memory.c 116 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <asm/io.h>
  58. #include <asm/pgalloc.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/tlb.h>
  61. #include <asm/tlbflush.h>
  62. #include <asm/pgtable.h>
  63. #include "internal.h"
  64. #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
  65. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
  66. #endif
  67. #ifndef CONFIG_NEED_MULTIPLE_NODES
  68. /* use the per-pgdat data instead for discontigmem - mbligh */
  69. unsigned long max_mapnr;
  70. struct page *mem_map;
  71. EXPORT_SYMBOL(max_mapnr);
  72. EXPORT_SYMBOL(mem_map);
  73. #endif
  74. unsigned long num_physpages;
  75. /*
  76. * A number of key systems in x86 including ioremap() rely on the assumption
  77. * that high_memory defines the upper bound on direct map memory, then end
  78. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  79. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  80. * and ZONE_HIGHMEM.
  81. */
  82. void * high_memory;
  83. EXPORT_SYMBOL(num_physpages);
  84. EXPORT_SYMBOL(high_memory);
  85. /*
  86. * Randomize the address space (stacks, mmaps, brk, etc.).
  87. *
  88. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  89. * as ancient (libc5 based) binaries can segfault. )
  90. */
  91. int randomize_va_space __read_mostly =
  92. #ifdef CONFIG_COMPAT_BRK
  93. 1;
  94. #else
  95. 2;
  96. #endif
  97. static int __init disable_randmaps(char *s)
  98. {
  99. randomize_va_space = 0;
  100. return 1;
  101. }
  102. __setup("norandmaps", disable_randmaps);
  103. unsigned long zero_pfn __read_mostly;
  104. unsigned long highest_memmap_pfn __read_mostly;
  105. /*
  106. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  107. */
  108. static int __init init_zero_pfn(void)
  109. {
  110. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  111. return 0;
  112. }
  113. core_initcall(init_zero_pfn);
  114. #if defined(SPLIT_RSS_COUNTING)
  115. void sync_mm_rss(struct mm_struct *mm)
  116. {
  117. int i;
  118. for (i = 0; i < NR_MM_COUNTERS; i++) {
  119. if (current->rss_stat.count[i]) {
  120. add_mm_counter(mm, i, current->rss_stat.count[i]);
  121. current->rss_stat.count[i] = 0;
  122. }
  123. }
  124. current->rss_stat.events = 0;
  125. }
  126. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  127. {
  128. struct task_struct *task = current;
  129. if (likely(task->mm == mm))
  130. task->rss_stat.count[member] += val;
  131. else
  132. add_mm_counter(mm, member, val);
  133. }
  134. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  135. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  136. /* sync counter once per 64 page faults */
  137. #define TASK_RSS_EVENTS_THRESH (64)
  138. static void check_sync_rss_stat(struct task_struct *task)
  139. {
  140. if (unlikely(task != current))
  141. return;
  142. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  143. sync_mm_rss(task->mm);
  144. }
  145. #else /* SPLIT_RSS_COUNTING */
  146. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  147. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  148. static void check_sync_rss_stat(struct task_struct *task)
  149. {
  150. }
  151. #endif /* SPLIT_RSS_COUNTING */
  152. #ifdef HAVE_GENERIC_MMU_GATHER
  153. static int tlb_next_batch(struct mmu_gather *tlb)
  154. {
  155. struct mmu_gather_batch *batch;
  156. batch = tlb->active;
  157. if (batch->next) {
  158. tlb->active = batch->next;
  159. return 1;
  160. }
  161. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  162. return 0;
  163. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  164. if (!batch)
  165. return 0;
  166. tlb->batch_count++;
  167. batch->next = NULL;
  168. batch->nr = 0;
  169. batch->max = MAX_GATHER_BATCH;
  170. tlb->active->next = batch;
  171. tlb->active = batch;
  172. return 1;
  173. }
  174. /* tlb_gather_mmu
  175. * Called to initialize an (on-stack) mmu_gather structure for page-table
  176. * tear-down from @mm. The @fullmm argument is used when @mm is without
  177. * users and we're going to destroy the full address space (exit/execve).
  178. */
  179. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  180. {
  181. tlb->mm = mm;
  182. tlb->fullmm = fullmm;
  183. tlb->need_flush_all = 0;
  184. tlb->start = -1UL;
  185. tlb->end = 0;
  186. tlb->need_flush = 0;
  187. tlb->local.next = NULL;
  188. tlb->local.nr = 0;
  189. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  190. tlb->active = &tlb->local;
  191. tlb->batch_count = 0;
  192. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  193. tlb->batch = NULL;
  194. #endif
  195. }
  196. void tlb_flush_mmu(struct mmu_gather *tlb)
  197. {
  198. struct mmu_gather_batch *batch;
  199. if (!tlb->need_flush)
  200. return;
  201. tlb->need_flush = 0;
  202. tlb_flush(tlb);
  203. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  204. tlb_table_flush(tlb);
  205. #endif
  206. for (batch = &tlb->local; batch; batch = batch->next) {
  207. free_pages_and_swap_cache(batch->pages, batch->nr);
  208. batch->nr = 0;
  209. }
  210. tlb->active = &tlb->local;
  211. }
  212. /* tlb_finish_mmu
  213. * Called at the end of the shootdown operation to free up any resources
  214. * that were required.
  215. */
  216. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  217. {
  218. struct mmu_gather_batch *batch, *next;
  219. tlb->start = start;
  220. tlb->end = end;
  221. tlb_flush_mmu(tlb);
  222. /* keep the page table cache within bounds */
  223. check_pgt_cache();
  224. for (batch = tlb->local.next; batch; batch = next) {
  225. next = batch->next;
  226. free_pages((unsigned long)batch, 0);
  227. }
  228. tlb->local.next = NULL;
  229. }
  230. /* __tlb_remove_page
  231. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  232. * handling the additional races in SMP caused by other CPUs caching valid
  233. * mappings in their TLBs. Returns the number of free page slots left.
  234. * When out of page slots we must call tlb_flush_mmu().
  235. */
  236. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  237. {
  238. struct mmu_gather_batch *batch;
  239. VM_BUG_ON(!tlb->need_flush);
  240. batch = tlb->active;
  241. batch->pages[batch->nr++] = page;
  242. if (batch->nr == batch->max) {
  243. if (!tlb_next_batch(tlb))
  244. return 0;
  245. batch = tlb->active;
  246. }
  247. VM_BUG_ON(batch->nr > batch->max);
  248. return batch->max - batch->nr;
  249. }
  250. #endif /* HAVE_GENERIC_MMU_GATHER */
  251. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  252. /*
  253. * See the comment near struct mmu_table_batch.
  254. */
  255. static void tlb_remove_table_smp_sync(void *arg)
  256. {
  257. /* Simply deliver the interrupt */
  258. }
  259. static void tlb_remove_table_one(void *table)
  260. {
  261. /*
  262. * This isn't an RCU grace period and hence the page-tables cannot be
  263. * assumed to be actually RCU-freed.
  264. *
  265. * It is however sufficient for software page-table walkers that rely on
  266. * IRQ disabling. See the comment near struct mmu_table_batch.
  267. */
  268. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  269. __tlb_remove_table(table);
  270. }
  271. static void tlb_remove_table_rcu(struct rcu_head *head)
  272. {
  273. struct mmu_table_batch *batch;
  274. int i;
  275. batch = container_of(head, struct mmu_table_batch, rcu);
  276. for (i = 0; i < batch->nr; i++)
  277. __tlb_remove_table(batch->tables[i]);
  278. free_page((unsigned long)batch);
  279. }
  280. void tlb_table_flush(struct mmu_gather *tlb)
  281. {
  282. struct mmu_table_batch **batch = &tlb->batch;
  283. if (*batch) {
  284. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  285. *batch = NULL;
  286. }
  287. }
  288. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  289. {
  290. struct mmu_table_batch **batch = &tlb->batch;
  291. tlb->need_flush = 1;
  292. /*
  293. * When there's less then two users of this mm there cannot be a
  294. * concurrent page-table walk.
  295. */
  296. if (atomic_read(&tlb->mm->mm_users) < 2) {
  297. __tlb_remove_table(table);
  298. return;
  299. }
  300. if (*batch == NULL) {
  301. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  302. if (*batch == NULL) {
  303. tlb_remove_table_one(table);
  304. return;
  305. }
  306. (*batch)->nr = 0;
  307. }
  308. (*batch)->tables[(*batch)->nr++] = table;
  309. if ((*batch)->nr == MAX_TABLE_BATCH)
  310. tlb_table_flush(tlb);
  311. }
  312. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  313. /*
  314. * If a p?d_bad entry is found while walking page tables, report
  315. * the error, before resetting entry to p?d_none. Usually (but
  316. * very seldom) called out from the p?d_none_or_clear_bad macros.
  317. */
  318. void pgd_clear_bad(pgd_t *pgd)
  319. {
  320. pgd_ERROR(*pgd);
  321. pgd_clear(pgd);
  322. }
  323. void pud_clear_bad(pud_t *pud)
  324. {
  325. pud_ERROR(*pud);
  326. pud_clear(pud);
  327. }
  328. void pmd_clear_bad(pmd_t *pmd)
  329. {
  330. pmd_ERROR(*pmd);
  331. pmd_clear(pmd);
  332. }
  333. /*
  334. * Note: this doesn't free the actual pages themselves. That
  335. * has been handled earlier when unmapping all the memory regions.
  336. */
  337. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  338. unsigned long addr)
  339. {
  340. pgtable_t token = pmd_pgtable(*pmd);
  341. pmd_clear(pmd);
  342. pte_free_tlb(tlb, token, addr);
  343. tlb->mm->nr_ptes--;
  344. }
  345. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  346. unsigned long addr, unsigned long end,
  347. unsigned long floor, unsigned long ceiling)
  348. {
  349. pmd_t *pmd;
  350. unsigned long next;
  351. unsigned long start;
  352. start = addr;
  353. pmd = pmd_offset(pud, addr);
  354. do {
  355. next = pmd_addr_end(addr, end);
  356. if (pmd_none_or_clear_bad(pmd))
  357. continue;
  358. free_pte_range(tlb, pmd, addr);
  359. } while (pmd++, addr = next, addr != end);
  360. start &= PUD_MASK;
  361. if (start < floor)
  362. return;
  363. if (ceiling) {
  364. ceiling &= PUD_MASK;
  365. if (!ceiling)
  366. return;
  367. }
  368. if (end - 1 > ceiling - 1)
  369. return;
  370. pmd = pmd_offset(pud, start);
  371. pud_clear(pud);
  372. pmd_free_tlb(tlb, pmd, start);
  373. }
  374. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  375. unsigned long addr, unsigned long end,
  376. unsigned long floor, unsigned long ceiling)
  377. {
  378. pud_t *pud;
  379. unsigned long next;
  380. unsigned long start;
  381. start = addr;
  382. pud = pud_offset(pgd, addr);
  383. do {
  384. next = pud_addr_end(addr, end);
  385. if (pud_none_or_clear_bad(pud))
  386. continue;
  387. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  388. } while (pud++, addr = next, addr != end);
  389. start &= PGDIR_MASK;
  390. if (start < floor)
  391. return;
  392. if (ceiling) {
  393. ceiling &= PGDIR_MASK;
  394. if (!ceiling)
  395. return;
  396. }
  397. if (end - 1 > ceiling - 1)
  398. return;
  399. pud = pud_offset(pgd, start);
  400. pgd_clear(pgd);
  401. pud_free_tlb(tlb, pud, start);
  402. }
  403. /*
  404. * This function frees user-level page tables of a process.
  405. *
  406. * Must be called with pagetable lock held.
  407. */
  408. void free_pgd_range(struct mmu_gather *tlb,
  409. unsigned long addr, unsigned long end,
  410. unsigned long floor, unsigned long ceiling)
  411. {
  412. pgd_t *pgd;
  413. unsigned long next;
  414. /*
  415. * The next few lines have given us lots of grief...
  416. *
  417. * Why are we testing PMD* at this top level? Because often
  418. * there will be no work to do at all, and we'd prefer not to
  419. * go all the way down to the bottom just to discover that.
  420. *
  421. * Why all these "- 1"s? Because 0 represents both the bottom
  422. * of the address space and the top of it (using -1 for the
  423. * top wouldn't help much: the masks would do the wrong thing).
  424. * The rule is that addr 0 and floor 0 refer to the bottom of
  425. * the address space, but end 0 and ceiling 0 refer to the top
  426. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  427. * that end 0 case should be mythical).
  428. *
  429. * Wherever addr is brought up or ceiling brought down, we must
  430. * be careful to reject "the opposite 0" before it confuses the
  431. * subsequent tests. But what about where end is brought down
  432. * by PMD_SIZE below? no, end can't go down to 0 there.
  433. *
  434. * Whereas we round start (addr) and ceiling down, by different
  435. * masks at different levels, in order to test whether a table
  436. * now has no other vmas using it, so can be freed, we don't
  437. * bother to round floor or end up - the tests don't need that.
  438. */
  439. addr &= PMD_MASK;
  440. if (addr < floor) {
  441. addr += PMD_SIZE;
  442. if (!addr)
  443. return;
  444. }
  445. if (ceiling) {
  446. ceiling &= PMD_MASK;
  447. if (!ceiling)
  448. return;
  449. }
  450. if (end - 1 > ceiling - 1)
  451. end -= PMD_SIZE;
  452. if (addr > end - 1)
  453. return;
  454. pgd = pgd_offset(tlb->mm, addr);
  455. do {
  456. next = pgd_addr_end(addr, end);
  457. if (pgd_none_or_clear_bad(pgd))
  458. continue;
  459. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  460. } while (pgd++, addr = next, addr != end);
  461. }
  462. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  463. unsigned long floor, unsigned long ceiling)
  464. {
  465. while (vma) {
  466. struct vm_area_struct *next = vma->vm_next;
  467. unsigned long addr = vma->vm_start;
  468. /*
  469. * Hide vma from rmap and truncate_pagecache before freeing
  470. * pgtables
  471. */
  472. unlink_anon_vmas(vma);
  473. unlink_file_vma(vma);
  474. if (is_vm_hugetlb_page(vma)) {
  475. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  476. floor, next? next->vm_start: ceiling);
  477. } else {
  478. /*
  479. * Optimization: gather nearby vmas into one call down
  480. */
  481. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  482. && !is_vm_hugetlb_page(next)) {
  483. vma = next;
  484. next = vma->vm_next;
  485. unlink_anon_vmas(vma);
  486. unlink_file_vma(vma);
  487. }
  488. free_pgd_range(tlb, addr, vma->vm_end,
  489. floor, next? next->vm_start: ceiling);
  490. }
  491. vma = next;
  492. }
  493. }
  494. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  495. pmd_t *pmd, unsigned long address)
  496. {
  497. pgtable_t new = pte_alloc_one(mm, address);
  498. int wait_split_huge_page;
  499. if (!new)
  500. return -ENOMEM;
  501. /*
  502. * Ensure all pte setup (eg. pte page lock and page clearing) are
  503. * visible before the pte is made visible to other CPUs by being
  504. * put into page tables.
  505. *
  506. * The other side of the story is the pointer chasing in the page
  507. * table walking code (when walking the page table without locking;
  508. * ie. most of the time). Fortunately, these data accesses consist
  509. * of a chain of data-dependent loads, meaning most CPUs (alpha
  510. * being the notable exception) will already guarantee loads are
  511. * seen in-order. See the alpha page table accessors for the
  512. * smp_read_barrier_depends() barriers in page table walking code.
  513. */
  514. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  515. spin_lock(&mm->page_table_lock);
  516. wait_split_huge_page = 0;
  517. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  518. mm->nr_ptes++;
  519. pmd_populate(mm, pmd, new);
  520. new = NULL;
  521. } else if (unlikely(pmd_trans_splitting(*pmd)))
  522. wait_split_huge_page = 1;
  523. spin_unlock(&mm->page_table_lock);
  524. if (new)
  525. pte_free(mm, new);
  526. if (wait_split_huge_page)
  527. wait_split_huge_page(vma->anon_vma, pmd);
  528. return 0;
  529. }
  530. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  531. {
  532. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  533. if (!new)
  534. return -ENOMEM;
  535. smp_wmb(); /* See comment in __pte_alloc */
  536. spin_lock(&init_mm.page_table_lock);
  537. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  538. pmd_populate_kernel(&init_mm, pmd, new);
  539. new = NULL;
  540. } else
  541. VM_BUG_ON(pmd_trans_splitting(*pmd));
  542. spin_unlock(&init_mm.page_table_lock);
  543. if (new)
  544. pte_free_kernel(&init_mm, new);
  545. return 0;
  546. }
  547. static inline void init_rss_vec(int *rss)
  548. {
  549. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  550. }
  551. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  552. {
  553. int i;
  554. if (current->mm == mm)
  555. sync_mm_rss(mm);
  556. for (i = 0; i < NR_MM_COUNTERS; i++)
  557. if (rss[i])
  558. add_mm_counter(mm, i, rss[i]);
  559. }
  560. /*
  561. * This function is called to print an error when a bad pte
  562. * is found. For example, we might have a PFN-mapped pte in
  563. * a region that doesn't allow it.
  564. *
  565. * The calling function must still handle the error.
  566. */
  567. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  568. pte_t pte, struct page *page)
  569. {
  570. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  571. pud_t *pud = pud_offset(pgd, addr);
  572. pmd_t *pmd = pmd_offset(pud, addr);
  573. struct address_space *mapping;
  574. pgoff_t index;
  575. static unsigned long resume;
  576. static unsigned long nr_shown;
  577. static unsigned long nr_unshown;
  578. /*
  579. * Allow a burst of 60 reports, then keep quiet for that minute;
  580. * or allow a steady drip of one report per second.
  581. */
  582. if (nr_shown == 60) {
  583. if (time_before(jiffies, resume)) {
  584. nr_unshown++;
  585. return;
  586. }
  587. if (nr_unshown) {
  588. printk(KERN_ALERT
  589. "BUG: Bad page map: %lu messages suppressed\n",
  590. nr_unshown);
  591. nr_unshown = 0;
  592. }
  593. nr_shown = 0;
  594. }
  595. if (nr_shown++ == 0)
  596. resume = jiffies + 60 * HZ;
  597. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  598. index = linear_page_index(vma, addr);
  599. printk(KERN_ALERT
  600. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  601. current->comm,
  602. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  603. if (page)
  604. dump_page(page);
  605. printk(KERN_ALERT
  606. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  607. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  608. /*
  609. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  610. */
  611. if (vma->vm_ops)
  612. printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
  613. vma->vm_ops->fault);
  614. if (vma->vm_file && vma->vm_file->f_op)
  615. printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
  616. vma->vm_file->f_op->mmap);
  617. dump_stack();
  618. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  619. }
  620. static inline bool is_cow_mapping(vm_flags_t flags)
  621. {
  622. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  623. }
  624. /*
  625. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  626. *
  627. * "Special" mappings do not wish to be associated with a "struct page" (either
  628. * it doesn't exist, or it exists but they don't want to touch it). In this
  629. * case, NULL is returned here. "Normal" mappings do have a struct page.
  630. *
  631. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  632. * pte bit, in which case this function is trivial. Secondly, an architecture
  633. * may not have a spare pte bit, which requires a more complicated scheme,
  634. * described below.
  635. *
  636. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  637. * special mapping (even if there are underlying and valid "struct pages").
  638. * COWed pages of a VM_PFNMAP are always normal.
  639. *
  640. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  641. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  642. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  643. * mapping will always honor the rule
  644. *
  645. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  646. *
  647. * And for normal mappings this is false.
  648. *
  649. * This restricts such mappings to be a linear translation from virtual address
  650. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  651. * as the vma is not a COW mapping; in that case, we know that all ptes are
  652. * special (because none can have been COWed).
  653. *
  654. *
  655. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  656. *
  657. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  658. * page" backing, however the difference is that _all_ pages with a struct
  659. * page (that is, those where pfn_valid is true) are refcounted and considered
  660. * normal pages by the VM. The disadvantage is that pages are refcounted
  661. * (which can be slower and simply not an option for some PFNMAP users). The
  662. * advantage is that we don't have to follow the strict linearity rule of
  663. * PFNMAP mappings in order to support COWable mappings.
  664. *
  665. */
  666. #ifdef __HAVE_ARCH_PTE_SPECIAL
  667. # define HAVE_PTE_SPECIAL 1
  668. #else
  669. # define HAVE_PTE_SPECIAL 0
  670. #endif
  671. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  672. pte_t pte)
  673. {
  674. unsigned long pfn = pte_pfn(pte);
  675. if (HAVE_PTE_SPECIAL) {
  676. if (likely(!pte_special(pte)))
  677. goto check_pfn;
  678. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  679. return NULL;
  680. if (!is_zero_pfn(pfn))
  681. print_bad_pte(vma, addr, pte, NULL);
  682. return NULL;
  683. }
  684. /* !HAVE_PTE_SPECIAL case follows: */
  685. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  686. if (vma->vm_flags & VM_MIXEDMAP) {
  687. if (!pfn_valid(pfn))
  688. return NULL;
  689. goto out;
  690. } else {
  691. unsigned long off;
  692. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  693. if (pfn == vma->vm_pgoff + off)
  694. return NULL;
  695. if (!is_cow_mapping(vma->vm_flags))
  696. return NULL;
  697. }
  698. }
  699. if (is_zero_pfn(pfn))
  700. return NULL;
  701. check_pfn:
  702. if (unlikely(pfn > highest_memmap_pfn)) {
  703. print_bad_pte(vma, addr, pte, NULL);
  704. return NULL;
  705. }
  706. /*
  707. * NOTE! We still have PageReserved() pages in the page tables.
  708. * eg. VDSO mappings can cause them to exist.
  709. */
  710. out:
  711. return pfn_to_page(pfn);
  712. }
  713. /*
  714. * copy one vm_area from one task to the other. Assumes the page tables
  715. * already present in the new task to be cleared in the whole range
  716. * covered by this vma.
  717. */
  718. static inline unsigned long
  719. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  720. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  721. unsigned long addr, int *rss)
  722. {
  723. unsigned long vm_flags = vma->vm_flags;
  724. pte_t pte = *src_pte;
  725. struct page *page;
  726. /* pte contains position in swap or file, so copy. */
  727. if (unlikely(!pte_present(pte))) {
  728. if (!pte_file(pte)) {
  729. swp_entry_t entry = pte_to_swp_entry(pte);
  730. if (swap_duplicate(entry) < 0)
  731. return entry.val;
  732. /* make sure dst_mm is on swapoff's mmlist. */
  733. if (unlikely(list_empty(&dst_mm->mmlist))) {
  734. spin_lock(&mmlist_lock);
  735. if (list_empty(&dst_mm->mmlist))
  736. list_add(&dst_mm->mmlist,
  737. &src_mm->mmlist);
  738. spin_unlock(&mmlist_lock);
  739. }
  740. if (likely(!non_swap_entry(entry)))
  741. rss[MM_SWAPENTS]++;
  742. else if (is_migration_entry(entry)) {
  743. page = migration_entry_to_page(entry);
  744. if (PageAnon(page))
  745. rss[MM_ANONPAGES]++;
  746. else
  747. rss[MM_FILEPAGES]++;
  748. if (is_write_migration_entry(entry) &&
  749. is_cow_mapping(vm_flags)) {
  750. /*
  751. * COW mappings require pages in both
  752. * parent and child to be set to read.
  753. */
  754. make_migration_entry_read(&entry);
  755. pte = swp_entry_to_pte(entry);
  756. set_pte_at(src_mm, addr, src_pte, pte);
  757. }
  758. }
  759. }
  760. goto out_set_pte;
  761. }
  762. /*
  763. * If it's a COW mapping, write protect it both
  764. * in the parent and the child
  765. */
  766. if (is_cow_mapping(vm_flags)) {
  767. ptep_set_wrprotect(src_mm, addr, src_pte);
  768. pte = pte_wrprotect(pte);
  769. }
  770. /*
  771. * If it's a shared mapping, mark it clean in
  772. * the child
  773. */
  774. if (vm_flags & VM_SHARED)
  775. pte = pte_mkclean(pte);
  776. pte = pte_mkold(pte);
  777. page = vm_normal_page(vma, addr, pte);
  778. if (page) {
  779. get_page(page);
  780. page_dup_rmap(page);
  781. if (PageAnon(page))
  782. rss[MM_ANONPAGES]++;
  783. else
  784. rss[MM_FILEPAGES]++;
  785. }
  786. out_set_pte:
  787. set_pte_at(dst_mm, addr, dst_pte, pte);
  788. return 0;
  789. }
  790. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  791. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  792. unsigned long addr, unsigned long end)
  793. {
  794. pte_t *orig_src_pte, *orig_dst_pte;
  795. pte_t *src_pte, *dst_pte;
  796. spinlock_t *src_ptl, *dst_ptl;
  797. int progress = 0;
  798. int rss[NR_MM_COUNTERS];
  799. swp_entry_t entry = (swp_entry_t){0};
  800. again:
  801. init_rss_vec(rss);
  802. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  803. if (!dst_pte)
  804. return -ENOMEM;
  805. src_pte = pte_offset_map(src_pmd, addr);
  806. src_ptl = pte_lockptr(src_mm, src_pmd);
  807. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  808. orig_src_pte = src_pte;
  809. orig_dst_pte = dst_pte;
  810. arch_enter_lazy_mmu_mode();
  811. do {
  812. /*
  813. * We are holding two locks at this point - either of them
  814. * could generate latencies in another task on another CPU.
  815. */
  816. if (progress >= 32) {
  817. progress = 0;
  818. if (need_resched() ||
  819. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  820. break;
  821. }
  822. if (pte_none(*src_pte)) {
  823. progress++;
  824. continue;
  825. }
  826. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  827. vma, addr, rss);
  828. if (entry.val)
  829. break;
  830. progress += 8;
  831. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  832. arch_leave_lazy_mmu_mode();
  833. spin_unlock(src_ptl);
  834. pte_unmap(orig_src_pte);
  835. add_mm_rss_vec(dst_mm, rss);
  836. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  837. cond_resched();
  838. if (entry.val) {
  839. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  840. return -ENOMEM;
  841. progress = 0;
  842. }
  843. if (addr != end)
  844. goto again;
  845. return 0;
  846. }
  847. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  848. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  849. unsigned long addr, unsigned long end)
  850. {
  851. pmd_t *src_pmd, *dst_pmd;
  852. unsigned long next;
  853. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  854. if (!dst_pmd)
  855. return -ENOMEM;
  856. src_pmd = pmd_offset(src_pud, addr);
  857. do {
  858. next = pmd_addr_end(addr, end);
  859. if (pmd_trans_huge(*src_pmd)) {
  860. int err;
  861. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  862. err = copy_huge_pmd(dst_mm, src_mm,
  863. dst_pmd, src_pmd, addr, vma);
  864. if (err == -ENOMEM)
  865. return -ENOMEM;
  866. if (!err)
  867. continue;
  868. /* fall through */
  869. }
  870. if (pmd_none_or_clear_bad(src_pmd))
  871. continue;
  872. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  873. vma, addr, next))
  874. return -ENOMEM;
  875. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  876. return 0;
  877. }
  878. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  879. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  880. unsigned long addr, unsigned long end)
  881. {
  882. pud_t *src_pud, *dst_pud;
  883. unsigned long next;
  884. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  885. if (!dst_pud)
  886. return -ENOMEM;
  887. src_pud = pud_offset(src_pgd, addr);
  888. do {
  889. next = pud_addr_end(addr, end);
  890. if (pud_none_or_clear_bad(src_pud))
  891. continue;
  892. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  893. vma, addr, next))
  894. return -ENOMEM;
  895. } while (dst_pud++, src_pud++, addr = next, addr != end);
  896. return 0;
  897. }
  898. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  899. struct vm_area_struct *vma)
  900. {
  901. pgd_t *src_pgd, *dst_pgd;
  902. unsigned long next;
  903. unsigned long addr = vma->vm_start;
  904. unsigned long end = vma->vm_end;
  905. unsigned long mmun_start; /* For mmu_notifiers */
  906. unsigned long mmun_end; /* For mmu_notifiers */
  907. bool is_cow;
  908. int ret;
  909. /*
  910. * Don't copy ptes where a page fault will fill them correctly.
  911. * Fork becomes much lighter when there are big shared or private
  912. * readonly mappings. The tradeoff is that copy_page_range is more
  913. * efficient than faulting.
  914. */
  915. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  916. VM_PFNMAP | VM_MIXEDMAP))) {
  917. if (!vma->anon_vma)
  918. return 0;
  919. }
  920. if (is_vm_hugetlb_page(vma))
  921. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  922. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  923. /*
  924. * We do not free on error cases below as remove_vma
  925. * gets called on error from higher level routine
  926. */
  927. ret = track_pfn_copy(vma);
  928. if (ret)
  929. return ret;
  930. }
  931. /*
  932. * We need to invalidate the secondary MMU mappings only when
  933. * there could be a permission downgrade on the ptes of the
  934. * parent mm. And a permission downgrade will only happen if
  935. * is_cow_mapping() returns true.
  936. */
  937. is_cow = is_cow_mapping(vma->vm_flags);
  938. mmun_start = addr;
  939. mmun_end = end;
  940. if (is_cow)
  941. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  942. mmun_end);
  943. ret = 0;
  944. dst_pgd = pgd_offset(dst_mm, addr);
  945. src_pgd = pgd_offset(src_mm, addr);
  946. do {
  947. next = pgd_addr_end(addr, end);
  948. if (pgd_none_or_clear_bad(src_pgd))
  949. continue;
  950. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  951. vma, addr, next))) {
  952. ret = -ENOMEM;
  953. break;
  954. }
  955. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  956. if (is_cow)
  957. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  958. return ret;
  959. }
  960. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  961. struct vm_area_struct *vma, pmd_t *pmd,
  962. unsigned long addr, unsigned long end,
  963. struct zap_details *details)
  964. {
  965. struct mm_struct *mm = tlb->mm;
  966. int force_flush = 0;
  967. int rss[NR_MM_COUNTERS];
  968. spinlock_t *ptl;
  969. pte_t *start_pte;
  970. pte_t *pte;
  971. again:
  972. init_rss_vec(rss);
  973. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  974. pte = start_pte;
  975. arch_enter_lazy_mmu_mode();
  976. do {
  977. pte_t ptent = *pte;
  978. if (pte_none(ptent)) {
  979. continue;
  980. }
  981. if (pte_present(ptent)) {
  982. struct page *page;
  983. page = vm_normal_page(vma, addr, ptent);
  984. if (unlikely(details) && page) {
  985. /*
  986. * unmap_shared_mapping_pages() wants to
  987. * invalidate cache without truncating:
  988. * unmap shared but keep private pages.
  989. */
  990. if (details->check_mapping &&
  991. details->check_mapping != page->mapping)
  992. continue;
  993. /*
  994. * Each page->index must be checked when
  995. * invalidating or truncating nonlinear.
  996. */
  997. if (details->nonlinear_vma &&
  998. (page->index < details->first_index ||
  999. page->index > details->last_index))
  1000. continue;
  1001. }
  1002. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1003. tlb->fullmm);
  1004. tlb_remove_tlb_entry(tlb, pte, addr);
  1005. if (unlikely(!page))
  1006. continue;
  1007. if (unlikely(details) && details->nonlinear_vma
  1008. && linear_page_index(details->nonlinear_vma,
  1009. addr) != page->index)
  1010. set_pte_at(mm, addr, pte,
  1011. pgoff_to_pte(page->index));
  1012. if (PageAnon(page))
  1013. rss[MM_ANONPAGES]--;
  1014. else {
  1015. if (pte_dirty(ptent))
  1016. set_page_dirty(page);
  1017. if (pte_young(ptent) &&
  1018. likely(!VM_SequentialReadHint(vma)))
  1019. mark_page_accessed(page);
  1020. rss[MM_FILEPAGES]--;
  1021. }
  1022. page_remove_rmap(page);
  1023. if (unlikely(page_mapcount(page) < 0))
  1024. print_bad_pte(vma, addr, ptent, page);
  1025. force_flush = !__tlb_remove_page(tlb, page);
  1026. if (force_flush)
  1027. break;
  1028. continue;
  1029. }
  1030. /*
  1031. * If details->check_mapping, we leave swap entries;
  1032. * if details->nonlinear_vma, we leave file entries.
  1033. */
  1034. if (unlikely(details))
  1035. continue;
  1036. if (pte_file(ptent)) {
  1037. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1038. print_bad_pte(vma, addr, ptent, NULL);
  1039. } else {
  1040. swp_entry_t entry = pte_to_swp_entry(ptent);
  1041. if (!non_swap_entry(entry))
  1042. rss[MM_SWAPENTS]--;
  1043. else if (is_migration_entry(entry)) {
  1044. struct page *page;
  1045. page = migration_entry_to_page(entry);
  1046. if (PageAnon(page))
  1047. rss[MM_ANONPAGES]--;
  1048. else
  1049. rss[MM_FILEPAGES]--;
  1050. }
  1051. if (unlikely(!free_swap_and_cache(entry)))
  1052. print_bad_pte(vma, addr, ptent, NULL);
  1053. }
  1054. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1055. } while (pte++, addr += PAGE_SIZE, addr != end);
  1056. add_mm_rss_vec(mm, rss);
  1057. arch_leave_lazy_mmu_mode();
  1058. pte_unmap_unlock(start_pte, ptl);
  1059. /*
  1060. * mmu_gather ran out of room to batch pages, we break out of
  1061. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1062. * and page-free while holding it.
  1063. */
  1064. if (force_flush) {
  1065. force_flush = 0;
  1066. #ifdef HAVE_GENERIC_MMU_GATHER
  1067. tlb->start = addr;
  1068. tlb->end = end;
  1069. #endif
  1070. tlb_flush_mmu(tlb);
  1071. if (addr != end)
  1072. goto again;
  1073. }
  1074. return addr;
  1075. }
  1076. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1077. struct vm_area_struct *vma, pud_t *pud,
  1078. unsigned long addr, unsigned long end,
  1079. struct zap_details *details)
  1080. {
  1081. pmd_t *pmd;
  1082. unsigned long next;
  1083. pmd = pmd_offset(pud, addr);
  1084. do {
  1085. next = pmd_addr_end(addr, end);
  1086. if (pmd_trans_huge(*pmd)) {
  1087. if (next - addr != HPAGE_PMD_SIZE) {
  1088. #ifdef CONFIG_DEBUG_VM
  1089. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1090. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1091. __func__, addr, end,
  1092. vma->vm_start,
  1093. vma->vm_end);
  1094. BUG();
  1095. }
  1096. #endif
  1097. split_huge_page_pmd(vma, addr, pmd);
  1098. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1099. goto next;
  1100. /* fall through */
  1101. }
  1102. /*
  1103. * Here there can be other concurrent MADV_DONTNEED or
  1104. * trans huge page faults running, and if the pmd is
  1105. * none or trans huge it can change under us. This is
  1106. * because MADV_DONTNEED holds the mmap_sem in read
  1107. * mode.
  1108. */
  1109. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1110. goto next;
  1111. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1112. next:
  1113. cond_resched();
  1114. } while (pmd++, addr = next, addr != end);
  1115. return addr;
  1116. }
  1117. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1118. struct vm_area_struct *vma, pgd_t *pgd,
  1119. unsigned long addr, unsigned long end,
  1120. struct zap_details *details)
  1121. {
  1122. pud_t *pud;
  1123. unsigned long next;
  1124. pud = pud_offset(pgd, addr);
  1125. do {
  1126. next = pud_addr_end(addr, end);
  1127. if (pud_none_or_clear_bad(pud))
  1128. continue;
  1129. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1130. } while (pud++, addr = next, addr != end);
  1131. return addr;
  1132. }
  1133. static void unmap_page_range(struct mmu_gather *tlb,
  1134. struct vm_area_struct *vma,
  1135. unsigned long addr, unsigned long end,
  1136. struct zap_details *details)
  1137. {
  1138. pgd_t *pgd;
  1139. unsigned long next;
  1140. if (details && !details->check_mapping && !details->nonlinear_vma)
  1141. details = NULL;
  1142. BUG_ON(addr >= end);
  1143. mem_cgroup_uncharge_start();
  1144. tlb_start_vma(tlb, vma);
  1145. pgd = pgd_offset(vma->vm_mm, addr);
  1146. do {
  1147. next = pgd_addr_end(addr, end);
  1148. if (pgd_none_or_clear_bad(pgd))
  1149. continue;
  1150. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1151. } while (pgd++, addr = next, addr != end);
  1152. tlb_end_vma(tlb, vma);
  1153. mem_cgroup_uncharge_end();
  1154. }
  1155. static void unmap_single_vma(struct mmu_gather *tlb,
  1156. struct vm_area_struct *vma, unsigned long start_addr,
  1157. unsigned long end_addr,
  1158. struct zap_details *details)
  1159. {
  1160. unsigned long start = max(vma->vm_start, start_addr);
  1161. unsigned long end;
  1162. if (start >= vma->vm_end)
  1163. return;
  1164. end = min(vma->vm_end, end_addr);
  1165. if (end <= vma->vm_start)
  1166. return;
  1167. if (vma->vm_file)
  1168. uprobe_munmap(vma, start, end);
  1169. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1170. untrack_pfn(vma, 0, 0);
  1171. if (start != end) {
  1172. if (unlikely(is_vm_hugetlb_page(vma))) {
  1173. /*
  1174. * It is undesirable to test vma->vm_file as it
  1175. * should be non-null for valid hugetlb area.
  1176. * However, vm_file will be NULL in the error
  1177. * cleanup path of do_mmap_pgoff. When
  1178. * hugetlbfs ->mmap method fails,
  1179. * do_mmap_pgoff() nullifies vma->vm_file
  1180. * before calling this function to clean up.
  1181. * Since no pte has actually been setup, it is
  1182. * safe to do nothing in this case.
  1183. */
  1184. if (vma->vm_file) {
  1185. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1186. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1187. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1188. }
  1189. } else
  1190. unmap_page_range(tlb, vma, start, end, details);
  1191. }
  1192. }
  1193. /**
  1194. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1195. * @tlb: address of the caller's struct mmu_gather
  1196. * @vma: the starting vma
  1197. * @start_addr: virtual address at which to start unmapping
  1198. * @end_addr: virtual address at which to end unmapping
  1199. *
  1200. * Unmap all pages in the vma list.
  1201. *
  1202. * Only addresses between `start' and `end' will be unmapped.
  1203. *
  1204. * The VMA list must be sorted in ascending virtual address order.
  1205. *
  1206. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1207. * range after unmap_vmas() returns. So the only responsibility here is to
  1208. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1209. * drops the lock and schedules.
  1210. */
  1211. void unmap_vmas(struct mmu_gather *tlb,
  1212. struct vm_area_struct *vma, unsigned long start_addr,
  1213. unsigned long end_addr)
  1214. {
  1215. struct mm_struct *mm = vma->vm_mm;
  1216. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1217. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1218. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1219. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1220. }
  1221. /**
  1222. * zap_page_range - remove user pages in a given range
  1223. * @vma: vm_area_struct holding the applicable pages
  1224. * @start: starting address of pages to zap
  1225. * @size: number of bytes to zap
  1226. * @details: details of nonlinear truncation or shared cache invalidation
  1227. *
  1228. * Caller must protect the VMA list
  1229. */
  1230. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1231. unsigned long size, struct zap_details *details)
  1232. {
  1233. struct mm_struct *mm = vma->vm_mm;
  1234. struct mmu_gather tlb;
  1235. unsigned long end = start + size;
  1236. lru_add_drain();
  1237. tlb_gather_mmu(&tlb, mm, 0);
  1238. update_hiwater_rss(mm);
  1239. mmu_notifier_invalidate_range_start(mm, start, end);
  1240. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1241. unmap_single_vma(&tlb, vma, start, end, details);
  1242. mmu_notifier_invalidate_range_end(mm, start, end);
  1243. tlb_finish_mmu(&tlb, start, end);
  1244. }
  1245. /**
  1246. * zap_page_range_single - remove user pages in a given range
  1247. * @vma: vm_area_struct holding the applicable pages
  1248. * @address: starting address of pages to zap
  1249. * @size: number of bytes to zap
  1250. * @details: details of nonlinear truncation or shared cache invalidation
  1251. *
  1252. * The range must fit into one VMA.
  1253. */
  1254. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1255. unsigned long size, struct zap_details *details)
  1256. {
  1257. struct mm_struct *mm = vma->vm_mm;
  1258. struct mmu_gather tlb;
  1259. unsigned long end = address + size;
  1260. lru_add_drain();
  1261. tlb_gather_mmu(&tlb, mm, 0);
  1262. update_hiwater_rss(mm);
  1263. mmu_notifier_invalidate_range_start(mm, address, end);
  1264. unmap_single_vma(&tlb, vma, address, end, details);
  1265. mmu_notifier_invalidate_range_end(mm, address, end);
  1266. tlb_finish_mmu(&tlb, address, end);
  1267. }
  1268. /**
  1269. * zap_vma_ptes - remove ptes mapping the vma
  1270. * @vma: vm_area_struct holding ptes to be zapped
  1271. * @address: starting address of pages to zap
  1272. * @size: number of bytes to zap
  1273. *
  1274. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1275. *
  1276. * The entire address range must be fully contained within the vma.
  1277. *
  1278. * Returns 0 if successful.
  1279. */
  1280. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1281. unsigned long size)
  1282. {
  1283. if (address < vma->vm_start || address + size > vma->vm_end ||
  1284. !(vma->vm_flags & VM_PFNMAP))
  1285. return -1;
  1286. zap_page_range_single(vma, address, size, NULL);
  1287. return 0;
  1288. }
  1289. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1290. /**
  1291. * follow_page_mask - look up a page descriptor from a user-virtual address
  1292. * @vma: vm_area_struct mapping @address
  1293. * @address: virtual address to look up
  1294. * @flags: flags modifying lookup behaviour
  1295. * @page_mask: on output, *page_mask is set according to the size of the page
  1296. *
  1297. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1298. *
  1299. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1300. * an error pointer if there is a mapping to something not represented
  1301. * by a page descriptor (see also vm_normal_page()).
  1302. */
  1303. struct page *follow_page_mask(struct vm_area_struct *vma,
  1304. unsigned long address, unsigned int flags,
  1305. unsigned int *page_mask)
  1306. {
  1307. pgd_t *pgd;
  1308. pud_t *pud;
  1309. pmd_t *pmd;
  1310. pte_t *ptep, pte;
  1311. spinlock_t *ptl;
  1312. struct page *page;
  1313. struct mm_struct *mm = vma->vm_mm;
  1314. *page_mask = 0;
  1315. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1316. if (!IS_ERR(page)) {
  1317. BUG_ON(flags & FOLL_GET);
  1318. goto out;
  1319. }
  1320. page = NULL;
  1321. pgd = pgd_offset(mm, address);
  1322. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1323. goto no_page_table;
  1324. pud = pud_offset(pgd, address);
  1325. if (pud_none(*pud))
  1326. goto no_page_table;
  1327. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1328. BUG_ON(flags & FOLL_GET);
  1329. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1330. goto out;
  1331. }
  1332. if (unlikely(pud_bad(*pud)))
  1333. goto no_page_table;
  1334. pmd = pmd_offset(pud, address);
  1335. if (pmd_none(*pmd))
  1336. goto no_page_table;
  1337. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1338. BUG_ON(flags & FOLL_GET);
  1339. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1340. goto out;
  1341. }
  1342. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1343. goto no_page_table;
  1344. if (pmd_trans_huge(*pmd)) {
  1345. if (flags & FOLL_SPLIT) {
  1346. split_huge_page_pmd(vma, address, pmd);
  1347. goto split_fallthrough;
  1348. }
  1349. spin_lock(&mm->page_table_lock);
  1350. if (likely(pmd_trans_huge(*pmd))) {
  1351. if (unlikely(pmd_trans_splitting(*pmd))) {
  1352. spin_unlock(&mm->page_table_lock);
  1353. wait_split_huge_page(vma->anon_vma, pmd);
  1354. } else {
  1355. page = follow_trans_huge_pmd(vma, address,
  1356. pmd, flags);
  1357. spin_unlock(&mm->page_table_lock);
  1358. *page_mask = HPAGE_PMD_NR - 1;
  1359. goto out;
  1360. }
  1361. } else
  1362. spin_unlock(&mm->page_table_lock);
  1363. /* fall through */
  1364. }
  1365. split_fallthrough:
  1366. if (unlikely(pmd_bad(*pmd)))
  1367. goto no_page_table;
  1368. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1369. pte = *ptep;
  1370. if (!pte_present(pte)) {
  1371. swp_entry_t entry;
  1372. /*
  1373. * KSM's break_ksm() relies upon recognizing a ksm page
  1374. * even while it is being migrated, so for that case we
  1375. * need migration_entry_wait().
  1376. */
  1377. if (likely(!(flags & FOLL_MIGRATION)))
  1378. goto no_page;
  1379. if (pte_none(pte) || pte_file(pte))
  1380. goto no_page;
  1381. entry = pte_to_swp_entry(pte);
  1382. if (!is_migration_entry(entry))
  1383. goto no_page;
  1384. pte_unmap_unlock(ptep, ptl);
  1385. migration_entry_wait(mm, pmd, address);
  1386. goto split_fallthrough;
  1387. }
  1388. if ((flags & FOLL_NUMA) && pte_numa(pte))
  1389. goto no_page;
  1390. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1391. goto unlock;
  1392. page = vm_normal_page(vma, address, pte);
  1393. if (unlikely(!page)) {
  1394. if ((flags & FOLL_DUMP) ||
  1395. !is_zero_pfn(pte_pfn(pte)))
  1396. goto bad_page;
  1397. page = pte_page(pte);
  1398. }
  1399. if (flags & FOLL_GET)
  1400. get_page_foll(page);
  1401. if (flags & FOLL_TOUCH) {
  1402. if ((flags & FOLL_WRITE) &&
  1403. !pte_dirty(pte) && !PageDirty(page))
  1404. set_page_dirty(page);
  1405. /*
  1406. * pte_mkyoung() would be more correct here, but atomic care
  1407. * is needed to avoid losing the dirty bit: it is easier to use
  1408. * mark_page_accessed().
  1409. */
  1410. mark_page_accessed(page);
  1411. }
  1412. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1413. /*
  1414. * The preliminary mapping check is mainly to avoid the
  1415. * pointless overhead of lock_page on the ZERO_PAGE
  1416. * which might bounce very badly if there is contention.
  1417. *
  1418. * If the page is already locked, we don't need to
  1419. * handle it now - vmscan will handle it later if and
  1420. * when it attempts to reclaim the page.
  1421. */
  1422. if (page->mapping && trylock_page(page)) {
  1423. lru_add_drain(); /* push cached pages to LRU */
  1424. /*
  1425. * Because we lock page here, and migration is
  1426. * blocked by the pte's page reference, and we
  1427. * know the page is still mapped, we don't even
  1428. * need to check for file-cache page truncation.
  1429. */
  1430. mlock_vma_page(page);
  1431. unlock_page(page);
  1432. }
  1433. }
  1434. unlock:
  1435. pte_unmap_unlock(ptep, ptl);
  1436. out:
  1437. return page;
  1438. bad_page:
  1439. pte_unmap_unlock(ptep, ptl);
  1440. return ERR_PTR(-EFAULT);
  1441. no_page:
  1442. pte_unmap_unlock(ptep, ptl);
  1443. if (!pte_none(pte))
  1444. return page;
  1445. no_page_table:
  1446. /*
  1447. * When core dumping an enormous anonymous area that nobody
  1448. * has touched so far, we don't want to allocate unnecessary pages or
  1449. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1450. * then get_dump_page() will return NULL to leave a hole in the dump.
  1451. * But we can only make this optimization where a hole would surely
  1452. * be zero-filled if handle_mm_fault() actually did handle it.
  1453. */
  1454. if ((flags & FOLL_DUMP) &&
  1455. (!vma->vm_ops || !vma->vm_ops->fault))
  1456. return ERR_PTR(-EFAULT);
  1457. return page;
  1458. }
  1459. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1460. {
  1461. return stack_guard_page_start(vma, addr) ||
  1462. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1463. }
  1464. /**
  1465. * __get_user_pages() - pin user pages in memory
  1466. * @tsk: task_struct of target task
  1467. * @mm: mm_struct of target mm
  1468. * @start: starting user address
  1469. * @nr_pages: number of pages from start to pin
  1470. * @gup_flags: flags modifying pin behaviour
  1471. * @pages: array that receives pointers to the pages pinned.
  1472. * Should be at least nr_pages long. Or NULL, if caller
  1473. * only intends to ensure the pages are faulted in.
  1474. * @vmas: array of pointers to vmas corresponding to each page.
  1475. * Or NULL if the caller does not require them.
  1476. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1477. *
  1478. * Returns number of pages pinned. This may be fewer than the number
  1479. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1480. * were pinned, returns -errno. Each page returned must be released
  1481. * with a put_page() call when it is finished with. vmas will only
  1482. * remain valid while mmap_sem is held.
  1483. *
  1484. * Must be called with mmap_sem held for read or write.
  1485. *
  1486. * __get_user_pages walks a process's page tables and takes a reference to
  1487. * each struct page that each user address corresponds to at a given
  1488. * instant. That is, it takes the page that would be accessed if a user
  1489. * thread accesses the given user virtual address at that instant.
  1490. *
  1491. * This does not guarantee that the page exists in the user mappings when
  1492. * __get_user_pages returns, and there may even be a completely different
  1493. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1494. * and subsequently re faulted). However it does guarantee that the page
  1495. * won't be freed completely. And mostly callers simply care that the page
  1496. * contains data that was valid *at some point in time*. Typically, an IO
  1497. * or similar operation cannot guarantee anything stronger anyway because
  1498. * locks can't be held over the syscall boundary.
  1499. *
  1500. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1501. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1502. * appropriate) must be called after the page is finished with, and
  1503. * before put_page is called.
  1504. *
  1505. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1506. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1507. * *@nonblocking will be set to 0.
  1508. *
  1509. * In most cases, get_user_pages or get_user_pages_fast should be used
  1510. * instead of __get_user_pages. __get_user_pages should be used only if
  1511. * you need some special @gup_flags.
  1512. */
  1513. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1514. unsigned long start, unsigned long nr_pages,
  1515. unsigned int gup_flags, struct page **pages,
  1516. struct vm_area_struct **vmas, int *nonblocking)
  1517. {
  1518. long i;
  1519. unsigned long vm_flags;
  1520. unsigned int page_mask;
  1521. if (!nr_pages)
  1522. return 0;
  1523. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1524. /*
  1525. * Require read or write permissions.
  1526. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1527. */
  1528. vm_flags = (gup_flags & FOLL_WRITE) ?
  1529. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1530. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1531. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1532. /*
  1533. * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
  1534. * would be called on PROT_NONE ranges. We must never invoke
  1535. * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
  1536. * page faults would unprotect the PROT_NONE ranges if
  1537. * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
  1538. * bitflag. So to avoid that, don't set FOLL_NUMA if
  1539. * FOLL_FORCE is set.
  1540. */
  1541. if (!(gup_flags & FOLL_FORCE))
  1542. gup_flags |= FOLL_NUMA;
  1543. i = 0;
  1544. do {
  1545. struct vm_area_struct *vma;
  1546. vma = find_extend_vma(mm, start);
  1547. if (!vma && in_gate_area(mm, start)) {
  1548. unsigned long pg = start & PAGE_MASK;
  1549. pgd_t *pgd;
  1550. pud_t *pud;
  1551. pmd_t *pmd;
  1552. pte_t *pte;
  1553. /* user gate pages are read-only */
  1554. if (gup_flags & FOLL_WRITE)
  1555. return i ? : -EFAULT;
  1556. if (pg > TASK_SIZE)
  1557. pgd = pgd_offset_k(pg);
  1558. else
  1559. pgd = pgd_offset_gate(mm, pg);
  1560. BUG_ON(pgd_none(*pgd));
  1561. pud = pud_offset(pgd, pg);
  1562. BUG_ON(pud_none(*pud));
  1563. pmd = pmd_offset(pud, pg);
  1564. if (pmd_none(*pmd))
  1565. return i ? : -EFAULT;
  1566. VM_BUG_ON(pmd_trans_huge(*pmd));
  1567. pte = pte_offset_map(pmd, pg);
  1568. if (pte_none(*pte)) {
  1569. pte_unmap(pte);
  1570. return i ? : -EFAULT;
  1571. }
  1572. vma = get_gate_vma(mm);
  1573. if (pages) {
  1574. struct page *page;
  1575. page = vm_normal_page(vma, start, *pte);
  1576. if (!page) {
  1577. if (!(gup_flags & FOLL_DUMP) &&
  1578. is_zero_pfn(pte_pfn(*pte)))
  1579. page = pte_page(*pte);
  1580. else {
  1581. pte_unmap(pte);
  1582. return i ? : -EFAULT;
  1583. }
  1584. }
  1585. pages[i] = page;
  1586. get_page(page);
  1587. }
  1588. pte_unmap(pte);
  1589. page_mask = 0;
  1590. goto next_page;
  1591. }
  1592. if (!vma ||
  1593. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1594. !(vm_flags & vma->vm_flags))
  1595. return i ? : -EFAULT;
  1596. if (is_vm_hugetlb_page(vma)) {
  1597. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1598. &start, &nr_pages, i, gup_flags);
  1599. continue;
  1600. }
  1601. do {
  1602. struct page *page;
  1603. unsigned int foll_flags = gup_flags;
  1604. unsigned int page_increm;
  1605. /*
  1606. * If we have a pending SIGKILL, don't keep faulting
  1607. * pages and potentially allocating memory.
  1608. */
  1609. if (unlikely(fatal_signal_pending(current)))
  1610. return i ? i : -ERESTARTSYS;
  1611. cond_resched();
  1612. while (!(page = follow_page_mask(vma, start,
  1613. foll_flags, &page_mask))) {
  1614. int ret;
  1615. unsigned int fault_flags = 0;
  1616. /* For mlock, just skip the stack guard page. */
  1617. if (foll_flags & FOLL_MLOCK) {
  1618. if (stack_guard_page(vma, start))
  1619. goto next_page;
  1620. }
  1621. if (foll_flags & FOLL_WRITE)
  1622. fault_flags |= FAULT_FLAG_WRITE;
  1623. if (nonblocking)
  1624. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1625. if (foll_flags & FOLL_NOWAIT)
  1626. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1627. ret = handle_mm_fault(mm, vma, start,
  1628. fault_flags);
  1629. if (ret & VM_FAULT_ERROR) {
  1630. if (ret & VM_FAULT_OOM)
  1631. return i ? i : -ENOMEM;
  1632. if (ret & (VM_FAULT_HWPOISON |
  1633. VM_FAULT_HWPOISON_LARGE)) {
  1634. if (i)
  1635. return i;
  1636. else if (gup_flags & FOLL_HWPOISON)
  1637. return -EHWPOISON;
  1638. else
  1639. return -EFAULT;
  1640. }
  1641. if (ret & VM_FAULT_SIGBUS)
  1642. return i ? i : -EFAULT;
  1643. BUG();
  1644. }
  1645. if (tsk) {
  1646. if (ret & VM_FAULT_MAJOR)
  1647. tsk->maj_flt++;
  1648. else
  1649. tsk->min_flt++;
  1650. }
  1651. if (ret & VM_FAULT_RETRY) {
  1652. if (nonblocking)
  1653. *nonblocking = 0;
  1654. return i;
  1655. }
  1656. /*
  1657. * The VM_FAULT_WRITE bit tells us that
  1658. * do_wp_page has broken COW when necessary,
  1659. * even if maybe_mkwrite decided not to set
  1660. * pte_write. We can thus safely do subsequent
  1661. * page lookups as if they were reads. But only
  1662. * do so when looping for pte_write is futile:
  1663. * in some cases userspace may also be wanting
  1664. * to write to the gotten user page, which a
  1665. * read fault here might prevent (a readonly
  1666. * page might get reCOWed by userspace write).
  1667. */
  1668. if ((ret & VM_FAULT_WRITE) &&
  1669. !(vma->vm_flags & VM_WRITE))
  1670. foll_flags &= ~FOLL_WRITE;
  1671. cond_resched();
  1672. }
  1673. if (IS_ERR(page))
  1674. return i ? i : PTR_ERR(page);
  1675. if (pages) {
  1676. pages[i] = page;
  1677. flush_anon_page(vma, page, start);
  1678. flush_dcache_page(page);
  1679. page_mask = 0;
  1680. }
  1681. next_page:
  1682. if (vmas) {
  1683. vmas[i] = vma;
  1684. page_mask = 0;
  1685. }
  1686. page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
  1687. if (page_increm > nr_pages)
  1688. page_increm = nr_pages;
  1689. i += page_increm;
  1690. start += page_increm * PAGE_SIZE;
  1691. nr_pages -= page_increm;
  1692. } while (nr_pages && start < vma->vm_end);
  1693. } while (nr_pages);
  1694. return i;
  1695. }
  1696. EXPORT_SYMBOL(__get_user_pages);
  1697. /*
  1698. * fixup_user_fault() - manually resolve a user page fault
  1699. * @tsk: the task_struct to use for page fault accounting, or
  1700. * NULL if faults are not to be recorded.
  1701. * @mm: mm_struct of target mm
  1702. * @address: user address
  1703. * @fault_flags:flags to pass down to handle_mm_fault()
  1704. *
  1705. * This is meant to be called in the specific scenario where for locking reasons
  1706. * we try to access user memory in atomic context (within a pagefault_disable()
  1707. * section), this returns -EFAULT, and we want to resolve the user fault before
  1708. * trying again.
  1709. *
  1710. * Typically this is meant to be used by the futex code.
  1711. *
  1712. * The main difference with get_user_pages() is that this function will
  1713. * unconditionally call handle_mm_fault() which will in turn perform all the
  1714. * necessary SW fixup of the dirty and young bits in the PTE, while
  1715. * handle_mm_fault() only guarantees to update these in the struct page.
  1716. *
  1717. * This is important for some architectures where those bits also gate the
  1718. * access permission to the page because they are maintained in software. On
  1719. * such architectures, gup() will not be enough to make a subsequent access
  1720. * succeed.
  1721. *
  1722. * This should be called with the mm_sem held for read.
  1723. */
  1724. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1725. unsigned long address, unsigned int fault_flags)
  1726. {
  1727. struct vm_area_struct *vma;
  1728. int ret;
  1729. vma = find_extend_vma(mm, address);
  1730. if (!vma || address < vma->vm_start)
  1731. return -EFAULT;
  1732. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1733. if (ret & VM_FAULT_ERROR) {
  1734. if (ret & VM_FAULT_OOM)
  1735. return -ENOMEM;
  1736. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1737. return -EHWPOISON;
  1738. if (ret & VM_FAULT_SIGBUS)
  1739. return -EFAULT;
  1740. BUG();
  1741. }
  1742. if (tsk) {
  1743. if (ret & VM_FAULT_MAJOR)
  1744. tsk->maj_flt++;
  1745. else
  1746. tsk->min_flt++;
  1747. }
  1748. return 0;
  1749. }
  1750. /*
  1751. * get_user_pages() - pin user pages in memory
  1752. * @tsk: the task_struct to use for page fault accounting, or
  1753. * NULL if faults are not to be recorded.
  1754. * @mm: mm_struct of target mm
  1755. * @start: starting user address
  1756. * @nr_pages: number of pages from start to pin
  1757. * @write: whether pages will be written to by the caller
  1758. * @force: whether to force write access even if user mapping is
  1759. * readonly. This will result in the page being COWed even
  1760. * in MAP_SHARED mappings. You do not want this.
  1761. * @pages: array that receives pointers to the pages pinned.
  1762. * Should be at least nr_pages long. Or NULL, if caller
  1763. * only intends to ensure the pages are faulted in.
  1764. * @vmas: array of pointers to vmas corresponding to each page.
  1765. * Or NULL if the caller does not require them.
  1766. *
  1767. * Returns number of pages pinned. This may be fewer than the number
  1768. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1769. * were pinned, returns -errno. Each page returned must be released
  1770. * with a put_page() call when it is finished with. vmas will only
  1771. * remain valid while mmap_sem is held.
  1772. *
  1773. * Must be called with mmap_sem held for read or write.
  1774. *
  1775. * get_user_pages walks a process's page tables and takes a reference to
  1776. * each struct page that each user address corresponds to at a given
  1777. * instant. That is, it takes the page that would be accessed if a user
  1778. * thread accesses the given user virtual address at that instant.
  1779. *
  1780. * This does not guarantee that the page exists in the user mappings when
  1781. * get_user_pages returns, and there may even be a completely different
  1782. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1783. * and subsequently re faulted). However it does guarantee that the page
  1784. * won't be freed completely. And mostly callers simply care that the page
  1785. * contains data that was valid *at some point in time*. Typically, an IO
  1786. * or similar operation cannot guarantee anything stronger anyway because
  1787. * locks can't be held over the syscall boundary.
  1788. *
  1789. * If write=0, the page must not be written to. If the page is written to,
  1790. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1791. * after the page is finished with, and before put_page is called.
  1792. *
  1793. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1794. * handle on the memory by some means other than accesses via the user virtual
  1795. * addresses. The pages may be submitted for DMA to devices or accessed via
  1796. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1797. * use the correct cache flushing APIs.
  1798. *
  1799. * See also get_user_pages_fast, for performance critical applications.
  1800. */
  1801. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1802. unsigned long start, unsigned long nr_pages, int write,
  1803. int force, struct page **pages, struct vm_area_struct **vmas)
  1804. {
  1805. int flags = FOLL_TOUCH;
  1806. if (pages)
  1807. flags |= FOLL_GET;
  1808. if (write)
  1809. flags |= FOLL_WRITE;
  1810. if (force)
  1811. flags |= FOLL_FORCE;
  1812. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1813. NULL);
  1814. }
  1815. EXPORT_SYMBOL(get_user_pages);
  1816. /**
  1817. * get_dump_page() - pin user page in memory while writing it to core dump
  1818. * @addr: user address
  1819. *
  1820. * Returns struct page pointer of user page pinned for dump,
  1821. * to be freed afterwards by page_cache_release() or put_page().
  1822. *
  1823. * Returns NULL on any kind of failure - a hole must then be inserted into
  1824. * the corefile, to preserve alignment with its headers; and also returns
  1825. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1826. * allowing a hole to be left in the corefile to save diskspace.
  1827. *
  1828. * Called without mmap_sem, but after all other threads have been killed.
  1829. */
  1830. #ifdef CONFIG_ELF_CORE
  1831. struct page *get_dump_page(unsigned long addr)
  1832. {
  1833. struct vm_area_struct *vma;
  1834. struct page *page;
  1835. if (__get_user_pages(current, current->mm, addr, 1,
  1836. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1837. NULL) < 1)
  1838. return NULL;
  1839. flush_cache_page(vma, addr, page_to_pfn(page));
  1840. return page;
  1841. }
  1842. #endif /* CONFIG_ELF_CORE */
  1843. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1844. spinlock_t **ptl)
  1845. {
  1846. pgd_t * pgd = pgd_offset(mm, addr);
  1847. pud_t * pud = pud_alloc(mm, pgd, addr);
  1848. if (pud) {
  1849. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1850. if (pmd) {
  1851. VM_BUG_ON(pmd_trans_huge(*pmd));
  1852. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1853. }
  1854. }
  1855. return NULL;
  1856. }
  1857. /*
  1858. * This is the old fallback for page remapping.
  1859. *
  1860. * For historical reasons, it only allows reserved pages. Only
  1861. * old drivers should use this, and they needed to mark their
  1862. * pages reserved for the old functions anyway.
  1863. */
  1864. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1865. struct page *page, pgprot_t prot)
  1866. {
  1867. struct mm_struct *mm = vma->vm_mm;
  1868. int retval;
  1869. pte_t *pte;
  1870. spinlock_t *ptl;
  1871. retval = -EINVAL;
  1872. if (PageAnon(page))
  1873. goto out;
  1874. retval = -ENOMEM;
  1875. flush_dcache_page(page);
  1876. pte = get_locked_pte(mm, addr, &ptl);
  1877. if (!pte)
  1878. goto out;
  1879. retval = -EBUSY;
  1880. if (!pte_none(*pte))
  1881. goto out_unlock;
  1882. /* Ok, finally just insert the thing.. */
  1883. get_page(page);
  1884. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1885. page_add_file_rmap(page);
  1886. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1887. retval = 0;
  1888. pte_unmap_unlock(pte, ptl);
  1889. return retval;
  1890. out_unlock:
  1891. pte_unmap_unlock(pte, ptl);
  1892. out:
  1893. return retval;
  1894. }
  1895. /**
  1896. * vm_insert_page - insert single page into user vma
  1897. * @vma: user vma to map to
  1898. * @addr: target user address of this page
  1899. * @page: source kernel page
  1900. *
  1901. * This allows drivers to insert individual pages they've allocated
  1902. * into a user vma.
  1903. *
  1904. * The page has to be a nice clean _individual_ kernel allocation.
  1905. * If you allocate a compound page, you need to have marked it as
  1906. * such (__GFP_COMP), or manually just split the page up yourself
  1907. * (see split_page()).
  1908. *
  1909. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1910. * took an arbitrary page protection parameter. This doesn't allow
  1911. * that. Your vma protection will have to be set up correctly, which
  1912. * means that if you want a shared writable mapping, you'd better
  1913. * ask for a shared writable mapping!
  1914. *
  1915. * The page does not need to be reserved.
  1916. *
  1917. * Usually this function is called from f_op->mmap() handler
  1918. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1919. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1920. * function from other places, for example from page-fault handler.
  1921. */
  1922. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1923. struct page *page)
  1924. {
  1925. if (addr < vma->vm_start || addr >= vma->vm_end)
  1926. return -EFAULT;
  1927. if (!page_count(page))
  1928. return -EINVAL;
  1929. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1930. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1931. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1932. vma->vm_flags |= VM_MIXEDMAP;
  1933. }
  1934. return insert_page(vma, addr, page, vma->vm_page_prot);
  1935. }
  1936. EXPORT_SYMBOL(vm_insert_page);
  1937. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1938. unsigned long pfn, pgprot_t prot)
  1939. {
  1940. struct mm_struct *mm = vma->vm_mm;
  1941. int retval;
  1942. pte_t *pte, entry;
  1943. spinlock_t *ptl;
  1944. retval = -ENOMEM;
  1945. pte = get_locked_pte(mm, addr, &ptl);
  1946. if (!pte)
  1947. goto out;
  1948. retval = -EBUSY;
  1949. if (!pte_none(*pte))
  1950. goto out_unlock;
  1951. /* Ok, finally just insert the thing.. */
  1952. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1953. set_pte_at(mm, addr, pte, entry);
  1954. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1955. retval = 0;
  1956. out_unlock:
  1957. pte_unmap_unlock(pte, ptl);
  1958. out:
  1959. return retval;
  1960. }
  1961. /**
  1962. * vm_insert_pfn - insert single pfn into user vma
  1963. * @vma: user vma to map to
  1964. * @addr: target user address of this page
  1965. * @pfn: source kernel pfn
  1966. *
  1967. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1968. * they've allocated into a user vma. Same comments apply.
  1969. *
  1970. * This function should only be called from a vm_ops->fault handler, and
  1971. * in that case the handler should return NULL.
  1972. *
  1973. * vma cannot be a COW mapping.
  1974. *
  1975. * As this is called only for pages that do not currently exist, we
  1976. * do not need to flush old virtual caches or the TLB.
  1977. */
  1978. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1979. unsigned long pfn)
  1980. {
  1981. int ret;
  1982. pgprot_t pgprot = vma->vm_page_prot;
  1983. /*
  1984. * Technically, architectures with pte_special can avoid all these
  1985. * restrictions (same for remap_pfn_range). However we would like
  1986. * consistency in testing and feature parity among all, so we should
  1987. * try to keep these invariants in place for everybody.
  1988. */
  1989. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1990. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1991. (VM_PFNMAP|VM_MIXEDMAP));
  1992. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1993. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1994. if (addr < vma->vm_start || addr >= vma->vm_end)
  1995. return -EFAULT;
  1996. if (track_pfn_insert(vma, &pgprot, pfn))
  1997. return -EINVAL;
  1998. ret = insert_pfn(vma, addr, pfn, pgprot);
  1999. return ret;
  2000. }
  2001. EXPORT_SYMBOL(vm_insert_pfn);
  2002. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2003. unsigned long pfn)
  2004. {
  2005. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  2006. if (addr < vma->vm_start || addr >= vma->vm_end)
  2007. return -EFAULT;
  2008. /*
  2009. * If we don't have pte special, then we have to use the pfn_valid()
  2010. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  2011. * refcount the page if pfn_valid is true (hence insert_page rather
  2012. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  2013. * without pte special, it would there be refcounted as a normal page.
  2014. */
  2015. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  2016. struct page *page;
  2017. page = pfn_to_page(pfn);
  2018. return insert_page(vma, addr, page, vma->vm_page_prot);
  2019. }
  2020. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  2021. }
  2022. EXPORT_SYMBOL(vm_insert_mixed);
  2023. /*
  2024. * maps a range of physical memory into the requested pages. the old
  2025. * mappings are removed. any references to nonexistent pages results
  2026. * in null mappings (currently treated as "copy-on-access")
  2027. */
  2028. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2029. unsigned long addr, unsigned long end,
  2030. unsigned long pfn, pgprot_t prot)
  2031. {
  2032. pte_t *pte;
  2033. spinlock_t *ptl;
  2034. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2035. if (!pte)
  2036. return -ENOMEM;
  2037. arch_enter_lazy_mmu_mode();
  2038. do {
  2039. BUG_ON(!pte_none(*pte));
  2040. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  2041. pfn++;
  2042. } while (pte++, addr += PAGE_SIZE, addr != end);
  2043. arch_leave_lazy_mmu_mode();
  2044. pte_unmap_unlock(pte - 1, ptl);
  2045. return 0;
  2046. }
  2047. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2048. unsigned long addr, unsigned long end,
  2049. unsigned long pfn, pgprot_t prot)
  2050. {
  2051. pmd_t *pmd;
  2052. unsigned long next;
  2053. pfn -= addr >> PAGE_SHIFT;
  2054. pmd = pmd_alloc(mm, pud, addr);
  2055. if (!pmd)
  2056. return -ENOMEM;
  2057. VM_BUG_ON(pmd_trans_huge(*pmd));
  2058. do {
  2059. next = pmd_addr_end(addr, end);
  2060. if (remap_pte_range(mm, pmd, addr, next,
  2061. pfn + (addr >> PAGE_SHIFT), prot))
  2062. return -ENOMEM;
  2063. } while (pmd++, addr = next, addr != end);
  2064. return 0;
  2065. }
  2066. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2067. unsigned long addr, unsigned long end,
  2068. unsigned long pfn, pgprot_t prot)
  2069. {
  2070. pud_t *pud;
  2071. unsigned long next;
  2072. pfn -= addr >> PAGE_SHIFT;
  2073. pud = pud_alloc(mm, pgd, addr);
  2074. if (!pud)
  2075. return -ENOMEM;
  2076. do {
  2077. next = pud_addr_end(addr, end);
  2078. if (remap_pmd_range(mm, pud, addr, next,
  2079. pfn + (addr >> PAGE_SHIFT), prot))
  2080. return -ENOMEM;
  2081. } while (pud++, addr = next, addr != end);
  2082. return 0;
  2083. }
  2084. /**
  2085. * remap_pfn_range - remap kernel memory to userspace
  2086. * @vma: user vma to map to
  2087. * @addr: target user address to start at
  2088. * @pfn: physical address of kernel memory
  2089. * @size: size of map area
  2090. * @prot: page protection flags for this mapping
  2091. *
  2092. * Note: this is only safe if the mm semaphore is held when called.
  2093. */
  2094. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2095. unsigned long pfn, unsigned long size, pgprot_t prot)
  2096. {
  2097. pgd_t *pgd;
  2098. unsigned long next;
  2099. unsigned long end = addr + PAGE_ALIGN(size);
  2100. struct mm_struct *mm = vma->vm_mm;
  2101. int err;
  2102. /*
  2103. * Physically remapped pages are special. Tell the
  2104. * rest of the world about it:
  2105. * VM_IO tells people not to look at these pages
  2106. * (accesses can have side effects).
  2107. * VM_PFNMAP tells the core MM that the base pages are just
  2108. * raw PFN mappings, and do not have a "struct page" associated
  2109. * with them.
  2110. * VM_DONTEXPAND
  2111. * Disable vma merging and expanding with mremap().
  2112. * VM_DONTDUMP
  2113. * Omit vma from core dump, even when VM_IO turned off.
  2114. *
  2115. * There's a horrible special case to handle copy-on-write
  2116. * behaviour that some programs depend on. We mark the "original"
  2117. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2118. * See vm_normal_page() for details.
  2119. */
  2120. if (is_cow_mapping(vma->vm_flags)) {
  2121. if (addr != vma->vm_start || end != vma->vm_end)
  2122. return -EINVAL;
  2123. vma->vm_pgoff = pfn;
  2124. }
  2125. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2126. if (err)
  2127. return -EINVAL;
  2128. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2129. BUG_ON(addr >= end);
  2130. pfn -= addr >> PAGE_SHIFT;
  2131. pgd = pgd_offset(mm, addr);
  2132. flush_cache_range(vma, addr, end);
  2133. do {
  2134. next = pgd_addr_end(addr, end);
  2135. err = remap_pud_range(mm, pgd, addr, next,
  2136. pfn + (addr >> PAGE_SHIFT), prot);
  2137. if (err)
  2138. break;
  2139. } while (pgd++, addr = next, addr != end);
  2140. if (err)
  2141. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2142. return err;
  2143. }
  2144. EXPORT_SYMBOL(remap_pfn_range);
  2145. /**
  2146. * vm_iomap_memory - remap memory to userspace
  2147. * @vma: user vma to map to
  2148. * @start: start of area
  2149. * @len: size of area
  2150. *
  2151. * This is a simplified io_remap_pfn_range() for common driver use. The
  2152. * driver just needs to give us the physical memory range to be mapped,
  2153. * we'll figure out the rest from the vma information.
  2154. *
  2155. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  2156. * whatever write-combining details or similar.
  2157. */
  2158. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  2159. {
  2160. unsigned long vm_len, pfn, pages;
  2161. /* Check that the physical memory area passed in looks valid */
  2162. if (start + len < start)
  2163. return -EINVAL;
  2164. /*
  2165. * You *really* shouldn't map things that aren't page-aligned,
  2166. * but we've historically allowed it because IO memory might
  2167. * just have smaller alignment.
  2168. */
  2169. len += start & ~PAGE_MASK;
  2170. pfn = start >> PAGE_SHIFT;
  2171. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  2172. if (pfn + pages < pfn)
  2173. return -EINVAL;
  2174. /* We start the mapping 'vm_pgoff' pages into the area */
  2175. if (vma->vm_pgoff > pages)
  2176. return -EINVAL;
  2177. pfn += vma->vm_pgoff;
  2178. pages -= vma->vm_pgoff;
  2179. /* Can we fit all of the mapping? */
  2180. vm_len = vma->vm_end - vma->vm_start;
  2181. if (vm_len >> PAGE_SHIFT > pages)
  2182. return -EINVAL;
  2183. /* Ok, let it rip */
  2184. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  2185. }
  2186. EXPORT_SYMBOL(vm_iomap_memory);
  2187. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2188. unsigned long addr, unsigned long end,
  2189. pte_fn_t fn, void *data)
  2190. {
  2191. pte_t *pte;
  2192. int err;
  2193. pgtable_t token;
  2194. spinlock_t *uninitialized_var(ptl);
  2195. pte = (mm == &init_mm) ?
  2196. pte_alloc_kernel(pmd, addr) :
  2197. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2198. if (!pte)
  2199. return -ENOMEM;
  2200. BUG_ON(pmd_huge(*pmd));
  2201. arch_enter_lazy_mmu_mode();
  2202. token = pmd_pgtable(*pmd);
  2203. do {
  2204. err = fn(pte++, token, addr, data);
  2205. if (err)
  2206. break;
  2207. } while (addr += PAGE_SIZE, addr != end);
  2208. arch_leave_lazy_mmu_mode();
  2209. if (mm != &init_mm)
  2210. pte_unmap_unlock(pte-1, ptl);
  2211. return err;
  2212. }
  2213. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2214. unsigned long addr, unsigned long end,
  2215. pte_fn_t fn, void *data)
  2216. {
  2217. pmd_t *pmd;
  2218. unsigned long next;
  2219. int err;
  2220. BUG_ON(pud_huge(*pud));
  2221. pmd = pmd_alloc(mm, pud, addr);
  2222. if (!pmd)
  2223. return -ENOMEM;
  2224. do {
  2225. next = pmd_addr_end(addr, end);
  2226. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2227. if (err)
  2228. break;
  2229. } while (pmd++, addr = next, addr != end);
  2230. return err;
  2231. }
  2232. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2233. unsigned long addr, unsigned long end,
  2234. pte_fn_t fn, void *data)
  2235. {
  2236. pud_t *pud;
  2237. unsigned long next;
  2238. int err;
  2239. pud = pud_alloc(mm, pgd, addr);
  2240. if (!pud)
  2241. return -ENOMEM;
  2242. do {
  2243. next = pud_addr_end(addr, end);
  2244. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2245. if (err)
  2246. break;
  2247. } while (pud++, addr = next, addr != end);
  2248. return err;
  2249. }
  2250. /*
  2251. * Scan a region of virtual memory, filling in page tables as necessary
  2252. * and calling a provided function on each leaf page table.
  2253. */
  2254. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2255. unsigned long size, pte_fn_t fn, void *data)
  2256. {
  2257. pgd_t *pgd;
  2258. unsigned long next;
  2259. unsigned long end = addr + size;
  2260. int err;
  2261. BUG_ON(addr >= end);
  2262. pgd = pgd_offset(mm, addr);
  2263. do {
  2264. next = pgd_addr_end(addr, end);
  2265. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2266. if (err)
  2267. break;
  2268. } while (pgd++, addr = next, addr != end);
  2269. return err;
  2270. }
  2271. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2272. /*
  2273. * handle_pte_fault chooses page fault handler according to an entry
  2274. * which was read non-atomically. Before making any commitment, on
  2275. * those architectures or configurations (e.g. i386 with PAE) which
  2276. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2277. * must check under lock before unmapping the pte and proceeding
  2278. * (but do_wp_page is only called after already making such a check;
  2279. * and do_anonymous_page can safely check later on).
  2280. */
  2281. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2282. pte_t *page_table, pte_t orig_pte)
  2283. {
  2284. int same = 1;
  2285. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2286. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2287. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2288. spin_lock(ptl);
  2289. same = pte_same(*page_table, orig_pte);
  2290. spin_unlock(ptl);
  2291. }
  2292. #endif
  2293. pte_unmap(page_table);
  2294. return same;
  2295. }
  2296. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2297. {
  2298. /*
  2299. * If the source page was a PFN mapping, we don't have
  2300. * a "struct page" for it. We do a best-effort copy by
  2301. * just copying from the original user address. If that
  2302. * fails, we just zero-fill it. Live with it.
  2303. */
  2304. if (unlikely(!src)) {
  2305. void *kaddr = kmap_atomic(dst);
  2306. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2307. /*
  2308. * This really shouldn't fail, because the page is there
  2309. * in the page tables. But it might just be unreadable,
  2310. * in which case we just give up and fill the result with
  2311. * zeroes.
  2312. */
  2313. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2314. clear_page(kaddr);
  2315. kunmap_atomic(kaddr);
  2316. flush_dcache_page(dst);
  2317. } else
  2318. copy_user_highpage(dst, src, va, vma);
  2319. }
  2320. /*
  2321. * This routine handles present pages, when users try to write
  2322. * to a shared page. It is done by copying the page to a new address
  2323. * and decrementing the shared-page counter for the old page.
  2324. *
  2325. * Note that this routine assumes that the protection checks have been
  2326. * done by the caller (the low-level page fault routine in most cases).
  2327. * Thus we can safely just mark it writable once we've done any necessary
  2328. * COW.
  2329. *
  2330. * We also mark the page dirty at this point even though the page will
  2331. * change only once the write actually happens. This avoids a few races,
  2332. * and potentially makes it more efficient.
  2333. *
  2334. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2335. * but allow concurrent faults), with pte both mapped and locked.
  2336. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2337. */
  2338. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2339. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2340. spinlock_t *ptl, pte_t orig_pte)
  2341. __releases(ptl)
  2342. {
  2343. struct page *old_page, *new_page = NULL;
  2344. pte_t entry;
  2345. int ret = 0;
  2346. int page_mkwrite = 0;
  2347. struct page *dirty_page = NULL;
  2348. unsigned long mmun_start = 0; /* For mmu_notifiers */
  2349. unsigned long mmun_end = 0; /* For mmu_notifiers */
  2350. old_page = vm_normal_page(vma, address, orig_pte);
  2351. if (!old_page) {
  2352. /*
  2353. * VM_MIXEDMAP !pfn_valid() case
  2354. *
  2355. * We should not cow pages in a shared writeable mapping.
  2356. * Just mark the pages writable as we can't do any dirty
  2357. * accounting on raw pfn maps.
  2358. */
  2359. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2360. (VM_WRITE|VM_SHARED))
  2361. goto reuse;
  2362. goto gotten;
  2363. }
  2364. /*
  2365. * Take out anonymous pages first, anonymous shared vmas are
  2366. * not dirty accountable.
  2367. */
  2368. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2369. if (!trylock_page(old_page)) {
  2370. page_cache_get(old_page);
  2371. pte_unmap_unlock(page_table, ptl);
  2372. lock_page(old_page);
  2373. page_table = pte_offset_map_lock(mm, pmd, address,
  2374. &ptl);
  2375. if (!pte_same(*page_table, orig_pte)) {
  2376. unlock_page(old_page);
  2377. goto unlock;
  2378. }
  2379. page_cache_release(old_page);
  2380. }
  2381. if (reuse_swap_page(old_page)) {
  2382. /*
  2383. * The page is all ours. Move it to our anon_vma so
  2384. * the rmap code will not search our parent or siblings.
  2385. * Protected against the rmap code by the page lock.
  2386. */
  2387. page_move_anon_rmap(old_page, vma, address);
  2388. unlock_page(old_page);
  2389. goto reuse;
  2390. }
  2391. unlock_page(old_page);
  2392. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2393. (VM_WRITE|VM_SHARED))) {
  2394. /*
  2395. * Only catch write-faults on shared writable pages,
  2396. * read-only shared pages can get COWed by
  2397. * get_user_pages(.write=1, .force=1).
  2398. */
  2399. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2400. struct vm_fault vmf;
  2401. int tmp;
  2402. vmf.virtual_address = (void __user *)(address &
  2403. PAGE_MASK);
  2404. vmf.pgoff = old_page->index;
  2405. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2406. vmf.page = old_page;
  2407. /*
  2408. * Notify the address space that the page is about to
  2409. * become writable so that it can prohibit this or wait
  2410. * for the page to get into an appropriate state.
  2411. *
  2412. * We do this without the lock held, so that it can
  2413. * sleep if it needs to.
  2414. */
  2415. page_cache_get(old_page);
  2416. pte_unmap_unlock(page_table, ptl);
  2417. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2418. if (unlikely(tmp &
  2419. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2420. ret = tmp;
  2421. goto unwritable_page;
  2422. }
  2423. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2424. lock_page(old_page);
  2425. if (!old_page->mapping) {
  2426. ret = 0; /* retry the fault */
  2427. unlock_page(old_page);
  2428. goto unwritable_page;
  2429. }
  2430. } else
  2431. VM_BUG_ON(!PageLocked(old_page));
  2432. /*
  2433. * Since we dropped the lock we need to revalidate
  2434. * the PTE as someone else may have changed it. If
  2435. * they did, we just return, as we can count on the
  2436. * MMU to tell us if they didn't also make it writable.
  2437. */
  2438. page_table = pte_offset_map_lock(mm, pmd, address,
  2439. &ptl);
  2440. if (!pte_same(*page_table, orig_pte)) {
  2441. unlock_page(old_page);
  2442. goto unlock;
  2443. }
  2444. page_mkwrite = 1;
  2445. }
  2446. dirty_page = old_page;
  2447. get_page(dirty_page);
  2448. reuse:
  2449. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2450. entry = pte_mkyoung(orig_pte);
  2451. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2452. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2453. update_mmu_cache(vma, address, page_table);
  2454. pte_unmap_unlock(page_table, ptl);
  2455. ret |= VM_FAULT_WRITE;
  2456. if (!dirty_page)
  2457. return ret;
  2458. /*
  2459. * Yes, Virginia, this is actually required to prevent a race
  2460. * with clear_page_dirty_for_io() from clearing the page dirty
  2461. * bit after it clear all dirty ptes, but before a racing
  2462. * do_wp_page installs a dirty pte.
  2463. *
  2464. * __do_fault is protected similarly.
  2465. */
  2466. if (!page_mkwrite) {
  2467. wait_on_page_locked(dirty_page);
  2468. set_page_dirty_balance(dirty_page, page_mkwrite);
  2469. /* file_update_time outside page_lock */
  2470. if (vma->vm_file)
  2471. file_update_time(vma->vm_file);
  2472. }
  2473. put_page(dirty_page);
  2474. if (page_mkwrite) {
  2475. struct address_space *mapping = dirty_page->mapping;
  2476. set_page_dirty(dirty_page);
  2477. unlock_page(dirty_page);
  2478. page_cache_release(dirty_page);
  2479. if (mapping) {
  2480. /*
  2481. * Some device drivers do not set page.mapping
  2482. * but still dirty their pages
  2483. */
  2484. balance_dirty_pages_ratelimited(mapping);
  2485. }
  2486. }
  2487. return ret;
  2488. }
  2489. /*
  2490. * Ok, we need to copy. Oh, well..
  2491. */
  2492. page_cache_get(old_page);
  2493. gotten:
  2494. pte_unmap_unlock(page_table, ptl);
  2495. if (unlikely(anon_vma_prepare(vma)))
  2496. goto oom;
  2497. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2498. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2499. if (!new_page)
  2500. goto oom;
  2501. } else {
  2502. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2503. if (!new_page)
  2504. goto oom;
  2505. cow_user_page(new_page, old_page, address, vma);
  2506. }
  2507. __SetPageUptodate(new_page);
  2508. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2509. goto oom_free_new;
  2510. mmun_start = address & PAGE_MASK;
  2511. mmun_end = mmun_start + PAGE_SIZE;
  2512. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2513. /*
  2514. * Re-check the pte - we dropped the lock
  2515. */
  2516. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2517. if (likely(pte_same(*page_table, orig_pte))) {
  2518. if (old_page) {
  2519. if (!PageAnon(old_page)) {
  2520. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2521. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2522. }
  2523. } else
  2524. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2525. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2526. entry = mk_pte(new_page, vma->vm_page_prot);
  2527. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2528. /*
  2529. * Clear the pte entry and flush it first, before updating the
  2530. * pte with the new entry. This will avoid a race condition
  2531. * seen in the presence of one thread doing SMC and another
  2532. * thread doing COW.
  2533. */
  2534. ptep_clear_flush(vma, address, page_table);
  2535. page_add_new_anon_rmap(new_page, vma, address);
  2536. /*
  2537. * We call the notify macro here because, when using secondary
  2538. * mmu page tables (such as kvm shadow page tables), we want the
  2539. * new page to be mapped directly into the secondary page table.
  2540. */
  2541. set_pte_at_notify(mm, address, page_table, entry);
  2542. update_mmu_cache(vma, address, page_table);
  2543. if (old_page) {
  2544. /*
  2545. * Only after switching the pte to the new page may
  2546. * we remove the mapcount here. Otherwise another
  2547. * process may come and find the rmap count decremented
  2548. * before the pte is switched to the new page, and
  2549. * "reuse" the old page writing into it while our pte
  2550. * here still points into it and can be read by other
  2551. * threads.
  2552. *
  2553. * The critical issue is to order this
  2554. * page_remove_rmap with the ptp_clear_flush above.
  2555. * Those stores are ordered by (if nothing else,)
  2556. * the barrier present in the atomic_add_negative
  2557. * in page_remove_rmap.
  2558. *
  2559. * Then the TLB flush in ptep_clear_flush ensures that
  2560. * no process can access the old page before the
  2561. * decremented mapcount is visible. And the old page
  2562. * cannot be reused until after the decremented
  2563. * mapcount is visible. So transitively, TLBs to
  2564. * old page will be flushed before it can be reused.
  2565. */
  2566. page_remove_rmap(old_page);
  2567. }
  2568. /* Free the old page.. */
  2569. new_page = old_page;
  2570. ret |= VM_FAULT_WRITE;
  2571. } else
  2572. mem_cgroup_uncharge_page(new_page);
  2573. if (new_page)
  2574. page_cache_release(new_page);
  2575. unlock:
  2576. pte_unmap_unlock(page_table, ptl);
  2577. if (mmun_end > mmun_start)
  2578. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2579. if (old_page) {
  2580. /*
  2581. * Don't let another task, with possibly unlocked vma,
  2582. * keep the mlocked page.
  2583. */
  2584. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2585. lock_page(old_page); /* LRU manipulation */
  2586. munlock_vma_page(old_page);
  2587. unlock_page(old_page);
  2588. }
  2589. page_cache_release(old_page);
  2590. }
  2591. return ret;
  2592. oom_free_new:
  2593. page_cache_release(new_page);
  2594. oom:
  2595. if (old_page)
  2596. page_cache_release(old_page);
  2597. return VM_FAULT_OOM;
  2598. unwritable_page:
  2599. page_cache_release(old_page);
  2600. return ret;
  2601. }
  2602. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2603. unsigned long start_addr, unsigned long end_addr,
  2604. struct zap_details *details)
  2605. {
  2606. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2607. }
  2608. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2609. struct zap_details *details)
  2610. {
  2611. struct vm_area_struct *vma;
  2612. pgoff_t vba, vea, zba, zea;
  2613. vma_interval_tree_foreach(vma, root,
  2614. details->first_index, details->last_index) {
  2615. vba = vma->vm_pgoff;
  2616. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2617. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2618. zba = details->first_index;
  2619. if (zba < vba)
  2620. zba = vba;
  2621. zea = details->last_index;
  2622. if (zea > vea)
  2623. zea = vea;
  2624. unmap_mapping_range_vma(vma,
  2625. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2626. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2627. details);
  2628. }
  2629. }
  2630. static inline void unmap_mapping_range_list(struct list_head *head,
  2631. struct zap_details *details)
  2632. {
  2633. struct vm_area_struct *vma;
  2634. /*
  2635. * In nonlinear VMAs there is no correspondence between virtual address
  2636. * offset and file offset. So we must perform an exhaustive search
  2637. * across *all* the pages in each nonlinear VMA, not just the pages
  2638. * whose virtual address lies outside the file truncation point.
  2639. */
  2640. list_for_each_entry(vma, head, shared.nonlinear) {
  2641. details->nonlinear_vma = vma;
  2642. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2643. }
  2644. }
  2645. /**
  2646. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2647. * @mapping: the address space containing mmaps to be unmapped.
  2648. * @holebegin: byte in first page to unmap, relative to the start of
  2649. * the underlying file. This will be rounded down to a PAGE_SIZE
  2650. * boundary. Note that this is different from truncate_pagecache(), which
  2651. * must keep the partial page. In contrast, we must get rid of
  2652. * partial pages.
  2653. * @holelen: size of prospective hole in bytes. This will be rounded
  2654. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2655. * end of the file.
  2656. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2657. * but 0 when invalidating pagecache, don't throw away private data.
  2658. */
  2659. void unmap_mapping_range(struct address_space *mapping,
  2660. loff_t const holebegin, loff_t const holelen, int even_cows)
  2661. {
  2662. struct zap_details details;
  2663. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2664. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2665. /* Check for overflow. */
  2666. if (sizeof(holelen) > sizeof(hlen)) {
  2667. long long holeend =
  2668. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2669. if (holeend & ~(long long)ULONG_MAX)
  2670. hlen = ULONG_MAX - hba + 1;
  2671. }
  2672. details.check_mapping = even_cows? NULL: mapping;
  2673. details.nonlinear_vma = NULL;
  2674. details.first_index = hba;
  2675. details.last_index = hba + hlen - 1;
  2676. if (details.last_index < details.first_index)
  2677. details.last_index = ULONG_MAX;
  2678. mutex_lock(&mapping->i_mmap_mutex);
  2679. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2680. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2681. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2682. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2683. mutex_unlock(&mapping->i_mmap_mutex);
  2684. }
  2685. EXPORT_SYMBOL(unmap_mapping_range);
  2686. /*
  2687. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2688. * but allow concurrent faults), and pte mapped but not yet locked.
  2689. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2690. */
  2691. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2692. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2693. unsigned int flags, pte_t orig_pte)
  2694. {
  2695. spinlock_t *ptl;
  2696. struct page *page, *swapcache;
  2697. swp_entry_t entry;
  2698. pte_t pte;
  2699. int locked;
  2700. struct mem_cgroup *ptr;
  2701. int exclusive = 0;
  2702. int ret = 0;
  2703. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2704. goto out;
  2705. entry = pte_to_swp_entry(orig_pte);
  2706. if (unlikely(non_swap_entry(entry))) {
  2707. if (is_migration_entry(entry)) {
  2708. migration_entry_wait(mm, pmd, address);
  2709. } else if (is_hwpoison_entry(entry)) {
  2710. ret = VM_FAULT_HWPOISON;
  2711. } else {
  2712. print_bad_pte(vma, address, orig_pte, NULL);
  2713. ret = VM_FAULT_SIGBUS;
  2714. }
  2715. goto out;
  2716. }
  2717. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2718. page = lookup_swap_cache(entry);
  2719. if (!page) {
  2720. page = swapin_readahead(entry,
  2721. GFP_HIGHUSER_MOVABLE, vma, address);
  2722. if (!page) {
  2723. /*
  2724. * Back out if somebody else faulted in this pte
  2725. * while we released the pte lock.
  2726. */
  2727. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2728. if (likely(pte_same(*page_table, orig_pte)))
  2729. ret = VM_FAULT_OOM;
  2730. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2731. goto unlock;
  2732. }
  2733. /* Had to read the page from swap area: Major fault */
  2734. ret = VM_FAULT_MAJOR;
  2735. count_vm_event(PGMAJFAULT);
  2736. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2737. } else if (PageHWPoison(page)) {
  2738. /*
  2739. * hwpoisoned dirty swapcache pages are kept for killing
  2740. * owner processes (which may be unknown at hwpoison time)
  2741. */
  2742. ret = VM_FAULT_HWPOISON;
  2743. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2744. swapcache = page;
  2745. goto out_release;
  2746. }
  2747. swapcache = page;
  2748. locked = lock_page_or_retry(page, mm, flags);
  2749. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2750. if (!locked) {
  2751. ret |= VM_FAULT_RETRY;
  2752. goto out_release;
  2753. }
  2754. /*
  2755. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2756. * release the swapcache from under us. The page pin, and pte_same
  2757. * test below, are not enough to exclude that. Even if it is still
  2758. * swapcache, we need to check that the page's swap has not changed.
  2759. */
  2760. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2761. goto out_page;
  2762. page = ksm_might_need_to_copy(page, vma, address);
  2763. if (unlikely(!page)) {
  2764. ret = VM_FAULT_OOM;
  2765. page = swapcache;
  2766. goto out_page;
  2767. }
  2768. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2769. ret = VM_FAULT_OOM;
  2770. goto out_page;
  2771. }
  2772. /*
  2773. * Back out if somebody else already faulted in this pte.
  2774. */
  2775. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2776. if (unlikely(!pte_same(*page_table, orig_pte)))
  2777. goto out_nomap;
  2778. if (unlikely(!PageUptodate(page))) {
  2779. ret = VM_FAULT_SIGBUS;
  2780. goto out_nomap;
  2781. }
  2782. /*
  2783. * The page isn't present yet, go ahead with the fault.
  2784. *
  2785. * Be careful about the sequence of operations here.
  2786. * To get its accounting right, reuse_swap_page() must be called
  2787. * while the page is counted on swap but not yet in mapcount i.e.
  2788. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2789. * must be called after the swap_free(), or it will never succeed.
  2790. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2791. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2792. * in page->private. In this case, a record in swap_cgroup is silently
  2793. * discarded at swap_free().
  2794. */
  2795. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2796. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2797. pte = mk_pte(page, vma->vm_page_prot);
  2798. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2799. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2800. flags &= ~FAULT_FLAG_WRITE;
  2801. ret |= VM_FAULT_WRITE;
  2802. exclusive = 1;
  2803. }
  2804. flush_icache_page(vma, page);
  2805. set_pte_at(mm, address, page_table, pte);
  2806. if (page == swapcache)
  2807. do_page_add_anon_rmap(page, vma, address, exclusive);
  2808. else /* ksm created a completely new copy */
  2809. page_add_new_anon_rmap(page, vma, address);
  2810. /* It's better to call commit-charge after rmap is established */
  2811. mem_cgroup_commit_charge_swapin(page, ptr);
  2812. swap_free(entry);
  2813. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2814. try_to_free_swap(page);
  2815. unlock_page(page);
  2816. if (page != swapcache) {
  2817. /*
  2818. * Hold the lock to avoid the swap entry to be reused
  2819. * until we take the PT lock for the pte_same() check
  2820. * (to avoid false positives from pte_same). For
  2821. * further safety release the lock after the swap_free
  2822. * so that the swap count won't change under a
  2823. * parallel locked swapcache.
  2824. */
  2825. unlock_page(swapcache);
  2826. page_cache_release(swapcache);
  2827. }
  2828. if (flags & FAULT_FLAG_WRITE) {
  2829. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2830. if (ret & VM_FAULT_ERROR)
  2831. ret &= VM_FAULT_ERROR;
  2832. goto out;
  2833. }
  2834. /* No need to invalidate - it was non-present before */
  2835. update_mmu_cache(vma, address, page_table);
  2836. unlock:
  2837. pte_unmap_unlock(page_table, ptl);
  2838. out:
  2839. return ret;
  2840. out_nomap:
  2841. mem_cgroup_cancel_charge_swapin(ptr);
  2842. pte_unmap_unlock(page_table, ptl);
  2843. out_page:
  2844. unlock_page(page);
  2845. out_release:
  2846. page_cache_release(page);
  2847. if (page != swapcache) {
  2848. unlock_page(swapcache);
  2849. page_cache_release(swapcache);
  2850. }
  2851. return ret;
  2852. }
  2853. /*
  2854. * This is like a special single-page "expand_{down|up}wards()",
  2855. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2856. * doesn't hit another vma.
  2857. */
  2858. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2859. {
  2860. address &= PAGE_MASK;
  2861. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2862. struct vm_area_struct *prev = vma->vm_prev;
  2863. /*
  2864. * Is there a mapping abutting this one below?
  2865. *
  2866. * That's only ok if it's the same stack mapping
  2867. * that has gotten split..
  2868. */
  2869. if (prev && prev->vm_end == address)
  2870. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2871. expand_downwards(vma, address - PAGE_SIZE);
  2872. }
  2873. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2874. struct vm_area_struct *next = vma->vm_next;
  2875. /* As VM_GROWSDOWN but s/below/above/ */
  2876. if (next && next->vm_start == address + PAGE_SIZE)
  2877. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2878. expand_upwards(vma, address + PAGE_SIZE);
  2879. }
  2880. return 0;
  2881. }
  2882. /*
  2883. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2884. * but allow concurrent faults), and pte mapped but not yet locked.
  2885. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2886. */
  2887. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2888. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2889. unsigned int flags)
  2890. {
  2891. struct page *page;
  2892. spinlock_t *ptl;
  2893. pte_t entry;
  2894. pte_unmap(page_table);
  2895. /* Check if we need to add a guard page to the stack */
  2896. if (check_stack_guard_page(vma, address) < 0)
  2897. return VM_FAULT_SIGBUS;
  2898. /* Use the zero-page for reads */
  2899. if (!(flags & FAULT_FLAG_WRITE)) {
  2900. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2901. vma->vm_page_prot));
  2902. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2903. if (!pte_none(*page_table))
  2904. goto unlock;
  2905. goto setpte;
  2906. }
  2907. /* Allocate our own private page. */
  2908. if (unlikely(anon_vma_prepare(vma)))
  2909. goto oom;
  2910. page = alloc_zeroed_user_highpage_movable(vma, address);
  2911. if (!page)
  2912. goto oom;
  2913. /*
  2914. * The memory barrier inside __SetPageUptodate makes sure that
  2915. * preceeding stores to the page contents become visible before
  2916. * the set_pte_at() write.
  2917. */
  2918. __SetPageUptodate(page);
  2919. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2920. goto oom_free_page;
  2921. entry = mk_pte(page, vma->vm_page_prot);
  2922. if (vma->vm_flags & VM_WRITE)
  2923. entry = pte_mkwrite(pte_mkdirty(entry));
  2924. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2925. if (!pte_none(*page_table))
  2926. goto release;
  2927. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2928. page_add_new_anon_rmap(page, vma, address);
  2929. setpte:
  2930. set_pte_at(mm, address, page_table, entry);
  2931. /* No need to invalidate - it was non-present before */
  2932. update_mmu_cache(vma, address, page_table);
  2933. unlock:
  2934. pte_unmap_unlock(page_table, ptl);
  2935. return 0;
  2936. release:
  2937. mem_cgroup_uncharge_page(page);
  2938. page_cache_release(page);
  2939. goto unlock;
  2940. oom_free_page:
  2941. page_cache_release(page);
  2942. oom:
  2943. return VM_FAULT_OOM;
  2944. }
  2945. /*
  2946. * __do_fault() tries to create a new page mapping. It aggressively
  2947. * tries to share with existing pages, but makes a separate copy if
  2948. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2949. * the next page fault.
  2950. *
  2951. * As this is called only for pages that do not currently exist, we
  2952. * do not need to flush old virtual caches or the TLB.
  2953. *
  2954. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2955. * but allow concurrent faults), and pte neither mapped nor locked.
  2956. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2957. */
  2958. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2959. unsigned long address, pmd_t *pmd,
  2960. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2961. {
  2962. pte_t *page_table;
  2963. spinlock_t *ptl;
  2964. struct page *page;
  2965. struct page *cow_page;
  2966. pte_t entry;
  2967. int anon = 0;
  2968. struct page *dirty_page = NULL;
  2969. struct vm_fault vmf;
  2970. int ret;
  2971. int page_mkwrite = 0;
  2972. /*
  2973. * If we do COW later, allocate page befor taking lock_page()
  2974. * on the file cache page. This will reduce lock holding time.
  2975. */
  2976. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2977. if (unlikely(anon_vma_prepare(vma)))
  2978. return VM_FAULT_OOM;
  2979. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2980. if (!cow_page)
  2981. return VM_FAULT_OOM;
  2982. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2983. page_cache_release(cow_page);
  2984. return VM_FAULT_OOM;
  2985. }
  2986. } else
  2987. cow_page = NULL;
  2988. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2989. vmf.pgoff = pgoff;
  2990. vmf.flags = flags;
  2991. vmf.page = NULL;
  2992. ret = vma->vm_ops->fault(vma, &vmf);
  2993. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2994. VM_FAULT_RETRY)))
  2995. goto uncharge_out;
  2996. if (unlikely(PageHWPoison(vmf.page))) {
  2997. if (ret & VM_FAULT_LOCKED)
  2998. unlock_page(vmf.page);
  2999. ret = VM_FAULT_HWPOISON;
  3000. goto uncharge_out;
  3001. }
  3002. /*
  3003. * For consistency in subsequent calls, make the faulted page always
  3004. * locked.
  3005. */
  3006. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  3007. lock_page(vmf.page);
  3008. else
  3009. VM_BUG_ON(!PageLocked(vmf.page));
  3010. /*
  3011. * Should we do an early C-O-W break?
  3012. */
  3013. page = vmf.page;
  3014. if (flags & FAULT_FLAG_WRITE) {
  3015. if (!(vma->vm_flags & VM_SHARED)) {
  3016. page = cow_page;
  3017. anon = 1;
  3018. copy_user_highpage(page, vmf.page, address, vma);
  3019. __SetPageUptodate(page);
  3020. } else {
  3021. /*
  3022. * If the page will be shareable, see if the backing
  3023. * address space wants to know that the page is about
  3024. * to become writable
  3025. */
  3026. if (vma->vm_ops->page_mkwrite) {
  3027. int tmp;
  3028. unlock_page(page);
  3029. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  3030. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  3031. if (unlikely(tmp &
  3032. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  3033. ret = tmp;
  3034. goto unwritable_page;
  3035. }
  3036. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  3037. lock_page(page);
  3038. if (!page->mapping) {
  3039. ret = 0; /* retry the fault */
  3040. unlock_page(page);
  3041. goto unwritable_page;
  3042. }
  3043. } else
  3044. VM_BUG_ON(!PageLocked(page));
  3045. page_mkwrite = 1;
  3046. }
  3047. }
  3048. }
  3049. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  3050. /*
  3051. * This silly early PAGE_DIRTY setting removes a race
  3052. * due to the bad i386 page protection. But it's valid
  3053. * for other architectures too.
  3054. *
  3055. * Note that if FAULT_FLAG_WRITE is set, we either now have
  3056. * an exclusive copy of the page, or this is a shared mapping,
  3057. * so we can make it writable and dirty to avoid having to
  3058. * handle that later.
  3059. */
  3060. /* Only go through if we didn't race with anybody else... */
  3061. if (likely(pte_same(*page_table, orig_pte))) {
  3062. flush_icache_page(vma, page);
  3063. entry = mk_pte(page, vma->vm_page_prot);
  3064. if (flags & FAULT_FLAG_WRITE)
  3065. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  3066. if (anon) {
  3067. inc_mm_counter_fast(mm, MM_ANONPAGES);
  3068. page_add_new_anon_rmap(page, vma, address);
  3069. } else {
  3070. inc_mm_counter_fast(mm, MM_FILEPAGES);
  3071. page_add_file_rmap(page);
  3072. if (flags & FAULT_FLAG_WRITE) {
  3073. dirty_page = page;
  3074. get_page(dirty_page);
  3075. }
  3076. }
  3077. set_pte_at(mm, address, page_table, entry);
  3078. /* no need to invalidate: a not-present page won't be cached */
  3079. update_mmu_cache(vma, address, page_table);
  3080. } else {
  3081. if (cow_page)
  3082. mem_cgroup_uncharge_page(cow_page);
  3083. if (anon)
  3084. page_cache_release(page);
  3085. else
  3086. anon = 1; /* no anon but release faulted_page */
  3087. }
  3088. pte_unmap_unlock(page_table, ptl);
  3089. if (dirty_page) {
  3090. struct address_space *mapping = page->mapping;
  3091. int dirtied = 0;
  3092. if (set_page_dirty(dirty_page))
  3093. dirtied = 1;
  3094. unlock_page(dirty_page);
  3095. put_page(dirty_page);
  3096. if ((dirtied || page_mkwrite) && mapping) {
  3097. /*
  3098. * Some device drivers do not set page.mapping but still
  3099. * dirty their pages
  3100. */
  3101. balance_dirty_pages_ratelimited(mapping);
  3102. }
  3103. /* file_update_time outside page_lock */
  3104. if (vma->vm_file && !page_mkwrite)
  3105. file_update_time(vma->vm_file);
  3106. } else {
  3107. unlock_page(vmf.page);
  3108. if (anon)
  3109. page_cache_release(vmf.page);
  3110. }
  3111. return ret;
  3112. unwritable_page:
  3113. page_cache_release(page);
  3114. return ret;
  3115. uncharge_out:
  3116. /* fs's fault handler get error */
  3117. if (cow_page) {
  3118. mem_cgroup_uncharge_page(cow_page);
  3119. page_cache_release(cow_page);
  3120. }
  3121. return ret;
  3122. }
  3123. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3124. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3125. unsigned int flags, pte_t orig_pte)
  3126. {
  3127. pgoff_t pgoff = (((address & PAGE_MASK)
  3128. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3129. pte_unmap(page_table);
  3130. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3131. }
  3132. /*
  3133. * Fault of a previously existing named mapping. Repopulate the pte
  3134. * from the encoded file_pte if possible. This enables swappable
  3135. * nonlinear vmas.
  3136. *
  3137. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3138. * but allow concurrent faults), and pte mapped but not yet locked.
  3139. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3140. */
  3141. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3142. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3143. unsigned int flags, pte_t orig_pte)
  3144. {
  3145. pgoff_t pgoff;
  3146. flags |= FAULT_FLAG_NONLINEAR;
  3147. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3148. return 0;
  3149. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3150. /*
  3151. * Page table corrupted: show pte and kill process.
  3152. */
  3153. print_bad_pte(vma, address, orig_pte, NULL);
  3154. return VM_FAULT_SIGBUS;
  3155. }
  3156. pgoff = pte_to_pgoff(orig_pte);
  3157. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3158. }
  3159. int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  3160. unsigned long addr, int current_nid)
  3161. {
  3162. get_page(page);
  3163. count_vm_numa_event(NUMA_HINT_FAULTS);
  3164. if (current_nid == numa_node_id())
  3165. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  3166. return mpol_misplaced(page, vma, addr);
  3167. }
  3168. int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3169. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  3170. {
  3171. struct page *page = NULL;
  3172. spinlock_t *ptl;
  3173. int current_nid = -1;
  3174. int target_nid;
  3175. bool migrated = false;
  3176. /*
  3177. * The "pte" at this point cannot be used safely without
  3178. * validation through pte_unmap_same(). It's of NUMA type but
  3179. * the pfn may be screwed if the read is non atomic.
  3180. *
  3181. * ptep_modify_prot_start is not called as this is clearing
  3182. * the _PAGE_NUMA bit and it is not really expected that there
  3183. * would be concurrent hardware modifications to the PTE.
  3184. */
  3185. ptl = pte_lockptr(mm, pmd);
  3186. spin_lock(ptl);
  3187. if (unlikely(!pte_same(*ptep, pte))) {
  3188. pte_unmap_unlock(ptep, ptl);
  3189. goto out;
  3190. }
  3191. pte = pte_mknonnuma(pte);
  3192. set_pte_at(mm, addr, ptep, pte);
  3193. update_mmu_cache(vma, addr, ptep);
  3194. page = vm_normal_page(vma, addr, pte);
  3195. if (!page) {
  3196. pte_unmap_unlock(ptep, ptl);
  3197. return 0;
  3198. }
  3199. current_nid = page_to_nid(page);
  3200. target_nid = numa_migrate_prep(page, vma, addr, current_nid);
  3201. pte_unmap_unlock(ptep, ptl);
  3202. if (target_nid == -1) {
  3203. /*
  3204. * Account for the fault against the current node if it not
  3205. * being replaced regardless of where the page is located.
  3206. */
  3207. current_nid = numa_node_id();
  3208. put_page(page);
  3209. goto out;
  3210. }
  3211. /* Migrate to the requested node */
  3212. migrated = migrate_misplaced_page(page, target_nid);
  3213. if (migrated)
  3214. current_nid = target_nid;
  3215. out:
  3216. if (current_nid != -1)
  3217. task_numa_fault(current_nid, 1, migrated);
  3218. return 0;
  3219. }
  3220. /* NUMA hinting page fault entry point for regular pmds */
  3221. #ifdef CONFIG_NUMA_BALANCING
  3222. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3223. unsigned long addr, pmd_t *pmdp)
  3224. {
  3225. pmd_t pmd;
  3226. pte_t *pte, *orig_pte;
  3227. unsigned long _addr = addr & PMD_MASK;
  3228. unsigned long offset;
  3229. spinlock_t *ptl;
  3230. bool numa = false;
  3231. int local_nid = numa_node_id();
  3232. spin_lock(&mm->page_table_lock);
  3233. pmd = *pmdp;
  3234. if (pmd_numa(pmd)) {
  3235. set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
  3236. numa = true;
  3237. }
  3238. spin_unlock(&mm->page_table_lock);
  3239. if (!numa)
  3240. return 0;
  3241. /* we're in a page fault so some vma must be in the range */
  3242. BUG_ON(!vma);
  3243. BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
  3244. offset = max(_addr, vma->vm_start) & ~PMD_MASK;
  3245. VM_BUG_ON(offset >= PMD_SIZE);
  3246. orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
  3247. pte += offset >> PAGE_SHIFT;
  3248. for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
  3249. pte_t pteval = *pte;
  3250. struct page *page;
  3251. int curr_nid = local_nid;
  3252. int target_nid;
  3253. bool migrated;
  3254. if (!pte_present(pteval))
  3255. continue;
  3256. if (!pte_numa(pteval))
  3257. continue;
  3258. if (addr >= vma->vm_end) {
  3259. vma = find_vma(mm, addr);
  3260. /* there's a pte present so there must be a vma */
  3261. BUG_ON(!vma);
  3262. BUG_ON(addr < vma->vm_start);
  3263. }
  3264. if (pte_numa(pteval)) {
  3265. pteval = pte_mknonnuma(pteval);
  3266. set_pte_at(mm, addr, pte, pteval);
  3267. }
  3268. page = vm_normal_page(vma, addr, pteval);
  3269. if (unlikely(!page))
  3270. continue;
  3271. /* only check non-shared pages */
  3272. if (unlikely(page_mapcount(page) != 1))
  3273. continue;
  3274. /*
  3275. * Note that the NUMA fault is later accounted to either
  3276. * the node that is currently running or where the page is
  3277. * migrated to.
  3278. */
  3279. curr_nid = local_nid;
  3280. target_nid = numa_migrate_prep(page, vma, addr,
  3281. page_to_nid(page));
  3282. if (target_nid == -1) {
  3283. put_page(page);
  3284. continue;
  3285. }
  3286. /* Migrate to the requested node */
  3287. pte_unmap_unlock(pte, ptl);
  3288. migrated = migrate_misplaced_page(page, target_nid);
  3289. if (migrated)
  3290. curr_nid = target_nid;
  3291. task_numa_fault(curr_nid, 1, migrated);
  3292. pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
  3293. }
  3294. pte_unmap_unlock(orig_pte, ptl);
  3295. return 0;
  3296. }
  3297. #else
  3298. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3299. unsigned long addr, pmd_t *pmdp)
  3300. {
  3301. BUG();
  3302. return 0;
  3303. }
  3304. #endif /* CONFIG_NUMA_BALANCING */
  3305. /*
  3306. * These routines also need to handle stuff like marking pages dirty
  3307. * and/or accessed for architectures that don't do it in hardware (most
  3308. * RISC architectures). The early dirtying is also good on the i386.
  3309. *
  3310. * There is also a hook called "update_mmu_cache()" that architectures
  3311. * with external mmu caches can use to update those (ie the Sparc or
  3312. * PowerPC hashed page tables that act as extended TLBs).
  3313. *
  3314. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3315. * but allow concurrent faults), and pte mapped but not yet locked.
  3316. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3317. */
  3318. int handle_pte_fault(struct mm_struct *mm,
  3319. struct vm_area_struct *vma, unsigned long address,
  3320. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3321. {
  3322. pte_t entry;
  3323. spinlock_t *ptl;
  3324. entry = *pte;
  3325. if (!pte_present(entry)) {
  3326. if (pte_none(entry)) {
  3327. if (vma->vm_ops) {
  3328. if (likely(vma->vm_ops->fault))
  3329. return do_linear_fault(mm, vma, address,
  3330. pte, pmd, flags, entry);
  3331. }
  3332. return do_anonymous_page(mm, vma, address,
  3333. pte, pmd, flags);
  3334. }
  3335. if (pte_file(entry))
  3336. return do_nonlinear_fault(mm, vma, address,
  3337. pte, pmd, flags, entry);
  3338. return do_swap_page(mm, vma, address,
  3339. pte, pmd, flags, entry);
  3340. }
  3341. if (pte_numa(entry))
  3342. return do_numa_page(mm, vma, address, entry, pte, pmd);
  3343. ptl = pte_lockptr(mm, pmd);
  3344. spin_lock(ptl);
  3345. if (unlikely(!pte_same(*pte, entry)))
  3346. goto unlock;
  3347. if (flags & FAULT_FLAG_WRITE) {
  3348. if (!pte_write(entry))
  3349. return do_wp_page(mm, vma, address,
  3350. pte, pmd, ptl, entry);
  3351. entry = pte_mkdirty(entry);
  3352. }
  3353. entry = pte_mkyoung(entry);
  3354. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3355. update_mmu_cache(vma, address, pte);
  3356. } else {
  3357. /*
  3358. * This is needed only for protection faults but the arch code
  3359. * is not yet telling us if this is a protection fault or not.
  3360. * This still avoids useless tlb flushes for .text page faults
  3361. * with threads.
  3362. */
  3363. if (flags & FAULT_FLAG_WRITE)
  3364. flush_tlb_fix_spurious_fault(vma, address);
  3365. }
  3366. unlock:
  3367. pte_unmap_unlock(pte, ptl);
  3368. return 0;
  3369. }
  3370. /*
  3371. * By the time we get here, we already hold the mm semaphore
  3372. */
  3373. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3374. unsigned long address, unsigned int flags)
  3375. {
  3376. pgd_t *pgd;
  3377. pud_t *pud;
  3378. pmd_t *pmd;
  3379. pte_t *pte;
  3380. __set_current_state(TASK_RUNNING);
  3381. count_vm_event(PGFAULT);
  3382. mem_cgroup_count_vm_event(mm, PGFAULT);
  3383. /* do counter updates before entering really critical section. */
  3384. check_sync_rss_stat(current);
  3385. if (unlikely(is_vm_hugetlb_page(vma)))
  3386. return hugetlb_fault(mm, vma, address, flags);
  3387. retry:
  3388. pgd = pgd_offset(mm, address);
  3389. pud = pud_alloc(mm, pgd, address);
  3390. if (!pud)
  3391. return VM_FAULT_OOM;
  3392. pmd = pmd_alloc(mm, pud, address);
  3393. if (!pmd)
  3394. return VM_FAULT_OOM;
  3395. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3396. if (!vma->vm_ops)
  3397. return do_huge_pmd_anonymous_page(mm, vma, address,
  3398. pmd, flags);
  3399. } else {
  3400. pmd_t orig_pmd = *pmd;
  3401. int ret;
  3402. barrier();
  3403. if (pmd_trans_huge(orig_pmd)) {
  3404. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3405. /*
  3406. * If the pmd is splitting, return and retry the
  3407. * the fault. Alternative: wait until the split
  3408. * is done, and goto retry.
  3409. */
  3410. if (pmd_trans_splitting(orig_pmd))
  3411. return 0;
  3412. if (pmd_numa(orig_pmd))
  3413. return do_huge_pmd_numa_page(mm, vma, address,
  3414. orig_pmd, pmd);
  3415. if (dirty && !pmd_write(orig_pmd)) {
  3416. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3417. orig_pmd);
  3418. /*
  3419. * If COW results in an oom, the huge pmd will
  3420. * have been split, so retry the fault on the
  3421. * pte for a smaller charge.
  3422. */
  3423. if (unlikely(ret & VM_FAULT_OOM))
  3424. goto retry;
  3425. return ret;
  3426. } else {
  3427. huge_pmd_set_accessed(mm, vma, address, pmd,
  3428. orig_pmd, dirty);
  3429. }
  3430. return 0;
  3431. }
  3432. }
  3433. if (pmd_numa(*pmd))
  3434. return do_pmd_numa_page(mm, vma, address, pmd);
  3435. /*
  3436. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3437. * run pte_offset_map on the pmd, if an huge pmd could
  3438. * materialize from under us from a different thread.
  3439. */
  3440. if (unlikely(pmd_none(*pmd)) &&
  3441. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3442. return VM_FAULT_OOM;
  3443. /* if an huge pmd materialized from under us just retry later */
  3444. if (unlikely(pmd_trans_huge(*pmd)))
  3445. return 0;
  3446. /*
  3447. * A regular pmd is established and it can't morph into a huge pmd
  3448. * from under us anymore at this point because we hold the mmap_sem
  3449. * read mode and khugepaged takes it in write mode. So now it's
  3450. * safe to run pte_offset_map().
  3451. */
  3452. pte = pte_offset_map(pmd, address);
  3453. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3454. }
  3455. #ifndef __PAGETABLE_PUD_FOLDED
  3456. /*
  3457. * Allocate page upper directory.
  3458. * We've already handled the fast-path in-line.
  3459. */
  3460. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3461. {
  3462. pud_t *new = pud_alloc_one(mm, address);
  3463. if (!new)
  3464. return -ENOMEM;
  3465. smp_wmb(); /* See comment in __pte_alloc */
  3466. spin_lock(&mm->page_table_lock);
  3467. if (pgd_present(*pgd)) /* Another has populated it */
  3468. pud_free(mm, new);
  3469. else
  3470. pgd_populate(mm, pgd, new);
  3471. spin_unlock(&mm->page_table_lock);
  3472. return 0;
  3473. }
  3474. #endif /* __PAGETABLE_PUD_FOLDED */
  3475. #ifndef __PAGETABLE_PMD_FOLDED
  3476. /*
  3477. * Allocate page middle directory.
  3478. * We've already handled the fast-path in-line.
  3479. */
  3480. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3481. {
  3482. pmd_t *new = pmd_alloc_one(mm, address);
  3483. if (!new)
  3484. return -ENOMEM;
  3485. smp_wmb(); /* See comment in __pte_alloc */
  3486. spin_lock(&mm->page_table_lock);
  3487. #ifndef __ARCH_HAS_4LEVEL_HACK
  3488. if (pud_present(*pud)) /* Another has populated it */
  3489. pmd_free(mm, new);
  3490. else
  3491. pud_populate(mm, pud, new);
  3492. #else
  3493. if (pgd_present(*pud)) /* Another has populated it */
  3494. pmd_free(mm, new);
  3495. else
  3496. pgd_populate(mm, pud, new);
  3497. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3498. spin_unlock(&mm->page_table_lock);
  3499. return 0;
  3500. }
  3501. #endif /* __PAGETABLE_PMD_FOLDED */
  3502. #if !defined(__HAVE_ARCH_GATE_AREA)
  3503. #if defined(AT_SYSINFO_EHDR)
  3504. static struct vm_area_struct gate_vma;
  3505. static int __init gate_vma_init(void)
  3506. {
  3507. gate_vma.vm_mm = NULL;
  3508. gate_vma.vm_start = FIXADDR_USER_START;
  3509. gate_vma.vm_end = FIXADDR_USER_END;
  3510. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3511. gate_vma.vm_page_prot = __P101;
  3512. return 0;
  3513. }
  3514. __initcall(gate_vma_init);
  3515. #endif
  3516. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3517. {
  3518. #ifdef AT_SYSINFO_EHDR
  3519. return &gate_vma;
  3520. #else
  3521. return NULL;
  3522. #endif
  3523. }
  3524. int in_gate_area_no_mm(unsigned long addr)
  3525. {
  3526. #ifdef AT_SYSINFO_EHDR
  3527. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3528. return 1;
  3529. #endif
  3530. return 0;
  3531. }
  3532. #endif /* __HAVE_ARCH_GATE_AREA */
  3533. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3534. pte_t **ptepp, spinlock_t **ptlp)
  3535. {
  3536. pgd_t *pgd;
  3537. pud_t *pud;
  3538. pmd_t *pmd;
  3539. pte_t *ptep;
  3540. pgd = pgd_offset(mm, address);
  3541. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3542. goto out;
  3543. pud = pud_offset(pgd, address);
  3544. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3545. goto out;
  3546. pmd = pmd_offset(pud, address);
  3547. VM_BUG_ON(pmd_trans_huge(*pmd));
  3548. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3549. goto out;
  3550. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3551. if (pmd_huge(*pmd))
  3552. goto out;
  3553. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3554. if (!ptep)
  3555. goto out;
  3556. if (!pte_present(*ptep))
  3557. goto unlock;
  3558. *ptepp = ptep;
  3559. return 0;
  3560. unlock:
  3561. pte_unmap_unlock(ptep, *ptlp);
  3562. out:
  3563. return -EINVAL;
  3564. }
  3565. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3566. pte_t **ptepp, spinlock_t **ptlp)
  3567. {
  3568. int res;
  3569. /* (void) is needed to make gcc happy */
  3570. (void) __cond_lock(*ptlp,
  3571. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3572. return res;
  3573. }
  3574. /**
  3575. * follow_pfn - look up PFN at a user virtual address
  3576. * @vma: memory mapping
  3577. * @address: user virtual address
  3578. * @pfn: location to store found PFN
  3579. *
  3580. * Only IO mappings and raw PFN mappings are allowed.
  3581. *
  3582. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3583. */
  3584. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3585. unsigned long *pfn)
  3586. {
  3587. int ret = -EINVAL;
  3588. spinlock_t *ptl;
  3589. pte_t *ptep;
  3590. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3591. return ret;
  3592. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3593. if (ret)
  3594. return ret;
  3595. *pfn = pte_pfn(*ptep);
  3596. pte_unmap_unlock(ptep, ptl);
  3597. return 0;
  3598. }
  3599. EXPORT_SYMBOL(follow_pfn);
  3600. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3601. int follow_phys(struct vm_area_struct *vma,
  3602. unsigned long address, unsigned int flags,
  3603. unsigned long *prot, resource_size_t *phys)
  3604. {
  3605. int ret = -EINVAL;
  3606. pte_t *ptep, pte;
  3607. spinlock_t *ptl;
  3608. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3609. goto out;
  3610. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3611. goto out;
  3612. pte = *ptep;
  3613. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3614. goto unlock;
  3615. *prot = pgprot_val(pte_pgprot(pte));
  3616. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3617. ret = 0;
  3618. unlock:
  3619. pte_unmap_unlock(ptep, ptl);
  3620. out:
  3621. return ret;
  3622. }
  3623. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3624. void *buf, int len, int write)
  3625. {
  3626. resource_size_t phys_addr;
  3627. unsigned long prot = 0;
  3628. void __iomem *maddr;
  3629. int offset = addr & (PAGE_SIZE-1);
  3630. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3631. return -EINVAL;
  3632. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3633. if (write)
  3634. memcpy_toio(maddr + offset, buf, len);
  3635. else
  3636. memcpy_fromio(buf, maddr + offset, len);
  3637. iounmap(maddr);
  3638. return len;
  3639. }
  3640. #endif
  3641. /*
  3642. * Access another process' address space as given in mm. If non-NULL, use the
  3643. * given task for page fault accounting.
  3644. */
  3645. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3646. unsigned long addr, void *buf, int len, int write)
  3647. {
  3648. struct vm_area_struct *vma;
  3649. void *old_buf = buf;
  3650. down_read(&mm->mmap_sem);
  3651. /* ignore errors, just check how much was successfully transferred */
  3652. while (len) {
  3653. int bytes, ret, offset;
  3654. void *maddr;
  3655. struct page *page = NULL;
  3656. ret = get_user_pages(tsk, mm, addr, 1,
  3657. write, 1, &page, &vma);
  3658. if (ret <= 0) {
  3659. /*
  3660. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3661. * we can access using slightly different code.
  3662. */
  3663. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3664. vma = find_vma(mm, addr);
  3665. if (!vma || vma->vm_start > addr)
  3666. break;
  3667. if (vma->vm_ops && vma->vm_ops->access)
  3668. ret = vma->vm_ops->access(vma, addr, buf,
  3669. len, write);
  3670. if (ret <= 0)
  3671. #endif
  3672. break;
  3673. bytes = ret;
  3674. } else {
  3675. bytes = len;
  3676. offset = addr & (PAGE_SIZE-1);
  3677. if (bytes > PAGE_SIZE-offset)
  3678. bytes = PAGE_SIZE-offset;
  3679. maddr = kmap(page);
  3680. if (write) {
  3681. copy_to_user_page(vma, page, addr,
  3682. maddr + offset, buf, bytes);
  3683. set_page_dirty_lock(page);
  3684. } else {
  3685. copy_from_user_page(vma, page, addr,
  3686. buf, maddr + offset, bytes);
  3687. }
  3688. kunmap(page);
  3689. page_cache_release(page);
  3690. }
  3691. len -= bytes;
  3692. buf += bytes;
  3693. addr += bytes;
  3694. }
  3695. up_read(&mm->mmap_sem);
  3696. return buf - old_buf;
  3697. }
  3698. /**
  3699. * access_remote_vm - access another process' address space
  3700. * @mm: the mm_struct of the target address space
  3701. * @addr: start address to access
  3702. * @buf: source or destination buffer
  3703. * @len: number of bytes to transfer
  3704. * @write: whether the access is a write
  3705. *
  3706. * The caller must hold a reference on @mm.
  3707. */
  3708. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3709. void *buf, int len, int write)
  3710. {
  3711. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3712. }
  3713. /*
  3714. * Access another process' address space.
  3715. * Source/target buffer must be kernel space,
  3716. * Do not walk the page table directly, use get_user_pages
  3717. */
  3718. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3719. void *buf, int len, int write)
  3720. {
  3721. struct mm_struct *mm;
  3722. int ret;
  3723. mm = get_task_mm(tsk);
  3724. if (!mm)
  3725. return 0;
  3726. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3727. mmput(mm);
  3728. return ret;
  3729. }
  3730. /*
  3731. * Print the name of a VMA.
  3732. */
  3733. void print_vma_addr(char *prefix, unsigned long ip)
  3734. {
  3735. struct mm_struct *mm = current->mm;
  3736. struct vm_area_struct *vma;
  3737. /*
  3738. * Do not print if we are in atomic
  3739. * contexts (in exception stacks, etc.):
  3740. */
  3741. if (preempt_count())
  3742. return;
  3743. down_read(&mm->mmap_sem);
  3744. vma = find_vma(mm, ip);
  3745. if (vma && vma->vm_file) {
  3746. struct file *f = vma->vm_file;
  3747. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3748. if (buf) {
  3749. char *p;
  3750. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3751. if (IS_ERR(p))
  3752. p = "?";
  3753. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3754. vma->vm_start,
  3755. vma->vm_end - vma->vm_start);
  3756. free_page((unsigned long)buf);
  3757. }
  3758. }
  3759. up_read(&mm->mmap_sem);
  3760. }
  3761. #ifdef CONFIG_PROVE_LOCKING
  3762. void might_fault(void)
  3763. {
  3764. /*
  3765. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3766. * holding the mmap_sem, this is safe because kernel memory doesn't
  3767. * get paged out, therefore we'll never actually fault, and the
  3768. * below annotations will generate false positives.
  3769. */
  3770. if (segment_eq(get_fs(), KERNEL_DS))
  3771. return;
  3772. might_sleep();
  3773. /*
  3774. * it would be nicer only to annotate paths which are not under
  3775. * pagefault_disable, however that requires a larger audit and
  3776. * providing helpers like get_user_atomic.
  3777. */
  3778. if (!in_atomic() && current->mm)
  3779. might_lock_read(&current->mm->mmap_sem);
  3780. }
  3781. EXPORT_SYMBOL(might_fault);
  3782. #endif
  3783. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3784. static void clear_gigantic_page(struct page *page,
  3785. unsigned long addr,
  3786. unsigned int pages_per_huge_page)
  3787. {
  3788. int i;
  3789. struct page *p = page;
  3790. might_sleep();
  3791. for (i = 0; i < pages_per_huge_page;
  3792. i++, p = mem_map_next(p, page, i)) {
  3793. cond_resched();
  3794. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3795. }
  3796. }
  3797. void clear_huge_page(struct page *page,
  3798. unsigned long addr, unsigned int pages_per_huge_page)
  3799. {
  3800. int i;
  3801. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3802. clear_gigantic_page(page, addr, pages_per_huge_page);
  3803. return;
  3804. }
  3805. might_sleep();
  3806. for (i = 0; i < pages_per_huge_page; i++) {
  3807. cond_resched();
  3808. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3809. }
  3810. }
  3811. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3812. unsigned long addr,
  3813. struct vm_area_struct *vma,
  3814. unsigned int pages_per_huge_page)
  3815. {
  3816. int i;
  3817. struct page *dst_base = dst;
  3818. struct page *src_base = src;
  3819. for (i = 0; i < pages_per_huge_page; ) {
  3820. cond_resched();
  3821. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3822. i++;
  3823. dst = mem_map_next(dst, dst_base, i);
  3824. src = mem_map_next(src, src_base, i);
  3825. }
  3826. }
  3827. void copy_user_huge_page(struct page *dst, struct page *src,
  3828. unsigned long addr, struct vm_area_struct *vma,
  3829. unsigned int pages_per_huge_page)
  3830. {
  3831. int i;
  3832. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3833. copy_user_gigantic_page(dst, src, addr, vma,
  3834. pages_per_huge_page);
  3835. return;
  3836. }
  3837. might_sleep();
  3838. for (i = 0; i < pages_per_huge_page; i++) {
  3839. cond_resched();
  3840. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3841. }
  3842. }
  3843. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */