i915_gem.c 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. struct change_domains {
  37. uint32_t invalidate_domains;
  38. uint32_t flush_domains;
  39. uint32_t flush_rings;
  40. };
  41. static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
  42. bool pipelined);
  43. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  44. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  45. static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  46. int write);
  47. static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  48. uint64_t offset,
  49. uint64_t size);
  50. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  51. static int i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  52. bool interruptible);
  53. static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  54. unsigned alignment,
  55. bool map_and_fenceable);
  56. static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj);
  57. static int i915_gem_phys_pwrite(struct drm_device *dev,
  58. struct drm_i915_gem_object *obj,
  59. struct drm_i915_gem_pwrite *args,
  60. struct drm_file *file);
  61. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  62. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  63. int nr_to_scan,
  64. gfp_t gfp_mask);
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  79. struct drm_i915_gem_object *obj)
  80. {
  81. dev_priv->mm.gtt_count++;
  82. dev_priv->mm.gtt_memory += obj->gtt_space->size;
  83. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  84. dev_priv->mm.mappable_gtt_used +=
  85. min_t(size_t, obj->gtt_space->size,
  86. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  87. }
  88. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  89. }
  90. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  91. struct drm_i915_gem_object *obj)
  92. {
  93. dev_priv->mm.gtt_count--;
  94. dev_priv->mm.gtt_memory -= obj->gtt_space->size;
  95. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  96. dev_priv->mm.mappable_gtt_used -=
  97. min_t(size_t, obj->gtt_space->size,
  98. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  99. }
  100. list_del_init(&obj->gtt_list);
  101. }
  102. /**
  103. * Update the mappable working set counters. Call _only_ when there is a change
  104. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  105. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  106. */
  107. static void
  108. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  109. struct drm_i915_gem_object *obj,
  110. bool mappable)
  111. {
  112. if (mappable) {
  113. if (obj->pin_mappable && obj->fault_mappable)
  114. /* Combined state was already mappable. */
  115. return;
  116. dev_priv->mm.gtt_mappable_count++;
  117. dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
  118. } else {
  119. if (obj->pin_mappable || obj->fault_mappable)
  120. /* Combined state still mappable. */
  121. return;
  122. dev_priv->mm.gtt_mappable_count--;
  123. dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
  124. }
  125. }
  126. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  127. struct drm_i915_gem_object *obj,
  128. bool mappable)
  129. {
  130. dev_priv->mm.pin_count++;
  131. dev_priv->mm.pin_memory += obj->gtt_space->size;
  132. if (mappable) {
  133. obj->pin_mappable = true;
  134. i915_gem_info_update_mappable(dev_priv, obj, true);
  135. }
  136. }
  137. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  138. struct drm_i915_gem_object *obj)
  139. {
  140. dev_priv->mm.pin_count--;
  141. dev_priv->mm.pin_memory -= obj->gtt_space->size;
  142. if (obj->pin_mappable) {
  143. obj->pin_mappable = false;
  144. i915_gem_info_update_mappable(dev_priv, obj, false);
  145. }
  146. }
  147. int
  148. i915_gem_check_is_wedged(struct drm_device *dev)
  149. {
  150. struct drm_i915_private *dev_priv = dev->dev_private;
  151. struct completion *x = &dev_priv->error_completion;
  152. unsigned long flags;
  153. int ret;
  154. if (!atomic_read(&dev_priv->mm.wedged))
  155. return 0;
  156. ret = wait_for_completion_interruptible(x);
  157. if (ret)
  158. return ret;
  159. /* Success, we reset the GPU! */
  160. if (!atomic_read(&dev_priv->mm.wedged))
  161. return 0;
  162. /* GPU is hung, bump the completion count to account for
  163. * the token we just consumed so that we never hit zero and
  164. * end up waiting upon a subsequent completion event that
  165. * will never happen.
  166. */
  167. spin_lock_irqsave(&x->wait.lock, flags);
  168. x->done++;
  169. spin_unlock_irqrestore(&x->wait.lock, flags);
  170. return -EIO;
  171. }
  172. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  173. {
  174. struct drm_i915_private *dev_priv = dev->dev_private;
  175. int ret;
  176. ret = i915_gem_check_is_wedged(dev);
  177. if (ret)
  178. return ret;
  179. ret = mutex_lock_interruptible(&dev->struct_mutex);
  180. if (ret)
  181. return ret;
  182. if (atomic_read(&dev_priv->mm.wedged)) {
  183. mutex_unlock(&dev->struct_mutex);
  184. return -EAGAIN;
  185. }
  186. WARN_ON(i915_verify_lists(dev));
  187. return 0;
  188. }
  189. static inline bool
  190. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  191. {
  192. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  193. }
  194. int i915_gem_do_init(struct drm_device *dev,
  195. unsigned long start,
  196. unsigned long mappable_end,
  197. unsigned long end)
  198. {
  199. drm_i915_private_t *dev_priv = dev->dev_private;
  200. if (start >= end ||
  201. (start & (PAGE_SIZE - 1)) != 0 ||
  202. (end & (PAGE_SIZE - 1)) != 0) {
  203. return -EINVAL;
  204. }
  205. drm_mm_init(&dev_priv->mm.gtt_space, start,
  206. end - start);
  207. dev_priv->mm.gtt_total = end - start;
  208. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  209. dev_priv->mm.gtt_mappable_end = mappable_end;
  210. return 0;
  211. }
  212. int
  213. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  214. struct drm_file *file)
  215. {
  216. struct drm_i915_gem_init *args = data;
  217. int ret;
  218. mutex_lock(&dev->struct_mutex);
  219. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  220. mutex_unlock(&dev->struct_mutex);
  221. return ret;
  222. }
  223. int
  224. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  225. struct drm_file *file)
  226. {
  227. struct drm_i915_private *dev_priv = dev->dev_private;
  228. struct drm_i915_gem_get_aperture *args = data;
  229. if (!(dev->driver->driver_features & DRIVER_GEM))
  230. return -ENODEV;
  231. mutex_lock(&dev->struct_mutex);
  232. args->aper_size = dev_priv->mm.gtt_total;
  233. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  234. mutex_unlock(&dev->struct_mutex);
  235. return 0;
  236. }
  237. /**
  238. * Creates a new mm object and returns a handle to it.
  239. */
  240. int
  241. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  242. struct drm_file *file)
  243. {
  244. struct drm_i915_gem_create *args = data;
  245. struct drm_i915_gem_object *obj;
  246. int ret;
  247. u32 handle;
  248. args->size = roundup(args->size, PAGE_SIZE);
  249. /* Allocate the new object */
  250. obj = i915_gem_alloc_object(dev, args->size);
  251. if (obj == NULL)
  252. return -ENOMEM;
  253. ret = drm_gem_handle_create(file, &obj->base, &handle);
  254. if (ret) {
  255. drm_gem_object_release(&obj->base);
  256. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  257. kfree(obj);
  258. return ret;
  259. }
  260. /* drop reference from allocate - handle holds it now */
  261. drm_gem_object_unreference(&obj->base);
  262. trace_i915_gem_object_create(obj);
  263. args->handle = handle;
  264. return 0;
  265. }
  266. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  267. {
  268. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  269. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  270. obj->tiling_mode != I915_TILING_NONE;
  271. }
  272. static inline void
  273. slow_shmem_copy(struct page *dst_page,
  274. int dst_offset,
  275. struct page *src_page,
  276. int src_offset,
  277. int length)
  278. {
  279. char *dst_vaddr, *src_vaddr;
  280. dst_vaddr = kmap(dst_page);
  281. src_vaddr = kmap(src_page);
  282. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  283. kunmap(src_page);
  284. kunmap(dst_page);
  285. }
  286. static inline void
  287. slow_shmem_bit17_copy(struct page *gpu_page,
  288. int gpu_offset,
  289. struct page *cpu_page,
  290. int cpu_offset,
  291. int length,
  292. int is_read)
  293. {
  294. char *gpu_vaddr, *cpu_vaddr;
  295. /* Use the unswizzled path if this page isn't affected. */
  296. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  297. if (is_read)
  298. return slow_shmem_copy(cpu_page, cpu_offset,
  299. gpu_page, gpu_offset, length);
  300. else
  301. return slow_shmem_copy(gpu_page, gpu_offset,
  302. cpu_page, cpu_offset, length);
  303. }
  304. gpu_vaddr = kmap(gpu_page);
  305. cpu_vaddr = kmap(cpu_page);
  306. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  307. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  308. */
  309. while (length > 0) {
  310. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  311. int this_length = min(cacheline_end - gpu_offset, length);
  312. int swizzled_gpu_offset = gpu_offset ^ 64;
  313. if (is_read) {
  314. memcpy(cpu_vaddr + cpu_offset,
  315. gpu_vaddr + swizzled_gpu_offset,
  316. this_length);
  317. } else {
  318. memcpy(gpu_vaddr + swizzled_gpu_offset,
  319. cpu_vaddr + cpu_offset,
  320. this_length);
  321. }
  322. cpu_offset += this_length;
  323. gpu_offset += this_length;
  324. length -= this_length;
  325. }
  326. kunmap(cpu_page);
  327. kunmap(gpu_page);
  328. }
  329. /**
  330. * This is the fast shmem pread path, which attempts to copy_from_user directly
  331. * from the backing pages of the object to the user's address space. On a
  332. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  333. */
  334. static int
  335. i915_gem_shmem_pread_fast(struct drm_device *dev,
  336. struct drm_i915_gem_object *obj,
  337. struct drm_i915_gem_pread *args,
  338. struct drm_file *file)
  339. {
  340. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  341. ssize_t remain;
  342. loff_t offset;
  343. char __user *user_data;
  344. int page_offset, page_length;
  345. user_data = (char __user *) (uintptr_t) args->data_ptr;
  346. remain = args->size;
  347. offset = args->offset;
  348. while (remain > 0) {
  349. struct page *page;
  350. char *vaddr;
  351. int ret;
  352. /* Operation in this page
  353. *
  354. * page_offset = offset within page
  355. * page_length = bytes to copy for this page
  356. */
  357. page_offset = offset & (PAGE_SIZE-1);
  358. page_length = remain;
  359. if ((page_offset + remain) > PAGE_SIZE)
  360. page_length = PAGE_SIZE - page_offset;
  361. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  362. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  363. if (IS_ERR(page))
  364. return PTR_ERR(page);
  365. vaddr = kmap_atomic(page);
  366. ret = __copy_to_user_inatomic(user_data,
  367. vaddr + page_offset,
  368. page_length);
  369. kunmap_atomic(vaddr);
  370. mark_page_accessed(page);
  371. page_cache_release(page);
  372. if (ret)
  373. return -EFAULT;
  374. remain -= page_length;
  375. user_data += page_length;
  376. offset += page_length;
  377. }
  378. return 0;
  379. }
  380. /**
  381. * This is the fallback shmem pread path, which allocates temporary storage
  382. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  383. * can copy out of the object's backing pages while holding the struct mutex
  384. * and not take page faults.
  385. */
  386. static int
  387. i915_gem_shmem_pread_slow(struct drm_device *dev,
  388. struct drm_i915_gem_object *obj,
  389. struct drm_i915_gem_pread *args,
  390. struct drm_file *file)
  391. {
  392. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  393. struct mm_struct *mm = current->mm;
  394. struct page **user_pages;
  395. ssize_t remain;
  396. loff_t offset, pinned_pages, i;
  397. loff_t first_data_page, last_data_page, num_pages;
  398. int shmem_page_offset;
  399. int data_page_index, data_page_offset;
  400. int page_length;
  401. int ret;
  402. uint64_t data_ptr = args->data_ptr;
  403. int do_bit17_swizzling;
  404. remain = args->size;
  405. /* Pin the user pages containing the data. We can't fault while
  406. * holding the struct mutex, yet we want to hold it while
  407. * dereferencing the user data.
  408. */
  409. first_data_page = data_ptr / PAGE_SIZE;
  410. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  411. num_pages = last_data_page - first_data_page + 1;
  412. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  413. if (user_pages == NULL)
  414. return -ENOMEM;
  415. mutex_unlock(&dev->struct_mutex);
  416. down_read(&mm->mmap_sem);
  417. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  418. num_pages, 1, 0, user_pages, NULL);
  419. up_read(&mm->mmap_sem);
  420. mutex_lock(&dev->struct_mutex);
  421. if (pinned_pages < num_pages) {
  422. ret = -EFAULT;
  423. goto out;
  424. }
  425. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  426. args->offset,
  427. args->size);
  428. if (ret)
  429. goto out;
  430. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  431. offset = args->offset;
  432. while (remain > 0) {
  433. struct page *page;
  434. /* Operation in this page
  435. *
  436. * shmem_page_offset = offset within page in shmem file
  437. * data_page_index = page number in get_user_pages return
  438. * data_page_offset = offset with data_page_index page.
  439. * page_length = bytes to copy for this page
  440. */
  441. shmem_page_offset = offset & ~PAGE_MASK;
  442. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  443. data_page_offset = data_ptr & ~PAGE_MASK;
  444. page_length = remain;
  445. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  446. page_length = PAGE_SIZE - shmem_page_offset;
  447. if ((data_page_offset + page_length) > PAGE_SIZE)
  448. page_length = PAGE_SIZE - data_page_offset;
  449. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  450. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  451. if (IS_ERR(page))
  452. return PTR_ERR(page);
  453. if (do_bit17_swizzling) {
  454. slow_shmem_bit17_copy(page,
  455. shmem_page_offset,
  456. user_pages[data_page_index],
  457. data_page_offset,
  458. page_length,
  459. 1);
  460. } else {
  461. slow_shmem_copy(user_pages[data_page_index],
  462. data_page_offset,
  463. page,
  464. shmem_page_offset,
  465. page_length);
  466. }
  467. mark_page_accessed(page);
  468. page_cache_release(page);
  469. remain -= page_length;
  470. data_ptr += page_length;
  471. offset += page_length;
  472. }
  473. out:
  474. for (i = 0; i < pinned_pages; i++) {
  475. SetPageDirty(user_pages[i]);
  476. mark_page_accessed(user_pages[i]);
  477. page_cache_release(user_pages[i]);
  478. }
  479. drm_free_large(user_pages);
  480. return ret;
  481. }
  482. /**
  483. * Reads data from the object referenced by handle.
  484. *
  485. * On error, the contents of *data are undefined.
  486. */
  487. int
  488. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  489. struct drm_file *file)
  490. {
  491. struct drm_i915_gem_pread *args = data;
  492. struct drm_i915_gem_object *obj;
  493. int ret = 0;
  494. if (args->size == 0)
  495. return 0;
  496. if (!access_ok(VERIFY_WRITE,
  497. (char __user *)(uintptr_t)args->data_ptr,
  498. args->size))
  499. return -EFAULT;
  500. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  501. args->size);
  502. if (ret)
  503. return -EFAULT;
  504. ret = i915_mutex_lock_interruptible(dev);
  505. if (ret)
  506. return ret;
  507. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  508. if (obj == NULL) {
  509. ret = -ENOENT;
  510. goto unlock;
  511. }
  512. /* Bounds check source. */
  513. if (args->offset > obj->base.size ||
  514. args->size > obj->base.size - args->offset) {
  515. ret = -EINVAL;
  516. goto out;
  517. }
  518. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  519. args->offset,
  520. args->size);
  521. if (ret)
  522. goto out;
  523. ret = -EFAULT;
  524. if (!i915_gem_object_needs_bit17_swizzle(obj))
  525. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  526. if (ret == -EFAULT)
  527. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  528. out:
  529. drm_gem_object_unreference(&obj->base);
  530. unlock:
  531. mutex_unlock(&dev->struct_mutex);
  532. return ret;
  533. }
  534. /* This is the fast write path which cannot handle
  535. * page faults in the source data
  536. */
  537. static inline int
  538. fast_user_write(struct io_mapping *mapping,
  539. loff_t page_base, int page_offset,
  540. char __user *user_data,
  541. int length)
  542. {
  543. char *vaddr_atomic;
  544. unsigned long unwritten;
  545. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  546. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  547. user_data, length);
  548. io_mapping_unmap_atomic(vaddr_atomic);
  549. return unwritten;
  550. }
  551. /* Here's the write path which can sleep for
  552. * page faults
  553. */
  554. static inline void
  555. slow_kernel_write(struct io_mapping *mapping,
  556. loff_t gtt_base, int gtt_offset,
  557. struct page *user_page, int user_offset,
  558. int length)
  559. {
  560. char __iomem *dst_vaddr;
  561. char *src_vaddr;
  562. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  563. src_vaddr = kmap(user_page);
  564. memcpy_toio(dst_vaddr + gtt_offset,
  565. src_vaddr + user_offset,
  566. length);
  567. kunmap(user_page);
  568. io_mapping_unmap(dst_vaddr);
  569. }
  570. /**
  571. * This is the fast pwrite path, where we copy the data directly from the
  572. * user into the GTT, uncached.
  573. */
  574. static int
  575. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  576. struct drm_i915_gem_object *obj,
  577. struct drm_i915_gem_pwrite *args,
  578. struct drm_file *file)
  579. {
  580. drm_i915_private_t *dev_priv = dev->dev_private;
  581. ssize_t remain;
  582. loff_t offset, page_base;
  583. char __user *user_data;
  584. int page_offset, page_length;
  585. user_data = (char __user *) (uintptr_t) args->data_ptr;
  586. remain = args->size;
  587. offset = obj->gtt_offset + args->offset;
  588. while (remain > 0) {
  589. /* Operation in this page
  590. *
  591. * page_base = page offset within aperture
  592. * page_offset = offset within page
  593. * page_length = bytes to copy for this page
  594. */
  595. page_base = (offset & ~(PAGE_SIZE-1));
  596. page_offset = offset & (PAGE_SIZE-1);
  597. page_length = remain;
  598. if ((page_offset + remain) > PAGE_SIZE)
  599. page_length = PAGE_SIZE - page_offset;
  600. /* If we get a fault while copying data, then (presumably) our
  601. * source page isn't available. Return the error and we'll
  602. * retry in the slow path.
  603. */
  604. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  605. page_offset, user_data, page_length))
  606. return -EFAULT;
  607. remain -= page_length;
  608. user_data += page_length;
  609. offset += page_length;
  610. }
  611. return 0;
  612. }
  613. /**
  614. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  615. * the memory and maps it using kmap_atomic for copying.
  616. *
  617. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  618. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  619. */
  620. static int
  621. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  622. struct drm_i915_gem_object *obj,
  623. struct drm_i915_gem_pwrite *args,
  624. struct drm_file *file)
  625. {
  626. drm_i915_private_t *dev_priv = dev->dev_private;
  627. ssize_t remain;
  628. loff_t gtt_page_base, offset;
  629. loff_t first_data_page, last_data_page, num_pages;
  630. loff_t pinned_pages, i;
  631. struct page **user_pages;
  632. struct mm_struct *mm = current->mm;
  633. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  634. int ret;
  635. uint64_t data_ptr = args->data_ptr;
  636. remain = args->size;
  637. /* Pin the user pages containing the data. We can't fault while
  638. * holding the struct mutex, and all of the pwrite implementations
  639. * want to hold it while dereferencing the user data.
  640. */
  641. first_data_page = data_ptr / PAGE_SIZE;
  642. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  643. num_pages = last_data_page - first_data_page + 1;
  644. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  645. if (user_pages == NULL)
  646. return -ENOMEM;
  647. mutex_unlock(&dev->struct_mutex);
  648. down_read(&mm->mmap_sem);
  649. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  650. num_pages, 0, 0, user_pages, NULL);
  651. up_read(&mm->mmap_sem);
  652. mutex_lock(&dev->struct_mutex);
  653. if (pinned_pages < num_pages) {
  654. ret = -EFAULT;
  655. goto out_unpin_pages;
  656. }
  657. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  658. if (ret)
  659. goto out_unpin_pages;
  660. offset = obj->gtt_offset + args->offset;
  661. while (remain > 0) {
  662. /* Operation in this page
  663. *
  664. * gtt_page_base = page offset within aperture
  665. * gtt_page_offset = offset within page in aperture
  666. * data_page_index = page number in get_user_pages return
  667. * data_page_offset = offset with data_page_index page.
  668. * page_length = bytes to copy for this page
  669. */
  670. gtt_page_base = offset & PAGE_MASK;
  671. gtt_page_offset = offset & ~PAGE_MASK;
  672. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  673. data_page_offset = data_ptr & ~PAGE_MASK;
  674. page_length = remain;
  675. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  676. page_length = PAGE_SIZE - gtt_page_offset;
  677. if ((data_page_offset + page_length) > PAGE_SIZE)
  678. page_length = PAGE_SIZE - data_page_offset;
  679. slow_kernel_write(dev_priv->mm.gtt_mapping,
  680. gtt_page_base, gtt_page_offset,
  681. user_pages[data_page_index],
  682. data_page_offset,
  683. page_length);
  684. remain -= page_length;
  685. offset += page_length;
  686. data_ptr += page_length;
  687. }
  688. out_unpin_pages:
  689. for (i = 0; i < pinned_pages; i++)
  690. page_cache_release(user_pages[i]);
  691. drm_free_large(user_pages);
  692. return ret;
  693. }
  694. /**
  695. * This is the fast shmem pwrite path, which attempts to directly
  696. * copy_from_user into the kmapped pages backing the object.
  697. */
  698. static int
  699. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  700. struct drm_i915_gem_object *obj,
  701. struct drm_i915_gem_pwrite *args,
  702. struct drm_file *file)
  703. {
  704. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  705. ssize_t remain;
  706. loff_t offset;
  707. char __user *user_data;
  708. int page_offset, page_length;
  709. user_data = (char __user *) (uintptr_t) args->data_ptr;
  710. remain = args->size;
  711. offset = args->offset;
  712. obj->dirty = 1;
  713. while (remain > 0) {
  714. struct page *page;
  715. char *vaddr;
  716. int ret;
  717. /* Operation in this page
  718. *
  719. * page_offset = offset within page
  720. * page_length = bytes to copy for this page
  721. */
  722. page_offset = offset & (PAGE_SIZE-1);
  723. page_length = remain;
  724. if ((page_offset + remain) > PAGE_SIZE)
  725. page_length = PAGE_SIZE - page_offset;
  726. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  727. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  728. if (IS_ERR(page))
  729. return PTR_ERR(page);
  730. vaddr = kmap_atomic(page, KM_USER0);
  731. ret = __copy_from_user_inatomic(vaddr + page_offset,
  732. user_data,
  733. page_length);
  734. kunmap_atomic(vaddr, KM_USER0);
  735. set_page_dirty(page);
  736. mark_page_accessed(page);
  737. page_cache_release(page);
  738. /* If we get a fault while copying data, then (presumably) our
  739. * source page isn't available. Return the error and we'll
  740. * retry in the slow path.
  741. */
  742. if (ret)
  743. return -EFAULT;
  744. remain -= page_length;
  745. user_data += page_length;
  746. offset += page_length;
  747. }
  748. return 0;
  749. }
  750. /**
  751. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  752. * the memory and maps it using kmap_atomic for copying.
  753. *
  754. * This avoids taking mmap_sem for faulting on the user's address while the
  755. * struct_mutex is held.
  756. */
  757. static int
  758. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  759. struct drm_i915_gem_object *obj,
  760. struct drm_i915_gem_pwrite *args,
  761. struct drm_file *file)
  762. {
  763. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  764. struct mm_struct *mm = current->mm;
  765. struct page **user_pages;
  766. ssize_t remain;
  767. loff_t offset, pinned_pages, i;
  768. loff_t first_data_page, last_data_page, num_pages;
  769. int shmem_page_offset;
  770. int data_page_index, data_page_offset;
  771. int page_length;
  772. int ret;
  773. uint64_t data_ptr = args->data_ptr;
  774. int do_bit17_swizzling;
  775. remain = args->size;
  776. /* Pin the user pages containing the data. We can't fault while
  777. * holding the struct mutex, and all of the pwrite implementations
  778. * want to hold it while dereferencing the user data.
  779. */
  780. first_data_page = data_ptr / PAGE_SIZE;
  781. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  782. num_pages = last_data_page - first_data_page + 1;
  783. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  784. if (user_pages == NULL)
  785. return -ENOMEM;
  786. mutex_unlock(&dev->struct_mutex);
  787. down_read(&mm->mmap_sem);
  788. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  789. num_pages, 0, 0, user_pages, NULL);
  790. up_read(&mm->mmap_sem);
  791. mutex_lock(&dev->struct_mutex);
  792. if (pinned_pages < num_pages) {
  793. ret = -EFAULT;
  794. goto out;
  795. }
  796. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  797. if (ret)
  798. goto out;
  799. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  800. offset = args->offset;
  801. obj->dirty = 1;
  802. while (remain > 0) {
  803. struct page *page;
  804. /* Operation in this page
  805. *
  806. * shmem_page_offset = offset within page in shmem file
  807. * data_page_index = page number in get_user_pages return
  808. * data_page_offset = offset with data_page_index page.
  809. * page_length = bytes to copy for this page
  810. */
  811. shmem_page_offset = offset & ~PAGE_MASK;
  812. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  813. data_page_offset = data_ptr & ~PAGE_MASK;
  814. page_length = remain;
  815. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  816. page_length = PAGE_SIZE - shmem_page_offset;
  817. if ((data_page_offset + page_length) > PAGE_SIZE)
  818. page_length = PAGE_SIZE - data_page_offset;
  819. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  820. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  821. if (IS_ERR(page)) {
  822. ret = PTR_ERR(page);
  823. goto out;
  824. }
  825. if (do_bit17_swizzling) {
  826. slow_shmem_bit17_copy(page,
  827. shmem_page_offset,
  828. user_pages[data_page_index],
  829. data_page_offset,
  830. page_length,
  831. 0);
  832. } else {
  833. slow_shmem_copy(page,
  834. shmem_page_offset,
  835. user_pages[data_page_index],
  836. data_page_offset,
  837. page_length);
  838. }
  839. set_page_dirty(page);
  840. mark_page_accessed(page);
  841. page_cache_release(page);
  842. remain -= page_length;
  843. data_ptr += page_length;
  844. offset += page_length;
  845. }
  846. out:
  847. for (i = 0; i < pinned_pages; i++)
  848. page_cache_release(user_pages[i]);
  849. drm_free_large(user_pages);
  850. return ret;
  851. }
  852. /**
  853. * Writes data to the object referenced by handle.
  854. *
  855. * On error, the contents of the buffer that were to be modified are undefined.
  856. */
  857. int
  858. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  859. struct drm_file *file)
  860. {
  861. struct drm_i915_gem_pwrite *args = data;
  862. struct drm_i915_gem_object *obj;
  863. int ret;
  864. if (args->size == 0)
  865. return 0;
  866. if (!access_ok(VERIFY_READ,
  867. (char __user *)(uintptr_t)args->data_ptr,
  868. args->size))
  869. return -EFAULT;
  870. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  871. args->size);
  872. if (ret)
  873. return -EFAULT;
  874. ret = i915_mutex_lock_interruptible(dev);
  875. if (ret)
  876. return ret;
  877. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  878. if (obj == NULL) {
  879. ret = -ENOENT;
  880. goto unlock;
  881. }
  882. /* Bounds check destination. */
  883. if (args->offset > obj->base.size ||
  884. args->size > obj->base.size - args->offset) {
  885. ret = -EINVAL;
  886. goto out;
  887. }
  888. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  889. * it would end up going through the fenced access, and we'll get
  890. * different detiling behavior between reading and writing.
  891. * pread/pwrite currently are reading and writing from the CPU
  892. * perspective, requiring manual detiling by the client.
  893. */
  894. if (obj->phys_obj)
  895. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  896. else if (obj->tiling_mode == I915_TILING_NONE &&
  897. obj->gtt_space &&
  898. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  899. ret = i915_gem_object_pin(obj, 0, true);
  900. if (ret)
  901. goto out;
  902. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  903. if (ret)
  904. goto out_unpin;
  905. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  906. if (ret == -EFAULT)
  907. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  908. out_unpin:
  909. i915_gem_object_unpin(obj);
  910. } else {
  911. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  912. if (ret)
  913. goto out;
  914. ret = -EFAULT;
  915. if (!i915_gem_object_needs_bit17_swizzle(obj))
  916. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  917. if (ret == -EFAULT)
  918. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  919. }
  920. out:
  921. drm_gem_object_unreference(&obj->base);
  922. unlock:
  923. mutex_unlock(&dev->struct_mutex);
  924. return ret;
  925. }
  926. /**
  927. * Called when user space prepares to use an object with the CPU, either
  928. * through the mmap ioctl's mapping or a GTT mapping.
  929. */
  930. int
  931. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  932. struct drm_file *file)
  933. {
  934. struct drm_i915_private *dev_priv = dev->dev_private;
  935. struct drm_i915_gem_set_domain *args = data;
  936. struct drm_i915_gem_object *obj;
  937. uint32_t read_domains = args->read_domains;
  938. uint32_t write_domain = args->write_domain;
  939. int ret;
  940. if (!(dev->driver->driver_features & DRIVER_GEM))
  941. return -ENODEV;
  942. /* Only handle setting domains to types used by the CPU. */
  943. if (write_domain & I915_GEM_GPU_DOMAINS)
  944. return -EINVAL;
  945. if (read_domains & I915_GEM_GPU_DOMAINS)
  946. return -EINVAL;
  947. /* Having something in the write domain implies it's in the read
  948. * domain, and only that read domain. Enforce that in the request.
  949. */
  950. if (write_domain != 0 && read_domains != write_domain)
  951. return -EINVAL;
  952. ret = i915_mutex_lock_interruptible(dev);
  953. if (ret)
  954. return ret;
  955. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  956. if (obj == NULL) {
  957. ret = -ENOENT;
  958. goto unlock;
  959. }
  960. intel_mark_busy(dev, obj);
  961. if (read_domains & I915_GEM_DOMAIN_GTT) {
  962. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  963. /* Update the LRU on the fence for the CPU access that's
  964. * about to occur.
  965. */
  966. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  967. struct drm_i915_fence_reg *reg =
  968. &dev_priv->fence_regs[obj->fence_reg];
  969. list_move_tail(&reg->lru_list,
  970. &dev_priv->mm.fence_list);
  971. }
  972. /* Silently promote "you're not bound, there was nothing to do"
  973. * to success, since the client was just asking us to
  974. * make sure everything was done.
  975. */
  976. if (ret == -EINVAL)
  977. ret = 0;
  978. } else {
  979. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  980. }
  981. /* Maintain LRU order of "inactive" objects */
  982. if (ret == 0 && i915_gem_object_is_inactive(obj))
  983. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  984. drm_gem_object_unreference(&obj->base);
  985. unlock:
  986. mutex_unlock(&dev->struct_mutex);
  987. return ret;
  988. }
  989. /**
  990. * Called when user space has done writes to this buffer
  991. */
  992. int
  993. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  994. struct drm_file *file)
  995. {
  996. struct drm_i915_gem_sw_finish *args = data;
  997. struct drm_i915_gem_object *obj;
  998. int ret = 0;
  999. if (!(dev->driver->driver_features & DRIVER_GEM))
  1000. return -ENODEV;
  1001. ret = i915_mutex_lock_interruptible(dev);
  1002. if (ret)
  1003. return ret;
  1004. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1005. if (obj == NULL) {
  1006. ret = -ENOENT;
  1007. goto unlock;
  1008. }
  1009. /* Pinned buffers may be scanout, so flush the cache */
  1010. if (obj->pin_count)
  1011. i915_gem_object_flush_cpu_write_domain(obj);
  1012. drm_gem_object_unreference(&obj->base);
  1013. unlock:
  1014. mutex_unlock(&dev->struct_mutex);
  1015. return ret;
  1016. }
  1017. /**
  1018. * Maps the contents of an object, returning the address it is mapped
  1019. * into.
  1020. *
  1021. * While the mapping holds a reference on the contents of the object, it doesn't
  1022. * imply a ref on the object itself.
  1023. */
  1024. int
  1025. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1026. struct drm_file *file)
  1027. {
  1028. struct drm_i915_private *dev_priv = dev->dev_private;
  1029. struct drm_i915_gem_mmap *args = data;
  1030. struct drm_gem_object *obj;
  1031. loff_t offset;
  1032. unsigned long addr;
  1033. if (!(dev->driver->driver_features & DRIVER_GEM))
  1034. return -ENODEV;
  1035. obj = drm_gem_object_lookup(dev, file, args->handle);
  1036. if (obj == NULL)
  1037. return -ENOENT;
  1038. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1039. drm_gem_object_unreference_unlocked(obj);
  1040. return -E2BIG;
  1041. }
  1042. offset = args->offset;
  1043. down_write(&current->mm->mmap_sem);
  1044. addr = do_mmap(obj->filp, 0, args->size,
  1045. PROT_READ | PROT_WRITE, MAP_SHARED,
  1046. args->offset);
  1047. up_write(&current->mm->mmap_sem);
  1048. drm_gem_object_unreference_unlocked(obj);
  1049. if (IS_ERR((void *)addr))
  1050. return addr;
  1051. args->addr_ptr = (uint64_t) addr;
  1052. return 0;
  1053. }
  1054. /**
  1055. * i915_gem_fault - fault a page into the GTT
  1056. * vma: VMA in question
  1057. * vmf: fault info
  1058. *
  1059. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1060. * from userspace. The fault handler takes care of binding the object to
  1061. * the GTT (if needed), allocating and programming a fence register (again,
  1062. * only if needed based on whether the old reg is still valid or the object
  1063. * is tiled) and inserting a new PTE into the faulting process.
  1064. *
  1065. * Note that the faulting process may involve evicting existing objects
  1066. * from the GTT and/or fence registers to make room. So performance may
  1067. * suffer if the GTT working set is large or there are few fence registers
  1068. * left.
  1069. */
  1070. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1071. {
  1072. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1073. struct drm_device *dev = obj->base.dev;
  1074. drm_i915_private_t *dev_priv = dev->dev_private;
  1075. pgoff_t page_offset;
  1076. unsigned long pfn;
  1077. int ret = 0;
  1078. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1079. /* We don't use vmf->pgoff since that has the fake offset */
  1080. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1081. PAGE_SHIFT;
  1082. /* Now bind it into the GTT if needed */
  1083. mutex_lock(&dev->struct_mutex);
  1084. BUG_ON(obj->pin_count && !obj->pin_mappable);
  1085. if (obj->gtt_space) {
  1086. if (!obj->map_and_fenceable) {
  1087. ret = i915_gem_object_unbind(obj);
  1088. if (ret)
  1089. goto unlock;
  1090. }
  1091. }
  1092. if (!obj->gtt_space) {
  1093. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1094. if (ret)
  1095. goto unlock;
  1096. }
  1097. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1098. if (ret)
  1099. goto unlock;
  1100. if (!obj->fault_mappable) {
  1101. obj->fault_mappable = true;
  1102. i915_gem_info_update_mappable(dev_priv, obj, true);
  1103. }
  1104. /* Need a new fence register? */
  1105. if (obj->tiling_mode != I915_TILING_NONE) {
  1106. ret = i915_gem_object_get_fence_reg(obj, true);
  1107. if (ret)
  1108. goto unlock;
  1109. }
  1110. if (i915_gem_object_is_inactive(obj))
  1111. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1112. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1113. page_offset;
  1114. /* Finally, remap it using the new GTT offset */
  1115. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1116. unlock:
  1117. mutex_unlock(&dev->struct_mutex);
  1118. switch (ret) {
  1119. case -EAGAIN:
  1120. set_need_resched();
  1121. case 0:
  1122. case -ERESTARTSYS:
  1123. return VM_FAULT_NOPAGE;
  1124. case -ENOMEM:
  1125. return VM_FAULT_OOM;
  1126. default:
  1127. return VM_FAULT_SIGBUS;
  1128. }
  1129. }
  1130. /**
  1131. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1132. * @obj: obj in question
  1133. *
  1134. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1135. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1136. * up the object based on the offset and sets up the various memory mapping
  1137. * structures.
  1138. *
  1139. * This routine allocates and attaches a fake offset for @obj.
  1140. */
  1141. static int
  1142. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1143. {
  1144. struct drm_device *dev = obj->base.dev;
  1145. struct drm_gem_mm *mm = dev->mm_private;
  1146. struct drm_map_list *list;
  1147. struct drm_local_map *map;
  1148. int ret = 0;
  1149. /* Set the object up for mmap'ing */
  1150. list = &obj->base.map_list;
  1151. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1152. if (!list->map)
  1153. return -ENOMEM;
  1154. map = list->map;
  1155. map->type = _DRM_GEM;
  1156. map->size = obj->base.size;
  1157. map->handle = obj;
  1158. /* Get a DRM GEM mmap offset allocated... */
  1159. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1160. obj->base.size / PAGE_SIZE,
  1161. 0, 0);
  1162. if (!list->file_offset_node) {
  1163. DRM_ERROR("failed to allocate offset for bo %d\n",
  1164. obj->base.name);
  1165. ret = -ENOSPC;
  1166. goto out_free_list;
  1167. }
  1168. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1169. obj->base.size / PAGE_SIZE,
  1170. 0);
  1171. if (!list->file_offset_node) {
  1172. ret = -ENOMEM;
  1173. goto out_free_list;
  1174. }
  1175. list->hash.key = list->file_offset_node->start;
  1176. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1177. if (ret) {
  1178. DRM_ERROR("failed to add to map hash\n");
  1179. goto out_free_mm;
  1180. }
  1181. return 0;
  1182. out_free_mm:
  1183. drm_mm_put_block(list->file_offset_node);
  1184. out_free_list:
  1185. kfree(list->map);
  1186. list->map = NULL;
  1187. return ret;
  1188. }
  1189. /**
  1190. * i915_gem_release_mmap - remove physical page mappings
  1191. * @obj: obj in question
  1192. *
  1193. * Preserve the reservation of the mmapping with the DRM core code, but
  1194. * relinquish ownership of the pages back to the system.
  1195. *
  1196. * It is vital that we remove the page mapping if we have mapped a tiled
  1197. * object through the GTT and then lose the fence register due to
  1198. * resource pressure. Similarly if the object has been moved out of the
  1199. * aperture, than pages mapped into userspace must be revoked. Removing the
  1200. * mapping will then trigger a page fault on the next user access, allowing
  1201. * fixup by i915_gem_fault().
  1202. */
  1203. void
  1204. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1205. {
  1206. struct drm_device *dev = obj->base.dev;
  1207. struct drm_i915_private *dev_priv = dev->dev_private;
  1208. if (unlikely(obj->base.map_list.map && dev->dev_mapping))
  1209. unmap_mapping_range(dev->dev_mapping,
  1210. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1211. obj->base.size, 1);
  1212. if (obj->fault_mappable) {
  1213. obj->fault_mappable = false;
  1214. i915_gem_info_update_mappable(dev_priv, obj, false);
  1215. }
  1216. }
  1217. static void
  1218. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1219. {
  1220. struct drm_device *dev = obj->base.dev;
  1221. struct drm_gem_mm *mm = dev->mm_private;
  1222. struct drm_map_list *list = &obj->base.map_list;
  1223. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1224. drm_mm_put_block(list->file_offset_node);
  1225. kfree(list->map);
  1226. list->map = NULL;
  1227. }
  1228. static uint32_t
  1229. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1230. {
  1231. struct drm_device *dev = obj->base.dev;
  1232. uint32_t size;
  1233. if (INTEL_INFO(dev)->gen >= 4 ||
  1234. obj->tiling_mode == I915_TILING_NONE)
  1235. return obj->base.size;
  1236. /* Previous chips need a power-of-two fence region when tiling */
  1237. if (INTEL_INFO(dev)->gen == 3)
  1238. size = 1024*1024;
  1239. else
  1240. size = 512*1024;
  1241. while (size < obj->base.size)
  1242. size <<= 1;
  1243. return size;
  1244. }
  1245. /**
  1246. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1247. * @obj: object to check
  1248. *
  1249. * Return the required GTT alignment for an object, taking into account
  1250. * potential fence register mapping.
  1251. */
  1252. static uint32_t
  1253. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1254. {
  1255. struct drm_device *dev = obj->base.dev;
  1256. /*
  1257. * Minimum alignment is 4k (GTT page size), but might be greater
  1258. * if a fence register is needed for the object.
  1259. */
  1260. if (INTEL_INFO(dev)->gen >= 4 ||
  1261. obj->tiling_mode == I915_TILING_NONE)
  1262. return 4096;
  1263. /*
  1264. * Previous chips need to be aligned to the size of the smallest
  1265. * fence register that can contain the object.
  1266. */
  1267. return i915_gem_get_gtt_size(obj);
  1268. }
  1269. /**
  1270. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1271. * unfenced object
  1272. * @obj: object to check
  1273. *
  1274. * Return the required GTT alignment for an object, only taking into account
  1275. * unfenced tiled surface requirements.
  1276. */
  1277. static uint32_t
  1278. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1279. {
  1280. struct drm_device *dev = obj->base.dev;
  1281. int tile_height;
  1282. /*
  1283. * Minimum alignment is 4k (GTT page size) for sane hw.
  1284. */
  1285. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1286. obj->tiling_mode == I915_TILING_NONE)
  1287. return 4096;
  1288. /*
  1289. * Older chips need unfenced tiled buffers to be aligned to the left
  1290. * edge of an even tile row (where tile rows are counted as if the bo is
  1291. * placed in a fenced gtt region).
  1292. */
  1293. if (IS_GEN2(dev) ||
  1294. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1295. tile_height = 32;
  1296. else
  1297. tile_height = 8;
  1298. return tile_height * obj->stride * 2;
  1299. }
  1300. /**
  1301. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1302. * @dev: DRM device
  1303. * @data: GTT mapping ioctl data
  1304. * @file: GEM object info
  1305. *
  1306. * Simply returns the fake offset to userspace so it can mmap it.
  1307. * The mmap call will end up in drm_gem_mmap(), which will set things
  1308. * up so we can get faults in the handler above.
  1309. *
  1310. * The fault handler will take care of binding the object into the GTT
  1311. * (since it may have been evicted to make room for something), allocating
  1312. * a fence register, and mapping the appropriate aperture address into
  1313. * userspace.
  1314. */
  1315. int
  1316. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1317. struct drm_file *file)
  1318. {
  1319. struct drm_i915_private *dev_priv = dev->dev_private;
  1320. struct drm_i915_gem_mmap_gtt *args = data;
  1321. struct drm_i915_gem_object *obj;
  1322. int ret;
  1323. if (!(dev->driver->driver_features & DRIVER_GEM))
  1324. return -ENODEV;
  1325. ret = i915_mutex_lock_interruptible(dev);
  1326. if (ret)
  1327. return ret;
  1328. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1329. if (obj == NULL) {
  1330. ret = -ENOENT;
  1331. goto unlock;
  1332. }
  1333. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1334. ret = -E2BIG;
  1335. goto unlock;
  1336. }
  1337. if (obj->madv != I915_MADV_WILLNEED) {
  1338. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1339. ret = -EINVAL;
  1340. goto out;
  1341. }
  1342. if (!obj->base.map_list.map) {
  1343. ret = i915_gem_create_mmap_offset(obj);
  1344. if (ret)
  1345. goto out;
  1346. }
  1347. args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1348. out:
  1349. drm_gem_object_unreference(&obj->base);
  1350. unlock:
  1351. mutex_unlock(&dev->struct_mutex);
  1352. return ret;
  1353. }
  1354. static int
  1355. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1356. gfp_t gfpmask)
  1357. {
  1358. int page_count, i;
  1359. struct address_space *mapping;
  1360. struct inode *inode;
  1361. struct page *page;
  1362. /* Get the list of pages out of our struct file. They'll be pinned
  1363. * at this point until we release them.
  1364. */
  1365. page_count = obj->base.size / PAGE_SIZE;
  1366. BUG_ON(obj->pages != NULL);
  1367. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1368. if (obj->pages == NULL)
  1369. return -ENOMEM;
  1370. inode = obj->base.filp->f_path.dentry->d_inode;
  1371. mapping = inode->i_mapping;
  1372. for (i = 0; i < page_count; i++) {
  1373. page = read_cache_page_gfp(mapping, i,
  1374. GFP_HIGHUSER |
  1375. __GFP_COLD |
  1376. __GFP_RECLAIMABLE |
  1377. gfpmask);
  1378. if (IS_ERR(page))
  1379. goto err_pages;
  1380. obj->pages[i] = page;
  1381. }
  1382. if (obj->tiling_mode != I915_TILING_NONE)
  1383. i915_gem_object_do_bit_17_swizzle(obj);
  1384. return 0;
  1385. err_pages:
  1386. while (i--)
  1387. page_cache_release(obj->pages[i]);
  1388. drm_free_large(obj->pages);
  1389. obj->pages = NULL;
  1390. return PTR_ERR(page);
  1391. }
  1392. static void
  1393. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1394. {
  1395. int page_count = obj->base.size / PAGE_SIZE;
  1396. int i;
  1397. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1398. if (obj->tiling_mode != I915_TILING_NONE)
  1399. i915_gem_object_save_bit_17_swizzle(obj);
  1400. if (obj->madv == I915_MADV_DONTNEED)
  1401. obj->dirty = 0;
  1402. for (i = 0; i < page_count; i++) {
  1403. if (obj->dirty)
  1404. set_page_dirty(obj->pages[i]);
  1405. if (obj->madv == I915_MADV_WILLNEED)
  1406. mark_page_accessed(obj->pages[i]);
  1407. page_cache_release(obj->pages[i]);
  1408. }
  1409. obj->dirty = 0;
  1410. drm_free_large(obj->pages);
  1411. obj->pages = NULL;
  1412. }
  1413. static uint32_t
  1414. i915_gem_next_request_seqno(struct drm_device *dev,
  1415. struct intel_ring_buffer *ring)
  1416. {
  1417. drm_i915_private_t *dev_priv = dev->dev_private;
  1418. return ring->outstanding_lazy_request = dev_priv->next_seqno;
  1419. }
  1420. static void
  1421. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1422. struct intel_ring_buffer *ring)
  1423. {
  1424. struct drm_device *dev = obj->base.dev;
  1425. struct drm_i915_private *dev_priv = dev->dev_private;
  1426. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1427. BUG_ON(ring == NULL);
  1428. obj->ring = ring;
  1429. /* Add a reference if we're newly entering the active list. */
  1430. if (!obj->active) {
  1431. drm_gem_object_reference(&obj->base);
  1432. obj->active = 1;
  1433. }
  1434. /* Move from whatever list we were on to the tail of execution. */
  1435. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1436. list_move_tail(&obj->ring_list, &ring->active_list);
  1437. obj->last_rendering_seqno = seqno;
  1438. }
  1439. static void
  1440. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1441. {
  1442. struct drm_device *dev = obj->base.dev;
  1443. drm_i915_private_t *dev_priv = dev->dev_private;
  1444. BUG_ON(!obj->active);
  1445. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1446. list_del_init(&obj->ring_list);
  1447. obj->last_rendering_seqno = 0;
  1448. }
  1449. /* Immediately discard the backing storage */
  1450. static void
  1451. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1452. {
  1453. struct inode *inode;
  1454. /* Our goal here is to return as much of the memory as
  1455. * is possible back to the system as we are called from OOM.
  1456. * To do this we must instruct the shmfs to drop all of its
  1457. * backing pages, *now*. Here we mirror the actions taken
  1458. * when by shmem_delete_inode() to release the backing store.
  1459. */
  1460. inode = obj->base.filp->f_path.dentry->d_inode;
  1461. truncate_inode_pages(inode->i_mapping, 0);
  1462. if (inode->i_op->truncate_range)
  1463. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1464. obj->madv = __I915_MADV_PURGED;
  1465. }
  1466. static inline int
  1467. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1468. {
  1469. return obj->madv == I915_MADV_DONTNEED;
  1470. }
  1471. static void
  1472. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1473. {
  1474. struct drm_device *dev = obj->base.dev;
  1475. drm_i915_private_t *dev_priv = dev->dev_private;
  1476. if (obj->pin_count != 0)
  1477. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1478. else
  1479. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1480. list_del_init(&obj->ring_list);
  1481. BUG_ON(!list_empty(&obj->gpu_write_list));
  1482. obj->last_rendering_seqno = 0;
  1483. obj->ring = NULL;
  1484. if (obj->active) {
  1485. obj->active = 0;
  1486. drm_gem_object_unreference(&obj->base);
  1487. }
  1488. WARN_ON(i915_verify_lists(dev));
  1489. }
  1490. static void
  1491. i915_gem_process_flushing_list(struct drm_device *dev,
  1492. uint32_t flush_domains,
  1493. struct intel_ring_buffer *ring)
  1494. {
  1495. drm_i915_private_t *dev_priv = dev->dev_private;
  1496. struct drm_i915_gem_object *obj, *next;
  1497. list_for_each_entry_safe(obj, next,
  1498. &ring->gpu_write_list,
  1499. gpu_write_list) {
  1500. if (obj->base.write_domain & flush_domains) {
  1501. uint32_t old_write_domain = obj->base.write_domain;
  1502. obj->base.write_domain = 0;
  1503. list_del_init(&obj->gpu_write_list);
  1504. i915_gem_object_move_to_active(obj, ring);
  1505. /* update the fence lru list */
  1506. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1507. struct drm_i915_fence_reg *reg =
  1508. &dev_priv->fence_regs[obj->fence_reg];
  1509. list_move_tail(&reg->lru_list,
  1510. &dev_priv->mm.fence_list);
  1511. }
  1512. trace_i915_gem_object_change_domain(obj,
  1513. obj->base.read_domains,
  1514. old_write_domain);
  1515. }
  1516. }
  1517. }
  1518. int
  1519. i915_add_request(struct drm_device *dev,
  1520. struct drm_file *file,
  1521. struct drm_i915_gem_request *request,
  1522. struct intel_ring_buffer *ring)
  1523. {
  1524. drm_i915_private_t *dev_priv = dev->dev_private;
  1525. struct drm_i915_file_private *file_priv = NULL;
  1526. uint32_t seqno;
  1527. int was_empty;
  1528. int ret;
  1529. BUG_ON(request == NULL);
  1530. if (file != NULL)
  1531. file_priv = file->driver_priv;
  1532. ret = ring->add_request(ring, &seqno);
  1533. if (ret)
  1534. return ret;
  1535. ring->outstanding_lazy_request = false;
  1536. request->seqno = seqno;
  1537. request->ring = ring;
  1538. request->emitted_jiffies = jiffies;
  1539. was_empty = list_empty(&ring->request_list);
  1540. list_add_tail(&request->list, &ring->request_list);
  1541. if (file_priv) {
  1542. spin_lock(&file_priv->mm.lock);
  1543. request->file_priv = file_priv;
  1544. list_add_tail(&request->client_list,
  1545. &file_priv->mm.request_list);
  1546. spin_unlock(&file_priv->mm.lock);
  1547. }
  1548. if (!dev_priv->mm.suspended) {
  1549. mod_timer(&dev_priv->hangcheck_timer,
  1550. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1551. if (was_empty)
  1552. queue_delayed_work(dev_priv->wq,
  1553. &dev_priv->mm.retire_work, HZ);
  1554. }
  1555. return 0;
  1556. }
  1557. /**
  1558. * Command execution barrier
  1559. *
  1560. * Ensures that all commands in the ring are finished
  1561. * before signalling the CPU
  1562. */
  1563. static void
  1564. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1565. {
  1566. uint32_t flush_domains = 0;
  1567. /* The sampler always gets flushed on i965 (sigh) */
  1568. if (INTEL_INFO(dev)->gen >= 4)
  1569. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1570. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1571. }
  1572. static inline void
  1573. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1574. {
  1575. struct drm_i915_file_private *file_priv = request->file_priv;
  1576. if (!file_priv)
  1577. return;
  1578. spin_lock(&file_priv->mm.lock);
  1579. list_del(&request->client_list);
  1580. request->file_priv = NULL;
  1581. spin_unlock(&file_priv->mm.lock);
  1582. }
  1583. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1584. struct intel_ring_buffer *ring)
  1585. {
  1586. while (!list_empty(&ring->request_list)) {
  1587. struct drm_i915_gem_request *request;
  1588. request = list_first_entry(&ring->request_list,
  1589. struct drm_i915_gem_request,
  1590. list);
  1591. list_del(&request->list);
  1592. i915_gem_request_remove_from_client(request);
  1593. kfree(request);
  1594. }
  1595. while (!list_empty(&ring->active_list)) {
  1596. struct drm_i915_gem_object *obj;
  1597. obj = list_first_entry(&ring->active_list,
  1598. struct drm_i915_gem_object,
  1599. ring_list);
  1600. obj->base.write_domain = 0;
  1601. list_del_init(&obj->gpu_write_list);
  1602. i915_gem_object_move_to_inactive(obj);
  1603. }
  1604. }
  1605. void i915_gem_reset(struct drm_device *dev)
  1606. {
  1607. struct drm_i915_private *dev_priv = dev->dev_private;
  1608. struct drm_i915_gem_object *obj;
  1609. int i;
  1610. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1611. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1612. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1613. /* Remove anything from the flushing lists. The GPU cache is likely
  1614. * to be lost on reset along with the data, so simply move the
  1615. * lost bo to the inactive list.
  1616. */
  1617. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1618. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1619. struct drm_i915_gem_object,
  1620. mm_list);
  1621. obj->base.write_domain = 0;
  1622. list_del_init(&obj->gpu_write_list);
  1623. i915_gem_object_move_to_inactive(obj);
  1624. }
  1625. /* Move everything out of the GPU domains to ensure we do any
  1626. * necessary invalidation upon reuse.
  1627. */
  1628. list_for_each_entry(obj,
  1629. &dev_priv->mm.inactive_list,
  1630. mm_list)
  1631. {
  1632. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1633. }
  1634. /* The fence registers are invalidated so clear them out */
  1635. for (i = 0; i < 16; i++) {
  1636. struct drm_i915_fence_reg *reg;
  1637. reg = &dev_priv->fence_regs[i];
  1638. if (!reg->obj)
  1639. continue;
  1640. i915_gem_clear_fence_reg(reg->obj);
  1641. }
  1642. }
  1643. /**
  1644. * This function clears the request list as sequence numbers are passed.
  1645. */
  1646. static void
  1647. i915_gem_retire_requests_ring(struct drm_device *dev,
  1648. struct intel_ring_buffer *ring)
  1649. {
  1650. drm_i915_private_t *dev_priv = dev->dev_private;
  1651. uint32_t seqno;
  1652. if (!ring->status_page.page_addr ||
  1653. list_empty(&ring->request_list))
  1654. return;
  1655. WARN_ON(i915_verify_lists(dev));
  1656. seqno = ring->get_seqno(ring);
  1657. while (!list_empty(&ring->request_list)) {
  1658. struct drm_i915_gem_request *request;
  1659. request = list_first_entry(&ring->request_list,
  1660. struct drm_i915_gem_request,
  1661. list);
  1662. if (!i915_seqno_passed(seqno, request->seqno))
  1663. break;
  1664. trace_i915_gem_request_retire(dev, request->seqno);
  1665. list_del(&request->list);
  1666. i915_gem_request_remove_from_client(request);
  1667. kfree(request);
  1668. }
  1669. /* Move any buffers on the active list that are no longer referenced
  1670. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1671. */
  1672. while (!list_empty(&ring->active_list)) {
  1673. struct drm_i915_gem_object *obj;
  1674. obj= list_first_entry(&ring->active_list,
  1675. struct drm_i915_gem_object,
  1676. ring_list);
  1677. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1678. break;
  1679. if (obj->base.write_domain != 0)
  1680. i915_gem_object_move_to_flushing(obj);
  1681. else
  1682. i915_gem_object_move_to_inactive(obj);
  1683. }
  1684. if (unlikely (dev_priv->trace_irq_seqno &&
  1685. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1686. ring->user_irq_put(ring);
  1687. dev_priv->trace_irq_seqno = 0;
  1688. }
  1689. WARN_ON(i915_verify_lists(dev));
  1690. }
  1691. void
  1692. i915_gem_retire_requests(struct drm_device *dev)
  1693. {
  1694. drm_i915_private_t *dev_priv = dev->dev_private;
  1695. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1696. struct drm_i915_gem_object *obj, *next;
  1697. /* We must be careful that during unbind() we do not
  1698. * accidentally infinitely recurse into retire requests.
  1699. * Currently:
  1700. * retire -> free -> unbind -> wait -> retire_ring
  1701. */
  1702. list_for_each_entry_safe(obj, next,
  1703. &dev_priv->mm.deferred_free_list,
  1704. mm_list)
  1705. i915_gem_free_object_tail(obj);
  1706. }
  1707. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1708. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1709. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1710. }
  1711. static void
  1712. i915_gem_retire_work_handler(struct work_struct *work)
  1713. {
  1714. drm_i915_private_t *dev_priv;
  1715. struct drm_device *dev;
  1716. dev_priv = container_of(work, drm_i915_private_t,
  1717. mm.retire_work.work);
  1718. dev = dev_priv->dev;
  1719. /* Come back later if the device is busy... */
  1720. if (!mutex_trylock(&dev->struct_mutex)) {
  1721. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1722. return;
  1723. }
  1724. i915_gem_retire_requests(dev);
  1725. if (!dev_priv->mm.suspended &&
  1726. (!list_empty(&dev_priv->render_ring.request_list) ||
  1727. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1728. !list_empty(&dev_priv->blt_ring.request_list)))
  1729. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1730. mutex_unlock(&dev->struct_mutex);
  1731. }
  1732. int
  1733. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1734. bool interruptible, struct intel_ring_buffer *ring)
  1735. {
  1736. drm_i915_private_t *dev_priv = dev->dev_private;
  1737. u32 ier;
  1738. int ret = 0;
  1739. BUG_ON(seqno == 0);
  1740. if (atomic_read(&dev_priv->mm.wedged))
  1741. return -EAGAIN;
  1742. if (seqno == ring->outstanding_lazy_request) {
  1743. struct drm_i915_gem_request *request;
  1744. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1745. if (request == NULL)
  1746. return -ENOMEM;
  1747. ret = i915_add_request(dev, NULL, request, ring);
  1748. if (ret) {
  1749. kfree(request);
  1750. return ret;
  1751. }
  1752. seqno = request->seqno;
  1753. }
  1754. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1755. if (HAS_PCH_SPLIT(dev))
  1756. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1757. else
  1758. ier = I915_READ(IER);
  1759. if (!ier) {
  1760. DRM_ERROR("something (likely vbetool) disabled "
  1761. "interrupts, re-enabling\n");
  1762. i915_driver_irq_preinstall(dev);
  1763. i915_driver_irq_postinstall(dev);
  1764. }
  1765. trace_i915_gem_request_wait_begin(dev, seqno);
  1766. ring->waiting_seqno = seqno;
  1767. ring->user_irq_get(ring);
  1768. if (interruptible)
  1769. ret = wait_event_interruptible(ring->irq_queue,
  1770. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1771. || atomic_read(&dev_priv->mm.wedged));
  1772. else
  1773. wait_event(ring->irq_queue,
  1774. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1775. || atomic_read(&dev_priv->mm.wedged));
  1776. ring->user_irq_put(ring);
  1777. ring->waiting_seqno = 0;
  1778. trace_i915_gem_request_wait_end(dev, seqno);
  1779. }
  1780. if (atomic_read(&dev_priv->mm.wedged))
  1781. ret = -EAGAIN;
  1782. if (ret && ret != -ERESTARTSYS)
  1783. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1784. __func__, ret, seqno, ring->get_seqno(ring),
  1785. dev_priv->next_seqno);
  1786. /* Directly dispatch request retiring. While we have the work queue
  1787. * to handle this, the waiter on a request often wants an associated
  1788. * buffer to have made it to the inactive list, and we would need
  1789. * a separate wait queue to handle that.
  1790. */
  1791. if (ret == 0)
  1792. i915_gem_retire_requests_ring(dev, ring);
  1793. return ret;
  1794. }
  1795. /**
  1796. * Waits for a sequence number to be signaled, and cleans up the
  1797. * request and object lists appropriately for that event.
  1798. */
  1799. static int
  1800. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1801. struct intel_ring_buffer *ring)
  1802. {
  1803. return i915_do_wait_request(dev, seqno, 1, ring);
  1804. }
  1805. static void
  1806. i915_gem_flush_ring(struct drm_device *dev,
  1807. struct intel_ring_buffer *ring,
  1808. uint32_t invalidate_domains,
  1809. uint32_t flush_domains)
  1810. {
  1811. ring->flush(ring, invalidate_domains, flush_domains);
  1812. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1813. }
  1814. static void
  1815. i915_gem_flush(struct drm_device *dev,
  1816. uint32_t invalidate_domains,
  1817. uint32_t flush_domains,
  1818. uint32_t flush_rings)
  1819. {
  1820. drm_i915_private_t *dev_priv = dev->dev_private;
  1821. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1822. intel_gtt_chipset_flush();
  1823. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1824. if (flush_rings & RING_RENDER)
  1825. i915_gem_flush_ring(dev, &dev_priv->render_ring,
  1826. invalidate_domains, flush_domains);
  1827. if (flush_rings & RING_BSD)
  1828. i915_gem_flush_ring(dev, &dev_priv->bsd_ring,
  1829. invalidate_domains, flush_domains);
  1830. if (flush_rings & RING_BLT)
  1831. i915_gem_flush_ring(dev, &dev_priv->blt_ring,
  1832. invalidate_domains, flush_domains);
  1833. }
  1834. }
  1835. /**
  1836. * Ensures that all rendering to the object has completed and the object is
  1837. * safe to unbind from the GTT or access from the CPU.
  1838. */
  1839. static int
  1840. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1841. bool interruptible)
  1842. {
  1843. struct drm_device *dev = obj->base.dev;
  1844. int ret;
  1845. /* This function only exists to support waiting for existing rendering,
  1846. * not for emitting required flushes.
  1847. */
  1848. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1849. /* If there is rendering queued on the buffer being evicted, wait for
  1850. * it.
  1851. */
  1852. if (obj->active) {
  1853. ret = i915_do_wait_request(dev,
  1854. obj->last_rendering_seqno,
  1855. interruptible,
  1856. obj->ring);
  1857. if (ret)
  1858. return ret;
  1859. }
  1860. return 0;
  1861. }
  1862. /**
  1863. * Unbinds an object from the GTT aperture.
  1864. */
  1865. int
  1866. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1867. {
  1868. struct drm_device *dev = obj->base.dev;
  1869. struct drm_i915_private *dev_priv = dev->dev_private;
  1870. int ret = 0;
  1871. if (obj->gtt_space == NULL)
  1872. return 0;
  1873. if (obj->pin_count != 0) {
  1874. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1875. return -EINVAL;
  1876. }
  1877. /* blow away mappings if mapped through GTT */
  1878. i915_gem_release_mmap(obj);
  1879. /* Move the object to the CPU domain to ensure that
  1880. * any possible CPU writes while it's not in the GTT
  1881. * are flushed when we go to remap it. This will
  1882. * also ensure that all pending GPU writes are finished
  1883. * before we unbind.
  1884. */
  1885. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1886. if (ret == -ERESTARTSYS)
  1887. return ret;
  1888. /* Continue on if we fail due to EIO, the GPU is hung so we
  1889. * should be safe and we need to cleanup or else we might
  1890. * cause memory corruption through use-after-free.
  1891. */
  1892. if (ret) {
  1893. i915_gem_clflush_object(obj);
  1894. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1895. }
  1896. /* release the fence reg _after_ flushing */
  1897. if (obj->fence_reg != I915_FENCE_REG_NONE)
  1898. i915_gem_clear_fence_reg(obj);
  1899. i915_gem_gtt_unbind_object(obj);
  1900. i915_gem_object_put_pages_gtt(obj);
  1901. i915_gem_info_remove_gtt(dev_priv, obj);
  1902. list_del_init(&obj->mm_list);
  1903. /* Avoid an unnecessary call to unbind on rebind. */
  1904. obj->map_and_fenceable = true;
  1905. drm_mm_put_block(obj->gtt_space);
  1906. obj->gtt_space = NULL;
  1907. obj->gtt_offset = 0;
  1908. if (i915_gem_object_is_purgeable(obj))
  1909. i915_gem_object_truncate(obj);
  1910. trace_i915_gem_object_unbind(obj);
  1911. return ret;
  1912. }
  1913. static int i915_ring_idle(struct drm_device *dev,
  1914. struct intel_ring_buffer *ring)
  1915. {
  1916. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1917. return 0;
  1918. i915_gem_flush_ring(dev, ring,
  1919. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1920. return i915_wait_request(dev,
  1921. i915_gem_next_request_seqno(dev, ring),
  1922. ring);
  1923. }
  1924. int
  1925. i915_gpu_idle(struct drm_device *dev)
  1926. {
  1927. drm_i915_private_t *dev_priv = dev->dev_private;
  1928. bool lists_empty;
  1929. int ret;
  1930. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1931. list_empty(&dev_priv->mm.active_list));
  1932. if (lists_empty)
  1933. return 0;
  1934. /* Flush everything onto the inactive list. */
  1935. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1936. if (ret)
  1937. return ret;
  1938. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1939. if (ret)
  1940. return ret;
  1941. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1942. if (ret)
  1943. return ret;
  1944. return 0;
  1945. }
  1946. static void sandybridge_write_fence_reg(struct drm_i915_gem_object *obj)
  1947. {
  1948. struct drm_device *dev = obj->base.dev;
  1949. drm_i915_private_t *dev_priv = dev->dev_private;
  1950. u32 size = obj->gtt_space->size;
  1951. int regnum = obj->fence_reg;
  1952. uint64_t val;
  1953. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1954. 0xfffff000) << 32;
  1955. val |= obj->gtt_offset & 0xfffff000;
  1956. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1957. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1958. if (obj->tiling_mode == I915_TILING_Y)
  1959. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1960. val |= I965_FENCE_REG_VALID;
  1961. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1962. }
  1963. static void i965_write_fence_reg(struct drm_i915_gem_object *obj)
  1964. {
  1965. struct drm_device *dev = obj->base.dev;
  1966. drm_i915_private_t *dev_priv = dev->dev_private;
  1967. u32 size = obj->gtt_space->size;
  1968. int regnum = obj->fence_reg;
  1969. uint64_t val;
  1970. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1971. 0xfffff000) << 32;
  1972. val |= obj->gtt_offset & 0xfffff000;
  1973. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1974. if (obj->tiling_mode == I915_TILING_Y)
  1975. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1976. val |= I965_FENCE_REG_VALID;
  1977. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1978. }
  1979. static void i915_write_fence_reg(struct drm_i915_gem_object *obj)
  1980. {
  1981. struct drm_device *dev = obj->base.dev;
  1982. drm_i915_private_t *dev_priv = dev->dev_private;
  1983. u32 size = obj->gtt_space->size;
  1984. uint32_t fence_reg, val, pitch_val;
  1985. int tile_width;
  1986. if ((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1987. (obj->gtt_offset & (size - 1))) {
  1988. WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
  1989. __func__, obj->gtt_offset, obj->map_and_fenceable, size,
  1990. obj->gtt_space->start, obj->gtt_space->size);
  1991. return;
  1992. }
  1993. if (obj->tiling_mode == I915_TILING_Y &&
  1994. HAS_128_BYTE_Y_TILING(dev))
  1995. tile_width = 128;
  1996. else
  1997. tile_width = 512;
  1998. /* Note: pitch better be a power of two tile widths */
  1999. pitch_val = obj->stride / tile_width;
  2000. pitch_val = ffs(pitch_val) - 1;
  2001. if (obj->tiling_mode == I915_TILING_Y &&
  2002. HAS_128_BYTE_Y_TILING(dev))
  2003. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2004. else
  2005. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2006. val = obj->gtt_offset;
  2007. if (obj->tiling_mode == I915_TILING_Y)
  2008. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2009. val |= I915_FENCE_SIZE_BITS(size);
  2010. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2011. val |= I830_FENCE_REG_VALID;
  2012. fence_reg = obj->fence_reg;
  2013. if (fence_reg < 8)
  2014. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2015. else
  2016. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2017. I915_WRITE(fence_reg, val);
  2018. }
  2019. static void i830_write_fence_reg(struct drm_i915_gem_object *obj)
  2020. {
  2021. struct drm_device *dev = obj->base.dev;
  2022. drm_i915_private_t *dev_priv = dev->dev_private;
  2023. u32 size = obj->gtt_space->size;
  2024. int regnum = obj->fence_reg;
  2025. uint32_t val;
  2026. uint32_t pitch_val;
  2027. uint32_t fence_size_bits;
  2028. if ((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2029. (obj->gtt_offset & (obj->base.size - 1))) {
  2030. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2031. __func__, obj->gtt_offset);
  2032. return;
  2033. }
  2034. pitch_val = obj->stride / 128;
  2035. pitch_val = ffs(pitch_val) - 1;
  2036. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2037. val = obj->gtt_offset;
  2038. if (obj->tiling_mode == I915_TILING_Y)
  2039. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2040. fence_size_bits = I830_FENCE_SIZE_BITS(size);
  2041. WARN_ON(fence_size_bits & ~0x00000f00);
  2042. val |= fence_size_bits;
  2043. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2044. val |= I830_FENCE_REG_VALID;
  2045. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2046. }
  2047. static int i915_find_fence_reg(struct drm_device *dev,
  2048. bool interruptible)
  2049. {
  2050. struct drm_i915_private *dev_priv = dev->dev_private;
  2051. struct drm_i915_fence_reg *reg;
  2052. struct drm_i915_gem_object *obj = NULL;
  2053. int i, avail, ret;
  2054. /* First try to find a free reg */
  2055. avail = 0;
  2056. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2057. reg = &dev_priv->fence_regs[i];
  2058. if (!reg->obj)
  2059. return i;
  2060. if (!reg->obj->pin_count)
  2061. avail++;
  2062. }
  2063. if (avail == 0)
  2064. return -ENOSPC;
  2065. /* None available, try to steal one or wait for a user to finish */
  2066. avail = I915_FENCE_REG_NONE;
  2067. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2068. lru_list) {
  2069. obj = reg->obj;
  2070. if (obj->pin_count)
  2071. continue;
  2072. /* found one! */
  2073. avail = obj->fence_reg;
  2074. break;
  2075. }
  2076. BUG_ON(avail == I915_FENCE_REG_NONE);
  2077. /* We only have a reference on obj from the active list. put_fence_reg
  2078. * might drop that one, causing a use-after-free in it. So hold a
  2079. * private reference to obj like the other callers of put_fence_reg
  2080. * (set_tiling ioctl) do. */
  2081. drm_gem_object_reference(&obj->base);
  2082. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2083. drm_gem_object_unreference(&obj->base);
  2084. if (ret != 0)
  2085. return ret;
  2086. return avail;
  2087. }
  2088. /**
  2089. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2090. * @obj: object to map through a fence reg
  2091. *
  2092. * When mapping objects through the GTT, userspace wants to be able to write
  2093. * to them without having to worry about swizzling if the object is tiled.
  2094. *
  2095. * This function walks the fence regs looking for a free one for @obj,
  2096. * stealing one if it can't find any.
  2097. *
  2098. * It then sets up the reg based on the object's properties: address, pitch
  2099. * and tiling format.
  2100. */
  2101. int
  2102. i915_gem_object_get_fence_reg(struct drm_i915_gem_object *obj,
  2103. bool interruptible)
  2104. {
  2105. struct drm_device *dev = obj->base.dev;
  2106. struct drm_i915_private *dev_priv = dev->dev_private;
  2107. struct drm_i915_fence_reg *reg = NULL;
  2108. int ret;
  2109. /* Just update our place in the LRU if our fence is getting used. */
  2110. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2111. reg = &dev_priv->fence_regs[obj->fence_reg];
  2112. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2113. return 0;
  2114. }
  2115. switch (obj->tiling_mode) {
  2116. case I915_TILING_NONE:
  2117. WARN(1, "allocating a fence for non-tiled object?\n");
  2118. break;
  2119. case I915_TILING_X:
  2120. if (!obj->stride)
  2121. return -EINVAL;
  2122. WARN((obj->stride & (512 - 1)),
  2123. "object 0x%08x is X tiled but has non-512B pitch\n",
  2124. obj->gtt_offset);
  2125. break;
  2126. case I915_TILING_Y:
  2127. if (!obj->stride)
  2128. return -EINVAL;
  2129. WARN((obj->stride & (128 - 1)),
  2130. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2131. obj->gtt_offset);
  2132. break;
  2133. }
  2134. ret = i915_find_fence_reg(dev, interruptible);
  2135. if (ret < 0)
  2136. return ret;
  2137. obj->fence_reg = ret;
  2138. reg = &dev_priv->fence_regs[obj->fence_reg];
  2139. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2140. reg->obj = obj;
  2141. switch (INTEL_INFO(dev)->gen) {
  2142. case 6:
  2143. sandybridge_write_fence_reg(obj);
  2144. break;
  2145. case 5:
  2146. case 4:
  2147. i965_write_fence_reg(obj);
  2148. break;
  2149. case 3:
  2150. i915_write_fence_reg(obj);
  2151. break;
  2152. case 2:
  2153. i830_write_fence_reg(obj);
  2154. break;
  2155. }
  2156. trace_i915_gem_object_get_fence(obj,
  2157. obj->fence_reg,
  2158. obj->tiling_mode);
  2159. return 0;
  2160. }
  2161. /**
  2162. * i915_gem_clear_fence_reg - clear out fence register info
  2163. * @obj: object to clear
  2164. *
  2165. * Zeroes out the fence register itself and clears out the associated
  2166. * data structures in dev_priv and obj.
  2167. */
  2168. static void
  2169. i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj)
  2170. {
  2171. struct drm_device *dev = obj->base.dev;
  2172. drm_i915_private_t *dev_priv = dev->dev_private;
  2173. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg];
  2174. uint32_t fence_reg;
  2175. switch (INTEL_INFO(dev)->gen) {
  2176. case 6:
  2177. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2178. (obj->fence_reg * 8), 0);
  2179. break;
  2180. case 5:
  2181. case 4:
  2182. I915_WRITE64(FENCE_REG_965_0 + (obj->fence_reg * 8), 0);
  2183. break;
  2184. case 3:
  2185. if (obj->fence_reg >= 8)
  2186. fence_reg = FENCE_REG_945_8 + (obj->fence_reg - 8) * 4;
  2187. else
  2188. case 2:
  2189. fence_reg = FENCE_REG_830_0 + obj->fence_reg * 4;
  2190. I915_WRITE(fence_reg, 0);
  2191. break;
  2192. }
  2193. reg->obj = NULL;
  2194. obj->fence_reg = I915_FENCE_REG_NONE;
  2195. list_del_init(&reg->lru_list);
  2196. }
  2197. /**
  2198. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2199. * to the buffer to finish, and then resets the fence register.
  2200. * @obj: tiled object holding a fence register.
  2201. * @bool: whether the wait upon the fence is interruptible
  2202. *
  2203. * Zeroes out the fence register itself and clears out the associated
  2204. * data structures in dev_priv and obj.
  2205. */
  2206. int
  2207. i915_gem_object_put_fence_reg(struct drm_i915_gem_object *obj,
  2208. bool interruptible)
  2209. {
  2210. struct drm_device *dev = obj->base.dev;
  2211. struct drm_i915_private *dev_priv = dev->dev_private;
  2212. struct drm_i915_fence_reg *reg;
  2213. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2214. return 0;
  2215. /* If we've changed tiling, GTT-mappings of the object
  2216. * need to re-fault to ensure that the correct fence register
  2217. * setup is in place.
  2218. */
  2219. i915_gem_release_mmap(obj);
  2220. /* On the i915, GPU access to tiled buffers is via a fence,
  2221. * therefore we must wait for any outstanding access to complete
  2222. * before clearing the fence.
  2223. */
  2224. reg = &dev_priv->fence_regs[obj->fence_reg];
  2225. if (reg->gpu) {
  2226. int ret;
  2227. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2228. if (ret)
  2229. return ret;
  2230. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2231. if (ret)
  2232. return ret;
  2233. reg->gpu = false;
  2234. }
  2235. i915_gem_object_flush_gtt_write_domain(obj);
  2236. i915_gem_clear_fence_reg(obj);
  2237. return 0;
  2238. }
  2239. /**
  2240. * Finds free space in the GTT aperture and binds the object there.
  2241. */
  2242. static int
  2243. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2244. unsigned alignment,
  2245. bool map_and_fenceable)
  2246. {
  2247. struct drm_device *dev = obj->base.dev;
  2248. drm_i915_private_t *dev_priv = dev->dev_private;
  2249. struct drm_mm_node *free_space;
  2250. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2251. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2252. bool mappable, fenceable;
  2253. int ret;
  2254. if (obj->madv != I915_MADV_WILLNEED) {
  2255. DRM_ERROR("Attempting to bind a purgeable object\n");
  2256. return -EINVAL;
  2257. }
  2258. fence_size = i915_gem_get_gtt_size(obj);
  2259. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2260. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2261. if (alignment == 0)
  2262. alignment = map_and_fenceable ? fence_alignment :
  2263. unfenced_alignment;
  2264. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2265. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2266. return -EINVAL;
  2267. }
  2268. size = map_and_fenceable ? fence_size : obj->base.size;
  2269. /* If the object is bigger than the entire aperture, reject it early
  2270. * before evicting everything in a vain attempt to find space.
  2271. */
  2272. if (obj->base.size >
  2273. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2274. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2275. return -E2BIG;
  2276. }
  2277. search_free:
  2278. if (map_and_fenceable)
  2279. free_space =
  2280. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2281. size, alignment, 0,
  2282. dev_priv->mm.gtt_mappable_end,
  2283. 0);
  2284. else
  2285. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2286. size, alignment, 0);
  2287. if (free_space != NULL) {
  2288. if (map_and_fenceable)
  2289. obj->gtt_space =
  2290. drm_mm_get_block_range_generic(free_space,
  2291. size, alignment, 0,
  2292. dev_priv->mm.gtt_mappable_end,
  2293. 0);
  2294. else
  2295. obj->gtt_space =
  2296. drm_mm_get_block(free_space, size, alignment);
  2297. }
  2298. if (obj->gtt_space == NULL) {
  2299. /* If the gtt is empty and we're still having trouble
  2300. * fitting our object in, we're out of memory.
  2301. */
  2302. ret = i915_gem_evict_something(dev, size, alignment,
  2303. map_and_fenceable);
  2304. if (ret)
  2305. return ret;
  2306. goto search_free;
  2307. }
  2308. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2309. if (ret) {
  2310. drm_mm_put_block(obj->gtt_space);
  2311. obj->gtt_space = NULL;
  2312. if (ret == -ENOMEM) {
  2313. /* first try to clear up some space from the GTT */
  2314. ret = i915_gem_evict_something(dev, size,
  2315. alignment,
  2316. map_and_fenceable);
  2317. if (ret) {
  2318. /* now try to shrink everyone else */
  2319. if (gfpmask) {
  2320. gfpmask = 0;
  2321. goto search_free;
  2322. }
  2323. return ret;
  2324. }
  2325. goto search_free;
  2326. }
  2327. return ret;
  2328. }
  2329. ret = i915_gem_gtt_bind_object(obj);
  2330. if (ret) {
  2331. i915_gem_object_put_pages_gtt(obj);
  2332. drm_mm_put_block(obj->gtt_space);
  2333. obj->gtt_space = NULL;
  2334. ret = i915_gem_evict_something(dev, size,
  2335. alignment, map_and_fenceable);
  2336. if (ret)
  2337. return ret;
  2338. goto search_free;
  2339. }
  2340. obj->gtt_offset = obj->gtt_space->start;
  2341. /* keep track of bounds object by adding it to the inactive list */
  2342. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2343. i915_gem_info_add_gtt(dev_priv, obj);
  2344. /* Assert that the object is not currently in any GPU domain. As it
  2345. * wasn't in the GTT, there shouldn't be any way it could have been in
  2346. * a GPU cache
  2347. */
  2348. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2349. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2350. trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
  2351. fenceable =
  2352. obj->gtt_space->size == fence_size &&
  2353. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2354. mappable =
  2355. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2356. obj->map_and_fenceable = mappable && fenceable;
  2357. return 0;
  2358. }
  2359. void
  2360. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2361. {
  2362. /* If we don't have a page list set up, then we're not pinned
  2363. * to GPU, and we can ignore the cache flush because it'll happen
  2364. * again at bind time.
  2365. */
  2366. if (obj->pages == NULL)
  2367. return;
  2368. trace_i915_gem_object_clflush(obj);
  2369. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2370. }
  2371. /** Flushes any GPU write domain for the object if it's dirty. */
  2372. static int
  2373. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
  2374. bool pipelined)
  2375. {
  2376. struct drm_device *dev = obj->base.dev;
  2377. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2378. return 0;
  2379. /* Queue the GPU write cache flushing we need. */
  2380. i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
  2381. BUG_ON(obj->base.write_domain);
  2382. if (pipelined)
  2383. return 0;
  2384. return i915_gem_object_wait_rendering(obj, true);
  2385. }
  2386. /** Flushes the GTT write domain for the object if it's dirty. */
  2387. static void
  2388. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2389. {
  2390. uint32_t old_write_domain;
  2391. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2392. return;
  2393. /* No actual flushing is required for the GTT write domain. Writes
  2394. * to it immediately go to main memory as far as we know, so there's
  2395. * no chipset flush. It also doesn't land in render cache.
  2396. */
  2397. i915_gem_release_mmap(obj);
  2398. old_write_domain = obj->base.write_domain;
  2399. obj->base.write_domain = 0;
  2400. trace_i915_gem_object_change_domain(obj,
  2401. obj->base.read_domains,
  2402. old_write_domain);
  2403. }
  2404. /** Flushes the CPU write domain for the object if it's dirty. */
  2405. static void
  2406. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2407. {
  2408. uint32_t old_write_domain;
  2409. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2410. return;
  2411. i915_gem_clflush_object(obj);
  2412. intel_gtt_chipset_flush();
  2413. old_write_domain = obj->base.write_domain;
  2414. obj->base.write_domain = 0;
  2415. trace_i915_gem_object_change_domain(obj,
  2416. obj->base.read_domains,
  2417. old_write_domain);
  2418. }
  2419. /**
  2420. * Moves a single object to the GTT read, and possibly write domain.
  2421. *
  2422. * This function returns when the move is complete, including waiting on
  2423. * flushes to occur.
  2424. */
  2425. int
  2426. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, int write)
  2427. {
  2428. uint32_t old_write_domain, old_read_domains;
  2429. int ret;
  2430. /* Not valid to be called on unbound objects. */
  2431. if (obj->gtt_space == NULL)
  2432. return -EINVAL;
  2433. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2434. if (ret != 0)
  2435. return ret;
  2436. i915_gem_object_flush_cpu_write_domain(obj);
  2437. if (write) {
  2438. ret = i915_gem_object_wait_rendering(obj, true);
  2439. if (ret)
  2440. return ret;
  2441. }
  2442. old_write_domain = obj->base.write_domain;
  2443. old_read_domains = obj->base.read_domains;
  2444. /* It should now be out of any other write domains, and we can update
  2445. * the domain values for our changes.
  2446. */
  2447. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2448. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2449. if (write) {
  2450. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2451. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2452. obj->dirty = 1;
  2453. }
  2454. trace_i915_gem_object_change_domain(obj,
  2455. old_read_domains,
  2456. old_write_domain);
  2457. return 0;
  2458. }
  2459. /*
  2460. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2461. * wait, as in modesetting process we're not supposed to be interrupted.
  2462. */
  2463. int
  2464. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2465. bool pipelined)
  2466. {
  2467. uint32_t old_read_domains;
  2468. int ret;
  2469. /* Not valid to be called on unbound objects. */
  2470. if (obj->gtt_space == NULL)
  2471. return -EINVAL;
  2472. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2473. if (ret)
  2474. return ret;
  2475. /* Currently, we are always called from an non-interruptible context. */
  2476. if (!pipelined) {
  2477. ret = i915_gem_object_wait_rendering(obj, false);
  2478. if (ret)
  2479. return ret;
  2480. }
  2481. i915_gem_object_flush_cpu_write_domain(obj);
  2482. old_read_domains = obj->base.read_domains;
  2483. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2484. trace_i915_gem_object_change_domain(obj,
  2485. old_read_domains,
  2486. obj->base.write_domain);
  2487. return 0;
  2488. }
  2489. int
  2490. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2491. bool interruptible)
  2492. {
  2493. if (!obj->active)
  2494. return 0;
  2495. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2496. i915_gem_flush_ring(obj->base.dev, obj->ring,
  2497. 0, obj->base.write_domain);
  2498. return i915_gem_object_wait_rendering(obj, interruptible);
  2499. }
  2500. /**
  2501. * Moves a single object to the CPU read, and possibly write domain.
  2502. *
  2503. * This function returns when the move is complete, including waiting on
  2504. * flushes to occur.
  2505. */
  2506. static int
  2507. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, int write)
  2508. {
  2509. uint32_t old_write_domain, old_read_domains;
  2510. int ret;
  2511. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2512. if (ret != 0)
  2513. return ret;
  2514. i915_gem_object_flush_gtt_write_domain(obj);
  2515. /* If we have a partially-valid cache of the object in the CPU,
  2516. * finish invalidating it and free the per-page flags.
  2517. */
  2518. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2519. if (write) {
  2520. ret = i915_gem_object_wait_rendering(obj, true);
  2521. if (ret)
  2522. return ret;
  2523. }
  2524. old_write_domain = obj->base.write_domain;
  2525. old_read_domains = obj->base.read_domains;
  2526. /* Flush the CPU cache if it's still invalid. */
  2527. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2528. i915_gem_clflush_object(obj);
  2529. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2530. }
  2531. /* It should now be out of any other write domains, and we can update
  2532. * the domain values for our changes.
  2533. */
  2534. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2535. /* If we're writing through the CPU, then the GPU read domains will
  2536. * need to be invalidated at next use.
  2537. */
  2538. if (write) {
  2539. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2540. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2541. }
  2542. trace_i915_gem_object_change_domain(obj,
  2543. old_read_domains,
  2544. old_write_domain);
  2545. return 0;
  2546. }
  2547. /*
  2548. * Set the next domain for the specified object. This
  2549. * may not actually perform the necessary flushing/invaliding though,
  2550. * as that may want to be batched with other set_domain operations
  2551. *
  2552. * This is (we hope) the only really tricky part of gem. The goal
  2553. * is fairly simple -- track which caches hold bits of the object
  2554. * and make sure they remain coherent. A few concrete examples may
  2555. * help to explain how it works. For shorthand, we use the notation
  2556. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2557. * a pair of read and write domain masks.
  2558. *
  2559. * Case 1: the batch buffer
  2560. *
  2561. * 1. Allocated
  2562. * 2. Written by CPU
  2563. * 3. Mapped to GTT
  2564. * 4. Read by GPU
  2565. * 5. Unmapped from GTT
  2566. * 6. Freed
  2567. *
  2568. * Let's take these a step at a time
  2569. *
  2570. * 1. Allocated
  2571. * Pages allocated from the kernel may still have
  2572. * cache contents, so we set them to (CPU, CPU) always.
  2573. * 2. Written by CPU (using pwrite)
  2574. * The pwrite function calls set_domain (CPU, CPU) and
  2575. * this function does nothing (as nothing changes)
  2576. * 3. Mapped by GTT
  2577. * This function asserts that the object is not
  2578. * currently in any GPU-based read or write domains
  2579. * 4. Read by GPU
  2580. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2581. * As write_domain is zero, this function adds in the
  2582. * current read domains (CPU+COMMAND, 0).
  2583. * flush_domains is set to CPU.
  2584. * invalidate_domains is set to COMMAND
  2585. * clflush is run to get data out of the CPU caches
  2586. * then i915_dev_set_domain calls i915_gem_flush to
  2587. * emit an MI_FLUSH and drm_agp_chipset_flush
  2588. * 5. Unmapped from GTT
  2589. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2590. * flush_domains and invalidate_domains end up both zero
  2591. * so no flushing/invalidating happens
  2592. * 6. Freed
  2593. * yay, done
  2594. *
  2595. * Case 2: The shared render buffer
  2596. *
  2597. * 1. Allocated
  2598. * 2. Mapped to GTT
  2599. * 3. Read/written by GPU
  2600. * 4. set_domain to (CPU,CPU)
  2601. * 5. Read/written by CPU
  2602. * 6. Read/written by GPU
  2603. *
  2604. * 1. Allocated
  2605. * Same as last example, (CPU, CPU)
  2606. * 2. Mapped to GTT
  2607. * Nothing changes (assertions find that it is not in the GPU)
  2608. * 3. Read/written by GPU
  2609. * execbuffer calls set_domain (RENDER, RENDER)
  2610. * flush_domains gets CPU
  2611. * invalidate_domains gets GPU
  2612. * clflush (obj)
  2613. * MI_FLUSH and drm_agp_chipset_flush
  2614. * 4. set_domain (CPU, CPU)
  2615. * flush_domains gets GPU
  2616. * invalidate_domains gets CPU
  2617. * wait_rendering (obj) to make sure all drawing is complete.
  2618. * This will include an MI_FLUSH to get the data from GPU
  2619. * to memory
  2620. * clflush (obj) to invalidate the CPU cache
  2621. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2622. * 5. Read/written by CPU
  2623. * cache lines are loaded and dirtied
  2624. * 6. Read written by GPU
  2625. * Same as last GPU access
  2626. *
  2627. * Case 3: The constant buffer
  2628. *
  2629. * 1. Allocated
  2630. * 2. Written by CPU
  2631. * 3. Read by GPU
  2632. * 4. Updated (written) by CPU again
  2633. * 5. Read by GPU
  2634. *
  2635. * 1. Allocated
  2636. * (CPU, CPU)
  2637. * 2. Written by CPU
  2638. * (CPU, CPU)
  2639. * 3. Read by GPU
  2640. * (CPU+RENDER, 0)
  2641. * flush_domains = CPU
  2642. * invalidate_domains = RENDER
  2643. * clflush (obj)
  2644. * MI_FLUSH
  2645. * drm_agp_chipset_flush
  2646. * 4. Updated (written) by CPU again
  2647. * (CPU, CPU)
  2648. * flush_domains = 0 (no previous write domain)
  2649. * invalidate_domains = 0 (no new read domains)
  2650. * 5. Read by GPU
  2651. * (CPU+RENDER, 0)
  2652. * flush_domains = CPU
  2653. * invalidate_domains = RENDER
  2654. * clflush (obj)
  2655. * MI_FLUSH
  2656. * drm_agp_chipset_flush
  2657. */
  2658. static void
  2659. i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
  2660. struct intel_ring_buffer *ring,
  2661. struct change_domains *cd)
  2662. {
  2663. uint32_t invalidate_domains = 0, flush_domains = 0;
  2664. /*
  2665. * If the object isn't moving to a new write domain,
  2666. * let the object stay in multiple read domains
  2667. */
  2668. if (obj->base.pending_write_domain == 0)
  2669. obj->base.pending_read_domains |= obj->base.read_domains;
  2670. /*
  2671. * Flush the current write domain if
  2672. * the new read domains don't match. Invalidate
  2673. * any read domains which differ from the old
  2674. * write domain
  2675. */
  2676. if (obj->base.write_domain &&
  2677. (obj->base.write_domain != obj->base.pending_read_domains ||
  2678. obj->ring != ring)) {
  2679. flush_domains |= obj->base.write_domain;
  2680. invalidate_domains |=
  2681. obj->base.pending_read_domains & ~obj->base.write_domain;
  2682. }
  2683. /*
  2684. * Invalidate any read caches which may have
  2685. * stale data. That is, any new read domains.
  2686. */
  2687. invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
  2688. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2689. i915_gem_clflush_object(obj);
  2690. /* blow away mappings if mapped through GTT */
  2691. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2692. i915_gem_release_mmap(obj);
  2693. /* The actual obj->write_domain will be updated with
  2694. * pending_write_domain after we emit the accumulated flush for all
  2695. * of our domain changes in execbuffers (which clears objects'
  2696. * write_domains). So if we have a current write domain that we
  2697. * aren't changing, set pending_write_domain to that.
  2698. */
  2699. if (flush_domains == 0 && obj->base.pending_write_domain == 0)
  2700. obj->base.pending_write_domain = obj->base.write_domain;
  2701. cd->invalidate_domains |= invalidate_domains;
  2702. cd->flush_domains |= flush_domains;
  2703. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2704. cd->flush_rings |= obj->ring->id;
  2705. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2706. cd->flush_rings |= ring->id;
  2707. }
  2708. /**
  2709. * Moves the object from a partially CPU read to a full one.
  2710. *
  2711. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2712. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2713. */
  2714. static void
  2715. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2716. {
  2717. if (!obj->page_cpu_valid)
  2718. return;
  2719. /* If we're partially in the CPU read domain, finish moving it in.
  2720. */
  2721. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2722. int i;
  2723. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2724. if (obj->page_cpu_valid[i])
  2725. continue;
  2726. drm_clflush_pages(obj->pages + i, 1);
  2727. }
  2728. }
  2729. /* Free the page_cpu_valid mappings which are now stale, whether
  2730. * or not we've got I915_GEM_DOMAIN_CPU.
  2731. */
  2732. kfree(obj->page_cpu_valid);
  2733. obj->page_cpu_valid = NULL;
  2734. }
  2735. /**
  2736. * Set the CPU read domain on a range of the object.
  2737. *
  2738. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2739. * not entirely valid. The page_cpu_valid member of the object flags which
  2740. * pages have been flushed, and will be respected by
  2741. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2742. * of the whole object.
  2743. *
  2744. * This function returns when the move is complete, including waiting on
  2745. * flushes to occur.
  2746. */
  2747. static int
  2748. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2749. uint64_t offset, uint64_t size)
  2750. {
  2751. uint32_t old_read_domains;
  2752. int i, ret;
  2753. if (offset == 0 && size == obj->base.size)
  2754. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2755. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2756. if (ret != 0)
  2757. return ret;
  2758. i915_gem_object_flush_gtt_write_domain(obj);
  2759. /* If we're already fully in the CPU read domain, we're done. */
  2760. if (obj->page_cpu_valid == NULL &&
  2761. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2762. return 0;
  2763. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2764. * newly adding I915_GEM_DOMAIN_CPU
  2765. */
  2766. if (obj->page_cpu_valid == NULL) {
  2767. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2768. GFP_KERNEL);
  2769. if (obj->page_cpu_valid == NULL)
  2770. return -ENOMEM;
  2771. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2772. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2773. /* Flush the cache on any pages that are still invalid from the CPU's
  2774. * perspective.
  2775. */
  2776. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2777. i++) {
  2778. if (obj->page_cpu_valid[i])
  2779. continue;
  2780. drm_clflush_pages(obj->pages + i, 1);
  2781. obj->page_cpu_valid[i] = 1;
  2782. }
  2783. /* It should now be out of any other write domains, and we can update
  2784. * the domain values for our changes.
  2785. */
  2786. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2787. old_read_domains = obj->base.read_domains;
  2788. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2789. trace_i915_gem_object_change_domain(obj,
  2790. old_read_domains,
  2791. obj->base.write_domain);
  2792. return 0;
  2793. }
  2794. static int
  2795. i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
  2796. struct drm_file *file_priv,
  2797. struct drm_i915_gem_exec_object2 *entry,
  2798. struct drm_i915_gem_relocation_entry *reloc)
  2799. {
  2800. struct drm_device *dev = obj->base.dev;
  2801. struct drm_gem_object *target_obj;
  2802. uint32_t target_offset;
  2803. int ret = -EINVAL;
  2804. target_obj = drm_gem_object_lookup(dev, file_priv,
  2805. reloc->target_handle);
  2806. if (target_obj == NULL)
  2807. return -ENOENT;
  2808. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2809. #if WATCH_RELOC
  2810. DRM_INFO("%s: obj %p offset %08x target %d "
  2811. "read %08x write %08x gtt %08x "
  2812. "presumed %08x delta %08x\n",
  2813. __func__,
  2814. obj,
  2815. (int) reloc->offset,
  2816. (int) reloc->target_handle,
  2817. (int) reloc->read_domains,
  2818. (int) reloc->write_domain,
  2819. (int) target_offset,
  2820. (int) reloc->presumed_offset,
  2821. reloc->delta);
  2822. #endif
  2823. /* The target buffer should have appeared before us in the
  2824. * exec_object list, so it should have a GTT space bound by now.
  2825. */
  2826. if (target_offset == 0) {
  2827. DRM_ERROR("No GTT space found for object %d\n",
  2828. reloc->target_handle);
  2829. goto err;
  2830. }
  2831. /* Validate that the target is in a valid r/w GPU domain */
  2832. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2833. DRM_ERROR("reloc with multiple write domains: "
  2834. "obj %p target %d offset %d "
  2835. "read %08x write %08x",
  2836. obj, reloc->target_handle,
  2837. (int) reloc->offset,
  2838. reloc->read_domains,
  2839. reloc->write_domain);
  2840. goto err;
  2841. }
  2842. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2843. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2844. DRM_ERROR("reloc with read/write CPU domains: "
  2845. "obj %p target %d offset %d "
  2846. "read %08x write %08x",
  2847. obj, reloc->target_handle,
  2848. (int) reloc->offset,
  2849. reloc->read_domains,
  2850. reloc->write_domain);
  2851. goto err;
  2852. }
  2853. if (reloc->write_domain && target_obj->pending_write_domain &&
  2854. reloc->write_domain != target_obj->pending_write_domain) {
  2855. DRM_ERROR("Write domain conflict: "
  2856. "obj %p target %d offset %d "
  2857. "new %08x old %08x\n",
  2858. obj, reloc->target_handle,
  2859. (int) reloc->offset,
  2860. reloc->write_domain,
  2861. target_obj->pending_write_domain);
  2862. goto err;
  2863. }
  2864. target_obj->pending_read_domains |= reloc->read_domains;
  2865. target_obj->pending_write_domain |= reloc->write_domain;
  2866. /* If the relocation already has the right value in it, no
  2867. * more work needs to be done.
  2868. */
  2869. if (target_offset == reloc->presumed_offset)
  2870. goto out;
  2871. /* Check that the relocation address is valid... */
  2872. if (reloc->offset > obj->base.size - 4) {
  2873. DRM_ERROR("Relocation beyond object bounds: "
  2874. "obj %p target %d offset %d size %d.\n",
  2875. obj, reloc->target_handle,
  2876. (int) reloc->offset,
  2877. (int) obj->base.size);
  2878. goto err;
  2879. }
  2880. if (reloc->offset & 3) {
  2881. DRM_ERROR("Relocation not 4-byte aligned: "
  2882. "obj %p target %d offset %d.\n",
  2883. obj, reloc->target_handle,
  2884. (int) reloc->offset);
  2885. goto err;
  2886. }
  2887. /* and points to somewhere within the target object. */
  2888. if (reloc->delta >= target_obj->size) {
  2889. DRM_ERROR("Relocation beyond target object bounds: "
  2890. "obj %p target %d delta %d size %d.\n",
  2891. obj, reloc->target_handle,
  2892. (int) reloc->delta,
  2893. (int) target_obj->size);
  2894. goto err;
  2895. }
  2896. reloc->delta += target_offset;
  2897. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2898. uint32_t page_offset = reloc->offset & ~PAGE_MASK;
  2899. char *vaddr;
  2900. vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
  2901. *(uint32_t *)(vaddr + page_offset) = reloc->delta;
  2902. kunmap_atomic(vaddr);
  2903. } else {
  2904. struct drm_i915_private *dev_priv = dev->dev_private;
  2905. uint32_t __iomem *reloc_entry;
  2906. void __iomem *reloc_page;
  2907. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2908. if (ret)
  2909. goto err;
  2910. /* Map the page containing the relocation we're going to perform. */
  2911. reloc->offset += obj->gtt_offset;
  2912. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2913. reloc->offset & PAGE_MASK);
  2914. reloc_entry = (uint32_t __iomem *)
  2915. (reloc_page + (reloc->offset & ~PAGE_MASK));
  2916. iowrite32(reloc->delta, reloc_entry);
  2917. io_mapping_unmap_atomic(reloc_page);
  2918. }
  2919. /* and update the user's relocation entry */
  2920. reloc->presumed_offset = target_offset;
  2921. out:
  2922. ret = 0;
  2923. err:
  2924. drm_gem_object_unreference(target_obj);
  2925. return ret;
  2926. }
  2927. static int
  2928. i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
  2929. struct drm_file *file_priv,
  2930. struct drm_i915_gem_exec_object2 *entry)
  2931. {
  2932. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2933. int i, ret;
  2934. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2935. for (i = 0; i < entry->relocation_count; i++) {
  2936. struct drm_i915_gem_relocation_entry reloc;
  2937. if (__copy_from_user_inatomic(&reloc,
  2938. user_relocs+i,
  2939. sizeof(reloc)))
  2940. return -EFAULT;
  2941. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
  2942. if (ret)
  2943. return ret;
  2944. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2945. &reloc.presumed_offset,
  2946. sizeof(reloc.presumed_offset)))
  2947. return -EFAULT;
  2948. }
  2949. return 0;
  2950. }
  2951. static int
  2952. i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
  2953. struct drm_file *file_priv,
  2954. struct drm_i915_gem_exec_object2 *entry,
  2955. struct drm_i915_gem_relocation_entry *relocs)
  2956. {
  2957. int i, ret;
  2958. for (i = 0; i < entry->relocation_count; i++) {
  2959. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
  2960. if (ret)
  2961. return ret;
  2962. }
  2963. return 0;
  2964. }
  2965. static int
  2966. i915_gem_execbuffer_relocate(struct drm_device *dev,
  2967. struct drm_file *file,
  2968. struct drm_i915_gem_object **object_list,
  2969. struct drm_i915_gem_exec_object2 *exec_list,
  2970. int count)
  2971. {
  2972. int i, ret;
  2973. for (i = 0; i < count; i++) {
  2974. struct drm_i915_gem_object *obj = object_list[i];
  2975. obj->base.pending_read_domains = 0;
  2976. obj->base.pending_write_domain = 0;
  2977. ret = i915_gem_execbuffer_relocate_object(obj, file,
  2978. &exec_list[i]);
  2979. if (ret)
  2980. return ret;
  2981. }
  2982. return 0;
  2983. }
  2984. static int
  2985. i915_gem_execbuffer_reserve(struct drm_device *dev,
  2986. struct drm_file *file,
  2987. struct drm_i915_gem_object **object_list,
  2988. struct drm_i915_gem_exec_object2 *exec_list,
  2989. int count)
  2990. {
  2991. struct drm_i915_private *dev_priv = dev->dev_private;
  2992. int ret, i, retry;
  2993. /* attempt to pin all of the buffers into the GTT */
  2994. retry = 0;
  2995. do {
  2996. ret = 0;
  2997. for (i = 0; i < count; i++) {
  2998. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2999. struct drm_i915_gem_object *obj = object_list[i];
  3000. bool need_fence =
  3001. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3002. obj->tiling_mode != I915_TILING_NONE;
  3003. /* g33/pnv can't fence buffers in the unmappable part */
  3004. bool need_mappable =
  3005. entry->relocation_count ? true : need_fence;
  3006. /* Check fence reg constraints and rebind if necessary */
  3007. if (need_mappable && !obj->map_and_fenceable) {
  3008. ret = i915_gem_object_unbind(obj);
  3009. if (ret)
  3010. break;
  3011. }
  3012. ret = i915_gem_object_pin(obj,
  3013. entry->alignment,
  3014. need_mappable);
  3015. if (ret)
  3016. break;
  3017. /*
  3018. * Pre-965 chips need a fence register set up in order
  3019. * to properly handle blits to/from tiled surfaces.
  3020. */
  3021. if (need_fence) {
  3022. ret = i915_gem_object_get_fence_reg(obj, true);
  3023. if (ret) {
  3024. i915_gem_object_unpin(obj);
  3025. break;
  3026. }
  3027. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3028. }
  3029. entry->offset = obj->gtt_offset;
  3030. }
  3031. while (i--)
  3032. i915_gem_object_unpin(object_list[i]);
  3033. if (ret != -ENOSPC || retry > 1)
  3034. return ret;
  3035. /* First attempt, just clear anything that is purgeable.
  3036. * Second attempt, clear the entire GTT.
  3037. */
  3038. ret = i915_gem_evict_everything(dev, retry == 0);
  3039. if (ret)
  3040. return ret;
  3041. retry++;
  3042. } while (1);
  3043. }
  3044. static int
  3045. i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
  3046. struct drm_file *file,
  3047. struct drm_i915_gem_object **object_list,
  3048. struct drm_i915_gem_exec_object2 *exec_list,
  3049. int count)
  3050. {
  3051. struct drm_i915_gem_relocation_entry *reloc;
  3052. int i, total, ret;
  3053. for (i = 0; i < count; i++)
  3054. object_list[i]->in_execbuffer = false;
  3055. mutex_unlock(&dev->struct_mutex);
  3056. total = 0;
  3057. for (i = 0; i < count; i++)
  3058. total += exec_list[i].relocation_count;
  3059. reloc = drm_malloc_ab(total, sizeof(*reloc));
  3060. if (reloc == NULL) {
  3061. mutex_lock(&dev->struct_mutex);
  3062. return -ENOMEM;
  3063. }
  3064. total = 0;
  3065. for (i = 0; i < count; i++) {
  3066. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3067. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3068. if (copy_from_user(reloc+total, user_relocs,
  3069. exec_list[i].relocation_count *
  3070. sizeof(*reloc))) {
  3071. ret = -EFAULT;
  3072. mutex_lock(&dev->struct_mutex);
  3073. goto err;
  3074. }
  3075. total += exec_list[i].relocation_count;
  3076. }
  3077. ret = i915_mutex_lock_interruptible(dev);
  3078. if (ret) {
  3079. mutex_lock(&dev->struct_mutex);
  3080. goto err;
  3081. }
  3082. ret = i915_gem_execbuffer_reserve(dev, file,
  3083. object_list, exec_list,
  3084. count);
  3085. if (ret)
  3086. goto err;
  3087. total = 0;
  3088. for (i = 0; i < count; i++) {
  3089. struct drm_i915_gem_object *obj = object_list[i];
  3090. obj->base.pending_read_domains = 0;
  3091. obj->base.pending_write_domain = 0;
  3092. ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
  3093. &exec_list[i],
  3094. reloc + total);
  3095. if (ret)
  3096. goto err;
  3097. total += exec_list[i].relocation_count;
  3098. }
  3099. /* Leave the user relocations as are, this is the painfully slow path,
  3100. * and we want to avoid the complication of dropping the lock whilst
  3101. * having buffers reserved in the aperture and so causing spurious
  3102. * ENOSPC for random operations.
  3103. */
  3104. err:
  3105. drm_free_large(reloc);
  3106. return ret;
  3107. }
  3108. static int
  3109. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  3110. struct drm_file *file,
  3111. struct intel_ring_buffer *ring,
  3112. struct drm_i915_gem_object **objects,
  3113. int count)
  3114. {
  3115. struct change_domains cd;
  3116. int ret, i;
  3117. cd.invalidate_domains = 0;
  3118. cd.flush_domains = 0;
  3119. cd.flush_rings = 0;
  3120. for (i = 0; i < count; i++)
  3121. i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
  3122. if (cd.invalidate_domains | cd.flush_domains) {
  3123. #if WATCH_EXEC
  3124. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3125. __func__,
  3126. cd.invalidate_domains,
  3127. cd.flush_domains);
  3128. #endif
  3129. i915_gem_flush(dev,
  3130. cd.invalidate_domains,
  3131. cd.flush_domains,
  3132. cd.flush_rings);
  3133. }
  3134. for (i = 0; i < count; i++) {
  3135. struct drm_i915_gem_object *obj = objects[i];
  3136. /* XXX replace with semaphores */
  3137. if (obj->ring && ring != obj->ring) {
  3138. ret = i915_gem_object_wait_rendering(obj, true);
  3139. if (ret)
  3140. return ret;
  3141. }
  3142. }
  3143. return 0;
  3144. }
  3145. /* Throttle our rendering by waiting until the ring has completed our requests
  3146. * emitted over 20 msec ago.
  3147. *
  3148. * Note that if we were to use the current jiffies each time around the loop,
  3149. * we wouldn't escape the function with any frames outstanding if the time to
  3150. * render a frame was over 20ms.
  3151. *
  3152. * This should get us reasonable parallelism between CPU and GPU but also
  3153. * relatively low latency when blocking on a particular request to finish.
  3154. */
  3155. static int
  3156. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3157. {
  3158. struct drm_i915_private *dev_priv = dev->dev_private;
  3159. struct drm_i915_file_private *file_priv = file->driver_priv;
  3160. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3161. struct drm_i915_gem_request *request;
  3162. struct intel_ring_buffer *ring = NULL;
  3163. u32 seqno = 0;
  3164. int ret;
  3165. spin_lock(&file_priv->mm.lock);
  3166. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3167. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3168. break;
  3169. ring = request->ring;
  3170. seqno = request->seqno;
  3171. }
  3172. spin_unlock(&file_priv->mm.lock);
  3173. if (seqno == 0)
  3174. return 0;
  3175. ret = 0;
  3176. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3177. /* And wait for the seqno passing without holding any locks and
  3178. * causing extra latency for others. This is safe as the irq
  3179. * generation is designed to be run atomically and so is
  3180. * lockless.
  3181. */
  3182. ring->user_irq_get(ring);
  3183. ret = wait_event_interruptible(ring->irq_queue,
  3184. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3185. || atomic_read(&dev_priv->mm.wedged));
  3186. ring->user_irq_put(ring);
  3187. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3188. ret = -EIO;
  3189. }
  3190. if (ret == 0)
  3191. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3192. return ret;
  3193. }
  3194. static int
  3195. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3196. uint64_t exec_offset)
  3197. {
  3198. uint32_t exec_start, exec_len;
  3199. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3200. exec_len = (uint32_t) exec->batch_len;
  3201. if ((exec_start | exec_len) & 0x7)
  3202. return -EINVAL;
  3203. if (!exec_start)
  3204. return -EINVAL;
  3205. return 0;
  3206. }
  3207. static int
  3208. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3209. int count)
  3210. {
  3211. int i;
  3212. for (i = 0; i < count; i++) {
  3213. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3214. int length; /* limited by fault_in_pages_readable() */
  3215. /* First check for malicious input causing overflow */
  3216. if (exec[i].relocation_count >
  3217. INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
  3218. return -EINVAL;
  3219. length = exec[i].relocation_count *
  3220. sizeof(struct drm_i915_gem_relocation_entry);
  3221. if (!access_ok(VERIFY_READ, ptr, length))
  3222. return -EFAULT;
  3223. /* we may also need to update the presumed offsets */
  3224. if (!access_ok(VERIFY_WRITE, ptr, length))
  3225. return -EFAULT;
  3226. if (fault_in_pages_readable(ptr, length))
  3227. return -EFAULT;
  3228. }
  3229. return 0;
  3230. }
  3231. static int
  3232. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3233. struct drm_file *file,
  3234. struct drm_i915_gem_execbuffer2 *args,
  3235. struct drm_i915_gem_exec_object2 *exec_list)
  3236. {
  3237. drm_i915_private_t *dev_priv = dev->dev_private;
  3238. struct drm_i915_gem_object **object_list = NULL;
  3239. struct drm_i915_gem_object *batch_obj;
  3240. struct drm_clip_rect *cliprects = NULL;
  3241. struct drm_i915_gem_request *request = NULL;
  3242. int ret, i, flips;
  3243. uint64_t exec_offset;
  3244. struct intel_ring_buffer *ring = NULL;
  3245. ret = i915_gem_check_is_wedged(dev);
  3246. if (ret)
  3247. return ret;
  3248. ret = validate_exec_list(exec_list, args->buffer_count);
  3249. if (ret)
  3250. return ret;
  3251. #if WATCH_EXEC
  3252. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3253. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3254. #endif
  3255. switch (args->flags & I915_EXEC_RING_MASK) {
  3256. case I915_EXEC_DEFAULT:
  3257. case I915_EXEC_RENDER:
  3258. ring = &dev_priv->render_ring;
  3259. break;
  3260. case I915_EXEC_BSD:
  3261. if (!HAS_BSD(dev)) {
  3262. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3263. return -EINVAL;
  3264. }
  3265. ring = &dev_priv->bsd_ring;
  3266. break;
  3267. case I915_EXEC_BLT:
  3268. if (!HAS_BLT(dev)) {
  3269. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3270. return -EINVAL;
  3271. }
  3272. ring = &dev_priv->blt_ring;
  3273. break;
  3274. default:
  3275. DRM_ERROR("execbuf with unknown ring: %d\n",
  3276. (int)(args->flags & I915_EXEC_RING_MASK));
  3277. return -EINVAL;
  3278. }
  3279. if (args->buffer_count < 1) {
  3280. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3281. return -EINVAL;
  3282. }
  3283. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3284. if (object_list == NULL) {
  3285. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3286. args->buffer_count);
  3287. ret = -ENOMEM;
  3288. goto pre_mutex_err;
  3289. }
  3290. if (args->num_cliprects != 0) {
  3291. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3292. GFP_KERNEL);
  3293. if (cliprects == NULL) {
  3294. ret = -ENOMEM;
  3295. goto pre_mutex_err;
  3296. }
  3297. ret = copy_from_user(cliprects,
  3298. (struct drm_clip_rect __user *)
  3299. (uintptr_t) args->cliprects_ptr,
  3300. sizeof(*cliprects) * args->num_cliprects);
  3301. if (ret != 0) {
  3302. DRM_ERROR("copy %d cliprects failed: %d\n",
  3303. args->num_cliprects, ret);
  3304. ret = -EFAULT;
  3305. goto pre_mutex_err;
  3306. }
  3307. }
  3308. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3309. if (request == NULL) {
  3310. ret = -ENOMEM;
  3311. goto pre_mutex_err;
  3312. }
  3313. ret = i915_mutex_lock_interruptible(dev);
  3314. if (ret)
  3315. goto pre_mutex_err;
  3316. if (dev_priv->mm.suspended) {
  3317. mutex_unlock(&dev->struct_mutex);
  3318. ret = -EBUSY;
  3319. goto pre_mutex_err;
  3320. }
  3321. /* Look up object handles */
  3322. for (i = 0; i < args->buffer_count; i++) {
  3323. struct drm_i915_gem_object *obj;
  3324. obj = to_intel_bo (drm_gem_object_lookup(dev, file,
  3325. exec_list[i].handle));
  3326. if (obj == NULL) {
  3327. DRM_ERROR("Invalid object handle %d at index %d\n",
  3328. exec_list[i].handle, i);
  3329. /* prevent error path from reading uninitialized data */
  3330. args->buffer_count = i;
  3331. ret = -ENOENT;
  3332. goto err;
  3333. }
  3334. object_list[i] = obj;
  3335. if (obj->in_execbuffer) {
  3336. DRM_ERROR("Object %p appears more than once in object list\n",
  3337. obj);
  3338. /* prevent error path from reading uninitialized data */
  3339. args->buffer_count = i + 1;
  3340. ret = -EINVAL;
  3341. goto err;
  3342. }
  3343. obj->in_execbuffer = true;
  3344. }
  3345. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3346. ret = i915_gem_execbuffer_reserve(dev, file,
  3347. object_list, exec_list,
  3348. args->buffer_count);
  3349. if (ret)
  3350. goto err;
  3351. /* The objects are in their final locations, apply the relocations. */
  3352. ret = i915_gem_execbuffer_relocate(dev, file,
  3353. object_list, exec_list,
  3354. args->buffer_count);
  3355. if (ret) {
  3356. if (ret == -EFAULT) {
  3357. ret = i915_gem_execbuffer_relocate_slow(dev, file,
  3358. object_list,
  3359. exec_list,
  3360. args->buffer_count);
  3361. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  3362. }
  3363. if (ret)
  3364. goto err;
  3365. }
  3366. /* Set the pending read domains for the batch buffer to COMMAND */
  3367. batch_obj = object_list[args->buffer_count-1];
  3368. if (batch_obj->base.pending_write_domain) {
  3369. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3370. ret = -EINVAL;
  3371. goto err;
  3372. }
  3373. batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3374. /* Sanity check the batch buffer */
  3375. exec_offset = batch_obj->gtt_offset;
  3376. ret = i915_gem_check_execbuffer(args, exec_offset);
  3377. if (ret != 0) {
  3378. DRM_ERROR("execbuf with invalid offset/length\n");
  3379. goto err;
  3380. }
  3381. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3382. object_list, args->buffer_count);
  3383. if (ret)
  3384. goto err;
  3385. #if WATCH_COHERENCY
  3386. for (i = 0; i < args->buffer_count; i++) {
  3387. i915_gem_object_check_coherency(object_list[i],
  3388. exec_list[i].handle);
  3389. }
  3390. #endif
  3391. #if WATCH_EXEC
  3392. i915_gem_dump_object(batch_obj,
  3393. args->batch_len,
  3394. __func__,
  3395. ~0);
  3396. #endif
  3397. /* Check for any pending flips. As we only maintain a flip queue depth
  3398. * of 1, we can simply insert a WAIT for the next display flip prior
  3399. * to executing the batch and avoid stalling the CPU.
  3400. */
  3401. flips = 0;
  3402. for (i = 0; i < args->buffer_count; i++) {
  3403. if (object_list[i]->base.write_domain)
  3404. flips |= atomic_read(&object_list[i]->pending_flip);
  3405. }
  3406. if (flips) {
  3407. int plane, flip_mask;
  3408. for (plane = 0; flips >> plane; plane++) {
  3409. if (((flips >> plane) & 1) == 0)
  3410. continue;
  3411. if (plane)
  3412. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3413. else
  3414. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3415. ret = intel_ring_begin(ring, 2);
  3416. if (ret)
  3417. goto err;
  3418. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3419. intel_ring_emit(ring, MI_NOOP);
  3420. intel_ring_advance(ring);
  3421. }
  3422. }
  3423. /* Exec the batchbuffer */
  3424. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3425. if (ret) {
  3426. DRM_ERROR("dispatch failed %d\n", ret);
  3427. goto err;
  3428. }
  3429. for (i = 0; i < args->buffer_count; i++) {
  3430. struct drm_i915_gem_object *obj = object_list[i];
  3431. obj->base.read_domains = obj->base.pending_read_domains;
  3432. obj->base.write_domain = obj->base.pending_write_domain;
  3433. i915_gem_object_move_to_active(obj, ring);
  3434. if (obj->base.write_domain) {
  3435. obj->dirty = 1;
  3436. list_move_tail(&obj->gpu_write_list,
  3437. &ring->gpu_write_list);
  3438. intel_mark_busy(dev, obj);
  3439. }
  3440. trace_i915_gem_object_change_domain(obj,
  3441. obj->base.read_domains,
  3442. obj->base.write_domain);
  3443. }
  3444. /*
  3445. * Ensure that the commands in the batch buffer are
  3446. * finished before the interrupt fires
  3447. */
  3448. i915_retire_commands(dev, ring);
  3449. if (i915_add_request(dev, file, request, ring))
  3450. i915_gem_next_request_seqno(dev, ring);
  3451. else
  3452. request = NULL;
  3453. err:
  3454. for (i = 0; i < args->buffer_count; i++) {
  3455. object_list[i]->in_execbuffer = false;
  3456. drm_gem_object_unreference(&object_list[i]->base);
  3457. }
  3458. mutex_unlock(&dev->struct_mutex);
  3459. pre_mutex_err:
  3460. drm_free_large(object_list);
  3461. kfree(cliprects);
  3462. kfree(request);
  3463. return ret;
  3464. }
  3465. /*
  3466. * Legacy execbuffer just creates an exec2 list from the original exec object
  3467. * list array and passes it to the real function.
  3468. */
  3469. int
  3470. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3471. struct drm_file *file)
  3472. {
  3473. struct drm_i915_gem_execbuffer *args = data;
  3474. struct drm_i915_gem_execbuffer2 exec2;
  3475. struct drm_i915_gem_exec_object *exec_list = NULL;
  3476. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3477. int ret, i;
  3478. #if WATCH_EXEC
  3479. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3480. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3481. #endif
  3482. if (args->buffer_count < 1) {
  3483. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3484. return -EINVAL;
  3485. }
  3486. /* Copy in the exec list from userland */
  3487. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3488. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3489. if (exec_list == NULL || exec2_list == NULL) {
  3490. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3491. args->buffer_count);
  3492. drm_free_large(exec_list);
  3493. drm_free_large(exec2_list);
  3494. return -ENOMEM;
  3495. }
  3496. ret = copy_from_user(exec_list,
  3497. (struct drm_i915_relocation_entry __user *)
  3498. (uintptr_t) args->buffers_ptr,
  3499. sizeof(*exec_list) * args->buffer_count);
  3500. if (ret != 0) {
  3501. DRM_ERROR("copy %d exec entries failed %d\n",
  3502. args->buffer_count, ret);
  3503. drm_free_large(exec_list);
  3504. drm_free_large(exec2_list);
  3505. return -EFAULT;
  3506. }
  3507. for (i = 0; i < args->buffer_count; i++) {
  3508. exec2_list[i].handle = exec_list[i].handle;
  3509. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3510. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3511. exec2_list[i].alignment = exec_list[i].alignment;
  3512. exec2_list[i].offset = exec_list[i].offset;
  3513. if (INTEL_INFO(dev)->gen < 4)
  3514. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3515. else
  3516. exec2_list[i].flags = 0;
  3517. }
  3518. exec2.buffers_ptr = args->buffers_ptr;
  3519. exec2.buffer_count = args->buffer_count;
  3520. exec2.batch_start_offset = args->batch_start_offset;
  3521. exec2.batch_len = args->batch_len;
  3522. exec2.DR1 = args->DR1;
  3523. exec2.DR4 = args->DR4;
  3524. exec2.num_cliprects = args->num_cliprects;
  3525. exec2.cliprects_ptr = args->cliprects_ptr;
  3526. exec2.flags = I915_EXEC_RENDER;
  3527. ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
  3528. if (!ret) {
  3529. /* Copy the new buffer offsets back to the user's exec list. */
  3530. for (i = 0; i < args->buffer_count; i++)
  3531. exec_list[i].offset = exec2_list[i].offset;
  3532. /* ... and back out to userspace */
  3533. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3534. (uintptr_t) args->buffers_ptr,
  3535. exec_list,
  3536. sizeof(*exec_list) * args->buffer_count);
  3537. if (ret) {
  3538. ret = -EFAULT;
  3539. DRM_ERROR("failed to copy %d exec entries "
  3540. "back to user (%d)\n",
  3541. args->buffer_count, ret);
  3542. }
  3543. }
  3544. drm_free_large(exec_list);
  3545. drm_free_large(exec2_list);
  3546. return ret;
  3547. }
  3548. int
  3549. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3550. struct drm_file *file)
  3551. {
  3552. struct drm_i915_gem_execbuffer2 *args = data;
  3553. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3554. int ret;
  3555. #if WATCH_EXEC
  3556. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3557. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3558. #endif
  3559. if (args->buffer_count < 1) {
  3560. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3561. return -EINVAL;
  3562. }
  3563. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3564. if (exec2_list == NULL) {
  3565. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3566. args->buffer_count);
  3567. return -ENOMEM;
  3568. }
  3569. ret = copy_from_user(exec2_list,
  3570. (struct drm_i915_relocation_entry __user *)
  3571. (uintptr_t) args->buffers_ptr,
  3572. sizeof(*exec2_list) * args->buffer_count);
  3573. if (ret != 0) {
  3574. DRM_ERROR("copy %d exec entries failed %d\n",
  3575. args->buffer_count, ret);
  3576. drm_free_large(exec2_list);
  3577. return -EFAULT;
  3578. }
  3579. ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
  3580. if (!ret) {
  3581. /* Copy the new buffer offsets back to the user's exec list. */
  3582. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3583. (uintptr_t) args->buffers_ptr,
  3584. exec2_list,
  3585. sizeof(*exec2_list) * args->buffer_count);
  3586. if (ret) {
  3587. ret = -EFAULT;
  3588. DRM_ERROR("failed to copy %d exec entries "
  3589. "back to user (%d)\n",
  3590. args->buffer_count, ret);
  3591. }
  3592. }
  3593. drm_free_large(exec2_list);
  3594. return ret;
  3595. }
  3596. int
  3597. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  3598. uint32_t alignment,
  3599. bool map_and_fenceable)
  3600. {
  3601. struct drm_device *dev = obj->base.dev;
  3602. struct drm_i915_private *dev_priv = dev->dev_private;
  3603. int ret;
  3604. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3605. WARN_ON(i915_verify_lists(dev));
  3606. if (obj->gtt_space != NULL) {
  3607. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  3608. (map_and_fenceable && !obj->map_and_fenceable)) {
  3609. WARN(obj->pin_count,
  3610. "bo is already pinned with incorrect alignment:"
  3611. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  3612. " obj->map_and_fenceable=%d\n",
  3613. obj->gtt_offset, alignment,
  3614. map_and_fenceable,
  3615. obj->map_and_fenceable);
  3616. ret = i915_gem_object_unbind(obj);
  3617. if (ret)
  3618. return ret;
  3619. }
  3620. }
  3621. if (obj->gtt_space == NULL) {
  3622. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3623. map_and_fenceable);
  3624. if (ret)
  3625. return ret;
  3626. }
  3627. if (obj->pin_count++ == 0) {
  3628. i915_gem_info_add_pin(dev_priv, obj, map_and_fenceable);
  3629. if (!obj->active)
  3630. list_move_tail(&obj->mm_list,
  3631. &dev_priv->mm.pinned_list);
  3632. }
  3633. BUG_ON(!obj->pin_mappable && map_and_fenceable);
  3634. WARN_ON(i915_verify_lists(dev));
  3635. return 0;
  3636. }
  3637. void
  3638. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  3639. {
  3640. struct drm_device *dev = obj->base.dev;
  3641. drm_i915_private_t *dev_priv = dev->dev_private;
  3642. WARN_ON(i915_verify_lists(dev));
  3643. BUG_ON(obj->pin_count == 0);
  3644. BUG_ON(obj->gtt_space == NULL);
  3645. if (--obj->pin_count == 0) {
  3646. if (!obj->active)
  3647. list_move_tail(&obj->mm_list,
  3648. &dev_priv->mm.inactive_list);
  3649. i915_gem_info_remove_pin(dev_priv, obj);
  3650. }
  3651. WARN_ON(i915_verify_lists(dev));
  3652. }
  3653. int
  3654. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3655. struct drm_file *file)
  3656. {
  3657. struct drm_i915_gem_pin *args = data;
  3658. struct drm_i915_gem_object *obj;
  3659. int ret;
  3660. ret = i915_mutex_lock_interruptible(dev);
  3661. if (ret)
  3662. return ret;
  3663. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3664. if (obj == NULL) {
  3665. ret = -ENOENT;
  3666. goto unlock;
  3667. }
  3668. if (obj->madv != I915_MADV_WILLNEED) {
  3669. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3670. ret = -EINVAL;
  3671. goto out;
  3672. }
  3673. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  3674. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3675. args->handle);
  3676. ret = -EINVAL;
  3677. goto out;
  3678. }
  3679. obj->user_pin_count++;
  3680. obj->pin_filp = file;
  3681. if (obj->user_pin_count == 1) {
  3682. ret = i915_gem_object_pin(obj, args->alignment, true);
  3683. if (ret)
  3684. goto out;
  3685. }
  3686. /* XXX - flush the CPU caches for pinned objects
  3687. * as the X server doesn't manage domains yet
  3688. */
  3689. i915_gem_object_flush_cpu_write_domain(obj);
  3690. args->offset = obj->gtt_offset;
  3691. out:
  3692. drm_gem_object_unreference(&obj->base);
  3693. unlock:
  3694. mutex_unlock(&dev->struct_mutex);
  3695. return ret;
  3696. }
  3697. int
  3698. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3699. struct drm_file *file)
  3700. {
  3701. struct drm_i915_gem_pin *args = data;
  3702. struct drm_i915_gem_object *obj;
  3703. int ret;
  3704. ret = i915_mutex_lock_interruptible(dev);
  3705. if (ret)
  3706. return ret;
  3707. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3708. if (obj == NULL) {
  3709. ret = -ENOENT;
  3710. goto unlock;
  3711. }
  3712. if (obj->pin_filp != file) {
  3713. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3714. args->handle);
  3715. ret = -EINVAL;
  3716. goto out;
  3717. }
  3718. obj->user_pin_count--;
  3719. if (obj->user_pin_count == 0) {
  3720. obj->pin_filp = NULL;
  3721. i915_gem_object_unpin(obj);
  3722. }
  3723. out:
  3724. drm_gem_object_unreference(&obj->base);
  3725. unlock:
  3726. mutex_unlock(&dev->struct_mutex);
  3727. return ret;
  3728. }
  3729. int
  3730. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3731. struct drm_file *file)
  3732. {
  3733. struct drm_i915_gem_busy *args = data;
  3734. struct drm_i915_gem_object *obj;
  3735. int ret;
  3736. ret = i915_mutex_lock_interruptible(dev);
  3737. if (ret)
  3738. return ret;
  3739. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3740. if (obj == NULL) {
  3741. ret = -ENOENT;
  3742. goto unlock;
  3743. }
  3744. /* Count all active objects as busy, even if they are currently not used
  3745. * by the gpu. Users of this interface expect objects to eventually
  3746. * become non-busy without any further actions, therefore emit any
  3747. * necessary flushes here.
  3748. */
  3749. args->busy = obj->active;
  3750. if (args->busy) {
  3751. /* Unconditionally flush objects, even when the gpu still uses this
  3752. * object. Userspace calling this function indicates that it wants to
  3753. * use this buffer rather sooner than later, so issuing the required
  3754. * flush earlier is beneficial.
  3755. */
  3756. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  3757. i915_gem_flush_ring(dev, obj->ring,
  3758. 0, obj->base.write_domain);
  3759. /* Update the active list for the hardware's current position.
  3760. * Otherwise this only updates on a delayed timer or when irqs
  3761. * are actually unmasked, and our working set ends up being
  3762. * larger than required.
  3763. */
  3764. i915_gem_retire_requests_ring(dev, obj->ring);
  3765. args->busy = obj->active;
  3766. }
  3767. drm_gem_object_unreference(&obj->base);
  3768. unlock:
  3769. mutex_unlock(&dev->struct_mutex);
  3770. return ret;
  3771. }
  3772. int
  3773. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3774. struct drm_file *file_priv)
  3775. {
  3776. return i915_gem_ring_throttle(dev, file_priv);
  3777. }
  3778. int
  3779. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3780. struct drm_file *file_priv)
  3781. {
  3782. struct drm_i915_gem_madvise *args = data;
  3783. struct drm_i915_gem_object *obj;
  3784. int ret;
  3785. switch (args->madv) {
  3786. case I915_MADV_DONTNEED:
  3787. case I915_MADV_WILLNEED:
  3788. break;
  3789. default:
  3790. return -EINVAL;
  3791. }
  3792. ret = i915_mutex_lock_interruptible(dev);
  3793. if (ret)
  3794. return ret;
  3795. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3796. if (obj == NULL) {
  3797. ret = -ENOENT;
  3798. goto unlock;
  3799. }
  3800. if (obj->pin_count) {
  3801. ret = -EINVAL;
  3802. goto out;
  3803. }
  3804. if (obj->madv != __I915_MADV_PURGED)
  3805. obj->madv = args->madv;
  3806. /* if the object is no longer bound, discard its backing storage */
  3807. if (i915_gem_object_is_purgeable(obj) &&
  3808. obj->gtt_space == NULL)
  3809. i915_gem_object_truncate(obj);
  3810. args->retained = obj->madv != __I915_MADV_PURGED;
  3811. out:
  3812. drm_gem_object_unreference(&obj->base);
  3813. unlock:
  3814. mutex_unlock(&dev->struct_mutex);
  3815. return ret;
  3816. }
  3817. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3818. size_t size)
  3819. {
  3820. struct drm_i915_private *dev_priv = dev->dev_private;
  3821. struct drm_i915_gem_object *obj;
  3822. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3823. if (obj == NULL)
  3824. return NULL;
  3825. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3826. kfree(obj);
  3827. return NULL;
  3828. }
  3829. i915_gem_info_add_obj(dev_priv, size);
  3830. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3831. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3832. obj->agp_type = AGP_USER_MEMORY;
  3833. obj->base.driver_private = NULL;
  3834. obj->fence_reg = I915_FENCE_REG_NONE;
  3835. INIT_LIST_HEAD(&obj->mm_list);
  3836. INIT_LIST_HEAD(&obj->gtt_list);
  3837. INIT_LIST_HEAD(&obj->ring_list);
  3838. INIT_LIST_HEAD(&obj->gpu_write_list);
  3839. obj->madv = I915_MADV_WILLNEED;
  3840. /* Avoid an unnecessary call to unbind on the first bind. */
  3841. obj->map_and_fenceable = true;
  3842. return obj;
  3843. }
  3844. int i915_gem_init_object(struct drm_gem_object *obj)
  3845. {
  3846. BUG();
  3847. return 0;
  3848. }
  3849. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3850. {
  3851. struct drm_device *dev = obj->base.dev;
  3852. drm_i915_private_t *dev_priv = dev->dev_private;
  3853. int ret;
  3854. ret = i915_gem_object_unbind(obj);
  3855. if (ret == -ERESTARTSYS) {
  3856. list_move(&obj->mm_list,
  3857. &dev_priv->mm.deferred_free_list);
  3858. return;
  3859. }
  3860. if (obj->base.map_list.map)
  3861. i915_gem_free_mmap_offset(obj);
  3862. drm_gem_object_release(&obj->base);
  3863. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3864. kfree(obj->page_cpu_valid);
  3865. kfree(obj->bit_17);
  3866. kfree(obj);
  3867. }
  3868. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3869. {
  3870. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3871. struct drm_device *dev = obj->base.dev;
  3872. trace_i915_gem_object_destroy(obj);
  3873. while (obj->pin_count > 0)
  3874. i915_gem_object_unpin(obj);
  3875. if (obj->phys_obj)
  3876. i915_gem_detach_phys_object(dev, obj);
  3877. i915_gem_free_object_tail(obj);
  3878. }
  3879. int
  3880. i915_gem_idle(struct drm_device *dev)
  3881. {
  3882. drm_i915_private_t *dev_priv = dev->dev_private;
  3883. int ret;
  3884. mutex_lock(&dev->struct_mutex);
  3885. if (dev_priv->mm.suspended) {
  3886. mutex_unlock(&dev->struct_mutex);
  3887. return 0;
  3888. }
  3889. ret = i915_gpu_idle(dev);
  3890. if (ret) {
  3891. mutex_unlock(&dev->struct_mutex);
  3892. return ret;
  3893. }
  3894. /* Under UMS, be paranoid and evict. */
  3895. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3896. ret = i915_gem_evict_inactive(dev, false);
  3897. if (ret) {
  3898. mutex_unlock(&dev->struct_mutex);
  3899. return ret;
  3900. }
  3901. }
  3902. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3903. * We need to replace this with a semaphore, or something.
  3904. * And not confound mm.suspended!
  3905. */
  3906. dev_priv->mm.suspended = 1;
  3907. del_timer_sync(&dev_priv->hangcheck_timer);
  3908. i915_kernel_lost_context(dev);
  3909. i915_gem_cleanup_ringbuffer(dev);
  3910. mutex_unlock(&dev->struct_mutex);
  3911. /* Cancel the retire work handler, which should be idle now. */
  3912. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3913. return 0;
  3914. }
  3915. int
  3916. i915_gem_init_ringbuffer(struct drm_device *dev)
  3917. {
  3918. drm_i915_private_t *dev_priv = dev->dev_private;
  3919. int ret;
  3920. ret = intel_init_render_ring_buffer(dev);
  3921. if (ret)
  3922. return ret;
  3923. if (HAS_BSD(dev)) {
  3924. ret = intel_init_bsd_ring_buffer(dev);
  3925. if (ret)
  3926. goto cleanup_render_ring;
  3927. }
  3928. if (HAS_BLT(dev)) {
  3929. ret = intel_init_blt_ring_buffer(dev);
  3930. if (ret)
  3931. goto cleanup_bsd_ring;
  3932. }
  3933. dev_priv->next_seqno = 1;
  3934. return 0;
  3935. cleanup_bsd_ring:
  3936. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3937. cleanup_render_ring:
  3938. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3939. return ret;
  3940. }
  3941. void
  3942. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3943. {
  3944. drm_i915_private_t *dev_priv = dev->dev_private;
  3945. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3946. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3947. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3948. }
  3949. int
  3950. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3951. struct drm_file *file_priv)
  3952. {
  3953. drm_i915_private_t *dev_priv = dev->dev_private;
  3954. int ret;
  3955. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3956. return 0;
  3957. if (atomic_read(&dev_priv->mm.wedged)) {
  3958. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3959. atomic_set(&dev_priv->mm.wedged, 0);
  3960. }
  3961. mutex_lock(&dev->struct_mutex);
  3962. dev_priv->mm.suspended = 0;
  3963. ret = i915_gem_init_ringbuffer(dev);
  3964. if (ret != 0) {
  3965. mutex_unlock(&dev->struct_mutex);
  3966. return ret;
  3967. }
  3968. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3969. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3970. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3971. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3972. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3973. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3974. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3975. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3976. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3977. mutex_unlock(&dev->struct_mutex);
  3978. ret = drm_irq_install(dev);
  3979. if (ret)
  3980. goto cleanup_ringbuffer;
  3981. return 0;
  3982. cleanup_ringbuffer:
  3983. mutex_lock(&dev->struct_mutex);
  3984. i915_gem_cleanup_ringbuffer(dev);
  3985. dev_priv->mm.suspended = 1;
  3986. mutex_unlock(&dev->struct_mutex);
  3987. return ret;
  3988. }
  3989. int
  3990. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3991. struct drm_file *file_priv)
  3992. {
  3993. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3994. return 0;
  3995. drm_irq_uninstall(dev);
  3996. return i915_gem_idle(dev);
  3997. }
  3998. void
  3999. i915_gem_lastclose(struct drm_device *dev)
  4000. {
  4001. int ret;
  4002. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4003. return;
  4004. ret = i915_gem_idle(dev);
  4005. if (ret)
  4006. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4007. }
  4008. static void
  4009. init_ring_lists(struct intel_ring_buffer *ring)
  4010. {
  4011. INIT_LIST_HEAD(&ring->active_list);
  4012. INIT_LIST_HEAD(&ring->request_list);
  4013. INIT_LIST_HEAD(&ring->gpu_write_list);
  4014. }
  4015. void
  4016. i915_gem_load(struct drm_device *dev)
  4017. {
  4018. int i;
  4019. drm_i915_private_t *dev_priv = dev->dev_private;
  4020. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4021. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4022. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4023. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4024. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4025. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4026. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  4027. init_ring_lists(&dev_priv->render_ring);
  4028. init_ring_lists(&dev_priv->bsd_ring);
  4029. init_ring_lists(&dev_priv->blt_ring);
  4030. for (i = 0; i < 16; i++)
  4031. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4032. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4033. i915_gem_retire_work_handler);
  4034. init_completion(&dev_priv->error_completion);
  4035. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4036. if (IS_GEN3(dev)) {
  4037. u32 tmp = I915_READ(MI_ARB_STATE);
  4038. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4039. /* arb state is a masked write, so set bit + bit in mask */
  4040. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4041. I915_WRITE(MI_ARB_STATE, tmp);
  4042. }
  4043. }
  4044. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4045. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4046. dev_priv->fence_reg_start = 3;
  4047. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4048. dev_priv->num_fence_regs = 16;
  4049. else
  4050. dev_priv->num_fence_regs = 8;
  4051. /* Initialize fence registers to zero */
  4052. switch (INTEL_INFO(dev)->gen) {
  4053. case 6:
  4054. for (i = 0; i < 16; i++)
  4055. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4056. break;
  4057. case 5:
  4058. case 4:
  4059. for (i = 0; i < 16; i++)
  4060. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4061. break;
  4062. case 3:
  4063. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4064. for (i = 0; i < 8; i++)
  4065. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4066. case 2:
  4067. for (i = 0; i < 8; i++)
  4068. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4069. break;
  4070. }
  4071. i915_gem_detect_bit_6_swizzle(dev);
  4072. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4073. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4074. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4075. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4076. }
  4077. /*
  4078. * Create a physically contiguous memory object for this object
  4079. * e.g. for cursor + overlay regs
  4080. */
  4081. static int i915_gem_init_phys_object(struct drm_device *dev,
  4082. int id, int size, int align)
  4083. {
  4084. drm_i915_private_t *dev_priv = dev->dev_private;
  4085. struct drm_i915_gem_phys_object *phys_obj;
  4086. int ret;
  4087. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4088. return 0;
  4089. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4090. if (!phys_obj)
  4091. return -ENOMEM;
  4092. phys_obj->id = id;
  4093. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4094. if (!phys_obj->handle) {
  4095. ret = -ENOMEM;
  4096. goto kfree_obj;
  4097. }
  4098. #ifdef CONFIG_X86
  4099. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4100. #endif
  4101. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4102. return 0;
  4103. kfree_obj:
  4104. kfree(phys_obj);
  4105. return ret;
  4106. }
  4107. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4108. {
  4109. drm_i915_private_t *dev_priv = dev->dev_private;
  4110. struct drm_i915_gem_phys_object *phys_obj;
  4111. if (!dev_priv->mm.phys_objs[id - 1])
  4112. return;
  4113. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4114. if (phys_obj->cur_obj) {
  4115. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4116. }
  4117. #ifdef CONFIG_X86
  4118. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4119. #endif
  4120. drm_pci_free(dev, phys_obj->handle);
  4121. kfree(phys_obj);
  4122. dev_priv->mm.phys_objs[id - 1] = NULL;
  4123. }
  4124. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4125. {
  4126. int i;
  4127. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4128. i915_gem_free_phys_object(dev, i);
  4129. }
  4130. void i915_gem_detach_phys_object(struct drm_device *dev,
  4131. struct drm_i915_gem_object *obj)
  4132. {
  4133. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  4134. char *vaddr;
  4135. int i;
  4136. int page_count;
  4137. if (!obj->phys_obj)
  4138. return;
  4139. vaddr = obj->phys_obj->handle->vaddr;
  4140. page_count = obj->base.size / PAGE_SIZE;
  4141. for (i = 0; i < page_count; i++) {
  4142. struct page *page = read_cache_page_gfp(mapping, i,
  4143. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4144. if (!IS_ERR(page)) {
  4145. char *dst = kmap_atomic(page);
  4146. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4147. kunmap_atomic(dst);
  4148. drm_clflush_pages(&page, 1);
  4149. set_page_dirty(page);
  4150. mark_page_accessed(page);
  4151. page_cache_release(page);
  4152. }
  4153. }
  4154. intel_gtt_chipset_flush();
  4155. obj->phys_obj->cur_obj = NULL;
  4156. obj->phys_obj = NULL;
  4157. }
  4158. int
  4159. i915_gem_attach_phys_object(struct drm_device *dev,
  4160. struct drm_i915_gem_object *obj,
  4161. int id,
  4162. int align)
  4163. {
  4164. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  4165. drm_i915_private_t *dev_priv = dev->dev_private;
  4166. int ret = 0;
  4167. int page_count;
  4168. int i;
  4169. if (id > I915_MAX_PHYS_OBJECT)
  4170. return -EINVAL;
  4171. if (obj->phys_obj) {
  4172. if (obj->phys_obj->id == id)
  4173. return 0;
  4174. i915_gem_detach_phys_object(dev, obj);
  4175. }
  4176. /* create a new object */
  4177. if (!dev_priv->mm.phys_objs[id - 1]) {
  4178. ret = i915_gem_init_phys_object(dev, id,
  4179. obj->base.size, align);
  4180. if (ret) {
  4181. DRM_ERROR("failed to init phys object %d size: %zu\n",
  4182. id, obj->base.size);
  4183. return ret;
  4184. }
  4185. }
  4186. /* bind to the object */
  4187. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4188. obj->phys_obj->cur_obj = obj;
  4189. page_count = obj->base.size / PAGE_SIZE;
  4190. for (i = 0; i < page_count; i++) {
  4191. struct page *page;
  4192. char *dst, *src;
  4193. page = read_cache_page_gfp(mapping, i,
  4194. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4195. if (IS_ERR(page))
  4196. return PTR_ERR(page);
  4197. src = kmap_atomic(page);
  4198. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4199. memcpy(dst, src, PAGE_SIZE);
  4200. kunmap_atomic(src);
  4201. mark_page_accessed(page);
  4202. page_cache_release(page);
  4203. }
  4204. return 0;
  4205. }
  4206. static int
  4207. i915_gem_phys_pwrite(struct drm_device *dev,
  4208. struct drm_i915_gem_object *obj,
  4209. struct drm_i915_gem_pwrite *args,
  4210. struct drm_file *file_priv)
  4211. {
  4212. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  4213. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  4214. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  4215. unsigned long unwritten;
  4216. /* The physical object once assigned is fixed for the lifetime
  4217. * of the obj, so we can safely drop the lock and continue
  4218. * to access vaddr.
  4219. */
  4220. mutex_unlock(&dev->struct_mutex);
  4221. unwritten = copy_from_user(vaddr, user_data, args->size);
  4222. mutex_lock(&dev->struct_mutex);
  4223. if (unwritten)
  4224. return -EFAULT;
  4225. }
  4226. intel_gtt_chipset_flush();
  4227. return 0;
  4228. }
  4229. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4230. {
  4231. struct drm_i915_file_private *file_priv = file->driver_priv;
  4232. /* Clean up our request list when the client is going away, so that
  4233. * later retire_requests won't dereference our soon-to-be-gone
  4234. * file_priv.
  4235. */
  4236. spin_lock(&file_priv->mm.lock);
  4237. while (!list_empty(&file_priv->mm.request_list)) {
  4238. struct drm_i915_gem_request *request;
  4239. request = list_first_entry(&file_priv->mm.request_list,
  4240. struct drm_i915_gem_request,
  4241. client_list);
  4242. list_del(&request->client_list);
  4243. request->file_priv = NULL;
  4244. }
  4245. spin_unlock(&file_priv->mm.lock);
  4246. }
  4247. static int
  4248. i915_gpu_is_active(struct drm_device *dev)
  4249. {
  4250. drm_i915_private_t *dev_priv = dev->dev_private;
  4251. int lists_empty;
  4252. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4253. list_empty(&dev_priv->mm.active_list);
  4254. return !lists_empty;
  4255. }
  4256. static int
  4257. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4258. int nr_to_scan,
  4259. gfp_t gfp_mask)
  4260. {
  4261. struct drm_i915_private *dev_priv =
  4262. container_of(shrinker,
  4263. struct drm_i915_private,
  4264. mm.inactive_shrinker);
  4265. struct drm_device *dev = dev_priv->dev;
  4266. struct drm_i915_gem_object *obj, *next;
  4267. int cnt;
  4268. if (!mutex_trylock(&dev->struct_mutex))
  4269. return 0;
  4270. /* "fast-path" to count number of available objects */
  4271. if (nr_to_scan == 0) {
  4272. cnt = 0;
  4273. list_for_each_entry(obj,
  4274. &dev_priv->mm.inactive_list,
  4275. mm_list)
  4276. cnt++;
  4277. mutex_unlock(&dev->struct_mutex);
  4278. return cnt / 100 * sysctl_vfs_cache_pressure;
  4279. }
  4280. rescan:
  4281. /* first scan for clean buffers */
  4282. i915_gem_retire_requests(dev);
  4283. list_for_each_entry_safe(obj, next,
  4284. &dev_priv->mm.inactive_list,
  4285. mm_list) {
  4286. if (i915_gem_object_is_purgeable(obj)) {
  4287. i915_gem_object_unbind(obj);
  4288. if (--nr_to_scan == 0)
  4289. break;
  4290. }
  4291. }
  4292. /* second pass, evict/count anything still on the inactive list */
  4293. cnt = 0;
  4294. list_for_each_entry_safe(obj, next,
  4295. &dev_priv->mm.inactive_list,
  4296. mm_list) {
  4297. if (nr_to_scan) {
  4298. i915_gem_object_unbind(obj);
  4299. nr_to_scan--;
  4300. } else
  4301. cnt++;
  4302. }
  4303. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4304. /*
  4305. * We are desperate for pages, so as a last resort, wait
  4306. * for the GPU to finish and discard whatever we can.
  4307. * This has a dramatic impact to reduce the number of
  4308. * OOM-killer events whilst running the GPU aggressively.
  4309. */
  4310. if (i915_gpu_idle(dev) == 0)
  4311. goto rescan;
  4312. }
  4313. mutex_unlock(&dev->struct_mutex);
  4314. return cnt / 100 * sysctl_vfs_cache_pressure;
  4315. }