock(&cache->space_info->lock);
  6848. __link_block_group(space_info, cache);
  6849. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6850. BUG_ON(ret); /* Logic error */
  6851. set_avail_alloc_bits(root->fs_info, cache->flags);
  6852. if (btrfs_chunk_readonly(root, cache->key.objectid))
  6853. set_block_group_ro(cache, 1);
  6854. }
  6855. list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
  6856. if (!(get_alloc_profile(root, space_info->flags) &
  6857. (BTRFS_BLOCK_GROUP_RAID10 |
  6858. BTRFS_BLOCK_GROUP_RAID1 |
  6859. BTRFS_BLOCK_GROUP_DUP)))
  6860. continue;
  6861. /*
  6862. * avoid allocating from un-mirrored block group if there are
  6863. * mirrored block groups.
  6864. */
  6865. list_for_each_entry(cache, &space_info->block_groups[3], list)
  6866. set_block_group_ro(cache, 1);
  6867. list_for_each_entry(cache, &space_info->block_groups[4], list)
  6868. set_block_group_ro(cache, 1);
  6869. }
  6870. init_global_block_rsv(info);
  6871. ret = 0;
  6872. error:
  6873. btrfs_free_path(path);
  6874. return ret;
  6875. }
  6876. void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
  6877. struct btrfs_root *root)
  6878. {
  6879. struct btrfs_block_group_cache *block_group, *tmp;
  6880. struct btrfs_root *extent_root = root->fs_info->extent_root;
  6881. struct btrfs_block_group_item item;
  6882. struct btrfs_key key;
  6883. int ret = 0;
  6884. list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
  6885. new_bg_list) {
  6886. list_del_init(&block_group->new_bg_list);
  6887. if (ret)
  6888. continue;
  6889. spin_lock(&block_group->lock);
  6890. memcpy(&item, &block_group->item, sizeof(item));
  6891. memcpy(&key, &block_group->key, sizeof(key));
  6892. spin_unlock(&block_group->lock);
  6893. ret = btrfs_insert_item(trans, extent_root, &key, &item,
  6894. sizeof(item));
  6895. if (ret)
  6896. btrfs_abort_transaction(trans, extent_root, ret);
  6897. }
  6898. }
  6899. int btrfs_make_block_group(struct btrfs_trans_handle *trans,
  6900. struct btrfs_root *root, u64 bytes_used,
  6901. u64 type, u64 chunk_objectid, u64 chunk_offset,
  6902. u64 size)
  6903. {
  6904. int ret;
  6905. struct btrfs_root *extent_root;
  6906. struct btrfs_block_group_cache *cache;
  6907. extent_root = root->fs_info->extent_root;
  6908. root->fs_info->last_trans_log_full_commit = trans->transid;
  6909. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6910. if (!cache)
  6911. return -ENOMEM;
  6912. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6913. GFP_NOFS);
  6914. if (!cache->free_space_ctl) {
  6915. kfree(cache);
  6916. return -ENOMEM;
  6917. }
  6918. cache->key.objectid = chunk_offset;
  6919. cache->key.offset = size;
  6920. cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  6921. cache->sectorsize = root->sectorsize;
  6922. cache->fs_info = root->fs_info;
  6923. atomic_set(&cache->count, 1);
  6924. spin_lock_init(&cache->lock);
  6925. INIT_LIST_HEAD(&cache->list);
  6926. INIT_LIST_HEAD(&cache->cluster_list);
  6927. INIT_LIST_HEAD(&cache->new_bg_list);
  6928. btrfs_init_free_space_ctl(cache);
  6929. btrfs_set_block_group_used(&cache->item, bytes_used);
  6930. btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
  6931. cache->flags = type;
  6932. btrfs_set_block_group_flags(&cache->item, type);
  6933. cache->last_byte_to_unpin = (u64)-1;
  6934. cache->cached = BTRFS_CACHE_FINISHED;
  6935. exclude_super_stripes(root, cache);
  6936. add_new_free_space(cache, root->fs_info, chunk_offset,
  6937. chunk_offset + size);
  6938. free_excluded_extents(root, cache);
  6939. ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
  6940. &cache->space_info);
  6941. BUG_ON(ret); /* -ENOMEM */
  6942. update_global_block_rsv(root->fs_info);
  6943. spin_lock(&cache->space_info->lock);
  6944. cache->space_info->bytes_readonly += cache->bytes_super;
  6945. spin_unlock(&cache->space_info->lock);
  6946. __link_block_group(cache->space_info, cache);
  6947. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6948. BUG_ON(ret); /* Logic error */
  6949. list_add_tail(&cache->new_bg_list, &trans->new_bgs);
  6950. set_avail_alloc_bits(extent_root->fs_info, type);
  6951. return 0;
  6952. }
  6953. static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  6954. {
  6955. u64 extra_flags = chunk_to_extended(flags) &
  6956. BTRFS_EXTENDED_PROFILE_MASK;
  6957. if (flags & BTRFS_BLOCK_GROUP_DATA)
  6958. fs_info->avail_data_alloc_bits &= ~extra_flags;
  6959. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  6960. fs_info->avail_metadata_alloc_bits &= ~extra_flags;
  6961. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  6962. fs_info->avail_system_alloc_bits &= ~extra_flags;
  6963. }
  6964. int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
  6965. struct btrfs_root *root, u64 group_start)
  6966. {
  6967. struct btrfs_path *path;
  6968. struct btrfs_block_group_cache *block_group;
  6969. struct btrfs_free_cluster *cluster;
  6970. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6971. struct btrfs_key key;
  6972. struct inode *inode;
  6973. int ret;
  6974. int index;
  6975. int factor;
  6976. root = root->fs_info->extent_root;
  6977. block_group = btrfs_lookup_block_group(root->fs_info, group_start);
  6978. BUG_ON(!block_group);
  6979. BUG_ON(!block_group->ro);
  6980. /*
  6981. * Free the reserved super bytes from this block group before
  6982. * remove it.
  6983. */
  6984. free_excluded_extents(root, block_group);
  6985. memcpy(&key, &block_group->key, sizeof(key));
  6986. index = get_block_group_index(block_group);
  6987. if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
  6988. BTRFS_BLOCK_GROUP_RAID1 |
  6989. BTRFS_BLOCK_GROUP_RAID10))
  6990. factor = 2;
  6991. else
  6992. factor = 1;
  6993. /* make sure this block group isn't part of an allocation cluster */
  6994. cluster = &root->fs_info->data_alloc_cluster;
  6995. spin_lock(&cluster->refill_lock);
  6996. btrfs_return_cluster_to_free_space(block_group, cluster);
  6997. spin_unlock(&cluster->refill_lock);
  6998. /*
  6999. * make sure this block group isn't part of a metadata
  7000. * allocation cluster
  7001. */
  7002. cluster = &root->fs_info->meta_alloc_cluster;
  7003. spin_lock(&cluster->refill_lock);
  7004. btrfs_return_cluster_to_free_space(block_group, cluster);
  7005. spin_unlock(&cluster->refill_lock);
  7006. path = btrfs_alloc_path();
  7007. if (!path) {
  7008. ret = -ENOMEM;
  7009. goto out;
  7010. }
  7011. inode = lookup_free_space_inode(tree_root, block_group, path);
  7012. if (!IS_ERR(inode)) {
  7013. ret = btrfs_orphan_add(trans, inode);
  7014. if (ret) {
  7015. btrfs_add_delayed_iput(inode);
  7016. goto out;
  7017. }
  7018. clear_nlink(inode);
  7019. /* One for the block groups ref */
  7020. spin_lock(&block_group->lock);
  7021. if (block_group->iref) {
  7022. block_group->iref = 0;
  7023. block_group->inode = NULL;
  7024. spin_unlock(&block_group->lock);
  7025. iput(inode);
  7026. } else {
  7027. spin_unlock(&block_group->lock);
  7028. }
  7029. /* One for our lookup ref */
  7030. btrfs_add_delayed_iput(inode);
  7031. }
  7032. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  7033. key.offset = block_group->key.objectid;
  7034. key.type = 0;
  7035. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  7036. if (ret < 0)
  7037. goto out;
  7038. if (ret > 0)
  7039. btrfs_release_path(path);
  7040. if (ret == 0) {
  7041. ret = btrfs_del_item(trans, tree_root, path);
  7042. if (ret)
  7043. goto out;
  7044. btrfs_release_path(path);
  7045. }
  7046. spin_lock(&root->fs_info->block_group_cache_lock);
  7047. rb_erase(&block_group->cache_node,
  7048. &root->fs_info->block_group_cache_tree);
  7049. spin_unlock(&root->fs_info->block_group_cache_lock);
  7050. down_write(&block_group->space_info->groups_sem);
  7051. /*
  7052. * we must use list_del_init so people can check to see if they
  7053. * are still on the list after taking the semaphore
  7054. */
  7055. list_del_init(&block_group->list);
  7056. if (list_empty(&block_group->space_info->block_groups[index]))
  7057. clear_avail_alloc_bits(root->fs_info, block_group->flags);
  7058. up_write(&block_group->space_info->groups_sem);
  7059. if (block_group->cached == BTRFS_CACHE_STARTED)
  7060. wait_block_group_cache_done(block_group);
  7061. btrfs_remove_free_space_cache(block_group);
  7062. spin_lock(&block_group->space_info->lock);
  7063. block_group->space_info->total_bytes -= block_group->key.offset;
  7064. block_group->space_info->bytes_readonly -= block_group->key.offset;
  7065. block_group->space_info->disk_total -= block_group->key.offset * factor;
  7066. spin_unlock(&block_group->space_info->lock);
  7067. memcpy(&key, &block_group->key, sizeof(key));
  7068. btrfs_clear_space_info_full(root->fs_info);
  7069. btrfs_put_block_group(block_group);
  7070. btrfs_put_block_group(block_group);
  7071. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  7072. if (ret > 0)
  7073. ret = -EIO;
  7074. if (ret < 0)
  7075. goto out;
  7076. ret = btrfs_del_item(trans, root, path);
  7077. out:
  7078. btrfs_free_path(path);
  7079. return ret;
  7080. }
  7081. int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  7082. {
  7083. struct btrfs_space_info *space_info;
  7084. struct btrfs_super_block *disk_super;
  7085. u64 features;
  7086. u64 flags;
  7087. int mixed = 0;
  7088. int ret;
  7089. disk_super = fs_info->super_copy;
  7090. if (!btrfs_super_root(disk_super))
  7091. return 1;
  7092. features = btrfs_super_incompat_flags(disk_super);
  7093. if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  7094. mixed = 1;
  7095. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  7096. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7097. if (ret)
  7098. goto out;
  7099. if (mixed) {
  7100. flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
  7101. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7102. } else {
  7103. flags = BTRFS_BLOCK_GROUP_METADATA;
  7104. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7105. if (ret)
  7106. goto out;
  7107. flags = BTRFS_BLOCK_GROUP_DATA;
  7108. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7109. }
  7110. out:
  7111. return ret;
  7112. }
  7113. int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  7114. {
  7115. return unpin_extent_range(root, start, end);
  7116. }
  7117. int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
  7118. u64 num_bytes, u64 *actual_bytes)
  7119. {
  7120. return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
  7121. }
  7122. int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
  7123. {
  7124. struct btrfs_fs_info *fs_info = root->fs_info;
  7125. struct btrfs_block_group_cache *cache = NULL;
  7126. u64 group_trimmed;
  7127. u64 start;
  7128. u64 end;
  7129. u64 trimmed = 0;
  7130. u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
  7131. int ret = 0;
  7132. /*
  7133. * try to trim all FS space, our block group may start from non-zero.
  7134. */
  7135. if (range->len == total_bytes)
  7136. cache = btrfs_lookup_first_block_group(fs_info, range->start);
  7137. else
  7138. cache = btrfs_lookup_block_group(fs_info, range->start);
  7139. while (cache) {
  7140. if (cache->key.objectid >= (range->start + range->len)) {
  7141. btrfs_put_block_group(cache);
  7142. break;
  7143. }
  7144. start = max(range->start, cache->key.objectid);
  7145. end = min(range->start + range->len,
  7146. cache->key.objectid + cache->key.offset);
  7147. if (end - start >= range->minlen) {
  7148. if (!block_group_cache_done(cache)) {
  7149. ret = cache_block_group(cache, NULL, root, 0);
  7150. if (!ret)
  7151. wait_block_group_cache_done(cache);
  7152. }
  7153. ret = btrfs_trim_block_group(cache,
  7154. &group_trimmed,
  7155. start,
  7156. end,
  7157. range->minlen);
  7158. trimmed += group_trimmed;
  7159. if (ret) {
  7160. btrfs_put_block_group(cache);
  7161. break;
  7162. }
  7163. }
  7164. cache = next_block_group(fs_info->tree_root, cache);
  7165. }
  7166. range->len = trimmed;
  7167. return ret;
  7168. }