af_key.c 103 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. struct {
  45. uint8_t msg_version;
  46. uint32_t msg_pid;
  47. int (*dump)(struct pfkey_sock *sk);
  48. void (*done)(struct pfkey_sock *sk);
  49. union {
  50. struct xfrm_policy_walk policy;
  51. struct xfrm_state_walk state;
  52. } u;
  53. } dump;
  54. };
  55. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  56. {
  57. return (struct pfkey_sock *)sk;
  58. }
  59. static int pfkey_can_dump(struct sock *sk)
  60. {
  61. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  62. return 1;
  63. return 0;
  64. }
  65. static int pfkey_do_dump(struct pfkey_sock *pfk)
  66. {
  67. int rc;
  68. rc = pfk->dump.dump(pfk);
  69. if (rc == -ENOBUFS)
  70. return 0;
  71. pfk->dump.done(pfk);
  72. pfk->dump.dump = NULL;
  73. pfk->dump.done = NULL;
  74. return rc;
  75. }
  76. static void pfkey_sock_destruct(struct sock *sk)
  77. {
  78. skb_queue_purge(&sk->sk_receive_queue);
  79. if (!sock_flag(sk, SOCK_DEAD)) {
  80. printk("Attempt to release alive pfkey socket: %p\n", sk);
  81. return;
  82. }
  83. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  84. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  85. atomic_dec(&pfkey_socks_nr);
  86. }
  87. static void pfkey_table_grab(void)
  88. {
  89. write_lock_bh(&pfkey_table_lock);
  90. if (atomic_read(&pfkey_table_users)) {
  91. DECLARE_WAITQUEUE(wait, current);
  92. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  93. for(;;) {
  94. set_current_state(TASK_UNINTERRUPTIBLE);
  95. if (atomic_read(&pfkey_table_users) == 0)
  96. break;
  97. write_unlock_bh(&pfkey_table_lock);
  98. schedule();
  99. write_lock_bh(&pfkey_table_lock);
  100. }
  101. __set_current_state(TASK_RUNNING);
  102. remove_wait_queue(&pfkey_table_wait, &wait);
  103. }
  104. }
  105. static __inline__ void pfkey_table_ungrab(void)
  106. {
  107. write_unlock_bh(&pfkey_table_lock);
  108. wake_up(&pfkey_table_wait);
  109. }
  110. static __inline__ void pfkey_lock_table(void)
  111. {
  112. /* read_lock() synchronizes us to pfkey_table_grab */
  113. read_lock(&pfkey_table_lock);
  114. atomic_inc(&pfkey_table_users);
  115. read_unlock(&pfkey_table_lock);
  116. }
  117. static __inline__ void pfkey_unlock_table(void)
  118. {
  119. if (atomic_dec_and_test(&pfkey_table_users))
  120. wake_up(&pfkey_table_wait);
  121. }
  122. static const struct proto_ops pfkey_ops;
  123. static void pfkey_insert(struct sock *sk)
  124. {
  125. pfkey_table_grab();
  126. sk_add_node(sk, &pfkey_table);
  127. pfkey_table_ungrab();
  128. }
  129. static void pfkey_remove(struct sock *sk)
  130. {
  131. pfkey_table_grab();
  132. sk_del_node_init(sk);
  133. pfkey_table_ungrab();
  134. }
  135. static struct proto key_proto = {
  136. .name = "KEY",
  137. .owner = THIS_MODULE,
  138. .obj_size = sizeof(struct pfkey_sock),
  139. };
  140. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  141. {
  142. struct sock *sk;
  143. int err;
  144. if (net != &init_net)
  145. return -EAFNOSUPPORT;
  146. if (!capable(CAP_NET_ADMIN))
  147. return -EPERM;
  148. if (sock->type != SOCK_RAW)
  149. return -ESOCKTNOSUPPORT;
  150. if (protocol != PF_KEY_V2)
  151. return -EPROTONOSUPPORT;
  152. err = -ENOMEM;
  153. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  154. if (sk == NULL)
  155. goto out;
  156. sock->ops = &pfkey_ops;
  157. sock_init_data(sock, sk);
  158. sk->sk_family = PF_KEY;
  159. sk->sk_destruct = pfkey_sock_destruct;
  160. atomic_inc(&pfkey_socks_nr);
  161. pfkey_insert(sk);
  162. return 0;
  163. out:
  164. return err;
  165. }
  166. static int pfkey_release(struct socket *sock)
  167. {
  168. struct sock *sk = sock->sk;
  169. if (!sk)
  170. return 0;
  171. pfkey_remove(sk);
  172. sock_orphan(sk);
  173. sock->sk = NULL;
  174. skb_queue_purge(&sk->sk_write_queue);
  175. sock_put(sk);
  176. return 0;
  177. }
  178. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  179. gfp_t allocation, struct sock *sk)
  180. {
  181. int err = -ENOBUFS;
  182. sock_hold(sk);
  183. if (*skb2 == NULL) {
  184. if (atomic_read(&skb->users) != 1) {
  185. *skb2 = skb_clone(skb, allocation);
  186. } else {
  187. *skb2 = skb;
  188. atomic_inc(&skb->users);
  189. }
  190. }
  191. if (*skb2 != NULL) {
  192. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  193. skb_orphan(*skb2);
  194. skb_set_owner_r(*skb2, sk);
  195. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  196. sk->sk_data_ready(sk, (*skb2)->len);
  197. *skb2 = NULL;
  198. err = 0;
  199. }
  200. }
  201. sock_put(sk);
  202. return err;
  203. }
  204. /* Send SKB to all pfkey sockets matching selected criteria. */
  205. #define BROADCAST_ALL 0
  206. #define BROADCAST_ONE 1
  207. #define BROADCAST_REGISTERED 2
  208. #define BROADCAST_PROMISC_ONLY 4
  209. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  210. int broadcast_flags, struct sock *one_sk)
  211. {
  212. struct sock *sk;
  213. struct hlist_node *node;
  214. struct sk_buff *skb2 = NULL;
  215. int err = -ESRCH;
  216. /* XXX Do we need something like netlink_overrun? I think
  217. * XXX PF_KEY socket apps will not mind current behavior.
  218. */
  219. if (!skb)
  220. return -ENOMEM;
  221. pfkey_lock_table();
  222. sk_for_each(sk, node, &pfkey_table) {
  223. struct pfkey_sock *pfk = pfkey_sk(sk);
  224. int err2;
  225. /* Yes, it means that if you are meant to receive this
  226. * pfkey message you receive it twice as promiscuous
  227. * socket.
  228. */
  229. if (pfk->promisc)
  230. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  231. /* the exact target will be processed later */
  232. if (sk == one_sk)
  233. continue;
  234. if (broadcast_flags != BROADCAST_ALL) {
  235. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  236. continue;
  237. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  238. !pfk->registered)
  239. continue;
  240. if (broadcast_flags & BROADCAST_ONE)
  241. continue;
  242. }
  243. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  244. /* Error is cleare after succecful sending to at least one
  245. * registered KM */
  246. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  247. err = err2;
  248. }
  249. pfkey_unlock_table();
  250. if (one_sk != NULL)
  251. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  252. if (skb2)
  253. kfree_skb(skb2);
  254. kfree_skb(skb);
  255. return err;
  256. }
  257. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  258. {
  259. *new = *orig;
  260. }
  261. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  262. {
  263. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  264. struct sadb_msg *hdr;
  265. if (!skb)
  266. return -ENOBUFS;
  267. /* Woe be to the platform trying to support PFKEY yet
  268. * having normal errnos outside the 1-255 range, inclusive.
  269. */
  270. err = -err;
  271. if (err == ERESTARTSYS ||
  272. err == ERESTARTNOHAND ||
  273. err == ERESTARTNOINTR)
  274. err = EINTR;
  275. if (err >= 512)
  276. err = EINVAL;
  277. BUG_ON(err <= 0 || err >= 256);
  278. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  279. pfkey_hdr_dup(hdr, orig);
  280. hdr->sadb_msg_errno = (uint8_t) err;
  281. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  282. sizeof(uint64_t));
  283. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  284. return 0;
  285. }
  286. static u8 sadb_ext_min_len[] = {
  287. [SADB_EXT_RESERVED] = (u8) 0,
  288. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  289. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  291. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  292. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  294. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  295. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  296. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  297. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  298. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  299. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  300. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  301. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  302. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  303. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  304. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  305. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  306. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  307. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  308. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  309. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  310. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  311. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  312. };
  313. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  314. static int verify_address_len(void *p)
  315. {
  316. struct sadb_address *sp = p;
  317. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  318. struct sockaddr_in *sin;
  319. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  320. struct sockaddr_in6 *sin6;
  321. #endif
  322. int len;
  323. switch (addr->sa_family) {
  324. case AF_INET:
  325. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  326. if (sp->sadb_address_len != len ||
  327. sp->sadb_address_prefixlen > 32)
  328. return -EINVAL;
  329. break;
  330. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  331. case AF_INET6:
  332. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  333. if (sp->sadb_address_len != len ||
  334. sp->sadb_address_prefixlen > 128)
  335. return -EINVAL;
  336. break;
  337. #endif
  338. default:
  339. /* It is user using kernel to keep track of security
  340. * associations for another protocol, such as
  341. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  342. * lengths.
  343. *
  344. * XXX Actually, association/policy database is not yet
  345. * XXX able to cope with arbitrary sockaddr families.
  346. * XXX When it can, remove this -EINVAL. -DaveM
  347. */
  348. return -EINVAL;
  349. break;
  350. }
  351. return 0;
  352. }
  353. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  354. {
  355. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  356. sec_ctx->sadb_x_ctx_len,
  357. sizeof(uint64_t));
  358. }
  359. static inline int verify_sec_ctx_len(void *p)
  360. {
  361. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  362. int len = sec_ctx->sadb_x_ctx_len;
  363. if (len > PAGE_SIZE)
  364. return -EINVAL;
  365. len = pfkey_sec_ctx_len(sec_ctx);
  366. if (sec_ctx->sadb_x_sec_len != len)
  367. return -EINVAL;
  368. return 0;
  369. }
  370. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  371. {
  372. struct xfrm_user_sec_ctx *uctx = NULL;
  373. int ctx_size = sec_ctx->sadb_x_ctx_len;
  374. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  375. if (!uctx)
  376. return NULL;
  377. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  378. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  379. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  380. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  381. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  382. memcpy(uctx + 1, sec_ctx + 1,
  383. uctx->ctx_len);
  384. return uctx;
  385. }
  386. static int present_and_same_family(struct sadb_address *src,
  387. struct sadb_address *dst)
  388. {
  389. struct sockaddr *s_addr, *d_addr;
  390. if (!src || !dst)
  391. return 0;
  392. s_addr = (struct sockaddr *)(src + 1);
  393. d_addr = (struct sockaddr *)(dst + 1);
  394. if (s_addr->sa_family != d_addr->sa_family)
  395. return 0;
  396. if (s_addr->sa_family != AF_INET
  397. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  398. && s_addr->sa_family != AF_INET6
  399. #endif
  400. )
  401. return 0;
  402. return 1;
  403. }
  404. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  405. {
  406. char *p = (char *) hdr;
  407. int len = skb->len;
  408. len -= sizeof(*hdr);
  409. p += sizeof(*hdr);
  410. while (len > 0) {
  411. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  412. uint16_t ext_type;
  413. int ext_len;
  414. ext_len = ehdr->sadb_ext_len;
  415. ext_len *= sizeof(uint64_t);
  416. ext_type = ehdr->sadb_ext_type;
  417. if (ext_len < sizeof(uint64_t) ||
  418. ext_len > len ||
  419. ext_type == SADB_EXT_RESERVED)
  420. return -EINVAL;
  421. if (ext_type <= SADB_EXT_MAX) {
  422. int min = (int) sadb_ext_min_len[ext_type];
  423. if (ext_len < min)
  424. return -EINVAL;
  425. if (ext_hdrs[ext_type-1] != NULL)
  426. return -EINVAL;
  427. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  428. ext_type == SADB_EXT_ADDRESS_DST ||
  429. ext_type == SADB_EXT_ADDRESS_PROXY ||
  430. ext_type == SADB_X_EXT_NAT_T_OA) {
  431. if (verify_address_len(p))
  432. return -EINVAL;
  433. }
  434. if (ext_type == SADB_X_EXT_SEC_CTX) {
  435. if (verify_sec_ctx_len(p))
  436. return -EINVAL;
  437. }
  438. ext_hdrs[ext_type-1] = p;
  439. }
  440. p += ext_len;
  441. len -= ext_len;
  442. }
  443. return 0;
  444. }
  445. static uint16_t
  446. pfkey_satype2proto(uint8_t satype)
  447. {
  448. switch (satype) {
  449. case SADB_SATYPE_UNSPEC:
  450. return IPSEC_PROTO_ANY;
  451. case SADB_SATYPE_AH:
  452. return IPPROTO_AH;
  453. case SADB_SATYPE_ESP:
  454. return IPPROTO_ESP;
  455. case SADB_X_SATYPE_IPCOMP:
  456. return IPPROTO_COMP;
  457. break;
  458. default:
  459. return 0;
  460. }
  461. /* NOTREACHED */
  462. }
  463. static uint8_t
  464. pfkey_proto2satype(uint16_t proto)
  465. {
  466. switch (proto) {
  467. case IPPROTO_AH:
  468. return SADB_SATYPE_AH;
  469. case IPPROTO_ESP:
  470. return SADB_SATYPE_ESP;
  471. case IPPROTO_COMP:
  472. return SADB_X_SATYPE_IPCOMP;
  473. break;
  474. default:
  475. return 0;
  476. }
  477. /* NOTREACHED */
  478. }
  479. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  480. * say specifically 'just raw sockets' as we encode them as 255.
  481. */
  482. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  483. {
  484. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  485. }
  486. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  487. {
  488. return (proto ? proto : IPSEC_PROTO_ANY);
  489. }
  490. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  491. xfrm_address_t *xaddr)
  492. {
  493. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  494. case AF_INET:
  495. xaddr->a4 =
  496. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  497. return AF_INET;
  498. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  499. case AF_INET6:
  500. memcpy(xaddr->a6,
  501. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  502. sizeof(struct in6_addr));
  503. return AF_INET6;
  504. #endif
  505. default:
  506. return 0;
  507. }
  508. /* NOTREACHED */
  509. }
  510. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  511. {
  512. struct sadb_sa *sa;
  513. struct sadb_address *addr;
  514. uint16_t proto;
  515. unsigned short family;
  516. xfrm_address_t *xaddr;
  517. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  518. if (sa == NULL)
  519. return NULL;
  520. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  521. if (proto == 0)
  522. return NULL;
  523. /* sadb_address_len should be checked by caller */
  524. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  525. if (addr == NULL)
  526. return NULL;
  527. family = ((struct sockaddr *)(addr + 1))->sa_family;
  528. switch (family) {
  529. case AF_INET:
  530. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  531. break;
  532. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  533. case AF_INET6:
  534. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  535. break;
  536. #endif
  537. default:
  538. xaddr = NULL;
  539. }
  540. if (!xaddr)
  541. return NULL;
  542. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  543. }
  544. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  545. static int
  546. pfkey_sockaddr_size(sa_family_t family)
  547. {
  548. switch (family) {
  549. case AF_INET:
  550. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  551. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  552. case AF_INET6:
  553. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  554. #endif
  555. default:
  556. return 0;
  557. }
  558. /* NOTREACHED */
  559. }
  560. static inline int pfkey_mode_from_xfrm(int mode)
  561. {
  562. switch(mode) {
  563. case XFRM_MODE_TRANSPORT:
  564. return IPSEC_MODE_TRANSPORT;
  565. case XFRM_MODE_TUNNEL:
  566. return IPSEC_MODE_TUNNEL;
  567. case XFRM_MODE_BEET:
  568. return IPSEC_MODE_BEET;
  569. default:
  570. return -1;
  571. }
  572. }
  573. static inline int pfkey_mode_to_xfrm(int mode)
  574. {
  575. switch(mode) {
  576. case IPSEC_MODE_ANY: /*XXX*/
  577. case IPSEC_MODE_TRANSPORT:
  578. return XFRM_MODE_TRANSPORT;
  579. case IPSEC_MODE_TUNNEL:
  580. return XFRM_MODE_TUNNEL;
  581. case IPSEC_MODE_BEET:
  582. return XFRM_MODE_BEET;
  583. default:
  584. return -1;
  585. }
  586. }
  587. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  588. int add_keys, int hsc)
  589. {
  590. struct sk_buff *skb;
  591. struct sadb_msg *hdr;
  592. struct sadb_sa *sa;
  593. struct sadb_lifetime *lifetime;
  594. struct sadb_address *addr;
  595. struct sadb_key *key;
  596. struct sadb_x_sa2 *sa2;
  597. struct sockaddr_in *sin;
  598. struct sadb_x_sec_ctx *sec_ctx;
  599. struct xfrm_sec_ctx *xfrm_ctx;
  600. int ctx_size = 0;
  601. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  602. struct sockaddr_in6 *sin6;
  603. #endif
  604. int size;
  605. int auth_key_size = 0;
  606. int encrypt_key_size = 0;
  607. int sockaddr_size;
  608. struct xfrm_encap_tmpl *natt = NULL;
  609. int mode;
  610. /* address family check */
  611. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  612. if (!sockaddr_size)
  613. return ERR_PTR(-EINVAL);
  614. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  615. key(AE), (identity(SD),) (sensitivity)> */
  616. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  617. sizeof(struct sadb_lifetime) +
  618. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  619. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  620. sizeof(struct sadb_address)*2 +
  621. sockaddr_size*2 +
  622. sizeof(struct sadb_x_sa2);
  623. if ((xfrm_ctx = x->security)) {
  624. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  625. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  626. }
  627. /* identity & sensitivity */
  628. if ((x->props.family == AF_INET &&
  629. x->sel.saddr.a4 != x->props.saddr.a4)
  630. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  631. || (x->props.family == AF_INET6 &&
  632. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  633. #endif
  634. )
  635. size += sizeof(struct sadb_address) + sockaddr_size;
  636. if (add_keys) {
  637. if (x->aalg && x->aalg->alg_key_len) {
  638. auth_key_size =
  639. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  640. size += sizeof(struct sadb_key) + auth_key_size;
  641. }
  642. if (x->ealg && x->ealg->alg_key_len) {
  643. encrypt_key_size =
  644. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  645. size += sizeof(struct sadb_key) + encrypt_key_size;
  646. }
  647. }
  648. if (x->encap)
  649. natt = x->encap;
  650. if (natt && natt->encap_type) {
  651. size += sizeof(struct sadb_x_nat_t_type);
  652. size += sizeof(struct sadb_x_nat_t_port);
  653. size += sizeof(struct sadb_x_nat_t_port);
  654. }
  655. skb = alloc_skb(size + 16, GFP_ATOMIC);
  656. if (skb == NULL)
  657. return ERR_PTR(-ENOBUFS);
  658. /* call should fill header later */
  659. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  660. memset(hdr, 0, size); /* XXX do we need this ? */
  661. hdr->sadb_msg_len = size / sizeof(uint64_t);
  662. /* sa */
  663. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  664. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  665. sa->sadb_sa_exttype = SADB_EXT_SA;
  666. sa->sadb_sa_spi = x->id.spi;
  667. sa->sadb_sa_replay = x->props.replay_window;
  668. switch (x->km.state) {
  669. case XFRM_STATE_VALID:
  670. sa->sadb_sa_state = x->km.dying ?
  671. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  672. break;
  673. case XFRM_STATE_ACQ:
  674. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  675. break;
  676. default:
  677. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  678. break;
  679. }
  680. sa->sadb_sa_auth = 0;
  681. if (x->aalg) {
  682. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  683. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  684. }
  685. sa->sadb_sa_encrypt = 0;
  686. BUG_ON(x->ealg && x->calg);
  687. if (x->ealg) {
  688. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  689. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  690. }
  691. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  692. if (x->calg) {
  693. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  694. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  695. }
  696. sa->sadb_sa_flags = 0;
  697. if (x->props.flags & XFRM_STATE_NOECN)
  698. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  699. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  700. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  701. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  702. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  703. /* hard time */
  704. if (hsc & 2) {
  705. lifetime = (struct sadb_lifetime *) skb_put(skb,
  706. sizeof(struct sadb_lifetime));
  707. lifetime->sadb_lifetime_len =
  708. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  709. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  710. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  711. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  712. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  713. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  714. }
  715. /* soft time */
  716. if (hsc & 1) {
  717. lifetime = (struct sadb_lifetime *) skb_put(skb,
  718. sizeof(struct sadb_lifetime));
  719. lifetime->sadb_lifetime_len =
  720. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  721. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  722. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  723. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  724. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  725. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  726. }
  727. /* current time */
  728. lifetime = (struct sadb_lifetime *) skb_put(skb,
  729. sizeof(struct sadb_lifetime));
  730. lifetime->sadb_lifetime_len =
  731. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  732. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  733. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  734. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  735. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  736. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  737. /* src address */
  738. addr = (struct sadb_address*) skb_put(skb,
  739. sizeof(struct sadb_address)+sockaddr_size);
  740. addr->sadb_address_len =
  741. (sizeof(struct sadb_address)+sockaddr_size)/
  742. sizeof(uint64_t);
  743. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  744. /* "if the ports are non-zero, then the sadb_address_proto field,
  745. normally zero, MUST be filled in with the transport
  746. protocol's number." - RFC2367 */
  747. addr->sadb_address_proto = 0;
  748. addr->sadb_address_reserved = 0;
  749. if (x->props.family == AF_INET) {
  750. addr->sadb_address_prefixlen = 32;
  751. sin = (struct sockaddr_in *) (addr + 1);
  752. sin->sin_family = AF_INET;
  753. sin->sin_addr.s_addr = x->props.saddr.a4;
  754. sin->sin_port = 0;
  755. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  756. }
  757. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  758. else if (x->props.family == AF_INET6) {
  759. addr->sadb_address_prefixlen = 128;
  760. sin6 = (struct sockaddr_in6 *) (addr + 1);
  761. sin6->sin6_family = AF_INET6;
  762. sin6->sin6_port = 0;
  763. sin6->sin6_flowinfo = 0;
  764. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  765. sizeof(struct in6_addr));
  766. sin6->sin6_scope_id = 0;
  767. }
  768. #endif
  769. else
  770. BUG();
  771. /* dst address */
  772. addr = (struct sadb_address*) skb_put(skb,
  773. sizeof(struct sadb_address)+sockaddr_size);
  774. addr->sadb_address_len =
  775. (sizeof(struct sadb_address)+sockaddr_size)/
  776. sizeof(uint64_t);
  777. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  778. addr->sadb_address_proto = 0;
  779. addr->sadb_address_prefixlen = 32; /* XXX */
  780. addr->sadb_address_reserved = 0;
  781. if (x->props.family == AF_INET) {
  782. sin = (struct sockaddr_in *) (addr + 1);
  783. sin->sin_family = AF_INET;
  784. sin->sin_addr.s_addr = x->id.daddr.a4;
  785. sin->sin_port = 0;
  786. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  787. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  788. addr = (struct sadb_address*) skb_put(skb,
  789. sizeof(struct sadb_address)+sockaddr_size);
  790. addr->sadb_address_len =
  791. (sizeof(struct sadb_address)+sockaddr_size)/
  792. sizeof(uint64_t);
  793. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  794. addr->sadb_address_proto =
  795. pfkey_proto_from_xfrm(x->sel.proto);
  796. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  797. addr->sadb_address_reserved = 0;
  798. sin = (struct sockaddr_in *) (addr + 1);
  799. sin->sin_family = AF_INET;
  800. sin->sin_addr.s_addr = x->sel.saddr.a4;
  801. sin->sin_port = x->sel.sport;
  802. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  803. }
  804. }
  805. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  806. else if (x->props.family == AF_INET6) {
  807. addr->sadb_address_prefixlen = 128;
  808. sin6 = (struct sockaddr_in6 *) (addr + 1);
  809. sin6->sin6_family = AF_INET6;
  810. sin6->sin6_port = 0;
  811. sin6->sin6_flowinfo = 0;
  812. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  813. sin6->sin6_scope_id = 0;
  814. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  815. sizeof(struct in6_addr))) {
  816. addr = (struct sadb_address *) skb_put(skb,
  817. sizeof(struct sadb_address)+sockaddr_size);
  818. addr->sadb_address_len =
  819. (sizeof(struct sadb_address)+sockaddr_size)/
  820. sizeof(uint64_t);
  821. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  822. addr->sadb_address_proto =
  823. pfkey_proto_from_xfrm(x->sel.proto);
  824. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  825. addr->sadb_address_reserved = 0;
  826. sin6 = (struct sockaddr_in6 *) (addr + 1);
  827. sin6->sin6_family = AF_INET6;
  828. sin6->sin6_port = x->sel.sport;
  829. sin6->sin6_flowinfo = 0;
  830. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  831. sizeof(struct in6_addr));
  832. sin6->sin6_scope_id = 0;
  833. }
  834. }
  835. #endif
  836. else
  837. BUG();
  838. /* auth key */
  839. if (add_keys && auth_key_size) {
  840. key = (struct sadb_key *) skb_put(skb,
  841. sizeof(struct sadb_key)+auth_key_size);
  842. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  843. sizeof(uint64_t);
  844. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  845. key->sadb_key_bits = x->aalg->alg_key_len;
  846. key->sadb_key_reserved = 0;
  847. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  848. }
  849. /* encrypt key */
  850. if (add_keys && encrypt_key_size) {
  851. key = (struct sadb_key *) skb_put(skb,
  852. sizeof(struct sadb_key)+encrypt_key_size);
  853. key->sadb_key_len = (sizeof(struct sadb_key) +
  854. encrypt_key_size) / sizeof(uint64_t);
  855. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  856. key->sadb_key_bits = x->ealg->alg_key_len;
  857. key->sadb_key_reserved = 0;
  858. memcpy(key + 1, x->ealg->alg_key,
  859. (x->ealg->alg_key_len+7)/8);
  860. }
  861. /* sa */
  862. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  863. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  864. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  865. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  866. kfree_skb(skb);
  867. return ERR_PTR(-EINVAL);
  868. }
  869. sa2->sadb_x_sa2_mode = mode;
  870. sa2->sadb_x_sa2_reserved1 = 0;
  871. sa2->sadb_x_sa2_reserved2 = 0;
  872. sa2->sadb_x_sa2_sequence = 0;
  873. sa2->sadb_x_sa2_reqid = x->props.reqid;
  874. if (natt && natt->encap_type) {
  875. struct sadb_x_nat_t_type *n_type;
  876. struct sadb_x_nat_t_port *n_port;
  877. /* type */
  878. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  879. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  880. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  881. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  882. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  883. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  884. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  885. /* source port */
  886. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  887. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  888. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  889. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  890. n_port->sadb_x_nat_t_port_reserved = 0;
  891. /* dest port */
  892. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  893. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  894. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  895. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  896. n_port->sadb_x_nat_t_port_reserved = 0;
  897. }
  898. /* security context */
  899. if (xfrm_ctx) {
  900. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  901. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  902. sec_ctx->sadb_x_sec_len =
  903. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  904. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  905. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  906. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  907. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  908. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  909. xfrm_ctx->ctx_len);
  910. }
  911. return skb;
  912. }
  913. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  914. {
  915. struct sk_buff *skb;
  916. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  917. return skb;
  918. }
  919. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  920. int hsc)
  921. {
  922. return __pfkey_xfrm_state2msg(x, 0, hsc);
  923. }
  924. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  925. void **ext_hdrs)
  926. {
  927. struct xfrm_state *x;
  928. struct sadb_lifetime *lifetime;
  929. struct sadb_sa *sa;
  930. struct sadb_key *key;
  931. struct sadb_x_sec_ctx *sec_ctx;
  932. uint16_t proto;
  933. int err;
  934. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  935. if (!sa ||
  936. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  937. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  938. return ERR_PTR(-EINVAL);
  939. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  940. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  941. return ERR_PTR(-EINVAL);
  942. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  943. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  944. return ERR_PTR(-EINVAL);
  945. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  946. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  947. return ERR_PTR(-EINVAL);
  948. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  949. if (proto == 0)
  950. return ERR_PTR(-EINVAL);
  951. /* default error is no buffer space */
  952. err = -ENOBUFS;
  953. /* RFC2367:
  954. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  955. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  956. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  957. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  958. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  959. not true.
  960. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  961. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  962. */
  963. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  964. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  965. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  966. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  967. return ERR_PTR(-EINVAL);
  968. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  969. if (key != NULL &&
  970. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  971. ((key->sadb_key_bits+7) / 8 == 0 ||
  972. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  973. return ERR_PTR(-EINVAL);
  974. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  975. if (key != NULL &&
  976. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  977. ((key->sadb_key_bits+7) / 8 == 0 ||
  978. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  979. return ERR_PTR(-EINVAL);
  980. x = xfrm_state_alloc();
  981. if (x == NULL)
  982. return ERR_PTR(-ENOBUFS);
  983. x->id.proto = proto;
  984. x->id.spi = sa->sadb_sa_spi;
  985. x->props.replay_window = sa->sadb_sa_replay;
  986. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  987. x->props.flags |= XFRM_STATE_NOECN;
  988. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  989. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  990. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  991. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  992. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  993. if (lifetime != NULL) {
  994. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  995. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  996. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  997. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  998. }
  999. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  1000. if (lifetime != NULL) {
  1001. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1002. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1003. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1004. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1005. }
  1006. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1007. if (sec_ctx != NULL) {
  1008. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1009. if (!uctx)
  1010. goto out;
  1011. err = security_xfrm_state_alloc(x, uctx);
  1012. kfree(uctx);
  1013. if (err)
  1014. goto out;
  1015. }
  1016. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  1017. if (sa->sadb_sa_auth) {
  1018. int keysize = 0;
  1019. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1020. if (!a) {
  1021. err = -ENOSYS;
  1022. goto out;
  1023. }
  1024. if (key)
  1025. keysize = (key->sadb_key_bits + 7) / 8;
  1026. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1027. if (!x->aalg)
  1028. goto out;
  1029. strcpy(x->aalg->alg_name, a->name);
  1030. x->aalg->alg_key_len = 0;
  1031. if (key) {
  1032. x->aalg->alg_key_len = key->sadb_key_bits;
  1033. memcpy(x->aalg->alg_key, key+1, keysize);
  1034. }
  1035. x->props.aalgo = sa->sadb_sa_auth;
  1036. /* x->algo.flags = sa->sadb_sa_flags; */
  1037. }
  1038. if (sa->sadb_sa_encrypt) {
  1039. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1040. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1041. if (!a) {
  1042. err = -ENOSYS;
  1043. goto out;
  1044. }
  1045. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1046. if (!x->calg)
  1047. goto out;
  1048. strcpy(x->calg->alg_name, a->name);
  1049. x->props.calgo = sa->sadb_sa_encrypt;
  1050. } else {
  1051. int keysize = 0;
  1052. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1053. if (!a) {
  1054. err = -ENOSYS;
  1055. goto out;
  1056. }
  1057. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1058. if (key)
  1059. keysize = (key->sadb_key_bits + 7) / 8;
  1060. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1061. if (!x->ealg)
  1062. goto out;
  1063. strcpy(x->ealg->alg_name, a->name);
  1064. x->ealg->alg_key_len = 0;
  1065. if (key) {
  1066. x->ealg->alg_key_len = key->sadb_key_bits;
  1067. memcpy(x->ealg->alg_key, key+1, keysize);
  1068. }
  1069. x->props.ealgo = sa->sadb_sa_encrypt;
  1070. }
  1071. }
  1072. /* x->algo.flags = sa->sadb_sa_flags; */
  1073. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1074. &x->props.saddr);
  1075. if (!x->props.family) {
  1076. err = -EAFNOSUPPORT;
  1077. goto out;
  1078. }
  1079. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1080. &x->id.daddr);
  1081. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1082. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1083. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1084. if (mode < 0) {
  1085. err = -EINVAL;
  1086. goto out;
  1087. }
  1088. x->props.mode = mode;
  1089. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1090. }
  1091. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1092. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1093. /* Nobody uses this, but we try. */
  1094. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1095. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1096. }
  1097. if (x->props.mode == XFRM_MODE_TRANSPORT)
  1098. x->sel.family = x->props.family;
  1099. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1100. struct sadb_x_nat_t_type* n_type;
  1101. struct xfrm_encap_tmpl *natt;
  1102. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1103. if (!x->encap)
  1104. goto out;
  1105. natt = x->encap;
  1106. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1107. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1108. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1109. struct sadb_x_nat_t_port* n_port =
  1110. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1111. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1112. }
  1113. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1114. struct sadb_x_nat_t_port* n_port =
  1115. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1116. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1117. }
  1118. }
  1119. err = xfrm_init_state(x);
  1120. if (err)
  1121. goto out;
  1122. x->km.seq = hdr->sadb_msg_seq;
  1123. return x;
  1124. out:
  1125. x->km.state = XFRM_STATE_DEAD;
  1126. xfrm_state_put(x);
  1127. return ERR_PTR(err);
  1128. }
  1129. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1130. {
  1131. return -EOPNOTSUPP;
  1132. }
  1133. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1134. {
  1135. struct sk_buff *resp_skb;
  1136. struct sadb_x_sa2 *sa2;
  1137. struct sadb_address *saddr, *daddr;
  1138. struct sadb_msg *out_hdr;
  1139. struct sadb_spirange *range;
  1140. struct xfrm_state *x = NULL;
  1141. int mode;
  1142. int err;
  1143. u32 min_spi, max_spi;
  1144. u32 reqid;
  1145. u8 proto;
  1146. unsigned short family;
  1147. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1148. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1149. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1150. return -EINVAL;
  1151. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1152. if (proto == 0)
  1153. return -EINVAL;
  1154. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1155. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1156. if (mode < 0)
  1157. return -EINVAL;
  1158. reqid = sa2->sadb_x_sa2_reqid;
  1159. } else {
  1160. mode = 0;
  1161. reqid = 0;
  1162. }
  1163. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1164. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1165. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1166. switch (family) {
  1167. case AF_INET:
  1168. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1169. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1170. break;
  1171. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1172. case AF_INET6:
  1173. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1174. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1175. break;
  1176. #endif
  1177. }
  1178. if (hdr->sadb_msg_seq) {
  1179. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1180. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1181. xfrm_state_put(x);
  1182. x = NULL;
  1183. }
  1184. }
  1185. if (!x)
  1186. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1187. if (x == NULL)
  1188. return -ENOENT;
  1189. min_spi = 0x100;
  1190. max_spi = 0x0fffffff;
  1191. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1192. if (range) {
  1193. min_spi = range->sadb_spirange_min;
  1194. max_spi = range->sadb_spirange_max;
  1195. }
  1196. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1197. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1198. if (IS_ERR(resp_skb)) {
  1199. xfrm_state_put(x);
  1200. return PTR_ERR(resp_skb);
  1201. }
  1202. out_hdr = (struct sadb_msg *) resp_skb->data;
  1203. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1204. out_hdr->sadb_msg_type = SADB_GETSPI;
  1205. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1206. out_hdr->sadb_msg_errno = 0;
  1207. out_hdr->sadb_msg_reserved = 0;
  1208. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1209. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1210. xfrm_state_put(x);
  1211. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1212. return 0;
  1213. }
  1214. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1215. {
  1216. struct xfrm_state *x;
  1217. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1218. return -EOPNOTSUPP;
  1219. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1220. return 0;
  1221. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1222. if (x == NULL)
  1223. return 0;
  1224. spin_lock_bh(&x->lock);
  1225. if (x->km.state == XFRM_STATE_ACQ) {
  1226. x->km.state = XFRM_STATE_ERROR;
  1227. wake_up(&km_waitq);
  1228. }
  1229. spin_unlock_bh(&x->lock);
  1230. xfrm_state_put(x);
  1231. return 0;
  1232. }
  1233. static inline int event2poltype(int event)
  1234. {
  1235. switch (event) {
  1236. case XFRM_MSG_DELPOLICY:
  1237. return SADB_X_SPDDELETE;
  1238. case XFRM_MSG_NEWPOLICY:
  1239. return SADB_X_SPDADD;
  1240. case XFRM_MSG_UPDPOLICY:
  1241. return SADB_X_SPDUPDATE;
  1242. case XFRM_MSG_POLEXPIRE:
  1243. // return SADB_X_SPDEXPIRE;
  1244. default:
  1245. printk("pfkey: Unknown policy event %d\n", event);
  1246. break;
  1247. }
  1248. return 0;
  1249. }
  1250. static inline int event2keytype(int event)
  1251. {
  1252. switch (event) {
  1253. case XFRM_MSG_DELSA:
  1254. return SADB_DELETE;
  1255. case XFRM_MSG_NEWSA:
  1256. return SADB_ADD;
  1257. case XFRM_MSG_UPDSA:
  1258. return SADB_UPDATE;
  1259. case XFRM_MSG_EXPIRE:
  1260. return SADB_EXPIRE;
  1261. default:
  1262. printk("pfkey: Unknown SA event %d\n", event);
  1263. break;
  1264. }
  1265. return 0;
  1266. }
  1267. /* ADD/UPD/DEL */
  1268. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1269. {
  1270. struct sk_buff *skb;
  1271. struct sadb_msg *hdr;
  1272. skb = pfkey_xfrm_state2msg(x);
  1273. if (IS_ERR(skb))
  1274. return PTR_ERR(skb);
  1275. hdr = (struct sadb_msg *) skb->data;
  1276. hdr->sadb_msg_version = PF_KEY_V2;
  1277. hdr->sadb_msg_type = event2keytype(c->event);
  1278. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1279. hdr->sadb_msg_errno = 0;
  1280. hdr->sadb_msg_reserved = 0;
  1281. hdr->sadb_msg_seq = c->seq;
  1282. hdr->sadb_msg_pid = c->pid;
  1283. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1284. return 0;
  1285. }
  1286. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1287. {
  1288. struct xfrm_state *x;
  1289. int err;
  1290. struct km_event c;
  1291. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1292. if (IS_ERR(x))
  1293. return PTR_ERR(x);
  1294. xfrm_state_hold(x);
  1295. if (hdr->sadb_msg_type == SADB_ADD)
  1296. err = xfrm_state_add(x);
  1297. else
  1298. err = xfrm_state_update(x);
  1299. xfrm_audit_state_add(x, err ? 0 : 1,
  1300. audit_get_loginuid(current), 0);
  1301. if (err < 0) {
  1302. x->km.state = XFRM_STATE_DEAD;
  1303. __xfrm_state_put(x);
  1304. goto out;
  1305. }
  1306. if (hdr->sadb_msg_type == SADB_ADD)
  1307. c.event = XFRM_MSG_NEWSA;
  1308. else
  1309. c.event = XFRM_MSG_UPDSA;
  1310. c.seq = hdr->sadb_msg_seq;
  1311. c.pid = hdr->sadb_msg_pid;
  1312. km_state_notify(x, &c);
  1313. out:
  1314. xfrm_state_put(x);
  1315. return err;
  1316. }
  1317. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1318. {
  1319. struct xfrm_state *x;
  1320. struct km_event c;
  1321. int err;
  1322. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1323. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1324. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1325. return -EINVAL;
  1326. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1327. if (x == NULL)
  1328. return -ESRCH;
  1329. if ((err = security_xfrm_state_delete(x)))
  1330. goto out;
  1331. if (xfrm_state_kern(x)) {
  1332. err = -EPERM;
  1333. goto out;
  1334. }
  1335. err = xfrm_state_delete(x);
  1336. if (err < 0)
  1337. goto out;
  1338. c.seq = hdr->sadb_msg_seq;
  1339. c.pid = hdr->sadb_msg_pid;
  1340. c.event = XFRM_MSG_DELSA;
  1341. km_state_notify(x, &c);
  1342. out:
  1343. xfrm_audit_state_delete(x, err ? 0 : 1,
  1344. audit_get_loginuid(current), 0);
  1345. xfrm_state_put(x);
  1346. return err;
  1347. }
  1348. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1349. {
  1350. __u8 proto;
  1351. struct sk_buff *out_skb;
  1352. struct sadb_msg *out_hdr;
  1353. struct xfrm_state *x;
  1354. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1355. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1356. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1357. return -EINVAL;
  1358. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1359. if (x == NULL)
  1360. return -ESRCH;
  1361. out_skb = pfkey_xfrm_state2msg(x);
  1362. proto = x->id.proto;
  1363. xfrm_state_put(x);
  1364. if (IS_ERR(out_skb))
  1365. return PTR_ERR(out_skb);
  1366. out_hdr = (struct sadb_msg *) out_skb->data;
  1367. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1368. out_hdr->sadb_msg_type = SADB_GET;
  1369. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1370. out_hdr->sadb_msg_errno = 0;
  1371. out_hdr->sadb_msg_reserved = 0;
  1372. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1373. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1374. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1375. return 0;
  1376. }
  1377. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1378. gfp_t allocation)
  1379. {
  1380. struct sk_buff *skb;
  1381. struct sadb_msg *hdr;
  1382. int len, auth_len, enc_len, i;
  1383. auth_len = xfrm_count_auth_supported();
  1384. if (auth_len) {
  1385. auth_len *= sizeof(struct sadb_alg);
  1386. auth_len += sizeof(struct sadb_supported);
  1387. }
  1388. enc_len = xfrm_count_enc_supported();
  1389. if (enc_len) {
  1390. enc_len *= sizeof(struct sadb_alg);
  1391. enc_len += sizeof(struct sadb_supported);
  1392. }
  1393. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1394. skb = alloc_skb(len + 16, allocation);
  1395. if (!skb)
  1396. goto out_put_algs;
  1397. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1398. pfkey_hdr_dup(hdr, orig);
  1399. hdr->sadb_msg_errno = 0;
  1400. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1401. if (auth_len) {
  1402. struct sadb_supported *sp;
  1403. struct sadb_alg *ap;
  1404. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1405. ap = (struct sadb_alg *) (sp + 1);
  1406. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1407. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1408. for (i = 0; ; i++) {
  1409. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1410. if (!aalg)
  1411. break;
  1412. if (aalg->available)
  1413. *ap++ = aalg->desc;
  1414. }
  1415. }
  1416. if (enc_len) {
  1417. struct sadb_supported *sp;
  1418. struct sadb_alg *ap;
  1419. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1420. ap = (struct sadb_alg *) (sp + 1);
  1421. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1422. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1423. for (i = 0; ; i++) {
  1424. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1425. if (!ealg)
  1426. break;
  1427. if (ealg->available)
  1428. *ap++ = ealg->desc;
  1429. }
  1430. }
  1431. out_put_algs:
  1432. return skb;
  1433. }
  1434. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1435. {
  1436. struct pfkey_sock *pfk = pfkey_sk(sk);
  1437. struct sk_buff *supp_skb;
  1438. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1439. return -EINVAL;
  1440. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1441. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1442. return -EEXIST;
  1443. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1444. }
  1445. xfrm_probe_algs();
  1446. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1447. if (!supp_skb) {
  1448. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1449. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1450. return -ENOBUFS;
  1451. }
  1452. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1453. return 0;
  1454. }
  1455. static int key_notify_sa_flush(struct km_event *c)
  1456. {
  1457. struct sk_buff *skb;
  1458. struct sadb_msg *hdr;
  1459. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1460. if (!skb)
  1461. return -ENOBUFS;
  1462. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1463. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1464. hdr->sadb_msg_type = SADB_FLUSH;
  1465. hdr->sadb_msg_seq = c->seq;
  1466. hdr->sadb_msg_pid = c->pid;
  1467. hdr->sadb_msg_version = PF_KEY_V2;
  1468. hdr->sadb_msg_errno = (uint8_t) 0;
  1469. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1470. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1471. return 0;
  1472. }
  1473. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1474. {
  1475. unsigned proto;
  1476. struct km_event c;
  1477. struct xfrm_audit audit_info;
  1478. int err;
  1479. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1480. if (proto == 0)
  1481. return -EINVAL;
  1482. audit_info.loginuid = audit_get_loginuid(current);
  1483. audit_info.secid = 0;
  1484. err = xfrm_state_flush(proto, &audit_info);
  1485. if (err)
  1486. return err;
  1487. c.data.proto = proto;
  1488. c.seq = hdr->sadb_msg_seq;
  1489. c.pid = hdr->sadb_msg_pid;
  1490. c.event = XFRM_MSG_FLUSHSA;
  1491. km_state_notify(NULL, &c);
  1492. return 0;
  1493. }
  1494. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1495. {
  1496. struct pfkey_sock *pfk = ptr;
  1497. struct sk_buff *out_skb;
  1498. struct sadb_msg *out_hdr;
  1499. if (!pfkey_can_dump(&pfk->sk))
  1500. return -ENOBUFS;
  1501. out_skb = pfkey_xfrm_state2msg(x);
  1502. if (IS_ERR(out_skb))
  1503. return PTR_ERR(out_skb);
  1504. out_hdr = (struct sadb_msg *) out_skb->data;
  1505. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1506. out_hdr->sadb_msg_type = SADB_DUMP;
  1507. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1508. out_hdr->sadb_msg_errno = 0;
  1509. out_hdr->sadb_msg_reserved = 0;
  1510. out_hdr->sadb_msg_seq = count;
  1511. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1512. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  1513. return 0;
  1514. }
  1515. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1516. {
  1517. return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
  1518. }
  1519. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1520. {
  1521. xfrm_state_walk_done(&pfk->dump.u.state);
  1522. }
  1523. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1524. {
  1525. u8 proto;
  1526. struct pfkey_sock *pfk = pfkey_sk(sk);
  1527. if (pfk->dump.dump != NULL)
  1528. return -EBUSY;
  1529. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1530. if (proto == 0)
  1531. return -EINVAL;
  1532. pfk->dump.msg_version = hdr->sadb_msg_version;
  1533. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1534. pfk->dump.dump = pfkey_dump_sa;
  1535. pfk->dump.done = pfkey_dump_sa_done;
  1536. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1537. return pfkey_do_dump(pfk);
  1538. }
  1539. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1540. {
  1541. struct pfkey_sock *pfk = pfkey_sk(sk);
  1542. int satype = hdr->sadb_msg_satype;
  1543. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1544. /* XXX we mangle packet... */
  1545. hdr->sadb_msg_errno = 0;
  1546. if (satype != 0 && satype != 1)
  1547. return -EINVAL;
  1548. pfk->promisc = satype;
  1549. }
  1550. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1551. return 0;
  1552. }
  1553. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1554. {
  1555. int i;
  1556. u32 reqid = *(u32*)ptr;
  1557. for (i=0; i<xp->xfrm_nr; i++) {
  1558. if (xp->xfrm_vec[i].reqid == reqid)
  1559. return -EEXIST;
  1560. }
  1561. return 0;
  1562. }
  1563. static u32 gen_reqid(void)
  1564. {
  1565. struct xfrm_policy_walk walk;
  1566. u32 start;
  1567. int rc;
  1568. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1569. start = reqid;
  1570. do {
  1571. ++reqid;
  1572. if (reqid == 0)
  1573. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1574. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1575. rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
  1576. xfrm_policy_walk_done(&walk);
  1577. if (rc != -EEXIST)
  1578. return reqid;
  1579. } while (reqid != start);
  1580. return 0;
  1581. }
  1582. static int
  1583. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1584. {
  1585. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1586. struct sockaddr_in *sin;
  1587. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1588. struct sockaddr_in6 *sin6;
  1589. #endif
  1590. int mode;
  1591. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1592. return -ELOOP;
  1593. if (rq->sadb_x_ipsecrequest_mode == 0)
  1594. return -EINVAL;
  1595. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1596. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1597. return -EINVAL;
  1598. t->mode = mode;
  1599. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1600. t->optional = 1;
  1601. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1602. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1603. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1604. t->reqid = 0;
  1605. if (!t->reqid && !(t->reqid = gen_reqid()))
  1606. return -ENOBUFS;
  1607. }
  1608. /* addresses present only in tunnel mode */
  1609. if (t->mode == XFRM_MODE_TUNNEL) {
  1610. struct sockaddr *sa;
  1611. sa = (struct sockaddr *)(rq+1);
  1612. switch(sa->sa_family) {
  1613. case AF_INET:
  1614. sin = (struct sockaddr_in*)sa;
  1615. t->saddr.a4 = sin->sin_addr.s_addr;
  1616. sin++;
  1617. if (sin->sin_family != AF_INET)
  1618. return -EINVAL;
  1619. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1620. break;
  1621. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1622. case AF_INET6:
  1623. sin6 = (struct sockaddr_in6*)sa;
  1624. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1625. sin6++;
  1626. if (sin6->sin6_family != AF_INET6)
  1627. return -EINVAL;
  1628. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1629. break;
  1630. #endif
  1631. default:
  1632. return -EINVAL;
  1633. }
  1634. t->encap_family = sa->sa_family;
  1635. } else
  1636. t->encap_family = xp->family;
  1637. /* No way to set this via kame pfkey */
  1638. t->aalgos = t->ealgos = t->calgos = ~0;
  1639. xp->xfrm_nr++;
  1640. return 0;
  1641. }
  1642. static int
  1643. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1644. {
  1645. int err;
  1646. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1647. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1648. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1649. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1650. return err;
  1651. len -= rq->sadb_x_ipsecrequest_len;
  1652. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1653. }
  1654. return 0;
  1655. }
  1656. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1657. {
  1658. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1659. if (xfrm_ctx) {
  1660. int len = sizeof(struct sadb_x_sec_ctx);
  1661. len += xfrm_ctx->ctx_len;
  1662. return PFKEY_ALIGN8(len);
  1663. }
  1664. return 0;
  1665. }
  1666. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1667. {
  1668. struct xfrm_tmpl *t;
  1669. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1670. int socklen = 0;
  1671. int i;
  1672. for (i=0; i<xp->xfrm_nr; i++) {
  1673. t = xp->xfrm_vec + i;
  1674. socklen += (t->encap_family == AF_INET ?
  1675. sizeof(struct sockaddr_in) :
  1676. sizeof(struct sockaddr_in6));
  1677. }
  1678. return sizeof(struct sadb_msg) +
  1679. (sizeof(struct sadb_lifetime) * 3) +
  1680. (sizeof(struct sadb_address) * 2) +
  1681. (sockaddr_size * 2) +
  1682. sizeof(struct sadb_x_policy) +
  1683. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1684. (socklen * 2) +
  1685. pfkey_xfrm_policy2sec_ctx_size(xp);
  1686. }
  1687. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1688. {
  1689. struct sk_buff *skb;
  1690. int size;
  1691. size = pfkey_xfrm_policy2msg_size(xp);
  1692. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1693. if (skb == NULL)
  1694. return ERR_PTR(-ENOBUFS);
  1695. return skb;
  1696. }
  1697. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1698. {
  1699. struct sadb_msg *hdr;
  1700. struct sadb_address *addr;
  1701. struct sadb_lifetime *lifetime;
  1702. struct sadb_x_policy *pol;
  1703. struct sockaddr_in *sin;
  1704. struct sadb_x_sec_ctx *sec_ctx;
  1705. struct xfrm_sec_ctx *xfrm_ctx;
  1706. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1707. struct sockaddr_in6 *sin6;
  1708. #endif
  1709. int i;
  1710. int size;
  1711. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1712. int socklen = (xp->family == AF_INET ?
  1713. sizeof(struct sockaddr_in) :
  1714. sizeof(struct sockaddr_in6));
  1715. size = pfkey_xfrm_policy2msg_size(xp);
  1716. /* call should fill header later */
  1717. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1718. memset(hdr, 0, size); /* XXX do we need this ? */
  1719. /* src address */
  1720. addr = (struct sadb_address*) skb_put(skb,
  1721. sizeof(struct sadb_address)+sockaddr_size);
  1722. addr->sadb_address_len =
  1723. (sizeof(struct sadb_address)+sockaddr_size)/
  1724. sizeof(uint64_t);
  1725. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1726. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1727. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1728. addr->sadb_address_reserved = 0;
  1729. /* src address */
  1730. if (xp->family == AF_INET) {
  1731. sin = (struct sockaddr_in *) (addr + 1);
  1732. sin->sin_family = AF_INET;
  1733. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1734. sin->sin_port = xp->selector.sport;
  1735. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1736. }
  1737. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1738. else if (xp->family == AF_INET6) {
  1739. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1740. sin6->sin6_family = AF_INET6;
  1741. sin6->sin6_port = xp->selector.sport;
  1742. sin6->sin6_flowinfo = 0;
  1743. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1744. sizeof(struct in6_addr));
  1745. sin6->sin6_scope_id = 0;
  1746. }
  1747. #endif
  1748. else
  1749. BUG();
  1750. /* dst address */
  1751. addr = (struct sadb_address*) skb_put(skb,
  1752. sizeof(struct sadb_address)+sockaddr_size);
  1753. addr->sadb_address_len =
  1754. (sizeof(struct sadb_address)+sockaddr_size)/
  1755. sizeof(uint64_t);
  1756. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1757. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1758. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1759. addr->sadb_address_reserved = 0;
  1760. if (xp->family == AF_INET) {
  1761. sin = (struct sockaddr_in *) (addr + 1);
  1762. sin->sin_family = AF_INET;
  1763. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1764. sin->sin_port = xp->selector.dport;
  1765. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1766. }
  1767. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1768. else if (xp->family == AF_INET6) {
  1769. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1770. sin6->sin6_family = AF_INET6;
  1771. sin6->sin6_port = xp->selector.dport;
  1772. sin6->sin6_flowinfo = 0;
  1773. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1774. sizeof(struct in6_addr));
  1775. sin6->sin6_scope_id = 0;
  1776. }
  1777. #endif
  1778. else
  1779. BUG();
  1780. /* hard time */
  1781. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1782. sizeof(struct sadb_lifetime));
  1783. lifetime->sadb_lifetime_len =
  1784. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1785. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1786. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1787. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1788. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1789. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1790. /* soft time */
  1791. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1792. sizeof(struct sadb_lifetime));
  1793. lifetime->sadb_lifetime_len =
  1794. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1795. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1796. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1797. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1798. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1799. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1800. /* current time */
  1801. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1802. sizeof(struct sadb_lifetime));
  1803. lifetime->sadb_lifetime_len =
  1804. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1805. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1806. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1807. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1808. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1809. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1810. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1811. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1812. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1813. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1814. if (xp->action == XFRM_POLICY_ALLOW) {
  1815. if (xp->xfrm_nr)
  1816. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1817. else
  1818. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1819. }
  1820. pol->sadb_x_policy_dir = dir+1;
  1821. pol->sadb_x_policy_id = xp->index;
  1822. pol->sadb_x_policy_priority = xp->priority;
  1823. for (i=0; i<xp->xfrm_nr; i++) {
  1824. struct sadb_x_ipsecrequest *rq;
  1825. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1826. int req_size;
  1827. int mode;
  1828. req_size = sizeof(struct sadb_x_ipsecrequest);
  1829. if (t->mode == XFRM_MODE_TUNNEL)
  1830. req_size += ((t->encap_family == AF_INET ?
  1831. sizeof(struct sockaddr_in) :
  1832. sizeof(struct sockaddr_in6)) * 2);
  1833. else
  1834. size -= 2*socklen;
  1835. rq = (void*)skb_put(skb, req_size);
  1836. pol->sadb_x_policy_len += req_size/8;
  1837. memset(rq, 0, sizeof(*rq));
  1838. rq->sadb_x_ipsecrequest_len = req_size;
  1839. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1840. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1841. return -EINVAL;
  1842. rq->sadb_x_ipsecrequest_mode = mode;
  1843. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1844. if (t->reqid)
  1845. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1846. if (t->optional)
  1847. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1848. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1849. if (t->mode == XFRM_MODE_TUNNEL) {
  1850. switch (t->encap_family) {
  1851. case AF_INET:
  1852. sin = (void*)(rq+1);
  1853. sin->sin_family = AF_INET;
  1854. sin->sin_addr.s_addr = t->saddr.a4;
  1855. sin->sin_port = 0;
  1856. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1857. sin++;
  1858. sin->sin_family = AF_INET;
  1859. sin->sin_addr.s_addr = t->id.daddr.a4;
  1860. sin->sin_port = 0;
  1861. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1862. break;
  1863. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1864. case AF_INET6:
  1865. sin6 = (void*)(rq+1);
  1866. sin6->sin6_family = AF_INET6;
  1867. sin6->sin6_port = 0;
  1868. sin6->sin6_flowinfo = 0;
  1869. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1870. sizeof(struct in6_addr));
  1871. sin6->sin6_scope_id = 0;
  1872. sin6++;
  1873. sin6->sin6_family = AF_INET6;
  1874. sin6->sin6_port = 0;
  1875. sin6->sin6_flowinfo = 0;
  1876. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1877. sizeof(struct in6_addr));
  1878. sin6->sin6_scope_id = 0;
  1879. break;
  1880. #endif
  1881. default:
  1882. break;
  1883. }
  1884. }
  1885. }
  1886. /* security context */
  1887. if ((xfrm_ctx = xp->security)) {
  1888. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1889. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1890. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1891. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1892. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1893. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1894. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1895. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1896. xfrm_ctx->ctx_len);
  1897. }
  1898. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1899. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1900. return 0;
  1901. }
  1902. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1903. {
  1904. struct sk_buff *out_skb;
  1905. struct sadb_msg *out_hdr;
  1906. int err;
  1907. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1908. if (IS_ERR(out_skb)) {
  1909. err = PTR_ERR(out_skb);
  1910. goto out;
  1911. }
  1912. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1913. if (err < 0)
  1914. return err;
  1915. out_hdr = (struct sadb_msg *) out_skb->data;
  1916. out_hdr->sadb_msg_version = PF_KEY_V2;
  1917. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1918. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1919. else
  1920. out_hdr->sadb_msg_type = event2poltype(c->event);
  1921. out_hdr->sadb_msg_errno = 0;
  1922. out_hdr->sadb_msg_seq = c->seq;
  1923. out_hdr->sadb_msg_pid = c->pid;
  1924. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1925. out:
  1926. return 0;
  1927. }
  1928. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1929. {
  1930. int err = 0;
  1931. struct sadb_lifetime *lifetime;
  1932. struct sadb_address *sa;
  1933. struct sadb_x_policy *pol;
  1934. struct xfrm_policy *xp;
  1935. struct km_event c;
  1936. struct sadb_x_sec_ctx *sec_ctx;
  1937. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1938. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1939. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1940. return -EINVAL;
  1941. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1942. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1943. return -EINVAL;
  1944. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1945. return -EINVAL;
  1946. xp = xfrm_policy_alloc(GFP_KERNEL);
  1947. if (xp == NULL)
  1948. return -ENOBUFS;
  1949. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1950. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1951. xp->priority = pol->sadb_x_policy_priority;
  1952. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1953. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1954. if (!xp->family) {
  1955. err = -EINVAL;
  1956. goto out;
  1957. }
  1958. xp->selector.family = xp->family;
  1959. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1960. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1961. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1962. if (xp->selector.sport)
  1963. xp->selector.sport_mask = htons(0xffff);
  1964. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1965. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1966. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1967. /* Amusing, we set this twice. KAME apps appear to set same value
  1968. * in both addresses.
  1969. */
  1970. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1971. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1972. if (xp->selector.dport)
  1973. xp->selector.dport_mask = htons(0xffff);
  1974. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1975. if (sec_ctx != NULL) {
  1976. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1977. if (!uctx) {
  1978. err = -ENOBUFS;
  1979. goto out;
  1980. }
  1981. err = security_xfrm_policy_alloc(xp, uctx);
  1982. kfree(uctx);
  1983. if (err)
  1984. goto out;
  1985. }
  1986. xp->lft.soft_byte_limit = XFRM_INF;
  1987. xp->lft.hard_byte_limit = XFRM_INF;
  1988. xp->lft.soft_packet_limit = XFRM_INF;
  1989. xp->lft.hard_packet_limit = XFRM_INF;
  1990. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1991. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1992. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1993. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1994. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1995. }
  1996. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1997. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1998. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1999. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  2000. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  2001. }
  2002. xp->xfrm_nr = 0;
  2003. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2004. (err = parse_ipsecrequests(xp, pol)) < 0)
  2005. goto out;
  2006. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  2007. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  2008. xfrm_audit_policy_add(xp, err ? 0 : 1,
  2009. audit_get_loginuid(current), 0);
  2010. if (err)
  2011. goto out;
  2012. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  2013. c.event = XFRM_MSG_UPDPOLICY;
  2014. else
  2015. c.event = XFRM_MSG_NEWPOLICY;
  2016. c.seq = hdr->sadb_msg_seq;
  2017. c.pid = hdr->sadb_msg_pid;
  2018. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2019. xfrm_pol_put(xp);
  2020. return 0;
  2021. out:
  2022. xp->dead = 1;
  2023. xfrm_policy_destroy(xp);
  2024. return err;
  2025. }
  2026. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2027. {
  2028. int err;
  2029. struct sadb_address *sa;
  2030. struct sadb_x_policy *pol;
  2031. struct xfrm_policy *xp, tmp;
  2032. struct xfrm_selector sel;
  2033. struct km_event c;
  2034. struct sadb_x_sec_ctx *sec_ctx;
  2035. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2036. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  2037. !ext_hdrs[SADB_X_EXT_POLICY-1])
  2038. return -EINVAL;
  2039. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  2040. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  2041. return -EINVAL;
  2042. memset(&sel, 0, sizeof(sel));
  2043. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2044. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2045. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2046. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2047. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2048. if (sel.sport)
  2049. sel.sport_mask = htons(0xffff);
  2050. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  2051. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2052. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2053. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2054. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2055. if (sel.dport)
  2056. sel.dport_mask = htons(0xffff);
  2057. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2058. memset(&tmp, 0, sizeof(struct xfrm_policy));
  2059. if (sec_ctx != NULL) {
  2060. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2061. if (!uctx)
  2062. return -ENOMEM;
  2063. err = security_xfrm_policy_alloc(&tmp, uctx);
  2064. kfree(uctx);
  2065. if (err)
  2066. return err;
  2067. }
  2068. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1,
  2069. &sel, tmp.security, 1, &err);
  2070. security_xfrm_policy_free(&tmp);
  2071. if (xp == NULL)
  2072. return -ENOENT;
  2073. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2074. audit_get_loginuid(current), 0);
  2075. if (err)
  2076. goto out;
  2077. c.seq = hdr->sadb_msg_seq;
  2078. c.pid = hdr->sadb_msg_pid;
  2079. c.event = XFRM_MSG_DELPOLICY;
  2080. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2081. out:
  2082. xfrm_pol_put(xp);
  2083. return err;
  2084. }
  2085. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2086. {
  2087. int err;
  2088. struct sk_buff *out_skb;
  2089. struct sadb_msg *out_hdr;
  2090. err = 0;
  2091. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2092. if (IS_ERR(out_skb)) {
  2093. err = PTR_ERR(out_skb);
  2094. goto out;
  2095. }
  2096. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2097. if (err < 0)
  2098. goto out;
  2099. out_hdr = (struct sadb_msg *) out_skb->data;
  2100. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2101. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2102. out_hdr->sadb_msg_satype = 0;
  2103. out_hdr->sadb_msg_errno = 0;
  2104. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2105. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2106. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2107. err = 0;
  2108. out:
  2109. return err;
  2110. }
  2111. #ifdef CONFIG_NET_KEY_MIGRATE
  2112. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2113. {
  2114. switch (family) {
  2115. case AF_INET:
  2116. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2117. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2118. case AF_INET6:
  2119. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2120. #endif
  2121. default:
  2122. return 0;
  2123. }
  2124. /* NOTREACHED */
  2125. }
  2126. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2127. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2128. u16 *family)
  2129. {
  2130. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2131. if (rq->sadb_x_ipsecrequest_len <
  2132. pfkey_sockaddr_pair_size(sa->sa_family))
  2133. return -EINVAL;
  2134. switch (sa->sa_family) {
  2135. case AF_INET:
  2136. {
  2137. struct sockaddr_in *sin;
  2138. sin = (struct sockaddr_in *)sa;
  2139. if ((sin+1)->sin_family != AF_INET)
  2140. return -EINVAL;
  2141. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2142. sin++;
  2143. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2144. *family = AF_INET;
  2145. break;
  2146. }
  2147. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2148. case AF_INET6:
  2149. {
  2150. struct sockaddr_in6 *sin6;
  2151. sin6 = (struct sockaddr_in6 *)sa;
  2152. if ((sin6+1)->sin6_family != AF_INET6)
  2153. return -EINVAL;
  2154. memcpy(&saddr->a6, &sin6->sin6_addr,
  2155. sizeof(saddr->a6));
  2156. sin6++;
  2157. memcpy(&daddr->a6, &sin6->sin6_addr,
  2158. sizeof(daddr->a6));
  2159. *family = AF_INET6;
  2160. break;
  2161. }
  2162. #endif
  2163. default:
  2164. return -EINVAL;
  2165. }
  2166. return 0;
  2167. }
  2168. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2169. struct xfrm_migrate *m)
  2170. {
  2171. int err;
  2172. struct sadb_x_ipsecrequest *rq2;
  2173. int mode;
  2174. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2175. len < rq1->sadb_x_ipsecrequest_len)
  2176. return -EINVAL;
  2177. /* old endoints */
  2178. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2179. &m->old_family);
  2180. if (err)
  2181. return err;
  2182. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2183. len -= rq1->sadb_x_ipsecrequest_len;
  2184. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2185. len < rq2->sadb_x_ipsecrequest_len)
  2186. return -EINVAL;
  2187. /* new endpoints */
  2188. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2189. &m->new_family);
  2190. if (err)
  2191. return err;
  2192. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2193. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2194. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2195. return -EINVAL;
  2196. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2197. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2198. return -EINVAL;
  2199. m->mode = mode;
  2200. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2201. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2202. rq2->sadb_x_ipsecrequest_len));
  2203. }
  2204. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2205. struct sadb_msg *hdr, void **ext_hdrs)
  2206. {
  2207. int i, len, ret, err = -EINVAL;
  2208. u8 dir;
  2209. struct sadb_address *sa;
  2210. struct sadb_x_policy *pol;
  2211. struct sadb_x_ipsecrequest *rq;
  2212. struct xfrm_selector sel;
  2213. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2214. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2215. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2216. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2217. err = -EINVAL;
  2218. goto out;
  2219. }
  2220. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2221. if (!pol) {
  2222. err = -EINVAL;
  2223. goto out;
  2224. }
  2225. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2226. err = -EINVAL;
  2227. goto out;
  2228. }
  2229. dir = pol->sadb_x_policy_dir - 1;
  2230. memset(&sel, 0, sizeof(sel));
  2231. /* set source address info of selector */
  2232. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2233. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2234. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2235. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2236. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2237. if (sel.sport)
  2238. sel.sport_mask = htons(0xffff);
  2239. /* set destination address info of selector */
  2240. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2241. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2242. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2243. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2244. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2245. if (sel.dport)
  2246. sel.dport_mask = htons(0xffff);
  2247. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2248. /* extract ipsecrequests */
  2249. i = 0;
  2250. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2251. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2252. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2253. if (ret < 0) {
  2254. err = ret;
  2255. goto out;
  2256. } else {
  2257. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2258. len -= ret;
  2259. i++;
  2260. }
  2261. }
  2262. if (!i || len > 0) {
  2263. err = -EINVAL;
  2264. goto out;
  2265. }
  2266. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2267. out:
  2268. return err;
  2269. }
  2270. #else
  2271. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2272. struct sadb_msg *hdr, void **ext_hdrs)
  2273. {
  2274. return -ENOPROTOOPT;
  2275. }
  2276. #endif
  2277. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2278. {
  2279. unsigned int dir;
  2280. int err = 0, delete;
  2281. struct sadb_x_policy *pol;
  2282. struct xfrm_policy *xp;
  2283. struct km_event c;
  2284. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2285. return -EINVAL;
  2286. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2287. if (dir >= XFRM_POLICY_MAX)
  2288. return -EINVAL;
  2289. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2290. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2291. delete, &err);
  2292. if (xp == NULL)
  2293. return -ENOENT;
  2294. if (delete) {
  2295. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2296. audit_get_loginuid(current), 0);
  2297. if (err)
  2298. goto out;
  2299. c.seq = hdr->sadb_msg_seq;
  2300. c.pid = hdr->sadb_msg_pid;
  2301. c.data.byid = 1;
  2302. c.event = XFRM_MSG_DELPOLICY;
  2303. km_policy_notify(xp, dir, &c);
  2304. } else {
  2305. err = key_pol_get_resp(sk, xp, hdr, dir);
  2306. }
  2307. out:
  2308. xfrm_pol_put(xp);
  2309. return err;
  2310. }
  2311. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2312. {
  2313. struct pfkey_sock *pfk = ptr;
  2314. struct sk_buff *out_skb;
  2315. struct sadb_msg *out_hdr;
  2316. int err;
  2317. if (!pfkey_can_dump(&pfk->sk))
  2318. return -ENOBUFS;
  2319. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2320. if (IS_ERR(out_skb))
  2321. return PTR_ERR(out_skb);
  2322. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2323. if (err < 0)
  2324. return err;
  2325. out_hdr = (struct sadb_msg *) out_skb->data;
  2326. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2327. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2328. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2329. out_hdr->sadb_msg_errno = 0;
  2330. out_hdr->sadb_msg_seq = count;
  2331. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2332. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  2333. return 0;
  2334. }
  2335. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2336. {
  2337. return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
  2338. }
  2339. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2340. {
  2341. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2342. }
  2343. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2344. {
  2345. struct pfkey_sock *pfk = pfkey_sk(sk);
  2346. if (pfk->dump.dump != NULL)
  2347. return -EBUSY;
  2348. pfk->dump.msg_version = hdr->sadb_msg_version;
  2349. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2350. pfk->dump.dump = pfkey_dump_sp;
  2351. pfk->dump.done = pfkey_dump_sp_done;
  2352. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2353. return pfkey_do_dump(pfk);
  2354. }
  2355. static int key_notify_policy_flush(struct km_event *c)
  2356. {
  2357. struct sk_buff *skb_out;
  2358. struct sadb_msg *hdr;
  2359. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2360. if (!skb_out)
  2361. return -ENOBUFS;
  2362. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2363. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2364. hdr->sadb_msg_seq = c->seq;
  2365. hdr->sadb_msg_pid = c->pid;
  2366. hdr->sadb_msg_version = PF_KEY_V2;
  2367. hdr->sadb_msg_errno = (uint8_t) 0;
  2368. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2369. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2370. return 0;
  2371. }
  2372. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2373. {
  2374. struct km_event c;
  2375. struct xfrm_audit audit_info;
  2376. int err;
  2377. audit_info.loginuid = audit_get_loginuid(current);
  2378. audit_info.secid = 0;
  2379. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2380. if (err)
  2381. return err;
  2382. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2383. c.event = XFRM_MSG_FLUSHPOLICY;
  2384. c.pid = hdr->sadb_msg_pid;
  2385. c.seq = hdr->sadb_msg_seq;
  2386. km_policy_notify(NULL, 0, &c);
  2387. return 0;
  2388. }
  2389. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2390. struct sadb_msg *hdr, void **ext_hdrs);
  2391. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2392. [SADB_RESERVED] = pfkey_reserved,
  2393. [SADB_GETSPI] = pfkey_getspi,
  2394. [SADB_UPDATE] = pfkey_add,
  2395. [SADB_ADD] = pfkey_add,
  2396. [SADB_DELETE] = pfkey_delete,
  2397. [SADB_GET] = pfkey_get,
  2398. [SADB_ACQUIRE] = pfkey_acquire,
  2399. [SADB_REGISTER] = pfkey_register,
  2400. [SADB_EXPIRE] = NULL,
  2401. [SADB_FLUSH] = pfkey_flush,
  2402. [SADB_DUMP] = pfkey_dump,
  2403. [SADB_X_PROMISC] = pfkey_promisc,
  2404. [SADB_X_PCHANGE] = NULL,
  2405. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2406. [SADB_X_SPDADD] = pfkey_spdadd,
  2407. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2408. [SADB_X_SPDGET] = pfkey_spdget,
  2409. [SADB_X_SPDACQUIRE] = NULL,
  2410. [SADB_X_SPDDUMP] = pfkey_spddump,
  2411. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2412. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2413. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2414. [SADB_X_MIGRATE] = pfkey_migrate,
  2415. };
  2416. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2417. {
  2418. void *ext_hdrs[SADB_EXT_MAX];
  2419. int err;
  2420. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2421. BROADCAST_PROMISC_ONLY, NULL);
  2422. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2423. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2424. if (!err) {
  2425. err = -EOPNOTSUPP;
  2426. if (pfkey_funcs[hdr->sadb_msg_type])
  2427. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2428. }
  2429. return err;
  2430. }
  2431. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2432. {
  2433. struct sadb_msg *hdr = NULL;
  2434. if (skb->len < sizeof(*hdr)) {
  2435. *errp = -EMSGSIZE;
  2436. } else {
  2437. hdr = (struct sadb_msg *) skb->data;
  2438. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2439. hdr->sadb_msg_reserved != 0 ||
  2440. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2441. hdr->sadb_msg_type > SADB_MAX)) {
  2442. hdr = NULL;
  2443. *errp = -EINVAL;
  2444. } else if (hdr->sadb_msg_len != (skb->len /
  2445. sizeof(uint64_t)) ||
  2446. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2447. sizeof(uint64_t))) {
  2448. hdr = NULL;
  2449. *errp = -EMSGSIZE;
  2450. } else {
  2451. *errp = 0;
  2452. }
  2453. }
  2454. return hdr;
  2455. }
  2456. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2457. {
  2458. unsigned int id = d->desc.sadb_alg_id;
  2459. if (id >= sizeof(t->aalgos) * 8)
  2460. return 0;
  2461. return (t->aalgos >> id) & 1;
  2462. }
  2463. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2464. {
  2465. unsigned int id = d->desc.sadb_alg_id;
  2466. if (id >= sizeof(t->ealgos) * 8)
  2467. return 0;
  2468. return (t->ealgos >> id) & 1;
  2469. }
  2470. static int count_ah_combs(struct xfrm_tmpl *t)
  2471. {
  2472. int i, sz = 0;
  2473. for (i = 0; ; i++) {
  2474. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2475. if (!aalg)
  2476. break;
  2477. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2478. sz += sizeof(struct sadb_comb);
  2479. }
  2480. return sz + sizeof(struct sadb_prop);
  2481. }
  2482. static int count_esp_combs(struct xfrm_tmpl *t)
  2483. {
  2484. int i, k, sz = 0;
  2485. for (i = 0; ; i++) {
  2486. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2487. if (!ealg)
  2488. break;
  2489. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2490. continue;
  2491. for (k = 1; ; k++) {
  2492. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2493. if (!aalg)
  2494. break;
  2495. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2496. sz += sizeof(struct sadb_comb);
  2497. }
  2498. }
  2499. return sz + sizeof(struct sadb_prop);
  2500. }
  2501. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2502. {
  2503. struct sadb_prop *p;
  2504. int i;
  2505. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2506. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2507. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2508. p->sadb_prop_replay = 32;
  2509. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2510. for (i = 0; ; i++) {
  2511. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2512. if (!aalg)
  2513. break;
  2514. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2515. struct sadb_comb *c;
  2516. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2517. memset(c, 0, sizeof(*c));
  2518. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2519. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2520. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2521. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2522. c->sadb_comb_hard_addtime = 24*60*60;
  2523. c->sadb_comb_soft_addtime = 20*60*60;
  2524. c->sadb_comb_hard_usetime = 8*60*60;
  2525. c->sadb_comb_soft_usetime = 7*60*60;
  2526. }
  2527. }
  2528. }
  2529. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2530. {
  2531. struct sadb_prop *p;
  2532. int i, k;
  2533. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2534. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2535. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2536. p->sadb_prop_replay = 32;
  2537. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2538. for (i=0; ; i++) {
  2539. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2540. if (!ealg)
  2541. break;
  2542. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2543. continue;
  2544. for (k = 1; ; k++) {
  2545. struct sadb_comb *c;
  2546. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2547. if (!aalg)
  2548. break;
  2549. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2550. continue;
  2551. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2552. memset(c, 0, sizeof(*c));
  2553. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2554. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2555. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2556. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2557. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2558. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2559. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2560. c->sadb_comb_hard_addtime = 24*60*60;
  2561. c->sadb_comb_soft_addtime = 20*60*60;
  2562. c->sadb_comb_hard_usetime = 8*60*60;
  2563. c->sadb_comb_soft_usetime = 7*60*60;
  2564. }
  2565. }
  2566. }
  2567. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2568. {
  2569. return 0;
  2570. }
  2571. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2572. {
  2573. struct sk_buff *out_skb;
  2574. struct sadb_msg *out_hdr;
  2575. int hard;
  2576. int hsc;
  2577. hard = c->data.hard;
  2578. if (hard)
  2579. hsc = 2;
  2580. else
  2581. hsc = 1;
  2582. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2583. if (IS_ERR(out_skb))
  2584. return PTR_ERR(out_skb);
  2585. out_hdr = (struct sadb_msg *) out_skb->data;
  2586. out_hdr->sadb_msg_version = PF_KEY_V2;
  2587. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2588. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2589. out_hdr->sadb_msg_errno = 0;
  2590. out_hdr->sadb_msg_reserved = 0;
  2591. out_hdr->sadb_msg_seq = 0;
  2592. out_hdr->sadb_msg_pid = 0;
  2593. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2594. return 0;
  2595. }
  2596. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2597. {
  2598. switch (c->event) {
  2599. case XFRM_MSG_EXPIRE:
  2600. return key_notify_sa_expire(x, c);
  2601. case XFRM_MSG_DELSA:
  2602. case XFRM_MSG_NEWSA:
  2603. case XFRM_MSG_UPDSA:
  2604. return key_notify_sa(x, c);
  2605. case XFRM_MSG_FLUSHSA:
  2606. return key_notify_sa_flush(c);
  2607. case XFRM_MSG_NEWAE: /* not yet supported */
  2608. break;
  2609. default:
  2610. printk("pfkey: Unknown SA event %d\n", c->event);
  2611. break;
  2612. }
  2613. return 0;
  2614. }
  2615. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2616. {
  2617. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2618. return 0;
  2619. switch (c->event) {
  2620. case XFRM_MSG_POLEXPIRE:
  2621. return key_notify_policy_expire(xp, c);
  2622. case XFRM_MSG_DELPOLICY:
  2623. case XFRM_MSG_NEWPOLICY:
  2624. case XFRM_MSG_UPDPOLICY:
  2625. return key_notify_policy(xp, dir, c);
  2626. case XFRM_MSG_FLUSHPOLICY:
  2627. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2628. break;
  2629. return key_notify_policy_flush(c);
  2630. default:
  2631. printk("pfkey: Unknown policy event %d\n", c->event);
  2632. break;
  2633. }
  2634. return 0;
  2635. }
  2636. static u32 get_acqseq(void)
  2637. {
  2638. u32 res;
  2639. static u32 acqseq;
  2640. static DEFINE_SPINLOCK(acqseq_lock);
  2641. spin_lock_bh(&acqseq_lock);
  2642. res = (++acqseq ? : ++acqseq);
  2643. spin_unlock_bh(&acqseq_lock);
  2644. return res;
  2645. }
  2646. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2647. {
  2648. struct sk_buff *skb;
  2649. struct sadb_msg *hdr;
  2650. struct sadb_address *addr;
  2651. struct sadb_x_policy *pol;
  2652. struct sockaddr_in *sin;
  2653. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2654. struct sockaddr_in6 *sin6;
  2655. #endif
  2656. int sockaddr_size;
  2657. int size;
  2658. struct sadb_x_sec_ctx *sec_ctx;
  2659. struct xfrm_sec_ctx *xfrm_ctx;
  2660. int ctx_size = 0;
  2661. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2662. if (!sockaddr_size)
  2663. return -EINVAL;
  2664. size = sizeof(struct sadb_msg) +
  2665. (sizeof(struct sadb_address) * 2) +
  2666. (sockaddr_size * 2) +
  2667. sizeof(struct sadb_x_policy);
  2668. if (x->id.proto == IPPROTO_AH)
  2669. size += count_ah_combs(t);
  2670. else if (x->id.proto == IPPROTO_ESP)
  2671. size += count_esp_combs(t);
  2672. if ((xfrm_ctx = x->security)) {
  2673. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2674. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2675. }
  2676. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2677. if (skb == NULL)
  2678. return -ENOMEM;
  2679. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2680. hdr->sadb_msg_version = PF_KEY_V2;
  2681. hdr->sadb_msg_type = SADB_ACQUIRE;
  2682. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2683. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2684. hdr->sadb_msg_errno = 0;
  2685. hdr->sadb_msg_reserved = 0;
  2686. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2687. hdr->sadb_msg_pid = 0;
  2688. /* src address */
  2689. addr = (struct sadb_address*) skb_put(skb,
  2690. sizeof(struct sadb_address)+sockaddr_size);
  2691. addr->sadb_address_len =
  2692. (sizeof(struct sadb_address)+sockaddr_size)/
  2693. sizeof(uint64_t);
  2694. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2695. addr->sadb_address_proto = 0;
  2696. addr->sadb_address_reserved = 0;
  2697. if (x->props.family == AF_INET) {
  2698. addr->sadb_address_prefixlen = 32;
  2699. sin = (struct sockaddr_in *) (addr + 1);
  2700. sin->sin_family = AF_INET;
  2701. sin->sin_addr.s_addr = x->props.saddr.a4;
  2702. sin->sin_port = 0;
  2703. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2704. }
  2705. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2706. else if (x->props.family == AF_INET6) {
  2707. addr->sadb_address_prefixlen = 128;
  2708. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2709. sin6->sin6_family = AF_INET6;
  2710. sin6->sin6_port = 0;
  2711. sin6->sin6_flowinfo = 0;
  2712. memcpy(&sin6->sin6_addr,
  2713. x->props.saddr.a6, sizeof(struct in6_addr));
  2714. sin6->sin6_scope_id = 0;
  2715. }
  2716. #endif
  2717. else
  2718. BUG();
  2719. /* dst address */
  2720. addr = (struct sadb_address*) skb_put(skb,
  2721. sizeof(struct sadb_address)+sockaddr_size);
  2722. addr->sadb_address_len =
  2723. (sizeof(struct sadb_address)+sockaddr_size)/
  2724. sizeof(uint64_t);
  2725. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2726. addr->sadb_address_proto = 0;
  2727. addr->sadb_address_reserved = 0;
  2728. if (x->props.family == AF_INET) {
  2729. addr->sadb_address_prefixlen = 32;
  2730. sin = (struct sockaddr_in *) (addr + 1);
  2731. sin->sin_family = AF_INET;
  2732. sin->sin_addr.s_addr = x->id.daddr.a4;
  2733. sin->sin_port = 0;
  2734. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2735. }
  2736. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2737. else if (x->props.family == AF_INET6) {
  2738. addr->sadb_address_prefixlen = 128;
  2739. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2740. sin6->sin6_family = AF_INET6;
  2741. sin6->sin6_port = 0;
  2742. sin6->sin6_flowinfo = 0;
  2743. memcpy(&sin6->sin6_addr,
  2744. x->id.daddr.a6, sizeof(struct in6_addr));
  2745. sin6->sin6_scope_id = 0;
  2746. }
  2747. #endif
  2748. else
  2749. BUG();
  2750. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2751. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2752. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2753. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2754. pol->sadb_x_policy_dir = dir+1;
  2755. pol->sadb_x_policy_id = xp->index;
  2756. /* Set sadb_comb's. */
  2757. if (x->id.proto == IPPROTO_AH)
  2758. dump_ah_combs(skb, t);
  2759. else if (x->id.proto == IPPROTO_ESP)
  2760. dump_esp_combs(skb, t);
  2761. /* security context */
  2762. if (xfrm_ctx) {
  2763. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2764. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2765. sec_ctx->sadb_x_sec_len =
  2766. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2767. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2768. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2769. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2770. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2771. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2772. xfrm_ctx->ctx_len);
  2773. }
  2774. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2775. }
  2776. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2777. u8 *data, int len, int *dir)
  2778. {
  2779. struct xfrm_policy *xp;
  2780. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2781. struct sadb_x_sec_ctx *sec_ctx;
  2782. switch (sk->sk_family) {
  2783. case AF_INET:
  2784. if (opt != IP_IPSEC_POLICY) {
  2785. *dir = -EOPNOTSUPP;
  2786. return NULL;
  2787. }
  2788. break;
  2789. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2790. case AF_INET6:
  2791. if (opt != IPV6_IPSEC_POLICY) {
  2792. *dir = -EOPNOTSUPP;
  2793. return NULL;
  2794. }
  2795. break;
  2796. #endif
  2797. default:
  2798. *dir = -EINVAL;
  2799. return NULL;
  2800. }
  2801. *dir = -EINVAL;
  2802. if (len < sizeof(struct sadb_x_policy) ||
  2803. pol->sadb_x_policy_len*8 > len ||
  2804. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2805. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2806. return NULL;
  2807. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2808. if (xp == NULL) {
  2809. *dir = -ENOBUFS;
  2810. return NULL;
  2811. }
  2812. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2813. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2814. xp->lft.soft_byte_limit = XFRM_INF;
  2815. xp->lft.hard_byte_limit = XFRM_INF;
  2816. xp->lft.soft_packet_limit = XFRM_INF;
  2817. xp->lft.hard_packet_limit = XFRM_INF;
  2818. xp->family = sk->sk_family;
  2819. xp->xfrm_nr = 0;
  2820. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2821. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2822. goto out;
  2823. /* security context too */
  2824. if (len >= (pol->sadb_x_policy_len*8 +
  2825. sizeof(struct sadb_x_sec_ctx))) {
  2826. char *p = (char *)pol;
  2827. struct xfrm_user_sec_ctx *uctx;
  2828. p += pol->sadb_x_policy_len*8;
  2829. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2830. if (len < pol->sadb_x_policy_len*8 +
  2831. sec_ctx->sadb_x_sec_len) {
  2832. *dir = -EINVAL;
  2833. goto out;
  2834. }
  2835. if ((*dir = verify_sec_ctx_len(p)))
  2836. goto out;
  2837. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2838. *dir = security_xfrm_policy_alloc(xp, uctx);
  2839. kfree(uctx);
  2840. if (*dir)
  2841. goto out;
  2842. }
  2843. *dir = pol->sadb_x_policy_dir-1;
  2844. return xp;
  2845. out:
  2846. xfrm_policy_destroy(xp);
  2847. return NULL;
  2848. }
  2849. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2850. {
  2851. struct sk_buff *skb;
  2852. struct sadb_msg *hdr;
  2853. struct sadb_sa *sa;
  2854. struct sadb_address *addr;
  2855. struct sadb_x_nat_t_port *n_port;
  2856. struct sockaddr_in *sin;
  2857. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2858. struct sockaddr_in6 *sin6;
  2859. #endif
  2860. int sockaddr_size;
  2861. int size;
  2862. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2863. struct xfrm_encap_tmpl *natt = NULL;
  2864. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2865. if (!sockaddr_size)
  2866. return -EINVAL;
  2867. if (!satype)
  2868. return -EINVAL;
  2869. if (!x->encap)
  2870. return -EINVAL;
  2871. natt = x->encap;
  2872. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2873. *
  2874. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2875. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2876. */
  2877. size = sizeof(struct sadb_msg) +
  2878. sizeof(struct sadb_sa) +
  2879. (sizeof(struct sadb_address) * 2) +
  2880. (sockaddr_size * 2) +
  2881. (sizeof(struct sadb_x_nat_t_port) * 2);
  2882. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2883. if (skb == NULL)
  2884. return -ENOMEM;
  2885. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2886. hdr->sadb_msg_version = PF_KEY_V2;
  2887. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2888. hdr->sadb_msg_satype = satype;
  2889. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2890. hdr->sadb_msg_errno = 0;
  2891. hdr->sadb_msg_reserved = 0;
  2892. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2893. hdr->sadb_msg_pid = 0;
  2894. /* SA */
  2895. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2896. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2897. sa->sadb_sa_exttype = SADB_EXT_SA;
  2898. sa->sadb_sa_spi = x->id.spi;
  2899. sa->sadb_sa_replay = 0;
  2900. sa->sadb_sa_state = 0;
  2901. sa->sadb_sa_auth = 0;
  2902. sa->sadb_sa_encrypt = 0;
  2903. sa->sadb_sa_flags = 0;
  2904. /* ADDRESS_SRC (old addr) */
  2905. addr = (struct sadb_address*)
  2906. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2907. addr->sadb_address_len =
  2908. (sizeof(struct sadb_address)+sockaddr_size)/
  2909. sizeof(uint64_t);
  2910. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2911. addr->sadb_address_proto = 0;
  2912. addr->sadb_address_reserved = 0;
  2913. if (x->props.family == AF_INET) {
  2914. addr->sadb_address_prefixlen = 32;
  2915. sin = (struct sockaddr_in *) (addr + 1);
  2916. sin->sin_family = AF_INET;
  2917. sin->sin_addr.s_addr = x->props.saddr.a4;
  2918. sin->sin_port = 0;
  2919. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2920. }
  2921. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2922. else if (x->props.family == AF_INET6) {
  2923. addr->sadb_address_prefixlen = 128;
  2924. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2925. sin6->sin6_family = AF_INET6;
  2926. sin6->sin6_port = 0;
  2927. sin6->sin6_flowinfo = 0;
  2928. memcpy(&sin6->sin6_addr,
  2929. x->props.saddr.a6, sizeof(struct in6_addr));
  2930. sin6->sin6_scope_id = 0;
  2931. }
  2932. #endif
  2933. else
  2934. BUG();
  2935. /* NAT_T_SPORT (old port) */
  2936. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2937. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2938. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2939. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2940. n_port->sadb_x_nat_t_port_reserved = 0;
  2941. /* ADDRESS_DST (new addr) */
  2942. addr = (struct sadb_address*)
  2943. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2944. addr->sadb_address_len =
  2945. (sizeof(struct sadb_address)+sockaddr_size)/
  2946. sizeof(uint64_t);
  2947. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2948. addr->sadb_address_proto = 0;
  2949. addr->sadb_address_reserved = 0;
  2950. if (x->props.family == AF_INET) {
  2951. addr->sadb_address_prefixlen = 32;
  2952. sin = (struct sockaddr_in *) (addr + 1);
  2953. sin->sin_family = AF_INET;
  2954. sin->sin_addr.s_addr = ipaddr->a4;
  2955. sin->sin_port = 0;
  2956. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2957. }
  2958. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2959. else if (x->props.family == AF_INET6) {
  2960. addr->sadb_address_prefixlen = 128;
  2961. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2962. sin6->sin6_family = AF_INET6;
  2963. sin6->sin6_port = 0;
  2964. sin6->sin6_flowinfo = 0;
  2965. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2966. sin6->sin6_scope_id = 0;
  2967. }
  2968. #endif
  2969. else
  2970. BUG();
  2971. /* NAT_T_DPORT (new port) */
  2972. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2973. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2974. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2975. n_port->sadb_x_nat_t_port_port = sport;
  2976. n_port->sadb_x_nat_t_port_reserved = 0;
  2977. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2978. }
  2979. #ifdef CONFIG_NET_KEY_MIGRATE
  2980. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2981. struct xfrm_selector *sel)
  2982. {
  2983. struct sadb_address *addr;
  2984. struct sockaddr_in *sin;
  2985. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2986. struct sockaddr_in6 *sin6;
  2987. #endif
  2988. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2989. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2990. addr->sadb_address_exttype = type;
  2991. addr->sadb_address_proto = sel->proto;
  2992. addr->sadb_address_reserved = 0;
  2993. switch (type) {
  2994. case SADB_EXT_ADDRESS_SRC:
  2995. if (sel->family == AF_INET) {
  2996. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2997. sin = (struct sockaddr_in *)(addr + 1);
  2998. sin->sin_family = AF_INET;
  2999. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  3000. sizeof(sin->sin_addr.s_addr));
  3001. sin->sin_port = 0;
  3002. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  3003. }
  3004. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3005. else if (sel->family == AF_INET6) {
  3006. addr->sadb_address_prefixlen = sel->prefixlen_s;
  3007. sin6 = (struct sockaddr_in6 *)(addr + 1);
  3008. sin6->sin6_family = AF_INET6;
  3009. sin6->sin6_port = 0;
  3010. sin6->sin6_flowinfo = 0;
  3011. sin6->sin6_scope_id = 0;
  3012. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  3013. sizeof(sin6->sin6_addr.s6_addr));
  3014. }
  3015. #endif
  3016. break;
  3017. case SADB_EXT_ADDRESS_DST:
  3018. if (sel->family == AF_INET) {
  3019. addr->sadb_address_prefixlen = sel->prefixlen_d;
  3020. sin = (struct sockaddr_in *)(addr + 1);
  3021. sin->sin_family = AF_INET;
  3022. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  3023. sizeof(sin->sin_addr.s_addr));
  3024. sin->sin_port = 0;
  3025. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  3026. }
  3027. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3028. else if (sel->family == AF_INET6) {
  3029. addr->sadb_address_prefixlen = sel->prefixlen_d;
  3030. sin6 = (struct sockaddr_in6 *)(addr + 1);
  3031. sin6->sin6_family = AF_INET6;
  3032. sin6->sin6_port = 0;
  3033. sin6->sin6_flowinfo = 0;
  3034. sin6->sin6_scope_id = 0;
  3035. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  3036. sizeof(sin6->sin6_addr.s6_addr));
  3037. }
  3038. #endif
  3039. break;
  3040. default:
  3041. return -EINVAL;
  3042. }
  3043. return 0;
  3044. }
  3045. static int set_ipsecrequest(struct sk_buff *skb,
  3046. uint8_t proto, uint8_t mode, int level,
  3047. uint32_t reqid, uint8_t family,
  3048. xfrm_address_t *src, xfrm_address_t *dst)
  3049. {
  3050. struct sadb_x_ipsecrequest *rq;
  3051. struct sockaddr_in *sin;
  3052. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3053. struct sockaddr_in6 *sin6;
  3054. #endif
  3055. int size_req;
  3056. size_req = sizeof(struct sadb_x_ipsecrequest) +
  3057. pfkey_sockaddr_pair_size(family);
  3058. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  3059. memset(rq, 0, size_req);
  3060. rq->sadb_x_ipsecrequest_len = size_req;
  3061. rq->sadb_x_ipsecrequest_proto = proto;
  3062. rq->sadb_x_ipsecrequest_mode = mode;
  3063. rq->sadb_x_ipsecrequest_level = level;
  3064. rq->sadb_x_ipsecrequest_reqid = reqid;
  3065. switch (family) {
  3066. case AF_INET:
  3067. sin = (struct sockaddr_in *)(rq + 1);
  3068. sin->sin_family = AF_INET;
  3069. memcpy(&sin->sin_addr.s_addr, src,
  3070. sizeof(sin->sin_addr.s_addr));
  3071. sin++;
  3072. sin->sin_family = AF_INET;
  3073. memcpy(&sin->sin_addr.s_addr, dst,
  3074. sizeof(sin->sin_addr.s_addr));
  3075. break;
  3076. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3077. case AF_INET6:
  3078. sin6 = (struct sockaddr_in6 *)(rq + 1);
  3079. sin6->sin6_family = AF_INET6;
  3080. sin6->sin6_port = 0;
  3081. sin6->sin6_flowinfo = 0;
  3082. sin6->sin6_scope_id = 0;
  3083. memcpy(&sin6->sin6_addr.s6_addr, src,
  3084. sizeof(sin6->sin6_addr.s6_addr));
  3085. sin6++;
  3086. sin6->sin6_family = AF_INET6;
  3087. sin6->sin6_port = 0;
  3088. sin6->sin6_flowinfo = 0;
  3089. sin6->sin6_scope_id = 0;
  3090. memcpy(&sin6->sin6_addr.s6_addr, dst,
  3091. sizeof(sin6->sin6_addr.s6_addr));
  3092. break;
  3093. #endif
  3094. default:
  3095. return -EINVAL;
  3096. }
  3097. return 0;
  3098. }
  3099. #endif
  3100. #ifdef CONFIG_NET_KEY_MIGRATE
  3101. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3102. struct xfrm_migrate *m, int num_bundles)
  3103. {
  3104. int i;
  3105. int sasize_sel;
  3106. int size = 0;
  3107. int size_pol = 0;
  3108. struct sk_buff *skb;
  3109. struct sadb_msg *hdr;
  3110. struct sadb_x_policy *pol;
  3111. struct xfrm_migrate *mp;
  3112. if (type != XFRM_POLICY_TYPE_MAIN)
  3113. return 0;
  3114. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3115. return -EINVAL;
  3116. /* selector */
  3117. sasize_sel = pfkey_sockaddr_size(sel->family);
  3118. if (!sasize_sel)
  3119. return -EINVAL;
  3120. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3121. /* policy info */
  3122. size_pol += sizeof(struct sadb_x_policy);
  3123. /* ipsecrequests */
  3124. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3125. /* old locator pair */
  3126. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3127. pfkey_sockaddr_pair_size(mp->old_family);
  3128. /* new locator pair */
  3129. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3130. pfkey_sockaddr_pair_size(mp->new_family);
  3131. }
  3132. size += sizeof(struct sadb_msg) + size_pol;
  3133. /* alloc buffer */
  3134. skb = alloc_skb(size, GFP_ATOMIC);
  3135. if (skb == NULL)
  3136. return -ENOMEM;
  3137. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3138. hdr->sadb_msg_version = PF_KEY_V2;
  3139. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3140. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3141. hdr->sadb_msg_len = size / 8;
  3142. hdr->sadb_msg_errno = 0;
  3143. hdr->sadb_msg_reserved = 0;
  3144. hdr->sadb_msg_seq = 0;
  3145. hdr->sadb_msg_pid = 0;
  3146. /* selector src */
  3147. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3148. /* selector dst */
  3149. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3150. /* policy information */
  3151. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3152. pol->sadb_x_policy_len = size_pol / 8;
  3153. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3154. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3155. pol->sadb_x_policy_dir = dir + 1;
  3156. pol->sadb_x_policy_id = 0;
  3157. pol->sadb_x_policy_priority = 0;
  3158. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3159. /* old ipsecrequest */
  3160. int mode = pfkey_mode_from_xfrm(mp->mode);
  3161. if (mode < 0)
  3162. goto err;
  3163. if (set_ipsecrequest(skb, mp->proto, mode,
  3164. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3165. mp->reqid, mp->old_family,
  3166. &mp->old_saddr, &mp->old_daddr) < 0)
  3167. goto err;
  3168. /* new ipsecrequest */
  3169. if (set_ipsecrequest(skb, mp->proto, mode,
  3170. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3171. mp->reqid, mp->new_family,
  3172. &mp->new_saddr, &mp->new_daddr) < 0)
  3173. goto err;
  3174. }
  3175. /* broadcast migrate message to sockets */
  3176. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3177. return 0;
  3178. err:
  3179. kfree_skb(skb);
  3180. return -EINVAL;
  3181. }
  3182. #else
  3183. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3184. struct xfrm_migrate *m, int num_bundles)
  3185. {
  3186. return -ENOPROTOOPT;
  3187. }
  3188. #endif
  3189. static int pfkey_sendmsg(struct kiocb *kiocb,
  3190. struct socket *sock, struct msghdr *msg, size_t len)
  3191. {
  3192. struct sock *sk = sock->sk;
  3193. struct sk_buff *skb = NULL;
  3194. struct sadb_msg *hdr = NULL;
  3195. int err;
  3196. err = -EOPNOTSUPP;
  3197. if (msg->msg_flags & MSG_OOB)
  3198. goto out;
  3199. err = -EMSGSIZE;
  3200. if ((unsigned)len > sk->sk_sndbuf - 32)
  3201. goto out;
  3202. err = -ENOBUFS;
  3203. skb = alloc_skb(len, GFP_KERNEL);
  3204. if (skb == NULL)
  3205. goto out;
  3206. err = -EFAULT;
  3207. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3208. goto out;
  3209. hdr = pfkey_get_base_msg(skb, &err);
  3210. if (!hdr)
  3211. goto out;
  3212. mutex_lock(&xfrm_cfg_mutex);
  3213. err = pfkey_process(sk, skb, hdr);
  3214. mutex_unlock(&xfrm_cfg_mutex);
  3215. out:
  3216. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3217. err = 0;
  3218. if (skb)
  3219. kfree_skb(skb);
  3220. return err ? : len;
  3221. }
  3222. static int pfkey_recvmsg(struct kiocb *kiocb,
  3223. struct socket *sock, struct msghdr *msg, size_t len,
  3224. int flags)
  3225. {
  3226. struct sock *sk = sock->sk;
  3227. struct pfkey_sock *pfk = pfkey_sk(sk);
  3228. struct sk_buff *skb;
  3229. int copied, err;
  3230. err = -EINVAL;
  3231. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3232. goto out;
  3233. msg->msg_namelen = 0;
  3234. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3235. if (skb == NULL)
  3236. goto out;
  3237. copied = skb->len;
  3238. if (copied > len) {
  3239. msg->msg_flags |= MSG_TRUNC;
  3240. copied = len;
  3241. }
  3242. skb_reset_transport_header(skb);
  3243. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3244. if (err)
  3245. goto out_free;
  3246. sock_recv_timestamp(msg, sk, skb);
  3247. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3248. if (pfk->dump.dump != NULL &&
  3249. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3250. pfkey_do_dump(pfk);
  3251. out_free:
  3252. skb_free_datagram(sk, skb);
  3253. out:
  3254. return err;
  3255. }
  3256. static const struct proto_ops pfkey_ops = {
  3257. .family = PF_KEY,
  3258. .owner = THIS_MODULE,
  3259. /* Operations that make no sense on pfkey sockets. */
  3260. .bind = sock_no_bind,
  3261. .connect = sock_no_connect,
  3262. .socketpair = sock_no_socketpair,
  3263. .accept = sock_no_accept,
  3264. .getname = sock_no_getname,
  3265. .ioctl = sock_no_ioctl,
  3266. .listen = sock_no_listen,
  3267. .shutdown = sock_no_shutdown,
  3268. .setsockopt = sock_no_setsockopt,
  3269. .getsockopt = sock_no_getsockopt,
  3270. .mmap = sock_no_mmap,
  3271. .sendpage = sock_no_sendpage,
  3272. /* Now the operations that really occur. */
  3273. .release = pfkey_release,
  3274. .poll = datagram_poll,
  3275. .sendmsg = pfkey_sendmsg,
  3276. .recvmsg = pfkey_recvmsg,
  3277. };
  3278. static struct net_proto_family pfkey_family_ops = {
  3279. .family = PF_KEY,
  3280. .create = pfkey_create,
  3281. .owner = THIS_MODULE,
  3282. };
  3283. #ifdef CONFIG_PROC_FS
  3284. static int pfkey_seq_show(struct seq_file *f, void *v)
  3285. {
  3286. struct sock *s;
  3287. s = (struct sock *)v;
  3288. if (v == SEQ_START_TOKEN)
  3289. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3290. else
  3291. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3292. s,
  3293. atomic_read(&s->sk_refcnt),
  3294. atomic_read(&s->sk_rmem_alloc),
  3295. atomic_read(&s->sk_wmem_alloc),
  3296. sock_i_uid(s),
  3297. sock_i_ino(s)
  3298. );
  3299. return 0;
  3300. }
  3301. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3302. {
  3303. struct sock *s;
  3304. struct hlist_node *node;
  3305. loff_t pos = *ppos;
  3306. read_lock(&pfkey_table_lock);
  3307. if (pos == 0)
  3308. return SEQ_START_TOKEN;
  3309. sk_for_each(s, node, &pfkey_table)
  3310. if (pos-- == 1)
  3311. return s;
  3312. return NULL;
  3313. }
  3314. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3315. {
  3316. ++*ppos;
  3317. return (v == SEQ_START_TOKEN) ?
  3318. sk_head(&pfkey_table) :
  3319. sk_next((struct sock *)v);
  3320. }
  3321. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3322. {
  3323. read_unlock(&pfkey_table_lock);
  3324. }
  3325. static struct seq_operations pfkey_seq_ops = {
  3326. .start = pfkey_seq_start,
  3327. .next = pfkey_seq_next,
  3328. .stop = pfkey_seq_stop,
  3329. .show = pfkey_seq_show,
  3330. };
  3331. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3332. {
  3333. return seq_open(file, &pfkey_seq_ops);
  3334. }
  3335. static struct file_operations pfkey_proc_ops = {
  3336. .open = pfkey_seq_open,
  3337. .read = seq_read,
  3338. .llseek = seq_lseek,
  3339. .release = seq_release,
  3340. };
  3341. static int pfkey_init_proc(void)
  3342. {
  3343. struct proc_dir_entry *e;
  3344. e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
  3345. if (e == NULL)
  3346. return -ENOMEM;
  3347. return 0;
  3348. }
  3349. static void pfkey_exit_proc(void)
  3350. {
  3351. proc_net_remove(&init_net, "pfkey");
  3352. }
  3353. #else
  3354. static inline int pfkey_init_proc(void)
  3355. {
  3356. return 0;
  3357. }
  3358. static inline void pfkey_exit_proc(void)
  3359. {
  3360. }
  3361. #endif
  3362. static struct xfrm_mgr pfkeyv2_mgr =
  3363. {
  3364. .id = "pfkeyv2",
  3365. .notify = pfkey_send_notify,
  3366. .acquire = pfkey_send_acquire,
  3367. .compile_policy = pfkey_compile_policy,
  3368. .new_mapping = pfkey_send_new_mapping,
  3369. .notify_policy = pfkey_send_policy_notify,
  3370. .migrate = pfkey_send_migrate,
  3371. };
  3372. static void __exit ipsec_pfkey_exit(void)
  3373. {
  3374. xfrm_unregister_km(&pfkeyv2_mgr);
  3375. pfkey_exit_proc();
  3376. sock_unregister(PF_KEY);
  3377. proto_unregister(&key_proto);
  3378. }
  3379. static int __init ipsec_pfkey_init(void)
  3380. {
  3381. int err = proto_register(&key_proto, 0);
  3382. if (err != 0)
  3383. goto out;
  3384. err = sock_register(&pfkey_family_ops);
  3385. if (err != 0)
  3386. goto out_unregister_key_proto;
  3387. err = pfkey_init_proc();
  3388. if (err != 0)
  3389. goto out_sock_unregister;
  3390. err = xfrm_register_km(&pfkeyv2_mgr);
  3391. if (err != 0)
  3392. goto out_remove_proc_entry;
  3393. out:
  3394. return err;
  3395. out_remove_proc_entry:
  3396. pfkey_exit_proc();
  3397. out_sock_unregister:
  3398. sock_unregister(PF_KEY);
  3399. out_unregister_key_proto:
  3400. proto_unregister(&key_proto);
  3401. goto out;
  3402. }
  3403. module_init(ipsec_pfkey_init);
  3404. module_exit(ipsec_pfkey_exit);
  3405. MODULE_LICENSE("GPL");
  3406. MODULE_ALIAS_NETPROTO(PF_KEY);