xmit.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  109. {
  110. struct ath_txq *txq = tid->ac->txq;
  111. WARN_ON(!tid->paused);
  112. ath_txq_lock(sc, txq);
  113. tid->paused = false;
  114. if (skb_queue_empty(&tid->buf_q))
  115. goto unlock;
  116. ath_tx_queue_tid(txq, tid);
  117. ath_txq_schedule(sc, txq);
  118. unlock:
  119. ath_txq_unlock_complete(sc, txq);
  120. }
  121. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  122. {
  123. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  124. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  125. sizeof(tx_info->rate_driver_data));
  126. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  127. }
  128. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  129. {
  130. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  131. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  132. }
  133. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  134. {
  135. struct ath_txq *txq = tid->ac->txq;
  136. struct sk_buff *skb;
  137. struct ath_buf *bf;
  138. struct list_head bf_head;
  139. struct ath_tx_status ts;
  140. struct ath_frame_info *fi;
  141. bool sendbar = false;
  142. INIT_LIST_HEAD(&bf_head);
  143. memset(&ts, 0, sizeof(ts));
  144. while ((skb = __skb_dequeue(&tid->buf_q))) {
  145. fi = get_frame_info(skb);
  146. bf = fi->bf;
  147. if (!bf) {
  148. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  149. if (!bf) {
  150. ieee80211_free_txskb(sc->hw, skb);
  151. continue;
  152. }
  153. }
  154. if (fi->retries) {
  155. list_add_tail(&bf->list, &bf_head);
  156. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  157. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  158. sendbar = true;
  159. } else {
  160. ath_tx_send_normal(sc, txq, NULL, skb);
  161. }
  162. }
  163. if (tid->baw_head == tid->baw_tail) {
  164. tid->state &= ~AGGR_ADDBA_COMPLETE;
  165. tid->state &= ~AGGR_CLEANUP;
  166. }
  167. if (sendbar) {
  168. ath_txq_unlock(sc, txq);
  169. ath_send_bar(tid, tid->seq_start);
  170. ath_txq_lock(sc, txq);
  171. }
  172. }
  173. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  174. int seqno)
  175. {
  176. int index, cindex;
  177. index = ATH_BA_INDEX(tid->seq_start, seqno);
  178. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  179. __clear_bit(cindex, tid->tx_buf);
  180. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  181. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  182. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  183. if (tid->bar_index >= 0)
  184. tid->bar_index--;
  185. }
  186. }
  187. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  188. u16 seqno)
  189. {
  190. int index, cindex;
  191. index = ATH_BA_INDEX(tid->seq_start, seqno);
  192. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  193. __set_bit(cindex, tid->tx_buf);
  194. if (index >= ((tid->baw_tail - tid->baw_head) &
  195. (ATH_TID_MAX_BUFS - 1))) {
  196. tid->baw_tail = cindex;
  197. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  198. }
  199. }
  200. /*
  201. * TODO: For frame(s) that are in the retry state, we will reuse the
  202. * sequence number(s) without setting the retry bit. The
  203. * alternative is to give up on these and BAR the receiver's window
  204. * forward.
  205. */
  206. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  207. struct ath_atx_tid *tid)
  208. {
  209. struct sk_buff *skb;
  210. struct ath_buf *bf;
  211. struct list_head bf_head;
  212. struct ath_tx_status ts;
  213. struct ath_frame_info *fi;
  214. memset(&ts, 0, sizeof(ts));
  215. INIT_LIST_HEAD(&bf_head);
  216. while ((skb = __skb_dequeue(&tid->buf_q))) {
  217. fi = get_frame_info(skb);
  218. bf = fi->bf;
  219. if (!bf) {
  220. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  221. continue;
  222. }
  223. list_add_tail(&bf->list, &bf_head);
  224. if (fi->retries)
  225. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  226. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  227. }
  228. tid->seq_next = tid->seq_start;
  229. tid->baw_tail = tid->baw_head;
  230. tid->bar_index = -1;
  231. }
  232. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  233. struct sk_buff *skb, int count)
  234. {
  235. struct ath_frame_info *fi = get_frame_info(skb);
  236. struct ath_buf *bf = fi->bf;
  237. struct ieee80211_hdr *hdr;
  238. int prev = fi->retries;
  239. TX_STAT_INC(txq->axq_qnum, a_retries);
  240. fi->retries += count;
  241. if (prev > 0)
  242. return;
  243. hdr = (struct ieee80211_hdr *)skb->data;
  244. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  245. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  246. sizeof(*hdr), DMA_TO_DEVICE);
  247. }
  248. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  249. {
  250. struct ath_buf *bf = NULL;
  251. spin_lock_bh(&sc->tx.txbuflock);
  252. if (unlikely(list_empty(&sc->tx.txbuf))) {
  253. spin_unlock_bh(&sc->tx.txbuflock);
  254. return NULL;
  255. }
  256. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  257. list_del(&bf->list);
  258. spin_unlock_bh(&sc->tx.txbuflock);
  259. return bf;
  260. }
  261. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  262. {
  263. spin_lock_bh(&sc->tx.txbuflock);
  264. list_add_tail(&bf->list, &sc->tx.txbuf);
  265. spin_unlock_bh(&sc->tx.txbuflock);
  266. }
  267. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  268. {
  269. struct ath_buf *tbf;
  270. tbf = ath_tx_get_buffer(sc);
  271. if (WARN_ON(!tbf))
  272. return NULL;
  273. ATH_TXBUF_RESET(tbf);
  274. tbf->bf_mpdu = bf->bf_mpdu;
  275. tbf->bf_buf_addr = bf->bf_buf_addr;
  276. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  277. tbf->bf_state = bf->bf_state;
  278. return tbf;
  279. }
  280. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  281. struct ath_tx_status *ts, int txok,
  282. int *nframes, int *nbad)
  283. {
  284. struct ath_frame_info *fi;
  285. u16 seq_st = 0;
  286. u32 ba[WME_BA_BMP_SIZE >> 5];
  287. int ba_index;
  288. int isaggr = 0;
  289. *nbad = 0;
  290. *nframes = 0;
  291. isaggr = bf_isaggr(bf);
  292. if (isaggr) {
  293. seq_st = ts->ts_seqnum;
  294. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  295. }
  296. while (bf) {
  297. fi = get_frame_info(bf->bf_mpdu);
  298. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  299. (*nframes)++;
  300. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  301. (*nbad)++;
  302. bf = bf->bf_next;
  303. }
  304. }
  305. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  306. struct ath_buf *bf, struct list_head *bf_q,
  307. struct ath_tx_status *ts, int txok)
  308. {
  309. struct ath_node *an = NULL;
  310. struct sk_buff *skb;
  311. struct ieee80211_sta *sta;
  312. struct ieee80211_hw *hw = sc->hw;
  313. struct ieee80211_hdr *hdr;
  314. struct ieee80211_tx_info *tx_info;
  315. struct ath_atx_tid *tid = NULL;
  316. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  317. struct list_head bf_head;
  318. struct sk_buff_head bf_pending;
  319. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  320. u32 ba[WME_BA_BMP_SIZE >> 5];
  321. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  322. bool rc_update = true, isba;
  323. struct ieee80211_tx_rate rates[4];
  324. struct ath_frame_info *fi;
  325. int nframes;
  326. u8 tidno;
  327. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  328. int i, retries;
  329. int bar_index = -1;
  330. skb = bf->bf_mpdu;
  331. hdr = (struct ieee80211_hdr *)skb->data;
  332. tx_info = IEEE80211_SKB_CB(skb);
  333. memcpy(rates, tx_info->control.rates, sizeof(rates));
  334. retries = ts->ts_longretry + 1;
  335. for (i = 0; i < ts->ts_rateindex; i++)
  336. retries += rates[i].count;
  337. rcu_read_lock();
  338. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  339. if (!sta) {
  340. rcu_read_unlock();
  341. INIT_LIST_HEAD(&bf_head);
  342. while (bf) {
  343. bf_next = bf->bf_next;
  344. if (!bf->bf_stale || bf_next != NULL)
  345. list_move_tail(&bf->list, &bf_head);
  346. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  347. bf = bf_next;
  348. }
  349. return;
  350. }
  351. an = (struct ath_node *)sta->drv_priv;
  352. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  353. tid = ATH_AN_2_TID(an, tidno);
  354. seq_first = tid->seq_start;
  355. isba = ts->ts_flags & ATH9K_TX_BA;
  356. /*
  357. * The hardware occasionally sends a tx status for the wrong TID.
  358. * In this case, the BA status cannot be considered valid and all
  359. * subframes need to be retransmitted
  360. *
  361. * Only BlockAcks have a TID and therefore normal Acks cannot be
  362. * checked
  363. */
  364. if (isba && tidno != ts->tid)
  365. txok = false;
  366. isaggr = bf_isaggr(bf);
  367. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  368. if (isaggr && txok) {
  369. if (ts->ts_flags & ATH9K_TX_BA) {
  370. seq_st = ts->ts_seqnum;
  371. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  372. } else {
  373. /*
  374. * AR5416 can become deaf/mute when BA
  375. * issue happens. Chip needs to be reset.
  376. * But AP code may have sychronization issues
  377. * when perform internal reset in this routine.
  378. * Only enable reset in STA mode for now.
  379. */
  380. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  381. needreset = 1;
  382. }
  383. }
  384. __skb_queue_head_init(&bf_pending);
  385. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  386. while (bf) {
  387. u16 seqno = bf->bf_state.seqno;
  388. txfail = txpending = sendbar = 0;
  389. bf_next = bf->bf_next;
  390. skb = bf->bf_mpdu;
  391. tx_info = IEEE80211_SKB_CB(skb);
  392. fi = get_frame_info(skb);
  393. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  394. /* transmit completion, subframe is
  395. * acked by block ack */
  396. acked_cnt++;
  397. } else if (!isaggr && txok) {
  398. /* transmit completion */
  399. acked_cnt++;
  400. } else if (tid->state & AGGR_CLEANUP) {
  401. /*
  402. * cleanup in progress, just fail
  403. * the un-acked sub-frames
  404. */
  405. txfail = 1;
  406. } else if (flush) {
  407. txpending = 1;
  408. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  409. if (txok || !an->sleeping)
  410. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  411. retries);
  412. txpending = 1;
  413. } else {
  414. txfail = 1;
  415. txfail_cnt++;
  416. bar_index = max_t(int, bar_index,
  417. ATH_BA_INDEX(seq_first, seqno));
  418. }
  419. /*
  420. * Make sure the last desc is reclaimed if it
  421. * not a holding desc.
  422. */
  423. INIT_LIST_HEAD(&bf_head);
  424. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  425. bf_next != NULL || !bf_last->bf_stale)
  426. list_move_tail(&bf->list, &bf_head);
  427. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  428. /*
  429. * complete the acked-ones/xretried ones; update
  430. * block-ack window
  431. */
  432. ath_tx_update_baw(sc, tid, seqno);
  433. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  434. memcpy(tx_info->control.rates, rates, sizeof(rates));
  435. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  436. rc_update = false;
  437. }
  438. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  439. !txfail);
  440. } else {
  441. /* retry the un-acked ones */
  442. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  443. bf->bf_next == NULL && bf_last->bf_stale) {
  444. struct ath_buf *tbf;
  445. tbf = ath_clone_txbuf(sc, bf_last);
  446. /*
  447. * Update tx baw and complete the
  448. * frame with failed status if we
  449. * run out of tx buf.
  450. */
  451. if (!tbf) {
  452. ath_tx_update_baw(sc, tid, seqno);
  453. ath_tx_complete_buf(sc, bf, txq,
  454. &bf_head, ts, 0);
  455. bar_index = max_t(int, bar_index,
  456. ATH_BA_INDEX(seq_first, seqno));
  457. break;
  458. }
  459. fi->bf = tbf;
  460. }
  461. /*
  462. * Put this buffer to the temporary pending
  463. * queue to retain ordering
  464. */
  465. __skb_queue_tail(&bf_pending, skb);
  466. }
  467. bf = bf_next;
  468. }
  469. /* prepend un-acked frames to the beginning of the pending frame queue */
  470. if (!skb_queue_empty(&bf_pending)) {
  471. if (an->sleeping)
  472. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  473. skb_queue_splice(&bf_pending, &tid->buf_q);
  474. if (!an->sleeping) {
  475. ath_tx_queue_tid(txq, tid);
  476. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  477. tid->ac->clear_ps_filter = true;
  478. }
  479. }
  480. if (bar_index >= 0) {
  481. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  482. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  483. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  484. ath_txq_unlock(sc, txq);
  485. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  486. ath_txq_lock(sc, txq);
  487. }
  488. if (tid->state & AGGR_CLEANUP)
  489. ath_tx_flush_tid(sc, tid);
  490. rcu_read_unlock();
  491. if (needreset)
  492. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  493. }
  494. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  495. {
  496. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  497. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  498. }
  499. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  500. struct ath_tx_status *ts, struct ath_buf *bf,
  501. struct list_head *bf_head)
  502. {
  503. bool txok, flush;
  504. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  505. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  506. txq->axq_tx_inprogress = false;
  507. txq->axq_depth--;
  508. if (bf_is_ampdu_not_probing(bf))
  509. txq->axq_ampdu_depth--;
  510. if (!bf_isampdu(bf)) {
  511. if (!flush)
  512. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  513. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  514. } else
  515. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  516. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
  517. ath_txq_schedule(sc, txq);
  518. }
  519. static bool ath_lookup_legacy(struct ath_buf *bf)
  520. {
  521. struct sk_buff *skb;
  522. struct ieee80211_tx_info *tx_info;
  523. struct ieee80211_tx_rate *rates;
  524. int i;
  525. skb = bf->bf_mpdu;
  526. tx_info = IEEE80211_SKB_CB(skb);
  527. rates = tx_info->control.rates;
  528. for (i = 0; i < 4; i++) {
  529. if (!rates[i].count || rates[i].idx < 0)
  530. break;
  531. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  532. return true;
  533. }
  534. return false;
  535. }
  536. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  537. struct ath_atx_tid *tid)
  538. {
  539. struct sk_buff *skb;
  540. struct ieee80211_tx_info *tx_info;
  541. struct ieee80211_tx_rate *rates;
  542. u32 max_4ms_framelen, frmlen;
  543. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  544. int q = tid->ac->txq->mac80211_qnum;
  545. int i;
  546. skb = bf->bf_mpdu;
  547. tx_info = IEEE80211_SKB_CB(skb);
  548. rates = tx_info->control.rates;
  549. /*
  550. * Find the lowest frame length among the rate series that will have a
  551. * 4ms (or TXOP limited) transmit duration.
  552. */
  553. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  554. for (i = 0; i < 4; i++) {
  555. int modeidx;
  556. if (!rates[i].count)
  557. continue;
  558. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  559. legacy = 1;
  560. break;
  561. }
  562. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  563. modeidx = MCS_HT40;
  564. else
  565. modeidx = MCS_HT20;
  566. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  567. modeidx++;
  568. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  569. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  570. }
  571. /*
  572. * limit aggregate size by the minimum rate if rate selected is
  573. * not a probe rate, if rate selected is a probe rate then
  574. * avoid aggregation of this packet.
  575. */
  576. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  577. return 0;
  578. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  579. /*
  580. * Override the default aggregation limit for BTCOEX.
  581. */
  582. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  583. if (bt_aggr_limit)
  584. aggr_limit = bt_aggr_limit;
  585. /*
  586. * h/w can accept aggregates up to 16 bit lengths (65535).
  587. * The IE, however can hold up to 65536, which shows up here
  588. * as zero. Ignore 65536 since we are constrained by hw.
  589. */
  590. if (tid->an->maxampdu)
  591. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  592. return aggr_limit;
  593. }
  594. /*
  595. * Returns the number of delimiters to be added to
  596. * meet the minimum required mpdudensity.
  597. */
  598. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  599. struct ath_buf *bf, u16 frmlen,
  600. bool first_subfrm)
  601. {
  602. #define FIRST_DESC_NDELIMS 60
  603. struct sk_buff *skb = bf->bf_mpdu;
  604. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  605. u32 nsymbits, nsymbols;
  606. u16 minlen;
  607. u8 flags, rix;
  608. int width, streams, half_gi, ndelim, mindelim;
  609. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  610. /* Select standard number of delimiters based on frame length alone */
  611. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  612. /*
  613. * If encryption enabled, hardware requires some more padding between
  614. * subframes.
  615. * TODO - this could be improved to be dependent on the rate.
  616. * The hardware can keep up at lower rates, but not higher rates
  617. */
  618. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  619. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  620. ndelim += ATH_AGGR_ENCRYPTDELIM;
  621. /*
  622. * Add delimiter when using RTS/CTS with aggregation
  623. * and non enterprise AR9003 card
  624. */
  625. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  626. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  627. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  628. /*
  629. * Convert desired mpdu density from microeconds to bytes based
  630. * on highest rate in rate series (i.e. first rate) to determine
  631. * required minimum length for subframe. Take into account
  632. * whether high rate is 20 or 40Mhz and half or full GI.
  633. *
  634. * If there is no mpdu density restriction, no further calculation
  635. * is needed.
  636. */
  637. if (tid->an->mpdudensity == 0)
  638. return ndelim;
  639. rix = tx_info->control.rates[0].idx;
  640. flags = tx_info->control.rates[0].flags;
  641. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  642. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  643. if (half_gi)
  644. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  645. else
  646. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  647. if (nsymbols == 0)
  648. nsymbols = 1;
  649. streams = HT_RC_2_STREAMS(rix);
  650. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  651. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  652. if (frmlen < minlen) {
  653. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  654. ndelim = max(mindelim, ndelim);
  655. }
  656. return ndelim;
  657. }
  658. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  659. struct ath_txq *txq,
  660. struct ath_atx_tid *tid,
  661. struct list_head *bf_q,
  662. int *aggr_len)
  663. {
  664. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  665. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  666. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  667. u16 aggr_limit = 0, al = 0, bpad = 0,
  668. al_delta, h_baw = tid->baw_size / 2;
  669. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  670. struct ieee80211_tx_info *tx_info;
  671. struct ath_frame_info *fi;
  672. struct sk_buff *skb;
  673. u16 seqno;
  674. do {
  675. skb = skb_peek(&tid->buf_q);
  676. fi = get_frame_info(skb);
  677. bf = fi->bf;
  678. if (!fi->bf)
  679. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  680. if (!bf) {
  681. __skb_unlink(skb, &tid->buf_q);
  682. ieee80211_free_txskb(sc->hw, skb);
  683. continue;
  684. }
  685. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  686. seqno = bf->bf_state.seqno;
  687. /* do not step over block-ack window */
  688. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  689. status = ATH_AGGR_BAW_CLOSED;
  690. break;
  691. }
  692. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  693. struct ath_tx_status ts = {};
  694. struct list_head bf_head;
  695. INIT_LIST_HEAD(&bf_head);
  696. list_add(&bf->list, &bf_head);
  697. __skb_unlink(skb, &tid->buf_q);
  698. ath_tx_update_baw(sc, tid, seqno);
  699. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  700. continue;
  701. }
  702. if (!bf_first)
  703. bf_first = bf;
  704. if (!rl) {
  705. aggr_limit = ath_lookup_rate(sc, bf, tid);
  706. rl = 1;
  707. }
  708. /* do not exceed aggregation limit */
  709. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  710. if (nframes &&
  711. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  712. ath_lookup_legacy(bf))) {
  713. status = ATH_AGGR_LIMITED;
  714. break;
  715. }
  716. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  717. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  718. break;
  719. /* do not exceed subframe limit */
  720. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  721. status = ATH_AGGR_LIMITED;
  722. break;
  723. }
  724. /* add padding for previous frame to aggregation length */
  725. al += bpad + al_delta;
  726. /*
  727. * Get the delimiters needed to meet the MPDU
  728. * density for this node.
  729. */
  730. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  731. !nframes);
  732. bpad = PADBYTES(al_delta) + (ndelim << 2);
  733. nframes++;
  734. bf->bf_next = NULL;
  735. /* link buffers of this frame to the aggregate */
  736. if (!fi->retries)
  737. ath_tx_addto_baw(sc, tid, seqno);
  738. bf->bf_state.ndelim = ndelim;
  739. __skb_unlink(skb, &tid->buf_q);
  740. list_add_tail(&bf->list, bf_q);
  741. if (bf_prev)
  742. bf_prev->bf_next = bf;
  743. bf_prev = bf;
  744. } while (!skb_queue_empty(&tid->buf_q));
  745. *aggr_len = al;
  746. return status;
  747. #undef PADBYTES
  748. }
  749. /*
  750. * rix - rate index
  751. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  752. * width - 0 for 20 MHz, 1 for 40 MHz
  753. * half_gi - to use 4us v/s 3.6 us for symbol time
  754. */
  755. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  756. int width, int half_gi, bool shortPreamble)
  757. {
  758. u32 nbits, nsymbits, duration, nsymbols;
  759. int streams;
  760. /* find number of symbols: PLCP + data */
  761. streams = HT_RC_2_STREAMS(rix);
  762. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  763. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  764. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  765. if (!half_gi)
  766. duration = SYMBOL_TIME(nsymbols);
  767. else
  768. duration = SYMBOL_TIME_HALFGI(nsymbols);
  769. /* addup duration for legacy/ht training and signal fields */
  770. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  771. return duration;
  772. }
  773. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  774. {
  775. int streams = HT_RC_2_STREAMS(mcs);
  776. int symbols, bits;
  777. int bytes = 0;
  778. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  779. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  780. bits -= OFDM_PLCP_BITS;
  781. bytes = bits / 8;
  782. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  783. if (bytes > 65532)
  784. bytes = 65532;
  785. return bytes;
  786. }
  787. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  788. {
  789. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  790. int mcs;
  791. /* 4ms is the default (and maximum) duration */
  792. if (!txop || txop > 4096)
  793. txop = 4096;
  794. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  795. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  796. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  797. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  798. for (mcs = 0; mcs < 32; mcs++) {
  799. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  800. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  801. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  802. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  803. }
  804. }
  805. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  806. struct ath_tx_info *info, int len)
  807. {
  808. struct ath_hw *ah = sc->sc_ah;
  809. struct sk_buff *skb;
  810. struct ieee80211_tx_info *tx_info;
  811. struct ieee80211_tx_rate *rates;
  812. const struct ieee80211_rate *rate;
  813. struct ieee80211_hdr *hdr;
  814. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  815. int i;
  816. u8 rix = 0;
  817. skb = bf->bf_mpdu;
  818. tx_info = IEEE80211_SKB_CB(skb);
  819. rates = tx_info->control.rates;
  820. hdr = (struct ieee80211_hdr *)skb->data;
  821. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  822. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  823. info->rtscts_rate = fi->rtscts_rate;
  824. for (i = 0; i < 4; i++) {
  825. bool is_40, is_sgi, is_sp;
  826. int phy;
  827. if (!rates[i].count || (rates[i].idx < 0))
  828. continue;
  829. rix = rates[i].idx;
  830. info->rates[i].Tries = rates[i].count;
  831. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  832. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  833. info->flags |= ATH9K_TXDESC_RTSENA;
  834. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  835. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  836. info->flags |= ATH9K_TXDESC_CTSENA;
  837. }
  838. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  839. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  840. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  841. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  842. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  843. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  844. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  845. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  846. /* MCS rates */
  847. info->rates[i].Rate = rix | 0x80;
  848. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  849. ah->txchainmask, info->rates[i].Rate);
  850. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  851. is_40, is_sgi, is_sp);
  852. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  853. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  854. continue;
  855. }
  856. /* legacy rates */
  857. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  858. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  859. !(rate->flags & IEEE80211_RATE_ERP_G))
  860. phy = WLAN_RC_PHY_CCK;
  861. else
  862. phy = WLAN_RC_PHY_OFDM;
  863. info->rates[i].Rate = rate->hw_value;
  864. if (rate->hw_value_short) {
  865. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  866. info->rates[i].Rate |= rate->hw_value_short;
  867. } else {
  868. is_sp = false;
  869. }
  870. if (bf->bf_state.bfs_paprd)
  871. info->rates[i].ChSel = ah->txchainmask;
  872. else
  873. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  874. ah->txchainmask, info->rates[i].Rate);
  875. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  876. phy, rate->bitrate * 100, len, rix, is_sp);
  877. }
  878. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  879. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  880. info->flags &= ~ATH9K_TXDESC_RTSENA;
  881. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  882. if (info->flags & ATH9K_TXDESC_RTSENA)
  883. info->flags &= ~ATH9K_TXDESC_CTSENA;
  884. }
  885. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  886. {
  887. struct ieee80211_hdr *hdr;
  888. enum ath9k_pkt_type htype;
  889. __le16 fc;
  890. hdr = (struct ieee80211_hdr *)skb->data;
  891. fc = hdr->frame_control;
  892. if (ieee80211_is_beacon(fc))
  893. htype = ATH9K_PKT_TYPE_BEACON;
  894. else if (ieee80211_is_probe_resp(fc))
  895. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  896. else if (ieee80211_is_atim(fc))
  897. htype = ATH9K_PKT_TYPE_ATIM;
  898. else if (ieee80211_is_pspoll(fc))
  899. htype = ATH9K_PKT_TYPE_PSPOLL;
  900. else
  901. htype = ATH9K_PKT_TYPE_NORMAL;
  902. return htype;
  903. }
  904. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  905. struct ath_txq *txq, int len)
  906. {
  907. struct ath_hw *ah = sc->sc_ah;
  908. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  909. struct ath_buf *bf_first = bf;
  910. struct ath_tx_info info;
  911. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  912. memset(&info, 0, sizeof(info));
  913. info.is_first = true;
  914. info.is_last = true;
  915. info.txpower = MAX_RATE_POWER;
  916. info.qcu = txq->axq_qnum;
  917. info.flags = ATH9K_TXDESC_INTREQ;
  918. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  919. info.flags |= ATH9K_TXDESC_NOACK;
  920. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  921. info.flags |= ATH9K_TXDESC_LDPC;
  922. ath_buf_set_rate(sc, bf, &info, len);
  923. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  924. info.flags |= ATH9K_TXDESC_CLRDMASK;
  925. if (bf->bf_state.bfs_paprd)
  926. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  927. while (bf) {
  928. struct sk_buff *skb = bf->bf_mpdu;
  929. struct ath_frame_info *fi = get_frame_info(skb);
  930. info.type = get_hw_packet_type(skb);
  931. if (bf->bf_next)
  932. info.link = bf->bf_next->bf_daddr;
  933. else
  934. info.link = 0;
  935. info.buf_addr[0] = bf->bf_buf_addr;
  936. info.buf_len[0] = skb->len;
  937. info.pkt_len = fi->framelen;
  938. info.keyix = fi->keyix;
  939. info.keytype = fi->keytype;
  940. if (aggr) {
  941. if (bf == bf_first)
  942. info.aggr = AGGR_BUF_FIRST;
  943. else if (!bf->bf_next)
  944. info.aggr = AGGR_BUF_LAST;
  945. else
  946. info.aggr = AGGR_BUF_MIDDLE;
  947. info.ndelim = bf->bf_state.ndelim;
  948. info.aggr_len = len;
  949. }
  950. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  951. bf = bf->bf_next;
  952. }
  953. }
  954. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  955. struct ath_atx_tid *tid)
  956. {
  957. struct ath_buf *bf;
  958. enum ATH_AGGR_STATUS status;
  959. struct ieee80211_tx_info *tx_info;
  960. struct list_head bf_q;
  961. int aggr_len;
  962. do {
  963. if (skb_queue_empty(&tid->buf_q))
  964. return;
  965. INIT_LIST_HEAD(&bf_q);
  966. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  967. /*
  968. * no frames picked up to be aggregated;
  969. * block-ack window is not open.
  970. */
  971. if (list_empty(&bf_q))
  972. break;
  973. bf = list_first_entry(&bf_q, struct ath_buf, list);
  974. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  975. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  976. if (tid->ac->clear_ps_filter) {
  977. tid->ac->clear_ps_filter = false;
  978. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  979. } else {
  980. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  981. }
  982. /* if only one frame, send as non-aggregate */
  983. if (bf == bf->bf_lastbf) {
  984. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  985. bf->bf_state.bf_type = BUF_AMPDU;
  986. } else {
  987. TX_STAT_INC(txq->axq_qnum, a_aggr);
  988. }
  989. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  990. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  991. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  992. status != ATH_AGGR_BAW_CLOSED);
  993. }
  994. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  995. u16 tid, u16 *ssn)
  996. {
  997. struct ath_atx_tid *txtid;
  998. struct ath_node *an;
  999. u8 density;
  1000. an = (struct ath_node *)sta->drv_priv;
  1001. txtid = ATH_AN_2_TID(an, tid);
  1002. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  1003. return -EAGAIN;
  1004. /* update ampdu factor/density, they may have changed. This may happen
  1005. * in HT IBSS when a beacon with HT-info is received after the station
  1006. * has already been added.
  1007. */
  1008. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  1009. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1010. sta->ht_cap.ampdu_factor);
  1011. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1012. an->mpdudensity = density;
  1013. }
  1014. txtid->state |= AGGR_ADDBA_PROGRESS;
  1015. txtid->paused = true;
  1016. *ssn = txtid->seq_start = txtid->seq_next;
  1017. txtid->bar_index = -1;
  1018. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1019. txtid->baw_head = txtid->baw_tail = 0;
  1020. return 0;
  1021. }
  1022. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1023. {
  1024. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1025. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1026. struct ath_txq *txq = txtid->ac->txq;
  1027. if (txtid->state & AGGR_CLEANUP)
  1028. return;
  1029. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  1030. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1031. return;
  1032. }
  1033. ath_txq_lock(sc, txq);
  1034. txtid->paused = true;
  1035. /*
  1036. * If frames are still being transmitted for this TID, they will be
  1037. * cleaned up during tx completion. To prevent race conditions, this
  1038. * TID can only be reused after all in-progress subframes have been
  1039. * completed.
  1040. */
  1041. if (txtid->baw_head != txtid->baw_tail)
  1042. txtid->state |= AGGR_CLEANUP;
  1043. else
  1044. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  1045. ath_tx_flush_tid(sc, txtid);
  1046. ath_txq_unlock_complete(sc, txq);
  1047. }
  1048. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1049. struct ath_node *an)
  1050. {
  1051. struct ath_atx_tid *tid;
  1052. struct ath_atx_ac *ac;
  1053. struct ath_txq *txq;
  1054. bool buffered;
  1055. int tidno;
  1056. for (tidno = 0, tid = &an->tid[tidno];
  1057. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1058. if (!tid->sched)
  1059. continue;
  1060. ac = tid->ac;
  1061. txq = ac->txq;
  1062. ath_txq_lock(sc, txq);
  1063. buffered = !skb_queue_empty(&tid->buf_q);
  1064. tid->sched = false;
  1065. list_del(&tid->list);
  1066. if (ac->sched) {
  1067. ac->sched = false;
  1068. list_del(&ac->list);
  1069. }
  1070. ath_txq_unlock(sc, txq);
  1071. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1072. }
  1073. }
  1074. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1075. {
  1076. struct ath_atx_tid *tid;
  1077. struct ath_atx_ac *ac;
  1078. struct ath_txq *txq;
  1079. int tidno;
  1080. for (tidno = 0, tid = &an->tid[tidno];
  1081. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1082. ac = tid->ac;
  1083. txq = ac->txq;
  1084. ath_txq_lock(sc, txq);
  1085. ac->clear_ps_filter = true;
  1086. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1087. ath_tx_queue_tid(txq, tid);
  1088. ath_txq_schedule(sc, txq);
  1089. }
  1090. ath_txq_unlock_complete(sc, txq);
  1091. }
  1092. }
  1093. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1094. {
  1095. struct ath_atx_tid *txtid;
  1096. struct ath_node *an;
  1097. an = (struct ath_node *)sta->drv_priv;
  1098. txtid = ATH_AN_2_TID(an, tid);
  1099. txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1100. txtid->state |= AGGR_ADDBA_COMPLETE;
  1101. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1102. ath_tx_resume_tid(sc, txtid);
  1103. }
  1104. /********************/
  1105. /* Queue Management */
  1106. /********************/
  1107. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1108. {
  1109. struct ath_hw *ah = sc->sc_ah;
  1110. struct ath9k_tx_queue_info qi;
  1111. static const int subtype_txq_to_hwq[] = {
  1112. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1113. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1114. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1115. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1116. };
  1117. int axq_qnum, i;
  1118. memset(&qi, 0, sizeof(qi));
  1119. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1120. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1121. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1122. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1123. qi.tqi_physCompBuf = 0;
  1124. /*
  1125. * Enable interrupts only for EOL and DESC conditions.
  1126. * We mark tx descriptors to receive a DESC interrupt
  1127. * when a tx queue gets deep; otherwise waiting for the
  1128. * EOL to reap descriptors. Note that this is done to
  1129. * reduce interrupt load and this only defers reaping
  1130. * descriptors, never transmitting frames. Aside from
  1131. * reducing interrupts this also permits more concurrency.
  1132. * The only potential downside is if the tx queue backs
  1133. * up in which case the top half of the kernel may backup
  1134. * due to a lack of tx descriptors.
  1135. *
  1136. * The UAPSD queue is an exception, since we take a desc-
  1137. * based intr on the EOSP frames.
  1138. */
  1139. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1140. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1141. } else {
  1142. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1143. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1144. else
  1145. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1146. TXQ_FLAG_TXDESCINT_ENABLE;
  1147. }
  1148. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1149. if (axq_qnum == -1) {
  1150. /*
  1151. * NB: don't print a message, this happens
  1152. * normally on parts with too few tx queues
  1153. */
  1154. return NULL;
  1155. }
  1156. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1157. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1158. txq->axq_qnum = axq_qnum;
  1159. txq->mac80211_qnum = -1;
  1160. txq->axq_link = NULL;
  1161. __skb_queue_head_init(&txq->complete_q);
  1162. INIT_LIST_HEAD(&txq->axq_q);
  1163. INIT_LIST_HEAD(&txq->axq_acq);
  1164. spin_lock_init(&txq->axq_lock);
  1165. txq->axq_depth = 0;
  1166. txq->axq_ampdu_depth = 0;
  1167. txq->axq_tx_inprogress = false;
  1168. sc->tx.txqsetup |= 1<<axq_qnum;
  1169. txq->txq_headidx = txq->txq_tailidx = 0;
  1170. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1171. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1172. }
  1173. return &sc->tx.txq[axq_qnum];
  1174. }
  1175. int ath_txq_update(struct ath_softc *sc, int qnum,
  1176. struct ath9k_tx_queue_info *qinfo)
  1177. {
  1178. struct ath_hw *ah = sc->sc_ah;
  1179. int error = 0;
  1180. struct ath9k_tx_queue_info qi;
  1181. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1182. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1183. qi.tqi_aifs = qinfo->tqi_aifs;
  1184. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1185. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1186. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1187. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1188. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1189. ath_err(ath9k_hw_common(sc->sc_ah),
  1190. "Unable to update hardware queue %u!\n", qnum);
  1191. error = -EIO;
  1192. } else {
  1193. ath9k_hw_resettxqueue(ah, qnum);
  1194. }
  1195. return error;
  1196. }
  1197. int ath_cabq_update(struct ath_softc *sc)
  1198. {
  1199. struct ath9k_tx_queue_info qi;
  1200. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1201. int qnum = sc->beacon.cabq->axq_qnum;
  1202. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1203. /*
  1204. * Ensure the readytime % is within the bounds.
  1205. */
  1206. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1207. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1208. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1209. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1210. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1211. sc->config.cabqReadytime) / 100;
  1212. ath_txq_update(sc, qnum, &qi);
  1213. return 0;
  1214. }
  1215. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1216. struct list_head *list)
  1217. {
  1218. struct ath_buf *bf, *lastbf;
  1219. struct list_head bf_head;
  1220. struct ath_tx_status ts;
  1221. memset(&ts, 0, sizeof(ts));
  1222. ts.ts_status = ATH9K_TX_FLUSH;
  1223. INIT_LIST_HEAD(&bf_head);
  1224. while (!list_empty(list)) {
  1225. bf = list_first_entry(list, struct ath_buf, list);
  1226. if (bf->bf_stale) {
  1227. list_del(&bf->list);
  1228. ath_tx_return_buffer(sc, bf);
  1229. continue;
  1230. }
  1231. lastbf = bf->bf_lastbf;
  1232. list_cut_position(&bf_head, list, &lastbf->list);
  1233. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1234. }
  1235. }
  1236. /*
  1237. * Drain a given TX queue (could be Beacon or Data)
  1238. *
  1239. * This assumes output has been stopped and
  1240. * we do not need to block ath_tx_tasklet.
  1241. */
  1242. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1243. {
  1244. ath_txq_lock(sc, txq);
  1245. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1246. int idx = txq->txq_tailidx;
  1247. while (!list_empty(&txq->txq_fifo[idx])) {
  1248. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1249. INCR(idx, ATH_TXFIFO_DEPTH);
  1250. }
  1251. txq->txq_tailidx = idx;
  1252. }
  1253. txq->axq_link = NULL;
  1254. txq->axq_tx_inprogress = false;
  1255. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1256. ath_txq_unlock_complete(sc, txq);
  1257. }
  1258. bool ath_drain_all_txq(struct ath_softc *sc)
  1259. {
  1260. struct ath_hw *ah = sc->sc_ah;
  1261. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1262. struct ath_txq *txq;
  1263. int i;
  1264. u32 npend = 0;
  1265. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1266. return true;
  1267. ath9k_hw_abort_tx_dma(ah);
  1268. /* Check if any queue remains active */
  1269. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1270. if (!ATH_TXQ_SETUP(sc, i))
  1271. continue;
  1272. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1273. npend |= BIT(i);
  1274. }
  1275. if (npend)
  1276. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1277. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1278. if (!ATH_TXQ_SETUP(sc, i))
  1279. continue;
  1280. /*
  1281. * The caller will resume queues with ieee80211_wake_queues.
  1282. * Mark the queue as not stopped to prevent ath_tx_complete
  1283. * from waking the queue too early.
  1284. */
  1285. txq = &sc->tx.txq[i];
  1286. txq->stopped = false;
  1287. ath_draintxq(sc, txq);
  1288. }
  1289. return !npend;
  1290. }
  1291. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1292. {
  1293. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1294. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1295. }
  1296. /* For each axq_acq entry, for each tid, try to schedule packets
  1297. * for transmit until ampdu_depth has reached min Q depth.
  1298. */
  1299. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1300. {
  1301. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1302. struct ath_atx_tid *tid, *last_tid;
  1303. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1304. list_empty(&txq->axq_acq) ||
  1305. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1306. return;
  1307. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1308. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1309. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1310. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1311. list_del(&ac->list);
  1312. ac->sched = false;
  1313. while (!list_empty(&ac->tid_q)) {
  1314. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1315. list);
  1316. list_del(&tid->list);
  1317. tid->sched = false;
  1318. if (tid->paused)
  1319. continue;
  1320. ath_tx_sched_aggr(sc, txq, tid);
  1321. /*
  1322. * add tid to round-robin queue if more frames
  1323. * are pending for the tid
  1324. */
  1325. if (!skb_queue_empty(&tid->buf_q))
  1326. ath_tx_queue_tid(txq, tid);
  1327. if (tid == last_tid ||
  1328. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1329. break;
  1330. }
  1331. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1332. ac->sched = true;
  1333. list_add_tail(&ac->list, &txq->axq_acq);
  1334. }
  1335. if (ac == last_ac ||
  1336. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1337. return;
  1338. }
  1339. }
  1340. /***********/
  1341. /* TX, DMA */
  1342. /***********/
  1343. /*
  1344. * Insert a chain of ath_buf (descriptors) on a txq and
  1345. * assume the descriptors are already chained together by caller.
  1346. */
  1347. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1348. struct list_head *head, bool internal)
  1349. {
  1350. struct ath_hw *ah = sc->sc_ah;
  1351. struct ath_common *common = ath9k_hw_common(ah);
  1352. struct ath_buf *bf, *bf_last;
  1353. bool puttxbuf = false;
  1354. bool edma;
  1355. /*
  1356. * Insert the frame on the outbound list and
  1357. * pass it on to the hardware.
  1358. */
  1359. if (list_empty(head))
  1360. return;
  1361. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1362. bf = list_first_entry(head, struct ath_buf, list);
  1363. bf_last = list_entry(head->prev, struct ath_buf, list);
  1364. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1365. txq->axq_qnum, txq->axq_depth);
  1366. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1367. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1368. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1369. puttxbuf = true;
  1370. } else {
  1371. list_splice_tail_init(head, &txq->axq_q);
  1372. if (txq->axq_link) {
  1373. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1374. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1375. txq->axq_qnum, txq->axq_link,
  1376. ito64(bf->bf_daddr), bf->bf_desc);
  1377. } else if (!edma)
  1378. puttxbuf = true;
  1379. txq->axq_link = bf_last->bf_desc;
  1380. }
  1381. if (puttxbuf) {
  1382. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1383. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1384. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1385. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1386. }
  1387. if (!edma) {
  1388. TX_STAT_INC(txq->axq_qnum, txstart);
  1389. ath9k_hw_txstart(ah, txq->axq_qnum);
  1390. }
  1391. if (!internal) {
  1392. txq->axq_depth++;
  1393. if (bf_is_ampdu_not_probing(bf))
  1394. txq->axq_ampdu_depth++;
  1395. }
  1396. }
  1397. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1398. struct sk_buff *skb, struct ath_tx_control *txctl)
  1399. {
  1400. struct ath_frame_info *fi = get_frame_info(skb);
  1401. struct list_head bf_head;
  1402. struct ath_buf *bf;
  1403. /*
  1404. * Do not queue to h/w when any of the following conditions is true:
  1405. * - there are pending frames in software queue
  1406. * - the TID is currently paused for ADDBA/BAR request
  1407. * - seqno is not within block-ack window
  1408. * - h/w queue depth exceeds low water mark
  1409. */
  1410. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1411. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1412. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1413. /*
  1414. * Add this frame to software queue for scheduling later
  1415. * for aggregation.
  1416. */
  1417. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1418. __skb_queue_tail(&tid->buf_q, skb);
  1419. if (!txctl->an || !txctl->an->sleeping)
  1420. ath_tx_queue_tid(txctl->txq, tid);
  1421. return;
  1422. }
  1423. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1424. if (!bf) {
  1425. ieee80211_free_txskb(sc->hw, skb);
  1426. return;
  1427. }
  1428. bf->bf_state.bf_type = BUF_AMPDU;
  1429. INIT_LIST_HEAD(&bf_head);
  1430. list_add(&bf->list, &bf_head);
  1431. /* Add sub-frame to BAW */
  1432. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1433. /* Queue to h/w without aggregation */
  1434. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1435. bf->bf_lastbf = bf;
  1436. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1437. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1438. }
  1439. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1440. struct ath_atx_tid *tid, struct sk_buff *skb)
  1441. {
  1442. struct ath_frame_info *fi = get_frame_info(skb);
  1443. struct list_head bf_head;
  1444. struct ath_buf *bf;
  1445. bf = fi->bf;
  1446. INIT_LIST_HEAD(&bf_head);
  1447. list_add_tail(&bf->list, &bf_head);
  1448. bf->bf_state.bf_type = 0;
  1449. bf->bf_next = NULL;
  1450. bf->bf_lastbf = bf;
  1451. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1452. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1453. TX_STAT_INC(txq->axq_qnum, queued);
  1454. }
  1455. static void setup_frame_info(struct ieee80211_hw *hw,
  1456. struct ieee80211_sta *sta,
  1457. struct sk_buff *skb,
  1458. int framelen)
  1459. {
  1460. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1461. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1462. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1463. const struct ieee80211_rate *rate;
  1464. struct ath_frame_info *fi = get_frame_info(skb);
  1465. struct ath_node *an = NULL;
  1466. enum ath9k_key_type keytype;
  1467. bool short_preamble = false;
  1468. /*
  1469. * We check if Short Preamble is needed for the CTS rate by
  1470. * checking the BSS's global flag.
  1471. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1472. */
  1473. if (tx_info->control.vif &&
  1474. tx_info->control.vif->bss_conf.use_short_preamble)
  1475. short_preamble = true;
  1476. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1477. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1478. if (sta)
  1479. an = (struct ath_node *) sta->drv_priv;
  1480. memset(fi, 0, sizeof(*fi));
  1481. if (hw_key)
  1482. fi->keyix = hw_key->hw_key_idx;
  1483. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1484. fi->keyix = an->ps_key;
  1485. else
  1486. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1487. fi->keytype = keytype;
  1488. fi->framelen = framelen;
  1489. fi->rtscts_rate = rate->hw_value;
  1490. if (short_preamble)
  1491. fi->rtscts_rate |= rate->hw_value_short;
  1492. }
  1493. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1494. {
  1495. struct ath_hw *ah = sc->sc_ah;
  1496. struct ath9k_channel *curchan = ah->curchan;
  1497. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1498. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1499. (chainmask == 0x7) && (rate < 0x90))
  1500. return 0x3;
  1501. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1502. IS_CCK_RATE(rate))
  1503. return 0x2;
  1504. else
  1505. return chainmask;
  1506. }
  1507. /*
  1508. * Assign a descriptor (and sequence number if necessary,
  1509. * and map buffer for DMA. Frees skb on error
  1510. */
  1511. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1512. struct ath_txq *txq,
  1513. struct ath_atx_tid *tid,
  1514. struct sk_buff *skb)
  1515. {
  1516. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1517. struct ath_frame_info *fi = get_frame_info(skb);
  1518. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1519. struct ath_buf *bf;
  1520. int fragno;
  1521. u16 seqno;
  1522. bf = ath_tx_get_buffer(sc);
  1523. if (!bf) {
  1524. ath_dbg(common, XMIT, "TX buffers are full\n");
  1525. return NULL;
  1526. }
  1527. ATH_TXBUF_RESET(bf);
  1528. if (tid) {
  1529. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1530. seqno = tid->seq_next;
  1531. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1532. if (fragno)
  1533. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1534. if (!ieee80211_has_morefrags(hdr->frame_control))
  1535. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1536. bf->bf_state.seqno = seqno;
  1537. }
  1538. bf->bf_mpdu = skb;
  1539. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1540. skb->len, DMA_TO_DEVICE);
  1541. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1542. bf->bf_mpdu = NULL;
  1543. bf->bf_buf_addr = 0;
  1544. ath_err(ath9k_hw_common(sc->sc_ah),
  1545. "dma_mapping_error() on TX\n");
  1546. ath_tx_return_buffer(sc, bf);
  1547. return NULL;
  1548. }
  1549. fi->bf = bf;
  1550. return bf;
  1551. }
  1552. /* FIXME: tx power */
  1553. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1554. struct ath_tx_control *txctl)
  1555. {
  1556. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1557. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1558. struct ath_atx_tid *tid = NULL;
  1559. struct ath_buf *bf;
  1560. u8 tidno;
  1561. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
  1562. ieee80211_is_data_qos(hdr->frame_control)) {
  1563. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1564. IEEE80211_QOS_CTL_TID_MASK;
  1565. tid = ATH_AN_2_TID(txctl->an, tidno);
  1566. WARN_ON(tid->ac->txq != txctl->txq);
  1567. }
  1568. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1569. /*
  1570. * Try aggregation if it's a unicast data frame
  1571. * and the destination is HT capable.
  1572. */
  1573. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1574. } else {
  1575. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1576. if (!bf) {
  1577. if (txctl->paprd)
  1578. dev_kfree_skb_any(skb);
  1579. else
  1580. ieee80211_free_txskb(sc->hw, skb);
  1581. return;
  1582. }
  1583. bf->bf_state.bfs_paprd = txctl->paprd;
  1584. if (txctl->paprd)
  1585. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1586. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1587. }
  1588. }
  1589. /* Upon failure caller should free skb */
  1590. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1591. struct ath_tx_control *txctl)
  1592. {
  1593. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1594. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1595. struct ieee80211_sta *sta = txctl->sta;
  1596. struct ieee80211_vif *vif = info->control.vif;
  1597. struct ath_softc *sc = hw->priv;
  1598. struct ath_txq *txq = txctl->txq;
  1599. int padpos, padsize;
  1600. int frmlen = skb->len + FCS_LEN;
  1601. int q;
  1602. /* NOTE: sta can be NULL according to net/mac80211.h */
  1603. if (sta)
  1604. txctl->an = (struct ath_node *)sta->drv_priv;
  1605. if (info->control.hw_key)
  1606. frmlen += info->control.hw_key->icv_len;
  1607. /*
  1608. * As a temporary workaround, assign seq# here; this will likely need
  1609. * to be cleaned up to work better with Beacon transmission and virtual
  1610. * BSSes.
  1611. */
  1612. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1613. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1614. sc->tx.seq_no += 0x10;
  1615. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1616. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1617. }
  1618. /* Add the padding after the header if this is not already done */
  1619. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1620. padsize = padpos & 3;
  1621. if (padsize && skb->len > padpos) {
  1622. if (skb_headroom(skb) < padsize)
  1623. return -ENOMEM;
  1624. skb_push(skb, padsize);
  1625. memmove(skb->data, skb->data + padsize, padpos);
  1626. hdr = (struct ieee80211_hdr *) skb->data;
  1627. }
  1628. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1629. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1630. !ieee80211_is_data(hdr->frame_control))
  1631. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1632. setup_frame_info(hw, sta, skb, frmlen);
  1633. /*
  1634. * At this point, the vif, hw_key and sta pointers in the tx control
  1635. * info are no longer valid (overwritten by the ath_frame_info data.
  1636. */
  1637. q = skb_get_queue_mapping(skb);
  1638. ath_txq_lock(sc, txq);
  1639. if (txq == sc->tx.txq_map[q] &&
  1640. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1641. !txq->stopped) {
  1642. ieee80211_stop_queue(sc->hw, q);
  1643. txq->stopped = true;
  1644. }
  1645. ath_tx_start_dma(sc, skb, txctl);
  1646. ath_txq_unlock(sc, txq);
  1647. return 0;
  1648. }
  1649. /*****************/
  1650. /* TX Completion */
  1651. /*****************/
  1652. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1653. int tx_flags, struct ath_txq *txq)
  1654. {
  1655. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1656. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1657. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1658. int q, padpos, padsize;
  1659. unsigned long flags;
  1660. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1661. if (sc->sc_ah->caldata)
  1662. sc->sc_ah->caldata->paprd_packet_sent = true;
  1663. if (!(tx_flags & ATH_TX_ERROR))
  1664. /* Frame was ACKed */
  1665. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1666. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1667. padsize = padpos & 3;
  1668. if (padsize && skb->len>padpos+padsize) {
  1669. /*
  1670. * Remove MAC header padding before giving the frame back to
  1671. * mac80211.
  1672. */
  1673. memmove(skb->data + padsize, skb->data, padpos);
  1674. skb_pull(skb, padsize);
  1675. }
  1676. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1677. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1678. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1679. ath_dbg(common, PS,
  1680. "Going back to sleep after having received TX status (0x%lx)\n",
  1681. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1682. PS_WAIT_FOR_CAB |
  1683. PS_WAIT_FOR_PSPOLL_DATA |
  1684. PS_WAIT_FOR_TX_ACK));
  1685. }
  1686. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1687. q = skb_get_queue_mapping(skb);
  1688. if (txq == sc->tx.txq_map[q]) {
  1689. if (WARN_ON(--txq->pending_frames < 0))
  1690. txq->pending_frames = 0;
  1691. if (txq->stopped &&
  1692. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1693. ieee80211_wake_queue(sc->hw, q);
  1694. txq->stopped = false;
  1695. }
  1696. }
  1697. __skb_queue_tail(&txq->complete_q, skb);
  1698. }
  1699. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1700. struct ath_txq *txq, struct list_head *bf_q,
  1701. struct ath_tx_status *ts, int txok)
  1702. {
  1703. struct sk_buff *skb = bf->bf_mpdu;
  1704. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1705. unsigned long flags;
  1706. int tx_flags = 0;
  1707. if (!txok)
  1708. tx_flags |= ATH_TX_ERROR;
  1709. if (ts->ts_status & ATH9K_TXERR_FILT)
  1710. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1711. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1712. bf->bf_buf_addr = 0;
  1713. if (bf->bf_state.bfs_paprd) {
  1714. if (time_after(jiffies,
  1715. bf->bf_state.bfs_paprd_timestamp +
  1716. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1717. dev_kfree_skb_any(skb);
  1718. else
  1719. complete(&sc->paprd_complete);
  1720. } else {
  1721. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1722. ath_tx_complete(sc, skb, tx_flags, txq);
  1723. }
  1724. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1725. * accidentally reference it later.
  1726. */
  1727. bf->bf_mpdu = NULL;
  1728. /*
  1729. * Return the list of ath_buf of this mpdu to free queue
  1730. */
  1731. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1732. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1733. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1734. }
  1735. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1736. struct ath_tx_status *ts, int nframes, int nbad,
  1737. int txok)
  1738. {
  1739. struct sk_buff *skb = bf->bf_mpdu;
  1740. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1741. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1742. struct ieee80211_hw *hw = sc->hw;
  1743. struct ath_hw *ah = sc->sc_ah;
  1744. u8 i, tx_rateindex;
  1745. if (txok)
  1746. tx_info->status.ack_signal = ts->ts_rssi;
  1747. tx_rateindex = ts->ts_rateindex;
  1748. WARN_ON(tx_rateindex >= hw->max_rates);
  1749. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1750. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1751. BUG_ON(nbad > nframes);
  1752. }
  1753. tx_info->status.ampdu_len = nframes;
  1754. tx_info->status.ampdu_ack_len = nframes - nbad;
  1755. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1756. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1757. /*
  1758. * If an underrun error is seen assume it as an excessive
  1759. * retry only if max frame trigger level has been reached
  1760. * (2 KB for single stream, and 4 KB for dual stream).
  1761. * Adjust the long retry as if the frame was tried
  1762. * hw->max_rate_tries times to affect how rate control updates
  1763. * PER for the failed rate.
  1764. * In case of congestion on the bus penalizing this type of
  1765. * underruns should help hardware actually transmit new frames
  1766. * successfully by eventually preferring slower rates.
  1767. * This itself should also alleviate congestion on the bus.
  1768. */
  1769. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1770. ATH9K_TX_DELIM_UNDERRUN)) &&
  1771. ieee80211_is_data(hdr->frame_control) &&
  1772. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1773. tx_info->status.rates[tx_rateindex].count =
  1774. hw->max_rate_tries;
  1775. }
  1776. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1777. tx_info->status.rates[i].count = 0;
  1778. tx_info->status.rates[i].idx = -1;
  1779. }
  1780. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1781. }
  1782. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1783. {
  1784. struct ath_hw *ah = sc->sc_ah;
  1785. struct ath_common *common = ath9k_hw_common(ah);
  1786. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1787. struct list_head bf_head;
  1788. struct ath_desc *ds;
  1789. struct ath_tx_status ts;
  1790. int status;
  1791. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1792. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1793. txq->axq_link);
  1794. ath_txq_lock(sc, txq);
  1795. for (;;) {
  1796. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1797. break;
  1798. if (list_empty(&txq->axq_q)) {
  1799. txq->axq_link = NULL;
  1800. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1801. ath_txq_schedule(sc, txq);
  1802. break;
  1803. }
  1804. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1805. /*
  1806. * There is a race condition that a BH gets scheduled
  1807. * after sw writes TxE and before hw re-load the last
  1808. * descriptor to get the newly chained one.
  1809. * Software must keep the last DONE descriptor as a
  1810. * holding descriptor - software does so by marking
  1811. * it with the STALE flag.
  1812. */
  1813. bf_held = NULL;
  1814. if (bf->bf_stale) {
  1815. bf_held = bf;
  1816. if (list_is_last(&bf_held->list, &txq->axq_q))
  1817. break;
  1818. bf = list_entry(bf_held->list.next, struct ath_buf,
  1819. list);
  1820. }
  1821. lastbf = bf->bf_lastbf;
  1822. ds = lastbf->bf_desc;
  1823. memset(&ts, 0, sizeof(ts));
  1824. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1825. if (status == -EINPROGRESS)
  1826. break;
  1827. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1828. /*
  1829. * Remove ath_buf's of the same transmit unit from txq,
  1830. * however leave the last descriptor back as the holding
  1831. * descriptor for hw.
  1832. */
  1833. lastbf->bf_stale = true;
  1834. INIT_LIST_HEAD(&bf_head);
  1835. if (!list_is_singular(&lastbf->list))
  1836. list_cut_position(&bf_head,
  1837. &txq->axq_q, lastbf->list.prev);
  1838. if (bf_held) {
  1839. list_del(&bf_held->list);
  1840. ath_tx_return_buffer(sc, bf_held);
  1841. }
  1842. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1843. }
  1844. ath_txq_unlock_complete(sc, txq);
  1845. }
  1846. void ath_tx_tasklet(struct ath_softc *sc)
  1847. {
  1848. struct ath_hw *ah = sc->sc_ah;
  1849. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  1850. int i;
  1851. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1852. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1853. ath_tx_processq(sc, &sc->tx.txq[i]);
  1854. }
  1855. }
  1856. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1857. {
  1858. struct ath_tx_status ts;
  1859. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1860. struct ath_hw *ah = sc->sc_ah;
  1861. struct ath_txq *txq;
  1862. struct ath_buf *bf, *lastbf;
  1863. struct list_head bf_head;
  1864. int status;
  1865. for (;;) {
  1866. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1867. break;
  1868. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1869. if (status == -EINPROGRESS)
  1870. break;
  1871. if (status == -EIO) {
  1872. ath_dbg(common, XMIT, "Error processing tx status\n");
  1873. break;
  1874. }
  1875. /* Process beacon completions separately */
  1876. if (ts.qid == sc->beacon.beaconq) {
  1877. sc->beacon.tx_processed = true;
  1878. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1879. continue;
  1880. }
  1881. txq = &sc->tx.txq[ts.qid];
  1882. ath_txq_lock(sc, txq);
  1883. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1884. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1885. ath_txq_unlock(sc, txq);
  1886. return;
  1887. }
  1888. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1889. struct ath_buf, list);
  1890. lastbf = bf->bf_lastbf;
  1891. INIT_LIST_HEAD(&bf_head);
  1892. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1893. &lastbf->list);
  1894. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1895. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1896. if (!list_empty(&txq->axq_q)) {
  1897. struct list_head bf_q;
  1898. INIT_LIST_HEAD(&bf_q);
  1899. txq->axq_link = NULL;
  1900. list_splice_tail_init(&txq->axq_q, &bf_q);
  1901. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1902. }
  1903. }
  1904. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1905. ath_txq_unlock_complete(sc, txq);
  1906. }
  1907. }
  1908. /*****************/
  1909. /* Init, Cleanup */
  1910. /*****************/
  1911. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1912. {
  1913. struct ath_descdma *dd = &sc->txsdma;
  1914. u8 txs_len = sc->sc_ah->caps.txs_len;
  1915. dd->dd_desc_len = size * txs_len;
  1916. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  1917. &dd->dd_desc_paddr, GFP_KERNEL);
  1918. if (!dd->dd_desc)
  1919. return -ENOMEM;
  1920. return 0;
  1921. }
  1922. static int ath_tx_edma_init(struct ath_softc *sc)
  1923. {
  1924. int err;
  1925. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1926. if (!err)
  1927. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1928. sc->txsdma.dd_desc_paddr,
  1929. ATH_TXSTATUS_RING_SIZE);
  1930. return err;
  1931. }
  1932. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1933. {
  1934. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1935. int error = 0;
  1936. spin_lock_init(&sc->tx.txbuflock);
  1937. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1938. "tx", nbufs, 1, 1);
  1939. if (error != 0) {
  1940. ath_err(common,
  1941. "Failed to allocate tx descriptors: %d\n", error);
  1942. return error;
  1943. }
  1944. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1945. "beacon", ATH_BCBUF, 1, 1);
  1946. if (error != 0) {
  1947. ath_err(common,
  1948. "Failed to allocate beacon descriptors: %d\n", error);
  1949. return error;
  1950. }
  1951. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1952. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1953. error = ath_tx_edma_init(sc);
  1954. return error;
  1955. }
  1956. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1957. {
  1958. struct ath_atx_tid *tid;
  1959. struct ath_atx_ac *ac;
  1960. int tidno, acno;
  1961. for (tidno = 0, tid = &an->tid[tidno];
  1962. tidno < IEEE80211_NUM_TIDS;
  1963. tidno++, tid++) {
  1964. tid->an = an;
  1965. tid->tidno = tidno;
  1966. tid->seq_start = tid->seq_next = 0;
  1967. tid->baw_size = WME_MAX_BA;
  1968. tid->baw_head = tid->baw_tail = 0;
  1969. tid->sched = false;
  1970. tid->paused = false;
  1971. tid->state &= ~AGGR_CLEANUP;
  1972. __skb_queue_head_init(&tid->buf_q);
  1973. acno = TID_TO_WME_AC(tidno);
  1974. tid->ac = &an->ac[acno];
  1975. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1976. tid->state &= ~AGGR_ADDBA_PROGRESS;
  1977. }
  1978. for (acno = 0, ac = &an->ac[acno];
  1979. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  1980. ac->sched = false;
  1981. ac->txq = sc->tx.txq_map[acno];
  1982. INIT_LIST_HEAD(&ac->tid_q);
  1983. }
  1984. }
  1985. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  1986. {
  1987. struct ath_atx_ac *ac;
  1988. struct ath_atx_tid *tid;
  1989. struct ath_txq *txq;
  1990. int tidno;
  1991. for (tidno = 0, tid = &an->tid[tidno];
  1992. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1993. ac = tid->ac;
  1994. txq = ac->txq;
  1995. ath_txq_lock(sc, txq);
  1996. if (tid->sched) {
  1997. list_del(&tid->list);
  1998. tid->sched = false;
  1999. }
  2000. if (ac->sched) {
  2001. list_del(&ac->list);
  2002. tid->ac->sched = false;
  2003. }
  2004. ath_tid_drain(sc, txq, tid);
  2005. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2006. tid->state &= ~AGGR_CLEANUP;
  2007. ath_txq_unlock(sc, txq);
  2008. }
  2009. }