fork.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/smp_lock.h>
  16. #include <linux/module.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/completion.h>
  19. #include <linux/namespace.h>
  20. #include <linux/personality.h>
  21. #include <linux/mempolicy.h>
  22. #include <linux/sem.h>
  23. #include <linux/file.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/fs.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/rcupdate.h>
  37. #include <linux/ptrace.h>
  38. #include <linux/mount.h>
  39. #include <linux/audit.h>
  40. #include <linux/profile.h>
  41. #include <linux/rmap.h>
  42. #include <linux/acct.h>
  43. #include <linux/tsacct_kern.h>
  44. #include <linux/cn_proc.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/taskstats_kern.h>
  47. #include <linux/random.h>
  48. #include <asm/pgtable.h>
  49. #include <asm/pgalloc.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/mmu_context.h>
  52. #include <asm/cacheflush.h>
  53. #include <asm/tlbflush.h>
  54. /*
  55. * Protected counters by write_lock_irq(&tasklist_lock)
  56. */
  57. unsigned long total_forks; /* Handle normal Linux uptimes. */
  58. int nr_threads; /* The idle threads do not count.. */
  59. int max_threads; /* tunable limit on nr_threads */
  60. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  61. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  62. int nr_processes(void)
  63. {
  64. int cpu;
  65. int total = 0;
  66. for_each_online_cpu(cpu)
  67. total += per_cpu(process_counts, cpu);
  68. return total;
  69. }
  70. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  71. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  72. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  73. static kmem_cache_t *task_struct_cachep;
  74. #endif
  75. /* SLAB cache for signal_struct structures (tsk->signal) */
  76. static kmem_cache_t *signal_cachep;
  77. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  78. kmem_cache_t *sighand_cachep;
  79. /* SLAB cache for files_struct structures (tsk->files) */
  80. kmem_cache_t *files_cachep;
  81. /* SLAB cache for fs_struct structures (tsk->fs) */
  82. kmem_cache_t *fs_cachep;
  83. /* SLAB cache for vm_area_struct structures */
  84. kmem_cache_t *vm_area_cachep;
  85. /* SLAB cache for mm_struct structures (tsk->mm) */
  86. static kmem_cache_t *mm_cachep;
  87. void free_task(struct task_struct *tsk)
  88. {
  89. free_thread_info(tsk->thread_info);
  90. rt_mutex_debug_task_free(tsk);
  91. free_task_struct(tsk);
  92. }
  93. EXPORT_SYMBOL(free_task);
  94. void __put_task_struct(struct task_struct *tsk)
  95. {
  96. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  97. WARN_ON(atomic_read(&tsk->usage));
  98. WARN_ON(tsk == current);
  99. security_task_free(tsk);
  100. free_uid(tsk->user);
  101. put_group_info(tsk->group_info);
  102. delayacct_tsk_free(tsk);
  103. if (!profile_handoff_task(tsk))
  104. free_task(tsk);
  105. }
  106. void __init fork_init(unsigned long mempages)
  107. {
  108. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  109. #ifndef ARCH_MIN_TASKALIGN
  110. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  111. #endif
  112. /* create a slab on which task_structs can be allocated */
  113. task_struct_cachep =
  114. kmem_cache_create("task_struct", sizeof(struct task_struct),
  115. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  116. #endif
  117. /*
  118. * The default maximum number of threads is set to a safe
  119. * value: the thread structures can take up at most half
  120. * of memory.
  121. */
  122. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  123. /*
  124. * we need to allow at least 20 threads to boot a system
  125. */
  126. if(max_threads < 20)
  127. max_threads = 20;
  128. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  129. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  130. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  131. init_task.signal->rlim[RLIMIT_NPROC];
  132. }
  133. static struct task_struct *dup_task_struct(struct task_struct *orig)
  134. {
  135. struct task_struct *tsk;
  136. struct thread_info *ti;
  137. prepare_to_copy(orig);
  138. tsk = alloc_task_struct();
  139. if (!tsk)
  140. return NULL;
  141. ti = alloc_thread_info(tsk);
  142. if (!ti) {
  143. free_task_struct(tsk);
  144. return NULL;
  145. }
  146. *tsk = *orig;
  147. tsk->thread_info = ti;
  148. setup_thread_stack(tsk, orig);
  149. #ifdef CONFIG_CC_STACKPROTECTOR
  150. tsk->stack_canary = get_random_int();
  151. #endif
  152. /* One for us, one for whoever does the "release_task()" (usually parent) */
  153. atomic_set(&tsk->usage,2);
  154. atomic_set(&tsk->fs_excl, 0);
  155. #ifdef CONFIG_BLK_DEV_IO_TRACE
  156. tsk->btrace_seq = 0;
  157. #endif
  158. tsk->splice_pipe = NULL;
  159. return tsk;
  160. }
  161. #ifdef CONFIG_MMU
  162. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  163. {
  164. struct vm_area_struct *mpnt, *tmp, **pprev;
  165. struct rb_node **rb_link, *rb_parent;
  166. int retval;
  167. unsigned long charge;
  168. struct mempolicy *pol;
  169. down_write(&oldmm->mmap_sem);
  170. flush_cache_mm(oldmm);
  171. /*
  172. * Not linked in yet - no deadlock potential:
  173. */
  174. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  175. mm->locked_vm = 0;
  176. mm->mmap = NULL;
  177. mm->mmap_cache = NULL;
  178. mm->free_area_cache = oldmm->mmap_base;
  179. mm->cached_hole_size = ~0UL;
  180. mm->map_count = 0;
  181. cpus_clear(mm->cpu_vm_mask);
  182. mm->mm_rb = RB_ROOT;
  183. rb_link = &mm->mm_rb.rb_node;
  184. rb_parent = NULL;
  185. pprev = &mm->mmap;
  186. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  187. struct file *file;
  188. if (mpnt->vm_flags & VM_DONTCOPY) {
  189. long pages = vma_pages(mpnt);
  190. mm->total_vm -= pages;
  191. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  192. -pages);
  193. continue;
  194. }
  195. charge = 0;
  196. if (mpnt->vm_flags & VM_ACCOUNT) {
  197. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  198. if (security_vm_enough_memory(len))
  199. goto fail_nomem;
  200. charge = len;
  201. }
  202. tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  203. if (!tmp)
  204. goto fail_nomem;
  205. *tmp = *mpnt;
  206. pol = mpol_copy(vma_policy(mpnt));
  207. retval = PTR_ERR(pol);
  208. if (IS_ERR(pol))
  209. goto fail_nomem_policy;
  210. vma_set_policy(tmp, pol);
  211. tmp->vm_flags &= ~VM_LOCKED;
  212. tmp->vm_mm = mm;
  213. tmp->vm_next = NULL;
  214. anon_vma_link(tmp);
  215. file = tmp->vm_file;
  216. if (file) {
  217. struct inode *inode = file->f_dentry->d_inode;
  218. get_file(file);
  219. if (tmp->vm_flags & VM_DENYWRITE)
  220. atomic_dec(&inode->i_writecount);
  221. /* insert tmp into the share list, just after mpnt */
  222. spin_lock(&file->f_mapping->i_mmap_lock);
  223. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  224. flush_dcache_mmap_lock(file->f_mapping);
  225. vma_prio_tree_add(tmp, mpnt);
  226. flush_dcache_mmap_unlock(file->f_mapping);
  227. spin_unlock(&file->f_mapping->i_mmap_lock);
  228. }
  229. /*
  230. * Link in the new vma and copy the page table entries.
  231. */
  232. *pprev = tmp;
  233. pprev = &tmp->vm_next;
  234. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  235. rb_link = &tmp->vm_rb.rb_right;
  236. rb_parent = &tmp->vm_rb;
  237. mm->map_count++;
  238. retval = copy_page_range(mm, oldmm, mpnt);
  239. if (tmp->vm_ops && tmp->vm_ops->open)
  240. tmp->vm_ops->open(tmp);
  241. if (retval)
  242. goto out;
  243. }
  244. retval = 0;
  245. out:
  246. up_write(&mm->mmap_sem);
  247. flush_tlb_mm(oldmm);
  248. up_write(&oldmm->mmap_sem);
  249. return retval;
  250. fail_nomem_policy:
  251. kmem_cache_free(vm_area_cachep, tmp);
  252. fail_nomem:
  253. retval = -ENOMEM;
  254. vm_unacct_memory(charge);
  255. goto out;
  256. }
  257. static inline int mm_alloc_pgd(struct mm_struct * mm)
  258. {
  259. mm->pgd = pgd_alloc(mm);
  260. if (unlikely(!mm->pgd))
  261. return -ENOMEM;
  262. return 0;
  263. }
  264. static inline void mm_free_pgd(struct mm_struct * mm)
  265. {
  266. pgd_free(mm->pgd);
  267. }
  268. #else
  269. #define dup_mmap(mm, oldmm) (0)
  270. #define mm_alloc_pgd(mm) (0)
  271. #define mm_free_pgd(mm)
  272. #endif /* CONFIG_MMU */
  273. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  274. #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
  275. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  276. #include <linux/init_task.h>
  277. static struct mm_struct * mm_init(struct mm_struct * mm)
  278. {
  279. atomic_set(&mm->mm_users, 1);
  280. atomic_set(&mm->mm_count, 1);
  281. init_rwsem(&mm->mmap_sem);
  282. INIT_LIST_HEAD(&mm->mmlist);
  283. mm->core_waiters = 0;
  284. mm->nr_ptes = 0;
  285. set_mm_counter(mm, file_rss, 0);
  286. set_mm_counter(mm, anon_rss, 0);
  287. spin_lock_init(&mm->page_table_lock);
  288. rwlock_init(&mm->ioctx_list_lock);
  289. mm->ioctx_list = NULL;
  290. mm->free_area_cache = TASK_UNMAPPED_BASE;
  291. mm->cached_hole_size = ~0UL;
  292. if (likely(!mm_alloc_pgd(mm))) {
  293. mm->def_flags = 0;
  294. return mm;
  295. }
  296. free_mm(mm);
  297. return NULL;
  298. }
  299. /*
  300. * Allocate and initialize an mm_struct.
  301. */
  302. struct mm_struct * mm_alloc(void)
  303. {
  304. struct mm_struct * mm;
  305. mm = allocate_mm();
  306. if (mm) {
  307. memset(mm, 0, sizeof(*mm));
  308. mm = mm_init(mm);
  309. }
  310. return mm;
  311. }
  312. /*
  313. * Called when the last reference to the mm
  314. * is dropped: either by a lazy thread or by
  315. * mmput. Free the page directory and the mm.
  316. */
  317. void fastcall __mmdrop(struct mm_struct *mm)
  318. {
  319. BUG_ON(mm == &init_mm);
  320. mm_free_pgd(mm);
  321. destroy_context(mm);
  322. free_mm(mm);
  323. }
  324. /*
  325. * Decrement the use count and release all resources for an mm.
  326. */
  327. void mmput(struct mm_struct *mm)
  328. {
  329. might_sleep();
  330. if (atomic_dec_and_test(&mm->mm_users)) {
  331. exit_aio(mm);
  332. exit_mmap(mm);
  333. if (!list_empty(&mm->mmlist)) {
  334. spin_lock(&mmlist_lock);
  335. list_del(&mm->mmlist);
  336. spin_unlock(&mmlist_lock);
  337. }
  338. put_swap_token(mm);
  339. mmdrop(mm);
  340. }
  341. }
  342. EXPORT_SYMBOL_GPL(mmput);
  343. /**
  344. * get_task_mm - acquire a reference to the task's mm
  345. *
  346. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  347. * this kernel workthread has transiently adopted a user mm with use_mm,
  348. * to do its AIO) is not set and if so returns a reference to it, after
  349. * bumping up the use count. User must release the mm via mmput()
  350. * after use. Typically used by /proc and ptrace.
  351. */
  352. struct mm_struct *get_task_mm(struct task_struct *task)
  353. {
  354. struct mm_struct *mm;
  355. task_lock(task);
  356. mm = task->mm;
  357. if (mm) {
  358. if (task->flags & PF_BORROWED_MM)
  359. mm = NULL;
  360. else
  361. atomic_inc(&mm->mm_users);
  362. }
  363. task_unlock(task);
  364. return mm;
  365. }
  366. EXPORT_SYMBOL_GPL(get_task_mm);
  367. /* Please note the differences between mmput and mm_release.
  368. * mmput is called whenever we stop holding onto a mm_struct,
  369. * error success whatever.
  370. *
  371. * mm_release is called after a mm_struct has been removed
  372. * from the current process.
  373. *
  374. * This difference is important for error handling, when we
  375. * only half set up a mm_struct for a new process and need to restore
  376. * the old one. Because we mmput the new mm_struct before
  377. * restoring the old one. . .
  378. * Eric Biederman 10 January 1998
  379. */
  380. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  381. {
  382. struct completion *vfork_done = tsk->vfork_done;
  383. /* Get rid of any cached register state */
  384. deactivate_mm(tsk, mm);
  385. /* notify parent sleeping on vfork() */
  386. if (vfork_done) {
  387. tsk->vfork_done = NULL;
  388. complete(vfork_done);
  389. }
  390. if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
  391. u32 __user * tidptr = tsk->clear_child_tid;
  392. tsk->clear_child_tid = NULL;
  393. /*
  394. * We don't check the error code - if userspace has
  395. * not set up a proper pointer then tough luck.
  396. */
  397. put_user(0, tidptr);
  398. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  399. }
  400. }
  401. /*
  402. * Allocate a new mm structure and copy contents from the
  403. * mm structure of the passed in task structure.
  404. */
  405. static struct mm_struct *dup_mm(struct task_struct *tsk)
  406. {
  407. struct mm_struct *mm, *oldmm = current->mm;
  408. int err;
  409. if (!oldmm)
  410. return NULL;
  411. mm = allocate_mm();
  412. if (!mm)
  413. goto fail_nomem;
  414. memcpy(mm, oldmm, sizeof(*mm));
  415. if (!mm_init(mm))
  416. goto fail_nomem;
  417. if (init_new_context(tsk, mm))
  418. goto fail_nocontext;
  419. err = dup_mmap(mm, oldmm);
  420. if (err)
  421. goto free_pt;
  422. mm->hiwater_rss = get_mm_rss(mm);
  423. mm->hiwater_vm = mm->total_vm;
  424. return mm;
  425. free_pt:
  426. mmput(mm);
  427. fail_nomem:
  428. return NULL;
  429. fail_nocontext:
  430. /*
  431. * If init_new_context() failed, we cannot use mmput() to free the mm
  432. * because it calls destroy_context()
  433. */
  434. mm_free_pgd(mm);
  435. free_mm(mm);
  436. return NULL;
  437. }
  438. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  439. {
  440. struct mm_struct * mm, *oldmm;
  441. int retval;
  442. tsk->min_flt = tsk->maj_flt = 0;
  443. tsk->nvcsw = tsk->nivcsw = 0;
  444. tsk->mm = NULL;
  445. tsk->active_mm = NULL;
  446. /*
  447. * Are we cloning a kernel thread?
  448. *
  449. * We need to steal a active VM for that..
  450. */
  451. oldmm = current->mm;
  452. if (!oldmm)
  453. return 0;
  454. if (clone_flags & CLONE_VM) {
  455. atomic_inc(&oldmm->mm_users);
  456. mm = oldmm;
  457. goto good_mm;
  458. }
  459. retval = -ENOMEM;
  460. mm = dup_mm(tsk);
  461. if (!mm)
  462. goto fail_nomem;
  463. good_mm:
  464. tsk->mm = mm;
  465. tsk->active_mm = mm;
  466. return 0;
  467. fail_nomem:
  468. return retval;
  469. }
  470. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  471. {
  472. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  473. /* We don't need to lock fs - think why ;-) */
  474. if (fs) {
  475. atomic_set(&fs->count, 1);
  476. rwlock_init(&fs->lock);
  477. fs->umask = old->umask;
  478. read_lock(&old->lock);
  479. fs->rootmnt = mntget(old->rootmnt);
  480. fs->root = dget(old->root);
  481. fs->pwdmnt = mntget(old->pwdmnt);
  482. fs->pwd = dget(old->pwd);
  483. if (old->altroot) {
  484. fs->altrootmnt = mntget(old->altrootmnt);
  485. fs->altroot = dget(old->altroot);
  486. } else {
  487. fs->altrootmnt = NULL;
  488. fs->altroot = NULL;
  489. }
  490. read_unlock(&old->lock);
  491. }
  492. return fs;
  493. }
  494. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  495. {
  496. return __copy_fs_struct(old);
  497. }
  498. EXPORT_SYMBOL_GPL(copy_fs_struct);
  499. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  500. {
  501. if (clone_flags & CLONE_FS) {
  502. atomic_inc(&current->fs->count);
  503. return 0;
  504. }
  505. tsk->fs = __copy_fs_struct(current->fs);
  506. if (!tsk->fs)
  507. return -ENOMEM;
  508. return 0;
  509. }
  510. static int count_open_files(struct fdtable *fdt)
  511. {
  512. int size = fdt->max_fdset;
  513. int i;
  514. /* Find the last open fd */
  515. for (i = size/(8*sizeof(long)); i > 0; ) {
  516. if (fdt->open_fds->fds_bits[--i])
  517. break;
  518. }
  519. i = (i+1) * 8 * sizeof(long);
  520. return i;
  521. }
  522. static struct files_struct *alloc_files(void)
  523. {
  524. struct files_struct *newf;
  525. struct fdtable *fdt;
  526. newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
  527. if (!newf)
  528. goto out;
  529. atomic_set(&newf->count, 1);
  530. spin_lock_init(&newf->file_lock);
  531. newf->next_fd = 0;
  532. fdt = &newf->fdtab;
  533. fdt->max_fds = NR_OPEN_DEFAULT;
  534. fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
  535. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  536. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  537. fdt->fd = &newf->fd_array[0];
  538. INIT_RCU_HEAD(&fdt->rcu);
  539. fdt->free_files = NULL;
  540. fdt->next = NULL;
  541. rcu_assign_pointer(newf->fdt, fdt);
  542. out:
  543. return newf;
  544. }
  545. /*
  546. * Allocate a new files structure and copy contents from the
  547. * passed in files structure.
  548. * errorp will be valid only when the returned files_struct is NULL.
  549. */
  550. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  551. {
  552. struct files_struct *newf;
  553. struct file **old_fds, **new_fds;
  554. int open_files, size, i, expand;
  555. struct fdtable *old_fdt, *new_fdt;
  556. *errorp = -ENOMEM;
  557. newf = alloc_files();
  558. if (!newf)
  559. goto out;
  560. spin_lock(&oldf->file_lock);
  561. old_fdt = files_fdtable(oldf);
  562. new_fdt = files_fdtable(newf);
  563. size = old_fdt->max_fdset;
  564. open_files = count_open_files(old_fdt);
  565. expand = 0;
  566. /*
  567. * Check whether we need to allocate a larger fd array or fd set.
  568. * Note: we're not a clone task, so the open count won't change.
  569. */
  570. if (open_files > new_fdt->max_fdset) {
  571. new_fdt->max_fdset = 0;
  572. expand = 1;
  573. }
  574. if (open_files > new_fdt->max_fds) {
  575. new_fdt->max_fds = 0;
  576. expand = 1;
  577. }
  578. /* if the old fdset gets grown now, we'll only copy up to "size" fds */
  579. if (expand) {
  580. spin_unlock(&oldf->file_lock);
  581. spin_lock(&newf->file_lock);
  582. *errorp = expand_files(newf, open_files-1);
  583. spin_unlock(&newf->file_lock);
  584. if (*errorp < 0)
  585. goto out_release;
  586. new_fdt = files_fdtable(newf);
  587. /*
  588. * Reacquire the oldf lock and a pointer to its fd table
  589. * who knows it may have a new bigger fd table. We need
  590. * the latest pointer.
  591. */
  592. spin_lock(&oldf->file_lock);
  593. old_fdt = files_fdtable(oldf);
  594. }
  595. old_fds = old_fdt->fd;
  596. new_fds = new_fdt->fd;
  597. memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
  598. memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
  599. for (i = open_files; i != 0; i--) {
  600. struct file *f = *old_fds++;
  601. if (f) {
  602. get_file(f);
  603. } else {
  604. /*
  605. * The fd may be claimed in the fd bitmap but not yet
  606. * instantiated in the files array if a sibling thread
  607. * is partway through open(). So make sure that this
  608. * fd is available to the new process.
  609. */
  610. FD_CLR(open_files - i, new_fdt->open_fds);
  611. }
  612. rcu_assign_pointer(*new_fds++, f);
  613. }
  614. spin_unlock(&oldf->file_lock);
  615. /* compute the remainder to be cleared */
  616. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  617. /* This is long word aligned thus could use a optimized version */
  618. memset(new_fds, 0, size);
  619. if (new_fdt->max_fdset > open_files) {
  620. int left = (new_fdt->max_fdset-open_files)/8;
  621. int start = open_files / (8 * sizeof(unsigned long));
  622. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  623. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  624. }
  625. out:
  626. return newf;
  627. out_release:
  628. free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
  629. free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
  630. free_fd_array(new_fdt->fd, new_fdt->max_fds);
  631. kmem_cache_free(files_cachep, newf);
  632. return NULL;
  633. }
  634. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  635. {
  636. struct files_struct *oldf, *newf;
  637. int error = 0;
  638. /*
  639. * A background process may not have any files ...
  640. */
  641. oldf = current->files;
  642. if (!oldf)
  643. goto out;
  644. if (clone_flags & CLONE_FILES) {
  645. atomic_inc(&oldf->count);
  646. goto out;
  647. }
  648. /*
  649. * Note: we may be using current for both targets (See exec.c)
  650. * This works because we cache current->files (old) as oldf. Don't
  651. * break this.
  652. */
  653. tsk->files = NULL;
  654. newf = dup_fd(oldf, &error);
  655. if (!newf)
  656. goto out;
  657. tsk->files = newf;
  658. error = 0;
  659. out:
  660. return error;
  661. }
  662. /*
  663. * Helper to unshare the files of the current task.
  664. * We don't want to expose copy_files internals to
  665. * the exec layer of the kernel.
  666. */
  667. int unshare_files(void)
  668. {
  669. struct files_struct *files = current->files;
  670. int rc;
  671. BUG_ON(!files);
  672. /* This can race but the race causes us to copy when we don't
  673. need to and drop the copy */
  674. if(atomic_read(&files->count) == 1)
  675. {
  676. atomic_inc(&files->count);
  677. return 0;
  678. }
  679. rc = copy_files(0, current);
  680. if(rc)
  681. current->files = files;
  682. return rc;
  683. }
  684. EXPORT_SYMBOL(unshare_files);
  685. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  686. {
  687. struct sighand_struct *sig;
  688. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  689. atomic_inc(&current->sighand->count);
  690. return 0;
  691. }
  692. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  693. rcu_assign_pointer(tsk->sighand, sig);
  694. if (!sig)
  695. return -ENOMEM;
  696. atomic_set(&sig->count, 1);
  697. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  698. return 0;
  699. }
  700. void __cleanup_sighand(struct sighand_struct *sighand)
  701. {
  702. if (atomic_dec_and_test(&sighand->count))
  703. kmem_cache_free(sighand_cachep, sighand);
  704. }
  705. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  706. {
  707. struct signal_struct *sig;
  708. int ret;
  709. if (clone_flags & CLONE_THREAD) {
  710. atomic_inc(&current->signal->count);
  711. atomic_inc(&current->signal->live);
  712. taskstats_tgid_alloc(current->signal);
  713. return 0;
  714. }
  715. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  716. tsk->signal = sig;
  717. if (!sig)
  718. return -ENOMEM;
  719. ret = copy_thread_group_keys(tsk);
  720. if (ret < 0) {
  721. kmem_cache_free(signal_cachep, sig);
  722. return ret;
  723. }
  724. atomic_set(&sig->count, 1);
  725. atomic_set(&sig->live, 1);
  726. init_waitqueue_head(&sig->wait_chldexit);
  727. sig->flags = 0;
  728. sig->group_exit_code = 0;
  729. sig->group_exit_task = NULL;
  730. sig->group_stop_count = 0;
  731. sig->curr_target = NULL;
  732. init_sigpending(&sig->shared_pending);
  733. INIT_LIST_HEAD(&sig->posix_timers);
  734. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
  735. sig->it_real_incr.tv64 = 0;
  736. sig->real_timer.function = it_real_fn;
  737. sig->tsk = tsk;
  738. sig->it_virt_expires = cputime_zero;
  739. sig->it_virt_incr = cputime_zero;
  740. sig->it_prof_expires = cputime_zero;
  741. sig->it_prof_incr = cputime_zero;
  742. sig->leader = 0; /* session leadership doesn't inherit */
  743. sig->tty_old_pgrp = 0;
  744. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  745. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  746. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  747. sig->sched_time = 0;
  748. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  749. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  750. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  751. taskstats_tgid_init(sig);
  752. task_lock(current->group_leader);
  753. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  754. task_unlock(current->group_leader);
  755. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  756. /*
  757. * New sole thread in the process gets an expiry time
  758. * of the whole CPU time limit.
  759. */
  760. tsk->it_prof_expires =
  761. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  762. }
  763. acct_init_pacct(&sig->pacct);
  764. return 0;
  765. }
  766. void __cleanup_signal(struct signal_struct *sig)
  767. {
  768. exit_thread_group_keys(sig);
  769. taskstats_tgid_free(sig);
  770. kmem_cache_free(signal_cachep, sig);
  771. }
  772. static inline void cleanup_signal(struct task_struct *tsk)
  773. {
  774. struct signal_struct *sig = tsk->signal;
  775. atomic_dec(&sig->live);
  776. if (atomic_dec_and_test(&sig->count))
  777. __cleanup_signal(sig);
  778. }
  779. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  780. {
  781. unsigned long new_flags = p->flags;
  782. new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
  783. new_flags |= PF_FORKNOEXEC;
  784. if (!(clone_flags & CLONE_PTRACE))
  785. p->ptrace = 0;
  786. p->flags = new_flags;
  787. }
  788. asmlinkage long sys_set_tid_address(int __user *tidptr)
  789. {
  790. current->clear_child_tid = tidptr;
  791. return current->pid;
  792. }
  793. static inline void rt_mutex_init_task(struct task_struct *p)
  794. {
  795. #ifdef CONFIG_RT_MUTEXES
  796. spin_lock_init(&p->pi_lock);
  797. plist_head_init(&p->pi_waiters, &p->pi_lock);
  798. p->pi_blocked_on = NULL;
  799. #endif
  800. }
  801. /*
  802. * This creates a new process as a copy of the old one,
  803. * but does not actually start it yet.
  804. *
  805. * It copies the registers, and all the appropriate
  806. * parts of the process environment (as per the clone
  807. * flags). The actual kick-off is left to the caller.
  808. */
  809. static struct task_struct *copy_process(unsigned long clone_flags,
  810. unsigned long stack_start,
  811. struct pt_regs *regs,
  812. unsigned long stack_size,
  813. int __user *parent_tidptr,
  814. int __user *child_tidptr,
  815. int pid)
  816. {
  817. int retval;
  818. struct task_struct *p = NULL;
  819. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  820. return ERR_PTR(-EINVAL);
  821. /*
  822. * Thread groups must share signals as well, and detached threads
  823. * can only be started up within the thread group.
  824. */
  825. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  826. return ERR_PTR(-EINVAL);
  827. /*
  828. * Shared signal handlers imply shared VM. By way of the above,
  829. * thread groups also imply shared VM. Blocking this case allows
  830. * for various simplifications in other code.
  831. */
  832. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  833. return ERR_PTR(-EINVAL);
  834. retval = security_task_create(clone_flags);
  835. if (retval)
  836. goto fork_out;
  837. retval = -ENOMEM;
  838. p = dup_task_struct(current);
  839. if (!p)
  840. goto fork_out;
  841. #ifdef CONFIG_TRACE_IRQFLAGS
  842. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  843. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  844. #endif
  845. retval = -EAGAIN;
  846. if (atomic_read(&p->user->processes) >=
  847. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  848. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  849. p->user != &root_user)
  850. goto bad_fork_free;
  851. }
  852. atomic_inc(&p->user->__count);
  853. atomic_inc(&p->user->processes);
  854. get_group_info(p->group_info);
  855. /*
  856. * If multiple threads are within copy_process(), then this check
  857. * triggers too late. This doesn't hurt, the check is only there
  858. * to stop root fork bombs.
  859. */
  860. if (nr_threads >= max_threads)
  861. goto bad_fork_cleanup_count;
  862. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  863. goto bad_fork_cleanup_count;
  864. if (p->binfmt && !try_module_get(p->binfmt->module))
  865. goto bad_fork_cleanup_put_domain;
  866. p->did_exec = 0;
  867. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  868. copy_flags(clone_flags, p);
  869. p->pid = pid;
  870. retval = -EFAULT;
  871. if (clone_flags & CLONE_PARENT_SETTID)
  872. if (put_user(p->pid, parent_tidptr))
  873. goto bad_fork_cleanup_delays_binfmt;
  874. INIT_LIST_HEAD(&p->children);
  875. INIT_LIST_HEAD(&p->sibling);
  876. p->vfork_done = NULL;
  877. spin_lock_init(&p->alloc_lock);
  878. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  879. init_sigpending(&p->pending);
  880. p->utime = cputime_zero;
  881. p->stime = cputime_zero;
  882. p->sched_time = 0;
  883. p->rchar = 0; /* I/O counter: bytes read */
  884. p->wchar = 0; /* I/O counter: bytes written */
  885. p->syscr = 0; /* I/O counter: read syscalls */
  886. p->syscw = 0; /* I/O counter: write syscalls */
  887. acct_clear_integrals(p);
  888. p->it_virt_expires = cputime_zero;
  889. p->it_prof_expires = cputime_zero;
  890. p->it_sched_expires = 0;
  891. INIT_LIST_HEAD(&p->cpu_timers[0]);
  892. INIT_LIST_HEAD(&p->cpu_timers[1]);
  893. INIT_LIST_HEAD(&p->cpu_timers[2]);
  894. p->lock_depth = -1; /* -1 = no lock */
  895. do_posix_clock_monotonic_gettime(&p->start_time);
  896. p->security = NULL;
  897. p->io_context = NULL;
  898. p->io_wait = NULL;
  899. p->audit_context = NULL;
  900. cpuset_fork(p);
  901. #ifdef CONFIG_NUMA
  902. p->mempolicy = mpol_copy(p->mempolicy);
  903. if (IS_ERR(p->mempolicy)) {
  904. retval = PTR_ERR(p->mempolicy);
  905. p->mempolicy = NULL;
  906. goto bad_fork_cleanup_cpuset;
  907. }
  908. mpol_fix_fork_child_flag(p);
  909. #endif
  910. #ifdef CONFIG_TRACE_IRQFLAGS
  911. p->irq_events = 0;
  912. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  913. p->hardirqs_enabled = 1;
  914. #else
  915. p->hardirqs_enabled = 0;
  916. #endif
  917. p->hardirq_enable_ip = 0;
  918. p->hardirq_enable_event = 0;
  919. p->hardirq_disable_ip = _THIS_IP_;
  920. p->hardirq_disable_event = 0;
  921. p->softirqs_enabled = 1;
  922. p->softirq_enable_ip = _THIS_IP_;
  923. p->softirq_enable_event = 0;
  924. p->softirq_disable_ip = 0;
  925. p->softirq_disable_event = 0;
  926. p->hardirq_context = 0;
  927. p->softirq_context = 0;
  928. #endif
  929. #ifdef CONFIG_LOCKDEP
  930. p->lockdep_depth = 0; /* no locks held yet */
  931. p->curr_chain_key = 0;
  932. p->lockdep_recursion = 0;
  933. #endif
  934. rt_mutex_init_task(p);
  935. #ifdef CONFIG_DEBUG_MUTEXES
  936. p->blocked_on = NULL; /* not blocked yet */
  937. #endif
  938. p->tgid = p->pid;
  939. if (clone_flags & CLONE_THREAD)
  940. p->tgid = current->tgid;
  941. if ((retval = security_task_alloc(p)))
  942. goto bad_fork_cleanup_policy;
  943. if ((retval = audit_alloc(p)))
  944. goto bad_fork_cleanup_security;
  945. /* copy all the process information */
  946. if ((retval = copy_semundo(clone_flags, p)))
  947. goto bad_fork_cleanup_audit;
  948. if ((retval = copy_files(clone_flags, p)))
  949. goto bad_fork_cleanup_semundo;
  950. if ((retval = copy_fs(clone_flags, p)))
  951. goto bad_fork_cleanup_files;
  952. if ((retval = copy_sighand(clone_flags, p)))
  953. goto bad_fork_cleanup_fs;
  954. if ((retval = copy_signal(clone_flags, p)))
  955. goto bad_fork_cleanup_sighand;
  956. if ((retval = copy_mm(clone_flags, p)))
  957. goto bad_fork_cleanup_signal;
  958. if ((retval = copy_keys(clone_flags, p)))
  959. goto bad_fork_cleanup_mm;
  960. if ((retval = copy_namespace(clone_flags, p)))
  961. goto bad_fork_cleanup_keys;
  962. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  963. if (retval)
  964. goto bad_fork_cleanup_namespace;
  965. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  966. /*
  967. * Clear TID on mm_release()?
  968. */
  969. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  970. p->robust_list = NULL;
  971. #ifdef CONFIG_COMPAT
  972. p->compat_robust_list = NULL;
  973. #endif
  974. INIT_LIST_HEAD(&p->pi_state_list);
  975. p->pi_state_cache = NULL;
  976. /*
  977. * sigaltstack should be cleared when sharing the same VM
  978. */
  979. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  980. p->sas_ss_sp = p->sas_ss_size = 0;
  981. /*
  982. * Syscall tracing should be turned off in the child regardless
  983. * of CLONE_PTRACE.
  984. */
  985. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  986. #ifdef TIF_SYSCALL_EMU
  987. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  988. #endif
  989. /* Our parent execution domain becomes current domain
  990. These must match for thread signalling to apply */
  991. p->parent_exec_id = p->self_exec_id;
  992. /* ok, now we should be set up.. */
  993. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  994. p->pdeath_signal = 0;
  995. p->exit_state = 0;
  996. /*
  997. * Ok, make it visible to the rest of the system.
  998. * We dont wake it up yet.
  999. */
  1000. p->group_leader = p;
  1001. INIT_LIST_HEAD(&p->thread_group);
  1002. INIT_LIST_HEAD(&p->ptrace_children);
  1003. INIT_LIST_HEAD(&p->ptrace_list);
  1004. /* Perform scheduler related setup. Assign this task to a CPU. */
  1005. sched_fork(p, clone_flags);
  1006. /* Need tasklist lock for parent etc handling! */
  1007. write_lock_irq(&tasklist_lock);
  1008. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1009. p->ioprio = current->ioprio;
  1010. /*
  1011. * The task hasn't been attached yet, so its cpus_allowed mask will
  1012. * not be changed, nor will its assigned CPU.
  1013. *
  1014. * The cpus_allowed mask of the parent may have changed after it was
  1015. * copied first time - so re-copy it here, then check the child's CPU
  1016. * to ensure it is on a valid CPU (and if not, just force it back to
  1017. * parent's CPU). This avoids alot of nasty races.
  1018. */
  1019. p->cpus_allowed = current->cpus_allowed;
  1020. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1021. !cpu_online(task_cpu(p))))
  1022. set_task_cpu(p, smp_processor_id());
  1023. /* CLONE_PARENT re-uses the old parent */
  1024. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1025. p->real_parent = current->real_parent;
  1026. else
  1027. p->real_parent = current;
  1028. p->parent = p->real_parent;
  1029. spin_lock(&current->sighand->siglock);
  1030. /*
  1031. * Process group and session signals need to be delivered to just the
  1032. * parent before the fork or both the parent and the child after the
  1033. * fork. Restart if a signal comes in before we add the new process to
  1034. * it's process group.
  1035. * A fatal signal pending means that current will exit, so the new
  1036. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1037. */
  1038. recalc_sigpending();
  1039. if (signal_pending(current)) {
  1040. spin_unlock(&current->sighand->siglock);
  1041. write_unlock_irq(&tasklist_lock);
  1042. retval = -ERESTARTNOINTR;
  1043. goto bad_fork_cleanup_namespace;
  1044. }
  1045. if (clone_flags & CLONE_THREAD) {
  1046. p->group_leader = current->group_leader;
  1047. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1048. if (!cputime_eq(current->signal->it_virt_expires,
  1049. cputime_zero) ||
  1050. !cputime_eq(current->signal->it_prof_expires,
  1051. cputime_zero) ||
  1052. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1053. !list_empty(&current->signal->cpu_timers[0]) ||
  1054. !list_empty(&current->signal->cpu_timers[1]) ||
  1055. !list_empty(&current->signal->cpu_timers[2])) {
  1056. /*
  1057. * Have child wake up on its first tick to check
  1058. * for process CPU timers.
  1059. */
  1060. p->it_prof_expires = jiffies_to_cputime(1);
  1061. }
  1062. }
  1063. if (likely(p->pid)) {
  1064. add_parent(p);
  1065. if (unlikely(p->ptrace & PT_PTRACED))
  1066. __ptrace_link(p, current->parent);
  1067. if (thread_group_leader(p)) {
  1068. p->signal->tty = current->signal->tty;
  1069. p->signal->pgrp = process_group(current);
  1070. p->signal->session = current->signal->session;
  1071. attach_pid(p, PIDTYPE_PGID, process_group(p));
  1072. attach_pid(p, PIDTYPE_SID, p->signal->session);
  1073. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1074. __get_cpu_var(process_counts)++;
  1075. }
  1076. attach_pid(p, PIDTYPE_PID, p->pid);
  1077. nr_threads++;
  1078. }
  1079. total_forks++;
  1080. spin_unlock(&current->sighand->siglock);
  1081. write_unlock_irq(&tasklist_lock);
  1082. proc_fork_connector(p);
  1083. return p;
  1084. bad_fork_cleanup_namespace:
  1085. exit_namespace(p);
  1086. bad_fork_cleanup_keys:
  1087. exit_keys(p);
  1088. bad_fork_cleanup_mm:
  1089. if (p->mm)
  1090. mmput(p->mm);
  1091. bad_fork_cleanup_signal:
  1092. cleanup_signal(p);
  1093. bad_fork_cleanup_sighand:
  1094. __cleanup_sighand(p->sighand);
  1095. bad_fork_cleanup_fs:
  1096. exit_fs(p); /* blocking */
  1097. bad_fork_cleanup_files:
  1098. exit_files(p); /* blocking */
  1099. bad_fork_cleanup_semundo:
  1100. exit_sem(p);
  1101. bad_fork_cleanup_audit:
  1102. audit_free(p);
  1103. bad_fork_cleanup_security:
  1104. security_task_free(p);
  1105. bad_fork_cleanup_policy:
  1106. #ifdef CONFIG_NUMA
  1107. mpol_free(p->mempolicy);
  1108. bad_fork_cleanup_cpuset:
  1109. #endif
  1110. cpuset_exit(p);
  1111. bad_fork_cleanup_delays_binfmt:
  1112. delayacct_tsk_free(p);
  1113. if (p->binfmt)
  1114. module_put(p->binfmt->module);
  1115. bad_fork_cleanup_put_domain:
  1116. module_put(task_thread_info(p)->exec_domain->module);
  1117. bad_fork_cleanup_count:
  1118. put_group_info(p->group_info);
  1119. atomic_dec(&p->user->processes);
  1120. free_uid(p->user);
  1121. bad_fork_free:
  1122. free_task(p);
  1123. fork_out:
  1124. return ERR_PTR(retval);
  1125. }
  1126. struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1127. {
  1128. memset(regs, 0, sizeof(struct pt_regs));
  1129. return regs;
  1130. }
  1131. struct task_struct * __devinit fork_idle(int cpu)
  1132. {
  1133. struct task_struct *task;
  1134. struct pt_regs regs;
  1135. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
  1136. if (!task)
  1137. return ERR_PTR(-ENOMEM);
  1138. init_idle(task, cpu);
  1139. return task;
  1140. }
  1141. static inline int fork_traceflag (unsigned clone_flags)
  1142. {
  1143. if (clone_flags & CLONE_UNTRACED)
  1144. return 0;
  1145. else if (clone_flags & CLONE_VFORK) {
  1146. if (current->ptrace & PT_TRACE_VFORK)
  1147. return PTRACE_EVENT_VFORK;
  1148. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1149. if (current->ptrace & PT_TRACE_CLONE)
  1150. return PTRACE_EVENT_CLONE;
  1151. } else if (current->ptrace & PT_TRACE_FORK)
  1152. return PTRACE_EVENT_FORK;
  1153. return 0;
  1154. }
  1155. /*
  1156. * Ok, this is the main fork-routine.
  1157. *
  1158. * It copies the process, and if successful kick-starts
  1159. * it and waits for it to finish using the VM if required.
  1160. */
  1161. long do_fork(unsigned long clone_flags,
  1162. unsigned long stack_start,
  1163. struct pt_regs *regs,
  1164. unsigned long stack_size,
  1165. int __user *parent_tidptr,
  1166. int __user *child_tidptr)
  1167. {
  1168. struct task_struct *p;
  1169. int trace = 0;
  1170. struct pid *pid = alloc_pid();
  1171. long nr;
  1172. if (!pid)
  1173. return -EAGAIN;
  1174. nr = pid->nr;
  1175. if (unlikely(current->ptrace)) {
  1176. trace = fork_traceflag (clone_flags);
  1177. if (trace)
  1178. clone_flags |= CLONE_PTRACE;
  1179. }
  1180. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
  1181. /*
  1182. * Do this prior waking up the new thread - the thread pointer
  1183. * might get invalid after that point, if the thread exits quickly.
  1184. */
  1185. if (!IS_ERR(p)) {
  1186. struct completion vfork;
  1187. if (clone_flags & CLONE_VFORK) {
  1188. p->vfork_done = &vfork;
  1189. init_completion(&vfork);
  1190. }
  1191. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1192. /*
  1193. * We'll start up with an immediate SIGSTOP.
  1194. */
  1195. sigaddset(&p->pending.signal, SIGSTOP);
  1196. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1197. }
  1198. if (!(clone_flags & CLONE_STOPPED))
  1199. wake_up_new_task(p, clone_flags);
  1200. else
  1201. p->state = TASK_STOPPED;
  1202. if (unlikely (trace)) {
  1203. current->ptrace_message = nr;
  1204. ptrace_notify ((trace << 8) | SIGTRAP);
  1205. }
  1206. if (clone_flags & CLONE_VFORK) {
  1207. wait_for_completion(&vfork);
  1208. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1209. current->ptrace_message = nr;
  1210. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1211. }
  1212. }
  1213. } else {
  1214. free_pid(pid);
  1215. nr = PTR_ERR(p);
  1216. }
  1217. return nr;
  1218. }
  1219. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1220. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1221. #endif
  1222. static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  1223. {
  1224. struct sighand_struct *sighand = data;
  1225. if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
  1226. SLAB_CTOR_CONSTRUCTOR)
  1227. spin_lock_init(&sighand->siglock);
  1228. }
  1229. void __init proc_caches_init(void)
  1230. {
  1231. sighand_cachep = kmem_cache_create("sighand_cache",
  1232. sizeof(struct sighand_struct), 0,
  1233. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1234. sighand_ctor, NULL);
  1235. signal_cachep = kmem_cache_create("signal_cache",
  1236. sizeof(struct signal_struct), 0,
  1237. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1238. files_cachep = kmem_cache_create("files_cache",
  1239. sizeof(struct files_struct), 0,
  1240. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1241. fs_cachep = kmem_cache_create("fs_cache",
  1242. sizeof(struct fs_struct), 0,
  1243. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1244. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1245. sizeof(struct vm_area_struct), 0,
  1246. SLAB_PANIC, NULL, NULL);
  1247. mm_cachep = kmem_cache_create("mm_struct",
  1248. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1249. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1250. }
  1251. /*
  1252. * Check constraints on flags passed to the unshare system call and
  1253. * force unsharing of additional process context as appropriate.
  1254. */
  1255. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1256. {
  1257. /*
  1258. * If unsharing a thread from a thread group, must also
  1259. * unshare vm.
  1260. */
  1261. if (*flags_ptr & CLONE_THREAD)
  1262. *flags_ptr |= CLONE_VM;
  1263. /*
  1264. * If unsharing vm, must also unshare signal handlers.
  1265. */
  1266. if (*flags_ptr & CLONE_VM)
  1267. *flags_ptr |= CLONE_SIGHAND;
  1268. /*
  1269. * If unsharing signal handlers and the task was created
  1270. * using CLONE_THREAD, then must unshare the thread
  1271. */
  1272. if ((*flags_ptr & CLONE_SIGHAND) &&
  1273. (atomic_read(&current->signal->count) > 1))
  1274. *flags_ptr |= CLONE_THREAD;
  1275. /*
  1276. * If unsharing namespace, must also unshare filesystem information.
  1277. */
  1278. if (*flags_ptr & CLONE_NEWNS)
  1279. *flags_ptr |= CLONE_FS;
  1280. }
  1281. /*
  1282. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1283. */
  1284. static int unshare_thread(unsigned long unshare_flags)
  1285. {
  1286. if (unshare_flags & CLONE_THREAD)
  1287. return -EINVAL;
  1288. return 0;
  1289. }
  1290. /*
  1291. * Unshare the filesystem structure if it is being shared
  1292. */
  1293. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1294. {
  1295. struct fs_struct *fs = current->fs;
  1296. if ((unshare_flags & CLONE_FS) &&
  1297. (fs && atomic_read(&fs->count) > 1)) {
  1298. *new_fsp = __copy_fs_struct(current->fs);
  1299. if (!*new_fsp)
  1300. return -ENOMEM;
  1301. }
  1302. return 0;
  1303. }
  1304. /*
  1305. * Unshare the namespace structure if it is being shared
  1306. */
  1307. static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
  1308. {
  1309. struct namespace *ns = current->namespace;
  1310. if ((unshare_flags & CLONE_NEWNS) &&
  1311. (ns && atomic_read(&ns->count) > 1)) {
  1312. if (!capable(CAP_SYS_ADMIN))
  1313. return -EPERM;
  1314. *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
  1315. if (!*new_nsp)
  1316. return -ENOMEM;
  1317. }
  1318. return 0;
  1319. }
  1320. /*
  1321. * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
  1322. * supported yet
  1323. */
  1324. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1325. {
  1326. struct sighand_struct *sigh = current->sighand;
  1327. if ((unshare_flags & CLONE_SIGHAND) &&
  1328. (sigh && atomic_read(&sigh->count) > 1))
  1329. return -EINVAL;
  1330. else
  1331. return 0;
  1332. }
  1333. /*
  1334. * Unshare vm if it is being shared
  1335. */
  1336. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1337. {
  1338. struct mm_struct *mm = current->mm;
  1339. if ((unshare_flags & CLONE_VM) &&
  1340. (mm && atomic_read(&mm->mm_users) > 1)) {
  1341. return -EINVAL;
  1342. }
  1343. return 0;
  1344. }
  1345. /*
  1346. * Unshare file descriptor table if it is being shared
  1347. */
  1348. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1349. {
  1350. struct files_struct *fd = current->files;
  1351. int error = 0;
  1352. if ((unshare_flags & CLONE_FILES) &&
  1353. (fd && atomic_read(&fd->count) > 1)) {
  1354. *new_fdp = dup_fd(fd, &error);
  1355. if (!*new_fdp)
  1356. return error;
  1357. }
  1358. return 0;
  1359. }
  1360. /*
  1361. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1362. * supported yet
  1363. */
  1364. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1365. {
  1366. if (unshare_flags & CLONE_SYSVSEM)
  1367. return -EINVAL;
  1368. return 0;
  1369. }
  1370. /*
  1371. * unshare allows a process to 'unshare' part of the process
  1372. * context which was originally shared using clone. copy_*
  1373. * functions used by do_fork() cannot be used here directly
  1374. * because they modify an inactive task_struct that is being
  1375. * constructed. Here we are modifying the current, active,
  1376. * task_struct.
  1377. */
  1378. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1379. {
  1380. int err = 0;
  1381. struct fs_struct *fs, *new_fs = NULL;
  1382. struct namespace *ns, *new_ns = NULL;
  1383. struct sighand_struct *sigh, *new_sigh = NULL;
  1384. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1385. struct files_struct *fd, *new_fd = NULL;
  1386. struct sem_undo_list *new_ulist = NULL;
  1387. check_unshare_flags(&unshare_flags);
  1388. /* Return -EINVAL for all unsupported flags */
  1389. err = -EINVAL;
  1390. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1391. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
  1392. goto bad_unshare_out;
  1393. if ((err = unshare_thread(unshare_flags)))
  1394. goto bad_unshare_out;
  1395. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1396. goto bad_unshare_cleanup_thread;
  1397. if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
  1398. goto bad_unshare_cleanup_fs;
  1399. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1400. goto bad_unshare_cleanup_ns;
  1401. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1402. goto bad_unshare_cleanup_sigh;
  1403. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1404. goto bad_unshare_cleanup_vm;
  1405. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1406. goto bad_unshare_cleanup_fd;
  1407. if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
  1408. task_lock(current);
  1409. if (new_fs) {
  1410. fs = current->fs;
  1411. current->fs = new_fs;
  1412. new_fs = fs;
  1413. }
  1414. if (new_ns) {
  1415. ns = current->namespace;
  1416. current->namespace = new_ns;
  1417. new_ns = ns;
  1418. }
  1419. if (new_sigh) {
  1420. sigh = current->sighand;
  1421. rcu_assign_pointer(current->sighand, new_sigh);
  1422. new_sigh = sigh;
  1423. }
  1424. if (new_mm) {
  1425. mm = current->mm;
  1426. active_mm = current->active_mm;
  1427. current->mm = new_mm;
  1428. current->active_mm = new_mm;
  1429. activate_mm(active_mm, new_mm);
  1430. new_mm = mm;
  1431. }
  1432. if (new_fd) {
  1433. fd = current->files;
  1434. current->files = new_fd;
  1435. new_fd = fd;
  1436. }
  1437. task_unlock(current);
  1438. }
  1439. bad_unshare_cleanup_fd:
  1440. if (new_fd)
  1441. put_files_struct(new_fd);
  1442. bad_unshare_cleanup_vm:
  1443. if (new_mm)
  1444. mmput(new_mm);
  1445. bad_unshare_cleanup_sigh:
  1446. if (new_sigh)
  1447. if (atomic_dec_and_test(&new_sigh->count))
  1448. kmem_cache_free(sighand_cachep, new_sigh);
  1449. bad_unshare_cleanup_ns:
  1450. if (new_ns)
  1451. put_namespace(new_ns);
  1452. bad_unshare_cleanup_fs:
  1453. if (new_fs)
  1454. put_fs_struct(new_fs);
  1455. bad_unshare_cleanup_thread:
  1456. bad_unshare_out:
  1457. return err;
  1458. }