aio.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #define pr_fmt(fmt) "%s: " fmt, __func__
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/errno.h>
  15. #include <linux/time.h>
  16. #include <linux/aio_abi.h>
  17. #include <linux/export.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/uio.h>
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/percpu.h>
  28. #include <linux/slab.h>
  29. #include <linux/timer.h>
  30. #include <linux/aio.h>
  31. #include <linux/highmem.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/security.h>
  34. #include <linux/eventfd.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/compat.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/migrate.h>
  39. #include <linux/ramfs.h>
  40. #include <linux/percpu-refcount.h>
  41. #include <asm/kmap_types.h>
  42. #include <asm/uaccess.h>
  43. #include "internal.h"
  44. #define AIO_RING_MAGIC 0xa10a10a1
  45. #define AIO_RING_COMPAT_FEATURES 1
  46. #define AIO_RING_INCOMPAT_FEATURES 0
  47. struct aio_ring {
  48. unsigned id; /* kernel internal index number */
  49. unsigned nr; /* number of io_events */
  50. unsigned head;
  51. unsigned tail;
  52. unsigned magic;
  53. unsigned compat_features;
  54. unsigned incompat_features;
  55. unsigned header_length; /* size of aio_ring */
  56. struct io_event io_events[0];
  57. }; /* 128 bytes + ring size */
  58. #define AIO_RING_PAGES 8
  59. struct kioctx_table {
  60. struct rcu_head rcu;
  61. unsigned nr;
  62. struct kioctx *table[];
  63. };
  64. struct kioctx_cpu {
  65. unsigned reqs_available;
  66. };
  67. struct kioctx {
  68. struct percpu_ref users;
  69. atomic_t dead;
  70. struct percpu_ref reqs;
  71. unsigned long user_id;
  72. struct __percpu kioctx_cpu *cpu;
  73. /*
  74. * For percpu reqs_available, number of slots we move to/from global
  75. * counter at a time:
  76. */
  77. unsigned req_batch;
  78. /*
  79. * This is what userspace passed to io_setup(), it's not used for
  80. * anything but counting against the global max_reqs quota.
  81. *
  82. * The real limit is nr_events - 1, which will be larger (see
  83. * aio_setup_ring())
  84. */
  85. unsigned max_reqs;
  86. /* Size of ringbuffer, in units of struct io_event */
  87. unsigned nr_events;
  88. unsigned long mmap_base;
  89. unsigned long mmap_size;
  90. struct page **ring_pages;
  91. long nr_pages;
  92. struct work_struct free_work;
  93. struct {
  94. /*
  95. * This counts the number of available slots in the ringbuffer,
  96. * so we avoid overflowing it: it's decremented (if positive)
  97. * when allocating a kiocb and incremented when the resulting
  98. * io_event is pulled off the ringbuffer.
  99. *
  100. * We batch accesses to it with a percpu version.
  101. */
  102. atomic_t reqs_available;
  103. } ____cacheline_aligned_in_smp;
  104. struct {
  105. spinlock_t ctx_lock;
  106. struct list_head active_reqs; /* used for cancellation */
  107. } ____cacheline_aligned_in_smp;
  108. struct {
  109. struct mutex ring_lock;
  110. wait_queue_head_t wait;
  111. } ____cacheline_aligned_in_smp;
  112. struct {
  113. unsigned tail;
  114. spinlock_t completion_lock;
  115. } ____cacheline_aligned_in_smp;
  116. struct page *internal_pages[AIO_RING_PAGES];
  117. struct file *aio_ring_file;
  118. unsigned id;
  119. };
  120. /*------ sysctl variables----*/
  121. static DEFINE_SPINLOCK(aio_nr_lock);
  122. unsigned long aio_nr; /* current system wide number of aio requests */
  123. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  124. /*----end sysctl variables---*/
  125. static struct kmem_cache *kiocb_cachep;
  126. static struct kmem_cache *kioctx_cachep;
  127. /* aio_setup
  128. * Creates the slab caches used by the aio routines, panic on
  129. * failure as this is done early during the boot sequence.
  130. */
  131. static int __init aio_setup(void)
  132. {
  133. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  134. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  135. pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
  136. return 0;
  137. }
  138. __initcall(aio_setup);
  139. static void put_aio_ring_file(struct kioctx *ctx)
  140. {
  141. struct file *aio_ring_file = ctx->aio_ring_file;
  142. if (aio_ring_file) {
  143. truncate_setsize(aio_ring_file->f_inode, 0);
  144. /* Prevent further access to the kioctx from migratepages */
  145. spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
  146. aio_ring_file->f_inode->i_mapping->private_data = NULL;
  147. ctx->aio_ring_file = NULL;
  148. spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
  149. fput(aio_ring_file);
  150. }
  151. }
  152. static void aio_free_ring(struct kioctx *ctx)
  153. {
  154. int i;
  155. for (i = 0; i < ctx->nr_pages; i++) {
  156. pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
  157. page_count(ctx->ring_pages[i]));
  158. put_page(ctx->ring_pages[i]);
  159. }
  160. put_aio_ring_file(ctx);
  161. if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
  162. kfree(ctx->ring_pages);
  163. ctx->ring_pages = NULL;
  164. }
  165. }
  166. static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
  167. {
  168. vma->vm_ops = &generic_file_vm_ops;
  169. return 0;
  170. }
  171. static const struct file_operations aio_ring_fops = {
  172. .mmap = aio_ring_mmap,
  173. };
  174. static int aio_set_page_dirty(struct page *page)
  175. {
  176. return 0;
  177. }
  178. #if IS_ENABLED(CONFIG_MIGRATION)
  179. static int aio_migratepage(struct address_space *mapping, struct page *new,
  180. struct page *old, enum migrate_mode mode)
  181. {
  182. struct kioctx *ctx;
  183. unsigned long flags;
  184. int rc;
  185. /* Writeback must be complete */
  186. BUG_ON(PageWriteback(old));
  187. put_page(old);
  188. rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
  189. if (rc != MIGRATEPAGE_SUCCESS) {
  190. get_page(old);
  191. return rc;
  192. }
  193. get_page(new);
  194. /* We can potentially race against kioctx teardown here. Use the
  195. * address_space's private data lock to protect the mapping's
  196. * private_data.
  197. */
  198. spin_lock(&mapping->private_lock);
  199. ctx = mapping->private_data;
  200. if (ctx) {
  201. pgoff_t idx;
  202. spin_lock_irqsave(&ctx->completion_lock, flags);
  203. migrate_page_copy(new, old);
  204. idx = old->index;
  205. if (idx < (pgoff_t)ctx->nr_pages)
  206. ctx->ring_pages[idx] = new;
  207. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  208. } else
  209. rc = -EBUSY;
  210. spin_unlock(&mapping->private_lock);
  211. return rc;
  212. }
  213. #endif
  214. static const struct address_space_operations aio_ctx_aops = {
  215. .set_page_dirty = aio_set_page_dirty,
  216. #if IS_ENABLED(CONFIG_MIGRATION)
  217. .migratepage = aio_migratepage,
  218. #endif
  219. };
  220. static int aio_setup_ring(struct kioctx *ctx)
  221. {
  222. struct aio_ring *ring;
  223. unsigned nr_events = ctx->max_reqs;
  224. struct mm_struct *mm = current->mm;
  225. unsigned long size, populate;
  226. int nr_pages;
  227. int i;
  228. struct file *file;
  229. /* Compensate for the ring buffer's head/tail overlap entry */
  230. nr_events += 2; /* 1 is required, 2 for good luck */
  231. size = sizeof(struct aio_ring);
  232. size += sizeof(struct io_event) * nr_events;
  233. nr_pages = PFN_UP(size);
  234. if (nr_pages < 0)
  235. return -EINVAL;
  236. file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
  237. if (IS_ERR(file)) {
  238. ctx->aio_ring_file = NULL;
  239. return -EAGAIN;
  240. }
  241. file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
  242. file->f_inode->i_mapping->private_data = ctx;
  243. file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
  244. for (i = 0; i < nr_pages; i++) {
  245. struct page *page;
  246. page = find_or_create_page(file->f_inode->i_mapping,
  247. i, GFP_HIGHUSER | __GFP_ZERO);
  248. if (!page)
  249. break;
  250. pr_debug("pid(%d) page[%d]->count=%d\n",
  251. current->pid, i, page_count(page));
  252. SetPageUptodate(page);
  253. SetPageDirty(page);
  254. unlock_page(page);
  255. }
  256. ctx->aio_ring_file = file;
  257. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
  258. / sizeof(struct io_event);
  259. ctx->ring_pages = ctx->internal_pages;
  260. if (nr_pages > AIO_RING_PAGES) {
  261. ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
  262. GFP_KERNEL);
  263. if (!ctx->ring_pages)
  264. return -ENOMEM;
  265. }
  266. ctx->mmap_size = nr_pages * PAGE_SIZE;
  267. pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
  268. down_write(&mm->mmap_sem);
  269. ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
  270. PROT_READ | PROT_WRITE,
  271. MAP_SHARED | MAP_POPULATE, 0, &populate);
  272. if (IS_ERR((void *)ctx->mmap_base)) {
  273. up_write(&mm->mmap_sem);
  274. ctx->mmap_size = 0;
  275. aio_free_ring(ctx);
  276. return -EAGAIN;
  277. }
  278. pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
  279. /* We must do this while still holding mmap_sem for write, as we
  280. * need to be protected against userspace attempting to mremap()
  281. * or munmap() the ring buffer.
  282. */
  283. ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
  284. 1, 0, ctx->ring_pages, NULL);
  285. /* Dropping the reference here is safe as the page cache will hold
  286. * onto the pages for us. It is also required so that page migration
  287. * can unmap the pages and get the right reference count.
  288. */
  289. for (i = 0; i < ctx->nr_pages; i++)
  290. put_page(ctx->ring_pages[i]);
  291. up_write(&mm->mmap_sem);
  292. if (unlikely(ctx->nr_pages != nr_pages)) {
  293. aio_free_ring(ctx);
  294. return -EAGAIN;
  295. }
  296. ctx->user_id = ctx->mmap_base;
  297. ctx->nr_events = nr_events; /* trusted copy */
  298. ring = kmap_atomic(ctx->ring_pages[0]);
  299. ring->nr = nr_events; /* user copy */
  300. ring->id = ~0U;
  301. ring->head = ring->tail = 0;
  302. ring->magic = AIO_RING_MAGIC;
  303. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  304. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  305. ring->header_length = sizeof(struct aio_ring);
  306. kunmap_atomic(ring);
  307. flush_dcache_page(ctx->ring_pages[0]);
  308. return 0;
  309. }
  310. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  311. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  312. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  313. void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
  314. {
  315. struct kioctx *ctx = req->ki_ctx;
  316. unsigned long flags;
  317. spin_lock_irqsave(&ctx->ctx_lock, flags);
  318. if (!req->ki_list.next)
  319. list_add(&req->ki_list, &ctx->active_reqs);
  320. req->ki_cancel = cancel;
  321. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  322. }
  323. EXPORT_SYMBOL(kiocb_set_cancel_fn);
  324. static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
  325. {
  326. kiocb_cancel_fn *old, *cancel;
  327. /*
  328. * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
  329. * actually has a cancel function, hence the cmpxchg()
  330. */
  331. cancel = ACCESS_ONCE(kiocb->ki_cancel);
  332. do {
  333. if (!cancel || cancel == KIOCB_CANCELLED)
  334. return -EINVAL;
  335. old = cancel;
  336. cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
  337. } while (cancel != old);
  338. return cancel(kiocb);
  339. }
  340. static void free_ioctx(struct work_struct *work)
  341. {
  342. struct kioctx *ctx = container_of(work, struct kioctx, free_work);
  343. pr_debug("freeing %p\n", ctx);
  344. aio_free_ring(ctx);
  345. free_percpu(ctx->cpu);
  346. kmem_cache_free(kioctx_cachep, ctx);
  347. }
  348. static void free_ioctx_reqs(struct percpu_ref *ref)
  349. {
  350. struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
  351. INIT_WORK(&ctx->free_work, free_ioctx);
  352. schedule_work(&ctx->free_work);
  353. }
  354. /*
  355. * When this function runs, the kioctx has been removed from the "hash table"
  356. * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
  357. * now it's safe to cancel any that need to be.
  358. */
  359. static void free_ioctx_users(struct percpu_ref *ref)
  360. {
  361. struct kioctx *ctx = container_of(ref, struct kioctx, users);
  362. struct kiocb *req;
  363. spin_lock_irq(&ctx->ctx_lock);
  364. while (!list_empty(&ctx->active_reqs)) {
  365. req = list_first_entry(&ctx->active_reqs,
  366. struct kiocb, ki_list);
  367. list_del_init(&req->ki_list);
  368. kiocb_cancel(ctx, req);
  369. }
  370. spin_unlock_irq(&ctx->ctx_lock);
  371. percpu_ref_kill(&ctx->reqs);
  372. percpu_ref_put(&ctx->reqs);
  373. }
  374. static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
  375. {
  376. unsigned i, new_nr;
  377. struct kioctx_table *table, *old;
  378. struct aio_ring *ring;
  379. spin_lock(&mm->ioctx_lock);
  380. rcu_read_lock();
  381. table = rcu_dereference(mm->ioctx_table);
  382. while (1) {
  383. if (table)
  384. for (i = 0; i < table->nr; i++)
  385. if (!table->table[i]) {
  386. ctx->id = i;
  387. table->table[i] = ctx;
  388. rcu_read_unlock();
  389. spin_unlock(&mm->ioctx_lock);
  390. ring = kmap_atomic(ctx->ring_pages[0]);
  391. ring->id = ctx->id;
  392. kunmap_atomic(ring);
  393. return 0;
  394. }
  395. new_nr = (table ? table->nr : 1) * 4;
  396. rcu_read_unlock();
  397. spin_unlock(&mm->ioctx_lock);
  398. table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
  399. new_nr, GFP_KERNEL);
  400. if (!table)
  401. return -ENOMEM;
  402. table->nr = new_nr;
  403. spin_lock(&mm->ioctx_lock);
  404. rcu_read_lock();
  405. old = rcu_dereference(mm->ioctx_table);
  406. if (!old) {
  407. rcu_assign_pointer(mm->ioctx_table, table);
  408. } else if (table->nr > old->nr) {
  409. memcpy(table->table, old->table,
  410. old->nr * sizeof(struct kioctx *));
  411. rcu_assign_pointer(mm->ioctx_table, table);
  412. kfree_rcu(old, rcu);
  413. } else {
  414. kfree(table);
  415. table = old;
  416. }
  417. }
  418. }
  419. static void aio_nr_sub(unsigned nr)
  420. {
  421. spin_lock(&aio_nr_lock);
  422. if (WARN_ON(aio_nr - nr > aio_nr))
  423. aio_nr = 0;
  424. else
  425. aio_nr -= nr;
  426. spin_unlock(&aio_nr_lock);
  427. }
  428. /* ioctx_alloc
  429. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  430. */
  431. static struct kioctx *ioctx_alloc(unsigned nr_events)
  432. {
  433. struct mm_struct *mm = current->mm;
  434. struct kioctx *ctx;
  435. int err = -ENOMEM;
  436. /*
  437. * We keep track of the number of available ringbuffer slots, to prevent
  438. * overflow (reqs_available), and we also use percpu counters for this.
  439. *
  440. * So since up to half the slots might be on other cpu's percpu counters
  441. * and unavailable, double nr_events so userspace sees what they
  442. * expected: additionally, we move req_batch slots to/from percpu
  443. * counters at a time, so make sure that isn't 0:
  444. */
  445. nr_events = max(nr_events, num_possible_cpus() * 4);
  446. nr_events *= 2;
  447. /* Prevent overflows */
  448. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  449. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  450. pr_debug("ENOMEM: nr_events too high\n");
  451. return ERR_PTR(-EINVAL);
  452. }
  453. if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
  454. return ERR_PTR(-EAGAIN);
  455. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  456. if (!ctx)
  457. return ERR_PTR(-ENOMEM);
  458. ctx->max_reqs = nr_events;
  459. if (percpu_ref_init(&ctx->users, free_ioctx_users))
  460. goto err;
  461. if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
  462. goto err;
  463. spin_lock_init(&ctx->ctx_lock);
  464. spin_lock_init(&ctx->completion_lock);
  465. mutex_init(&ctx->ring_lock);
  466. init_waitqueue_head(&ctx->wait);
  467. INIT_LIST_HEAD(&ctx->active_reqs);
  468. ctx->cpu = alloc_percpu(struct kioctx_cpu);
  469. if (!ctx->cpu)
  470. goto err;
  471. if (aio_setup_ring(ctx) < 0)
  472. goto err;
  473. atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
  474. ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
  475. if (ctx->req_batch < 1)
  476. ctx->req_batch = 1;
  477. /* limit the number of system wide aios */
  478. spin_lock(&aio_nr_lock);
  479. if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
  480. aio_nr + nr_events < aio_nr) {
  481. spin_unlock(&aio_nr_lock);
  482. err = -EAGAIN;
  483. goto err;
  484. }
  485. aio_nr += ctx->max_reqs;
  486. spin_unlock(&aio_nr_lock);
  487. percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
  488. err = ioctx_add_table(ctx, mm);
  489. if (err)
  490. goto err_cleanup;
  491. pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  492. ctx, ctx->user_id, mm, ctx->nr_events);
  493. return ctx;
  494. err_cleanup:
  495. aio_nr_sub(ctx->max_reqs);
  496. err:
  497. free_percpu(ctx->cpu);
  498. free_percpu(ctx->reqs.pcpu_count);
  499. free_percpu(ctx->users.pcpu_count);
  500. kmem_cache_free(kioctx_cachep, ctx);
  501. pr_debug("error allocating ioctx %d\n", err);
  502. return ERR_PTR(err);
  503. }
  504. /* kill_ioctx
  505. * Cancels all outstanding aio requests on an aio context. Used
  506. * when the processes owning a context have all exited to encourage
  507. * the rapid destruction of the kioctx.
  508. */
  509. static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
  510. {
  511. if (!atomic_xchg(&ctx->dead, 1)) {
  512. struct kioctx_table *table;
  513. spin_lock(&mm->ioctx_lock);
  514. rcu_read_lock();
  515. table = rcu_dereference(mm->ioctx_table);
  516. WARN_ON(ctx != table->table[ctx->id]);
  517. table->table[ctx->id] = NULL;
  518. rcu_read_unlock();
  519. spin_unlock(&mm->ioctx_lock);
  520. /* percpu_ref_kill() will do the necessary call_rcu() */
  521. wake_up_all(&ctx->wait);
  522. /*
  523. * It'd be more correct to do this in free_ioctx(), after all
  524. * the outstanding kiocbs have finished - but by then io_destroy
  525. * has already returned, so io_setup() could potentially return
  526. * -EAGAIN with no ioctxs actually in use (as far as userspace
  527. * could tell).
  528. */
  529. aio_nr_sub(ctx->max_reqs);
  530. if (ctx->mmap_size)
  531. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  532. percpu_ref_kill(&ctx->users);
  533. }
  534. }
  535. /* wait_on_sync_kiocb:
  536. * Waits on the given sync kiocb to complete.
  537. */
  538. ssize_t wait_on_sync_kiocb(struct kiocb *req)
  539. {
  540. while (!req->ki_ctx) {
  541. set_current_state(TASK_UNINTERRUPTIBLE);
  542. if (req->ki_ctx)
  543. break;
  544. io_schedule();
  545. }
  546. __set_current_state(TASK_RUNNING);
  547. return req->ki_user_data;
  548. }
  549. EXPORT_SYMBOL(wait_on_sync_kiocb);
  550. /*
  551. * exit_aio: called when the last user of mm goes away. At this point, there is
  552. * no way for any new requests to be submited or any of the io_* syscalls to be
  553. * called on the context.
  554. *
  555. * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
  556. * them.
  557. */
  558. void exit_aio(struct mm_struct *mm)
  559. {
  560. struct kioctx_table *table;
  561. struct kioctx *ctx;
  562. unsigned i = 0;
  563. while (1) {
  564. rcu_read_lock();
  565. table = rcu_dereference(mm->ioctx_table);
  566. do {
  567. if (!table || i >= table->nr) {
  568. rcu_read_unlock();
  569. rcu_assign_pointer(mm->ioctx_table, NULL);
  570. if (table)
  571. kfree(table);
  572. return;
  573. }
  574. ctx = table->table[i++];
  575. } while (!ctx);
  576. rcu_read_unlock();
  577. /*
  578. * We don't need to bother with munmap() here -
  579. * exit_mmap(mm) is coming and it'll unmap everything.
  580. * Since aio_free_ring() uses non-zero ->mmap_size
  581. * as indicator that it needs to unmap the area,
  582. * just set it to 0; aio_free_ring() is the only
  583. * place that uses ->mmap_size, so it's safe.
  584. */
  585. ctx->mmap_size = 0;
  586. kill_ioctx(mm, ctx);
  587. }
  588. }
  589. static void put_reqs_available(struct kioctx *ctx, unsigned nr)
  590. {
  591. struct kioctx_cpu *kcpu;
  592. preempt_disable();
  593. kcpu = this_cpu_ptr(ctx->cpu);
  594. kcpu->reqs_available += nr;
  595. while (kcpu->reqs_available >= ctx->req_batch * 2) {
  596. kcpu->reqs_available -= ctx->req_batch;
  597. atomic_add(ctx->req_batch, &ctx->reqs_available);
  598. }
  599. preempt_enable();
  600. }
  601. static bool get_reqs_available(struct kioctx *ctx)
  602. {
  603. struct kioctx_cpu *kcpu;
  604. bool ret = false;
  605. preempt_disable();
  606. kcpu = this_cpu_ptr(ctx->cpu);
  607. if (!kcpu->reqs_available) {
  608. int old, avail = atomic_read(&ctx->reqs_available);
  609. do {
  610. if (avail < ctx->req_batch)
  611. goto out;
  612. old = avail;
  613. avail = atomic_cmpxchg(&ctx->reqs_available,
  614. avail, avail - ctx->req_batch);
  615. } while (avail != old);
  616. kcpu->reqs_available += ctx->req_batch;
  617. }
  618. ret = true;
  619. kcpu->reqs_available--;
  620. out:
  621. preempt_enable();
  622. return ret;
  623. }
  624. /* aio_get_req
  625. * Allocate a slot for an aio request.
  626. * Returns NULL if no requests are free.
  627. */
  628. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  629. {
  630. struct kiocb *req;
  631. if (!get_reqs_available(ctx))
  632. return NULL;
  633. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
  634. if (unlikely(!req))
  635. goto out_put;
  636. percpu_ref_get(&ctx->reqs);
  637. req->ki_ctx = ctx;
  638. return req;
  639. out_put:
  640. put_reqs_available(ctx, 1);
  641. return NULL;
  642. }
  643. static void kiocb_free(struct kiocb *req)
  644. {
  645. if (req->ki_filp)
  646. fput(req->ki_filp);
  647. if (req->ki_eventfd != NULL)
  648. eventfd_ctx_put(req->ki_eventfd);
  649. kmem_cache_free(kiocb_cachep, req);
  650. }
  651. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  652. {
  653. struct aio_ring __user *ring = (void __user *)ctx_id;
  654. struct mm_struct *mm = current->mm;
  655. struct kioctx *ctx, *ret = NULL;
  656. struct kioctx_table *table;
  657. unsigned id;
  658. if (get_user(id, &ring->id))
  659. return NULL;
  660. rcu_read_lock();
  661. table = rcu_dereference(mm->ioctx_table);
  662. if (!table || id >= table->nr)
  663. goto out;
  664. ctx = table->table[id];
  665. if (ctx && ctx->user_id == ctx_id) {
  666. percpu_ref_get(&ctx->users);
  667. ret = ctx;
  668. }
  669. out:
  670. rcu_read_unlock();
  671. return ret;
  672. }
  673. /* aio_complete
  674. * Called when the io request on the given iocb is complete.
  675. */
  676. void aio_complete(struct kiocb *iocb, long res, long res2)
  677. {
  678. struct kioctx *ctx = iocb->ki_ctx;
  679. struct aio_ring *ring;
  680. struct io_event *ev_page, *event;
  681. unsigned long flags;
  682. unsigned tail, pos;
  683. /*
  684. * Special case handling for sync iocbs:
  685. * - events go directly into the iocb for fast handling
  686. * - the sync task with the iocb in its stack holds the single iocb
  687. * ref, no other paths have a way to get another ref
  688. * - the sync task helpfully left a reference to itself in the iocb
  689. */
  690. if (is_sync_kiocb(iocb)) {
  691. iocb->ki_user_data = res;
  692. smp_wmb();
  693. iocb->ki_ctx = ERR_PTR(-EXDEV);
  694. wake_up_process(iocb->ki_obj.tsk);
  695. return;
  696. }
  697. if (iocb->ki_list.next) {
  698. unsigned long flags;
  699. spin_lock_irqsave(&ctx->ctx_lock, flags);
  700. list_del(&iocb->ki_list);
  701. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  702. }
  703. /*
  704. * Add a completion event to the ring buffer. Must be done holding
  705. * ctx->completion_lock to prevent other code from messing with the tail
  706. * pointer since we might be called from irq context.
  707. */
  708. spin_lock_irqsave(&ctx->completion_lock, flags);
  709. tail = ctx->tail;
  710. pos = tail + AIO_EVENTS_OFFSET;
  711. if (++tail >= ctx->nr_events)
  712. tail = 0;
  713. ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  714. event = ev_page + pos % AIO_EVENTS_PER_PAGE;
  715. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  716. event->data = iocb->ki_user_data;
  717. event->res = res;
  718. event->res2 = res2;
  719. kunmap_atomic(ev_page);
  720. flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  721. pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
  722. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  723. res, res2);
  724. /* after flagging the request as done, we
  725. * must never even look at it again
  726. */
  727. smp_wmb(); /* make event visible before updating tail */
  728. ctx->tail = tail;
  729. ring = kmap_atomic(ctx->ring_pages[0]);
  730. ring->tail = tail;
  731. kunmap_atomic(ring);
  732. flush_dcache_page(ctx->ring_pages[0]);
  733. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  734. pr_debug("added to ring %p at [%u]\n", iocb, tail);
  735. /*
  736. * Check if the user asked us to deliver the result through an
  737. * eventfd. The eventfd_signal() function is safe to be called
  738. * from IRQ context.
  739. */
  740. if (iocb->ki_eventfd != NULL)
  741. eventfd_signal(iocb->ki_eventfd, 1);
  742. /* everything turned out well, dispose of the aiocb. */
  743. kiocb_free(iocb);
  744. /*
  745. * We have to order our ring_info tail store above and test
  746. * of the wait list below outside the wait lock. This is
  747. * like in wake_up_bit() where clearing a bit has to be
  748. * ordered with the unlocked test.
  749. */
  750. smp_mb();
  751. if (waitqueue_active(&ctx->wait))
  752. wake_up(&ctx->wait);
  753. percpu_ref_put(&ctx->reqs);
  754. }
  755. EXPORT_SYMBOL(aio_complete);
  756. /* aio_read_events
  757. * Pull an event off of the ioctx's event ring. Returns the number of
  758. * events fetched
  759. */
  760. static long aio_read_events_ring(struct kioctx *ctx,
  761. struct io_event __user *event, long nr)
  762. {
  763. struct aio_ring *ring;
  764. unsigned head, tail, pos;
  765. long ret = 0;
  766. int copy_ret;
  767. mutex_lock(&ctx->ring_lock);
  768. ring = kmap_atomic(ctx->ring_pages[0]);
  769. head = ring->head;
  770. tail = ring->tail;
  771. kunmap_atomic(ring);
  772. pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
  773. if (head == tail)
  774. goto out;
  775. while (ret < nr) {
  776. long avail;
  777. struct io_event *ev;
  778. struct page *page;
  779. avail = (head <= tail ? tail : ctx->nr_events) - head;
  780. if (head == tail)
  781. break;
  782. avail = min(avail, nr - ret);
  783. avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
  784. ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
  785. pos = head + AIO_EVENTS_OFFSET;
  786. page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
  787. pos %= AIO_EVENTS_PER_PAGE;
  788. ev = kmap(page);
  789. copy_ret = copy_to_user(event + ret, ev + pos,
  790. sizeof(*ev) * avail);
  791. kunmap(page);
  792. if (unlikely(copy_ret)) {
  793. ret = -EFAULT;
  794. goto out;
  795. }
  796. ret += avail;
  797. head += avail;
  798. head %= ctx->nr_events;
  799. }
  800. ring = kmap_atomic(ctx->ring_pages[0]);
  801. ring->head = head;
  802. kunmap_atomic(ring);
  803. flush_dcache_page(ctx->ring_pages[0]);
  804. pr_debug("%li h%u t%u\n", ret, head, tail);
  805. put_reqs_available(ctx, ret);
  806. out:
  807. mutex_unlock(&ctx->ring_lock);
  808. return ret;
  809. }
  810. static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
  811. struct io_event __user *event, long *i)
  812. {
  813. long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
  814. if (ret > 0)
  815. *i += ret;
  816. if (unlikely(atomic_read(&ctx->dead)))
  817. ret = -EINVAL;
  818. if (!*i)
  819. *i = ret;
  820. return ret < 0 || *i >= min_nr;
  821. }
  822. static long read_events(struct kioctx *ctx, long min_nr, long nr,
  823. struct io_event __user *event,
  824. struct timespec __user *timeout)
  825. {
  826. ktime_t until = { .tv64 = KTIME_MAX };
  827. long ret = 0;
  828. if (timeout) {
  829. struct timespec ts;
  830. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  831. return -EFAULT;
  832. until = timespec_to_ktime(ts);
  833. }
  834. /*
  835. * Note that aio_read_events() is being called as the conditional - i.e.
  836. * we're calling it after prepare_to_wait() has set task state to
  837. * TASK_INTERRUPTIBLE.
  838. *
  839. * But aio_read_events() can block, and if it blocks it's going to flip
  840. * the task state back to TASK_RUNNING.
  841. *
  842. * This should be ok, provided it doesn't flip the state back to
  843. * TASK_RUNNING and return 0 too much - that causes us to spin. That
  844. * will only happen if the mutex_lock() call blocks, and we then find
  845. * the ringbuffer empty. So in practice we should be ok, but it's
  846. * something to be aware of when touching this code.
  847. */
  848. wait_event_interruptible_hrtimeout(ctx->wait,
  849. aio_read_events(ctx, min_nr, nr, event, &ret), until);
  850. if (!ret && signal_pending(current))
  851. ret = -EINTR;
  852. return ret;
  853. }
  854. /* sys_io_setup:
  855. * Create an aio_context capable of receiving at least nr_events.
  856. * ctxp must not point to an aio_context that already exists, and
  857. * must be initialized to 0 prior to the call. On successful
  858. * creation of the aio_context, *ctxp is filled in with the resulting
  859. * handle. May fail with -EINVAL if *ctxp is not initialized,
  860. * if the specified nr_events exceeds internal limits. May fail
  861. * with -EAGAIN if the specified nr_events exceeds the user's limit
  862. * of available events. May fail with -ENOMEM if insufficient kernel
  863. * resources are available. May fail with -EFAULT if an invalid
  864. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  865. * implemented.
  866. */
  867. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  868. {
  869. struct kioctx *ioctx = NULL;
  870. unsigned long ctx;
  871. long ret;
  872. ret = get_user(ctx, ctxp);
  873. if (unlikely(ret))
  874. goto out;
  875. ret = -EINVAL;
  876. if (unlikely(ctx || nr_events == 0)) {
  877. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  878. ctx, nr_events);
  879. goto out;
  880. }
  881. ioctx = ioctx_alloc(nr_events);
  882. ret = PTR_ERR(ioctx);
  883. if (!IS_ERR(ioctx)) {
  884. ret = put_user(ioctx->user_id, ctxp);
  885. if (ret)
  886. kill_ioctx(current->mm, ioctx);
  887. percpu_ref_put(&ioctx->users);
  888. }
  889. out:
  890. return ret;
  891. }
  892. /* sys_io_destroy:
  893. * Destroy the aio_context specified. May cancel any outstanding
  894. * AIOs and block on completion. Will fail with -ENOSYS if not
  895. * implemented. May fail with -EINVAL if the context pointed to
  896. * is invalid.
  897. */
  898. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  899. {
  900. struct kioctx *ioctx = lookup_ioctx(ctx);
  901. if (likely(NULL != ioctx)) {
  902. kill_ioctx(current->mm, ioctx);
  903. percpu_ref_put(&ioctx->users);
  904. return 0;
  905. }
  906. pr_debug("EINVAL: io_destroy: invalid context id\n");
  907. return -EINVAL;
  908. }
  909. typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
  910. unsigned long, loff_t);
  911. static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
  912. int rw, char __user *buf,
  913. unsigned long *nr_segs,
  914. struct iovec **iovec,
  915. bool compat)
  916. {
  917. ssize_t ret;
  918. *nr_segs = kiocb->ki_nbytes;
  919. #ifdef CONFIG_COMPAT
  920. if (compat)
  921. ret = compat_rw_copy_check_uvector(rw,
  922. (struct compat_iovec __user *)buf,
  923. *nr_segs, 1, *iovec, iovec);
  924. else
  925. #endif
  926. ret = rw_copy_check_uvector(rw,
  927. (struct iovec __user *)buf,
  928. *nr_segs, 1, *iovec, iovec);
  929. if (ret < 0)
  930. return ret;
  931. /* ki_nbytes now reflect bytes instead of segs */
  932. kiocb->ki_nbytes = ret;
  933. return 0;
  934. }
  935. static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
  936. int rw, char __user *buf,
  937. unsigned long *nr_segs,
  938. struct iovec *iovec)
  939. {
  940. if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
  941. return -EFAULT;
  942. iovec->iov_base = buf;
  943. iovec->iov_len = kiocb->ki_nbytes;
  944. *nr_segs = 1;
  945. return 0;
  946. }
  947. /*
  948. * aio_setup_iocb:
  949. * Performs the initial checks and aio retry method
  950. * setup for the kiocb at the time of io submission.
  951. */
  952. static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
  953. char __user *buf, bool compat)
  954. {
  955. struct file *file = req->ki_filp;
  956. ssize_t ret;
  957. unsigned long nr_segs;
  958. int rw;
  959. fmode_t mode;
  960. aio_rw_op *rw_op;
  961. struct iovec inline_vec, *iovec = &inline_vec;
  962. switch (opcode) {
  963. case IOCB_CMD_PREAD:
  964. case IOCB_CMD_PREADV:
  965. mode = FMODE_READ;
  966. rw = READ;
  967. rw_op = file->f_op->aio_read;
  968. goto rw_common;
  969. case IOCB_CMD_PWRITE:
  970. case IOCB_CMD_PWRITEV:
  971. mode = FMODE_WRITE;
  972. rw = WRITE;
  973. rw_op = file->f_op->aio_write;
  974. goto rw_common;
  975. rw_common:
  976. if (unlikely(!(file->f_mode & mode)))
  977. return -EBADF;
  978. if (!rw_op)
  979. return -EINVAL;
  980. ret = (opcode == IOCB_CMD_PREADV ||
  981. opcode == IOCB_CMD_PWRITEV)
  982. ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
  983. &iovec, compat)
  984. : aio_setup_single_vector(req, rw, buf, &nr_segs,
  985. iovec);
  986. if (ret)
  987. return ret;
  988. ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
  989. if (ret < 0) {
  990. if (iovec != &inline_vec)
  991. kfree(iovec);
  992. return ret;
  993. }
  994. req->ki_nbytes = ret;
  995. /* XXX: move/kill - rw_verify_area()? */
  996. /* This matches the pread()/pwrite() logic */
  997. if (req->ki_pos < 0) {
  998. ret = -EINVAL;
  999. break;
  1000. }
  1001. if (rw == WRITE)
  1002. file_start_write(file);
  1003. ret = rw_op(req, iovec, nr_segs, req->ki_pos);
  1004. if (rw == WRITE)
  1005. file_end_write(file);
  1006. break;
  1007. case IOCB_CMD_FDSYNC:
  1008. if (!file->f_op->aio_fsync)
  1009. return -EINVAL;
  1010. ret = file->f_op->aio_fsync(req, 1);
  1011. break;
  1012. case IOCB_CMD_FSYNC:
  1013. if (!file->f_op->aio_fsync)
  1014. return -EINVAL;
  1015. ret = file->f_op->aio_fsync(req, 0);
  1016. break;
  1017. default:
  1018. pr_debug("EINVAL: no operation provided\n");
  1019. return -EINVAL;
  1020. }
  1021. if (iovec != &inline_vec)
  1022. kfree(iovec);
  1023. if (ret != -EIOCBQUEUED) {
  1024. /*
  1025. * There's no easy way to restart the syscall since other AIO's
  1026. * may be already running. Just fail this IO with EINTR.
  1027. */
  1028. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  1029. ret == -ERESTARTNOHAND ||
  1030. ret == -ERESTART_RESTARTBLOCK))
  1031. ret = -EINTR;
  1032. aio_complete(req, ret, 0);
  1033. }
  1034. return 0;
  1035. }
  1036. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1037. struct iocb *iocb, bool compat)
  1038. {
  1039. struct kiocb *req;
  1040. ssize_t ret;
  1041. /* enforce forwards compatibility on users */
  1042. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1043. pr_debug("EINVAL: reserve field set\n");
  1044. return -EINVAL;
  1045. }
  1046. /* prevent overflows */
  1047. if (unlikely(
  1048. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1049. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1050. ((ssize_t)iocb->aio_nbytes < 0)
  1051. )) {
  1052. pr_debug("EINVAL: io_submit: overflow check\n");
  1053. return -EINVAL;
  1054. }
  1055. req = aio_get_req(ctx);
  1056. if (unlikely(!req))
  1057. return -EAGAIN;
  1058. req->ki_filp = fget(iocb->aio_fildes);
  1059. if (unlikely(!req->ki_filp)) {
  1060. ret = -EBADF;
  1061. goto out_put_req;
  1062. }
  1063. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1064. /*
  1065. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1066. * instance of the file* now. The file descriptor must be
  1067. * an eventfd() fd, and will be signaled for each completed
  1068. * event using the eventfd_signal() function.
  1069. */
  1070. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1071. if (IS_ERR(req->ki_eventfd)) {
  1072. ret = PTR_ERR(req->ki_eventfd);
  1073. req->ki_eventfd = NULL;
  1074. goto out_put_req;
  1075. }
  1076. }
  1077. ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
  1078. if (unlikely(ret)) {
  1079. pr_debug("EFAULT: aio_key\n");
  1080. goto out_put_req;
  1081. }
  1082. req->ki_obj.user = user_iocb;
  1083. req->ki_user_data = iocb->aio_data;
  1084. req->ki_pos = iocb->aio_offset;
  1085. req->ki_nbytes = iocb->aio_nbytes;
  1086. ret = aio_run_iocb(req, iocb->aio_lio_opcode,
  1087. (char __user *)(unsigned long)iocb->aio_buf,
  1088. compat);
  1089. if (ret)
  1090. goto out_put_req;
  1091. return 0;
  1092. out_put_req:
  1093. put_reqs_available(ctx, 1);
  1094. percpu_ref_put(&ctx->reqs);
  1095. kiocb_free(req);
  1096. return ret;
  1097. }
  1098. long do_io_submit(aio_context_t ctx_id, long nr,
  1099. struct iocb __user *__user *iocbpp, bool compat)
  1100. {
  1101. struct kioctx *ctx;
  1102. long ret = 0;
  1103. int i = 0;
  1104. struct blk_plug plug;
  1105. if (unlikely(nr < 0))
  1106. return -EINVAL;
  1107. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1108. nr = LONG_MAX/sizeof(*iocbpp);
  1109. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1110. return -EFAULT;
  1111. ctx = lookup_ioctx(ctx_id);
  1112. if (unlikely(!ctx)) {
  1113. pr_debug("EINVAL: invalid context id\n");
  1114. return -EINVAL;
  1115. }
  1116. blk_start_plug(&plug);
  1117. /*
  1118. * AKPM: should this return a partial result if some of the IOs were
  1119. * successfully submitted?
  1120. */
  1121. for (i=0; i<nr; i++) {
  1122. struct iocb __user *user_iocb;
  1123. struct iocb tmp;
  1124. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1125. ret = -EFAULT;
  1126. break;
  1127. }
  1128. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1129. ret = -EFAULT;
  1130. break;
  1131. }
  1132. ret = io_submit_one(ctx, user_iocb, &tmp, compat);
  1133. if (ret)
  1134. break;
  1135. }
  1136. blk_finish_plug(&plug);
  1137. percpu_ref_put(&ctx->users);
  1138. return i ? i : ret;
  1139. }
  1140. /* sys_io_submit:
  1141. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1142. * the number of iocbs queued. May return -EINVAL if the aio_context
  1143. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1144. * *iocbpp[0] is not properly initialized, if the operation specified
  1145. * is invalid for the file descriptor in the iocb. May fail with
  1146. * -EFAULT if any of the data structures point to invalid data. May
  1147. * fail with -EBADF if the file descriptor specified in the first
  1148. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1149. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1150. * fail with -ENOSYS if not implemented.
  1151. */
  1152. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1153. struct iocb __user * __user *, iocbpp)
  1154. {
  1155. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1156. }
  1157. /* lookup_kiocb
  1158. * Finds a given iocb for cancellation.
  1159. */
  1160. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1161. u32 key)
  1162. {
  1163. struct list_head *pos;
  1164. assert_spin_locked(&ctx->ctx_lock);
  1165. if (key != KIOCB_KEY)
  1166. return NULL;
  1167. /* TODO: use a hash or array, this sucks. */
  1168. list_for_each(pos, &ctx->active_reqs) {
  1169. struct kiocb *kiocb = list_kiocb(pos);
  1170. if (kiocb->ki_obj.user == iocb)
  1171. return kiocb;
  1172. }
  1173. return NULL;
  1174. }
  1175. /* sys_io_cancel:
  1176. * Attempts to cancel an iocb previously passed to io_submit. If
  1177. * the operation is successfully cancelled, the resulting event is
  1178. * copied into the memory pointed to by result without being placed
  1179. * into the completion queue and 0 is returned. May fail with
  1180. * -EFAULT if any of the data structures pointed to are invalid.
  1181. * May fail with -EINVAL if aio_context specified by ctx_id is
  1182. * invalid. May fail with -EAGAIN if the iocb specified was not
  1183. * cancelled. Will fail with -ENOSYS if not implemented.
  1184. */
  1185. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1186. struct io_event __user *, result)
  1187. {
  1188. struct kioctx *ctx;
  1189. struct kiocb *kiocb;
  1190. u32 key;
  1191. int ret;
  1192. ret = get_user(key, &iocb->aio_key);
  1193. if (unlikely(ret))
  1194. return -EFAULT;
  1195. ctx = lookup_ioctx(ctx_id);
  1196. if (unlikely(!ctx))
  1197. return -EINVAL;
  1198. spin_lock_irq(&ctx->ctx_lock);
  1199. kiocb = lookup_kiocb(ctx, iocb, key);
  1200. if (kiocb)
  1201. ret = kiocb_cancel(ctx, kiocb);
  1202. else
  1203. ret = -EINVAL;
  1204. spin_unlock_irq(&ctx->ctx_lock);
  1205. if (!ret) {
  1206. /*
  1207. * The result argument is no longer used - the io_event is
  1208. * always delivered via the ring buffer. -EINPROGRESS indicates
  1209. * cancellation is progress:
  1210. */
  1211. ret = -EINPROGRESS;
  1212. }
  1213. percpu_ref_put(&ctx->users);
  1214. return ret;
  1215. }
  1216. /* io_getevents:
  1217. * Attempts to read at least min_nr events and up to nr events from
  1218. * the completion queue for the aio_context specified by ctx_id. If
  1219. * it succeeds, the number of read events is returned. May fail with
  1220. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1221. * out of range, if timeout is out of range. May fail with -EFAULT
  1222. * if any of the memory specified is invalid. May return 0 or
  1223. * < min_nr if the timeout specified by timeout has elapsed
  1224. * before sufficient events are available, where timeout == NULL
  1225. * specifies an infinite timeout. Note that the timeout pointed to by
  1226. * timeout is relative. Will fail with -ENOSYS if not implemented.
  1227. */
  1228. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1229. long, min_nr,
  1230. long, nr,
  1231. struct io_event __user *, events,
  1232. struct timespec __user *, timeout)
  1233. {
  1234. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1235. long ret = -EINVAL;
  1236. if (likely(ioctx)) {
  1237. if (likely(min_nr <= nr && min_nr >= 0))
  1238. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1239. percpu_ref_put(&ioctx->users);
  1240. }
  1241. return ret;
  1242. }