memcontrol.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #include <linux/res_counter.h>
  20. #include <linux/memcontrol.h>
  21. #include <linux/cgroup.h>
  22. #include <linux/mm.h>
  23. #include <linux/smp.h>
  24. #include <linux/page-flags.h>
  25. #include <linux/backing-dev.h>
  26. #include <linux/bit_spinlock.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/swap.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/fs.h>
  31. #include <linux/seq_file.h>
  32. #include <asm/uaccess.h>
  33. struct cgroup_subsys mem_cgroup_subsys;
  34. static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
  35. /*
  36. * Statistics for memory cgroup.
  37. */
  38. enum mem_cgroup_stat_index {
  39. /*
  40. * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  41. */
  42. MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
  43. MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
  44. MEM_CGROUP_STAT_NSTATS,
  45. };
  46. struct mem_cgroup_stat_cpu {
  47. s64 count[MEM_CGROUP_STAT_NSTATS];
  48. } ____cacheline_aligned_in_smp;
  49. struct mem_cgroup_stat {
  50. struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
  51. };
  52. /*
  53. * For accounting under irq disable, no need for increment preempt count.
  54. */
  55. static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
  56. enum mem_cgroup_stat_index idx, int val)
  57. {
  58. int cpu = smp_processor_id();
  59. stat->cpustat[cpu].count[idx] += val;
  60. }
  61. static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
  62. enum mem_cgroup_stat_index idx)
  63. {
  64. int cpu;
  65. s64 ret = 0;
  66. for_each_possible_cpu(cpu)
  67. ret += stat->cpustat[cpu].count[idx];
  68. return ret;
  69. }
  70. /*
  71. * per-zone information in memory controller.
  72. */
  73. enum mem_cgroup_zstat_index {
  74. MEM_CGROUP_ZSTAT_ACTIVE,
  75. MEM_CGROUP_ZSTAT_INACTIVE,
  76. NR_MEM_CGROUP_ZSTAT,
  77. };
  78. struct mem_cgroup_per_zone {
  79. /*
  80. * spin_lock to protect the per cgroup LRU
  81. */
  82. spinlock_t lru_lock;
  83. struct list_head active_list;
  84. struct list_head inactive_list;
  85. unsigned long count[NR_MEM_CGROUP_ZSTAT];
  86. };
  87. /* Macro for accessing counter */
  88. #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
  89. struct mem_cgroup_per_node {
  90. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  91. };
  92. struct mem_cgroup_lru_info {
  93. struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
  94. };
  95. /*
  96. * The memory controller data structure. The memory controller controls both
  97. * page cache and RSS per cgroup. We would eventually like to provide
  98. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  99. * to help the administrator determine what knobs to tune.
  100. *
  101. * TODO: Add a water mark for the memory controller. Reclaim will begin when
  102. * we hit the water mark. May be even add a low water mark, such that
  103. * no reclaim occurs from a cgroup at it's low water mark, this is
  104. * a feature that will be implemented much later in the future.
  105. */
  106. struct mem_cgroup {
  107. struct cgroup_subsys_state css;
  108. /*
  109. * the counter to account for memory usage
  110. */
  111. struct res_counter res;
  112. /*
  113. * Per cgroup active and inactive list, similar to the
  114. * per zone LRU lists.
  115. */
  116. struct mem_cgroup_lru_info info;
  117. int prev_priority; /* for recording reclaim priority */
  118. /*
  119. * statistics.
  120. */
  121. struct mem_cgroup_stat stat;
  122. };
  123. static struct mem_cgroup init_mem_cgroup;
  124. /*
  125. * We use the lower bit of the page->page_cgroup pointer as a bit spin
  126. * lock. We need to ensure that page->page_cgroup is at least two
  127. * byte aligned (based on comments from Nick Piggin). But since
  128. * bit_spin_lock doesn't actually set that lock bit in a non-debug
  129. * uniprocessor kernel, we should avoid setting it here too.
  130. */
  131. #define PAGE_CGROUP_LOCK_BIT 0x0
  132. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
  133. #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
  134. #else
  135. #define PAGE_CGROUP_LOCK 0x0
  136. #endif
  137. /*
  138. * A page_cgroup page is associated with every page descriptor. The
  139. * page_cgroup helps us identify information about the cgroup
  140. */
  141. struct page_cgroup {
  142. struct list_head lru; /* per cgroup LRU list */
  143. struct page *page;
  144. struct mem_cgroup *mem_cgroup;
  145. int ref_cnt; /* cached, mapped, migrating */
  146. int flags;
  147. };
  148. #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
  149. #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
  150. static int page_cgroup_nid(struct page_cgroup *pc)
  151. {
  152. return page_to_nid(pc->page);
  153. }
  154. static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
  155. {
  156. return page_zonenum(pc->page);
  157. }
  158. enum charge_type {
  159. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  160. MEM_CGROUP_CHARGE_TYPE_MAPPED,
  161. };
  162. /*
  163. * Always modified under lru lock. Then, not necessary to preempt_disable()
  164. */
  165. static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
  166. bool charge)
  167. {
  168. int val = (charge)? 1 : -1;
  169. struct mem_cgroup_stat *stat = &mem->stat;
  170. VM_BUG_ON(!irqs_disabled());
  171. if (flags & PAGE_CGROUP_FLAG_CACHE)
  172. __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
  173. else
  174. __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
  175. }
  176. static struct mem_cgroup_per_zone *
  177. mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
  178. {
  179. return &mem->info.nodeinfo[nid]->zoneinfo[zid];
  180. }
  181. static struct mem_cgroup_per_zone *
  182. page_cgroup_zoneinfo(struct page_cgroup *pc)
  183. {
  184. struct mem_cgroup *mem = pc->mem_cgroup;
  185. int nid = page_cgroup_nid(pc);
  186. int zid = page_cgroup_zid(pc);
  187. return mem_cgroup_zoneinfo(mem, nid, zid);
  188. }
  189. static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
  190. enum mem_cgroup_zstat_index idx)
  191. {
  192. int nid, zid;
  193. struct mem_cgroup_per_zone *mz;
  194. u64 total = 0;
  195. for_each_online_node(nid)
  196. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  197. mz = mem_cgroup_zoneinfo(mem, nid, zid);
  198. total += MEM_CGROUP_ZSTAT(mz, idx);
  199. }
  200. return total;
  201. }
  202. static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
  203. {
  204. return container_of(cgroup_subsys_state(cont,
  205. mem_cgroup_subsys_id), struct mem_cgroup,
  206. css);
  207. }
  208. static struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  209. {
  210. return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
  211. struct mem_cgroup, css);
  212. }
  213. void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
  214. {
  215. struct mem_cgroup *mem;
  216. mem = mem_cgroup_from_task(p);
  217. css_get(&mem->css);
  218. mm->mem_cgroup = mem;
  219. }
  220. void mm_free_cgroup(struct mm_struct *mm)
  221. {
  222. css_put(&mm->mem_cgroup->css);
  223. }
  224. static inline int page_cgroup_locked(struct page *page)
  225. {
  226. return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  227. }
  228. static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
  229. {
  230. VM_BUG_ON(!page_cgroup_locked(page));
  231. page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
  232. }
  233. struct page_cgroup *page_get_page_cgroup(struct page *page)
  234. {
  235. return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
  236. }
  237. static void lock_page_cgroup(struct page *page)
  238. {
  239. bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  240. }
  241. static int try_lock_page_cgroup(struct page *page)
  242. {
  243. return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  244. }
  245. static void unlock_page_cgroup(struct page *page)
  246. {
  247. bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  248. }
  249. static void __mem_cgroup_remove_list(struct page_cgroup *pc)
  250. {
  251. int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
  252. struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
  253. if (from)
  254. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
  255. else
  256. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
  257. mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
  258. list_del_init(&pc->lru);
  259. }
  260. static void __mem_cgroup_add_list(struct page_cgroup *pc)
  261. {
  262. int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
  263. struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
  264. if (!to) {
  265. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
  266. list_add(&pc->lru, &mz->inactive_list);
  267. } else {
  268. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
  269. list_add(&pc->lru, &mz->active_list);
  270. }
  271. mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
  272. }
  273. static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
  274. {
  275. int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
  276. struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
  277. if (from)
  278. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
  279. else
  280. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
  281. if (active) {
  282. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
  283. pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
  284. list_move(&pc->lru, &mz->active_list);
  285. } else {
  286. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
  287. pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
  288. list_move(&pc->lru, &mz->inactive_list);
  289. }
  290. }
  291. int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
  292. {
  293. int ret;
  294. task_lock(task);
  295. ret = task->mm && mm_match_cgroup(task->mm, mem);
  296. task_unlock(task);
  297. return ret;
  298. }
  299. /*
  300. * This routine assumes that the appropriate zone's lru lock is already held
  301. */
  302. void mem_cgroup_move_lists(struct page *page, bool active)
  303. {
  304. struct page_cgroup *pc;
  305. struct mem_cgroup_per_zone *mz;
  306. unsigned long flags;
  307. /*
  308. * We cannot lock_page_cgroup while holding zone's lru_lock,
  309. * because other holders of lock_page_cgroup can be interrupted
  310. * with an attempt to rotate_reclaimable_page. But we cannot
  311. * safely get to page_cgroup without it, so just try_lock it:
  312. * mem_cgroup_isolate_pages allows for page left on wrong list.
  313. */
  314. if (!try_lock_page_cgroup(page))
  315. return;
  316. pc = page_get_page_cgroup(page);
  317. if (pc) {
  318. mz = page_cgroup_zoneinfo(pc);
  319. spin_lock_irqsave(&mz->lru_lock, flags);
  320. __mem_cgroup_move_lists(pc, active);
  321. spin_unlock_irqrestore(&mz->lru_lock, flags);
  322. }
  323. unlock_page_cgroup(page);
  324. }
  325. /*
  326. * Calculate mapped_ratio under memory controller. This will be used in
  327. * vmscan.c for deteremining we have to reclaim mapped pages.
  328. */
  329. int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
  330. {
  331. long total, rss;
  332. /*
  333. * usage is recorded in bytes. But, here, we assume the number of
  334. * physical pages can be represented by "long" on any arch.
  335. */
  336. total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
  337. rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
  338. return (int)((rss * 100L) / total);
  339. }
  340. /*
  341. * This function is called from vmscan.c. In page reclaiming loop. balance
  342. * between active and inactive list is calculated. For memory controller
  343. * page reclaiming, we should use using mem_cgroup's imbalance rather than
  344. * zone's global lru imbalance.
  345. */
  346. long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
  347. {
  348. unsigned long active, inactive;
  349. /* active and inactive are the number of pages. 'long' is ok.*/
  350. active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
  351. inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
  352. return (long) (active / (inactive + 1));
  353. }
  354. /*
  355. * prev_priority control...this will be used in memory reclaim path.
  356. */
  357. int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
  358. {
  359. return mem->prev_priority;
  360. }
  361. void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
  362. {
  363. if (priority < mem->prev_priority)
  364. mem->prev_priority = priority;
  365. }
  366. void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
  367. {
  368. mem->prev_priority = priority;
  369. }
  370. /*
  371. * Calculate # of pages to be scanned in this priority/zone.
  372. * See also vmscan.c
  373. *
  374. * priority starts from "DEF_PRIORITY" and decremented in each loop.
  375. * (see include/linux/mmzone.h)
  376. */
  377. long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
  378. struct zone *zone, int priority)
  379. {
  380. long nr_active;
  381. int nid = zone->zone_pgdat->node_id;
  382. int zid = zone_idx(zone);
  383. struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
  384. nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
  385. return (nr_active >> priority);
  386. }
  387. long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
  388. struct zone *zone, int priority)
  389. {
  390. long nr_inactive;
  391. int nid = zone->zone_pgdat->node_id;
  392. int zid = zone_idx(zone);
  393. struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
  394. nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
  395. return (nr_inactive >> priority);
  396. }
  397. unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
  398. struct list_head *dst,
  399. unsigned long *scanned, int order,
  400. int mode, struct zone *z,
  401. struct mem_cgroup *mem_cont,
  402. int active)
  403. {
  404. unsigned long nr_taken = 0;
  405. struct page *page;
  406. unsigned long scan;
  407. LIST_HEAD(pc_list);
  408. struct list_head *src;
  409. struct page_cgroup *pc, *tmp;
  410. int nid = z->zone_pgdat->node_id;
  411. int zid = zone_idx(z);
  412. struct mem_cgroup_per_zone *mz;
  413. mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
  414. if (active)
  415. src = &mz->active_list;
  416. else
  417. src = &mz->inactive_list;
  418. spin_lock(&mz->lru_lock);
  419. scan = 0;
  420. list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
  421. if (scan >= nr_to_scan)
  422. break;
  423. page = pc->page;
  424. if (unlikely(!PageLRU(page)))
  425. continue;
  426. if (PageActive(page) && !active) {
  427. __mem_cgroup_move_lists(pc, true);
  428. continue;
  429. }
  430. if (!PageActive(page) && active) {
  431. __mem_cgroup_move_lists(pc, false);
  432. continue;
  433. }
  434. scan++;
  435. list_move(&pc->lru, &pc_list);
  436. if (__isolate_lru_page(page, mode) == 0) {
  437. list_move(&page->lru, dst);
  438. nr_taken++;
  439. }
  440. }
  441. list_splice(&pc_list, src);
  442. spin_unlock(&mz->lru_lock);
  443. *scanned = scan;
  444. return nr_taken;
  445. }
  446. /*
  447. * Charge the memory controller for page usage.
  448. * Return
  449. * 0 if the charge was successful
  450. * < 0 if the cgroup is over its limit
  451. */
  452. static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
  453. gfp_t gfp_mask, enum charge_type ctype)
  454. {
  455. struct mem_cgroup *mem;
  456. struct page_cgroup *pc;
  457. unsigned long flags;
  458. unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  459. struct mem_cgroup_per_zone *mz;
  460. /*
  461. * Should page_cgroup's go to their own slab?
  462. * One could optimize the performance of the charging routine
  463. * by saving a bit in the page_flags and using it as a lock
  464. * to see if the cgroup page already has a page_cgroup associated
  465. * with it
  466. */
  467. retry:
  468. lock_page_cgroup(page);
  469. pc = page_get_page_cgroup(page);
  470. /*
  471. * The page_cgroup exists and
  472. * the page has already been accounted.
  473. */
  474. if (pc) {
  475. VM_BUG_ON(pc->page != page);
  476. VM_BUG_ON(pc->ref_cnt <= 0);
  477. pc->ref_cnt++;
  478. unlock_page_cgroup(page);
  479. goto done;
  480. }
  481. unlock_page_cgroup(page);
  482. pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
  483. if (pc == NULL)
  484. goto err;
  485. /*
  486. * We always charge the cgroup the mm_struct belongs to.
  487. * The mm_struct's mem_cgroup changes on task migration if the
  488. * thread group leader migrates. It's possible that mm is not
  489. * set, if so charge the init_mm (happens for pagecache usage).
  490. */
  491. if (!mm)
  492. mm = &init_mm;
  493. rcu_read_lock();
  494. mem = rcu_dereference(mm->mem_cgroup);
  495. /*
  496. * For every charge from the cgroup, increment reference count
  497. */
  498. css_get(&mem->css);
  499. rcu_read_unlock();
  500. while (res_counter_charge(&mem->res, PAGE_SIZE)) {
  501. if (!(gfp_mask & __GFP_WAIT))
  502. goto out;
  503. if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
  504. continue;
  505. /*
  506. * try_to_free_mem_cgroup_pages() might not give us a full
  507. * picture of reclaim. Some pages are reclaimed and might be
  508. * moved to swap cache or just unmapped from the cgroup.
  509. * Check the limit again to see if the reclaim reduced the
  510. * current usage of the cgroup before giving up
  511. */
  512. if (res_counter_check_under_limit(&mem->res))
  513. continue;
  514. if (!nr_retries--) {
  515. mem_cgroup_out_of_memory(mem, gfp_mask);
  516. goto out;
  517. }
  518. congestion_wait(WRITE, HZ/10);
  519. }
  520. pc->ref_cnt = 1;
  521. pc->mem_cgroup = mem;
  522. pc->page = page;
  523. pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
  524. if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
  525. pc->flags |= PAGE_CGROUP_FLAG_CACHE;
  526. lock_page_cgroup(page);
  527. if (page_get_page_cgroup(page)) {
  528. unlock_page_cgroup(page);
  529. /*
  530. * Another charge has been added to this page already.
  531. * We take lock_page_cgroup(page) again and read
  532. * page->cgroup, increment refcnt.... just retry is OK.
  533. */
  534. res_counter_uncharge(&mem->res, PAGE_SIZE);
  535. css_put(&mem->css);
  536. kfree(pc);
  537. goto retry;
  538. }
  539. page_assign_page_cgroup(page, pc);
  540. mz = page_cgroup_zoneinfo(pc);
  541. spin_lock_irqsave(&mz->lru_lock, flags);
  542. __mem_cgroup_add_list(pc);
  543. spin_unlock_irqrestore(&mz->lru_lock, flags);
  544. unlock_page_cgroup(page);
  545. done:
  546. return 0;
  547. out:
  548. css_put(&mem->css);
  549. kfree(pc);
  550. err:
  551. return -ENOMEM;
  552. }
  553. int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
  554. {
  555. return mem_cgroup_charge_common(page, mm, gfp_mask,
  556. MEM_CGROUP_CHARGE_TYPE_MAPPED);
  557. }
  558. int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
  559. gfp_t gfp_mask)
  560. {
  561. if (!mm)
  562. mm = &init_mm;
  563. return mem_cgroup_charge_common(page, mm, gfp_mask,
  564. MEM_CGROUP_CHARGE_TYPE_CACHE);
  565. }
  566. /*
  567. * Uncharging is always a welcome operation, we never complain, simply
  568. * uncharge.
  569. */
  570. void mem_cgroup_uncharge_page(struct page *page)
  571. {
  572. struct page_cgroup *pc;
  573. struct mem_cgroup *mem;
  574. struct mem_cgroup_per_zone *mz;
  575. unsigned long flags;
  576. /*
  577. * Check if our page_cgroup is valid
  578. */
  579. lock_page_cgroup(page);
  580. pc = page_get_page_cgroup(page);
  581. if (!pc)
  582. goto unlock;
  583. VM_BUG_ON(pc->page != page);
  584. VM_BUG_ON(pc->ref_cnt <= 0);
  585. if (--(pc->ref_cnt) == 0) {
  586. mz = page_cgroup_zoneinfo(pc);
  587. spin_lock_irqsave(&mz->lru_lock, flags);
  588. __mem_cgroup_remove_list(pc);
  589. spin_unlock_irqrestore(&mz->lru_lock, flags);
  590. page_assign_page_cgroup(page, NULL);
  591. unlock_page_cgroup(page);
  592. mem = pc->mem_cgroup;
  593. res_counter_uncharge(&mem->res, PAGE_SIZE);
  594. css_put(&mem->css);
  595. kfree(pc);
  596. return;
  597. }
  598. unlock:
  599. unlock_page_cgroup(page);
  600. }
  601. /*
  602. * Returns non-zero if a page (under migration) has valid page_cgroup member.
  603. * Refcnt of page_cgroup is incremented.
  604. */
  605. int mem_cgroup_prepare_migration(struct page *page)
  606. {
  607. struct page_cgroup *pc;
  608. lock_page_cgroup(page);
  609. pc = page_get_page_cgroup(page);
  610. if (pc)
  611. pc->ref_cnt++;
  612. unlock_page_cgroup(page);
  613. return pc != NULL;
  614. }
  615. void mem_cgroup_end_migration(struct page *page)
  616. {
  617. mem_cgroup_uncharge_page(page);
  618. }
  619. /*
  620. * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
  621. * And no race with uncharge() routines because page_cgroup for *page*
  622. * has extra one reference by mem_cgroup_prepare_migration.
  623. */
  624. void mem_cgroup_page_migration(struct page *page, struct page *newpage)
  625. {
  626. struct page_cgroup *pc;
  627. struct mem_cgroup_per_zone *mz;
  628. unsigned long flags;
  629. lock_page_cgroup(page);
  630. pc = page_get_page_cgroup(page);
  631. if (!pc) {
  632. unlock_page_cgroup(page);
  633. return;
  634. }
  635. mz = page_cgroup_zoneinfo(pc);
  636. spin_lock_irqsave(&mz->lru_lock, flags);
  637. __mem_cgroup_remove_list(pc);
  638. spin_unlock_irqrestore(&mz->lru_lock, flags);
  639. page_assign_page_cgroup(page, NULL);
  640. unlock_page_cgroup(page);
  641. pc->page = newpage;
  642. lock_page_cgroup(newpage);
  643. page_assign_page_cgroup(newpage, pc);
  644. mz = page_cgroup_zoneinfo(pc);
  645. spin_lock_irqsave(&mz->lru_lock, flags);
  646. __mem_cgroup_add_list(pc);
  647. spin_unlock_irqrestore(&mz->lru_lock, flags);
  648. unlock_page_cgroup(newpage);
  649. }
  650. /*
  651. * This routine traverse page_cgroup in given list and drop them all.
  652. * This routine ignores page_cgroup->ref_cnt.
  653. * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
  654. */
  655. #define FORCE_UNCHARGE_BATCH (128)
  656. static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
  657. struct mem_cgroup_per_zone *mz,
  658. int active)
  659. {
  660. struct page_cgroup *pc;
  661. struct page *page;
  662. int count = FORCE_UNCHARGE_BATCH;
  663. unsigned long flags;
  664. struct list_head *list;
  665. if (active)
  666. list = &mz->active_list;
  667. else
  668. list = &mz->inactive_list;
  669. spin_lock_irqsave(&mz->lru_lock, flags);
  670. while (!list_empty(list)) {
  671. pc = list_entry(list->prev, struct page_cgroup, lru);
  672. page = pc->page;
  673. get_page(page);
  674. spin_unlock_irqrestore(&mz->lru_lock, flags);
  675. mem_cgroup_uncharge_page(page);
  676. put_page(page);
  677. if (--count <= 0) {
  678. count = FORCE_UNCHARGE_BATCH;
  679. cond_resched();
  680. }
  681. spin_lock_irqsave(&mz->lru_lock, flags);
  682. }
  683. spin_unlock_irqrestore(&mz->lru_lock, flags);
  684. }
  685. /*
  686. * make mem_cgroup's charge to be 0 if there is no task.
  687. * This enables deleting this mem_cgroup.
  688. */
  689. static int mem_cgroup_force_empty(struct mem_cgroup *mem)
  690. {
  691. int ret = -EBUSY;
  692. int node, zid;
  693. css_get(&mem->css);
  694. /*
  695. * page reclaim code (kswapd etc..) will move pages between
  696. * active_list <-> inactive_list while we don't take a lock.
  697. * So, we have to do loop here until all lists are empty.
  698. */
  699. while (mem->res.usage > 0) {
  700. if (atomic_read(&mem->css.cgroup->count) > 0)
  701. goto out;
  702. for_each_node_state(node, N_POSSIBLE)
  703. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  704. struct mem_cgroup_per_zone *mz;
  705. mz = mem_cgroup_zoneinfo(mem, node, zid);
  706. /* drop all page_cgroup in active_list */
  707. mem_cgroup_force_empty_list(mem, mz, 1);
  708. /* drop all page_cgroup in inactive_list */
  709. mem_cgroup_force_empty_list(mem, mz, 0);
  710. }
  711. }
  712. ret = 0;
  713. out:
  714. css_put(&mem->css);
  715. return ret;
  716. }
  717. static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
  718. {
  719. *tmp = memparse(buf, &buf);
  720. if (*buf != '\0')
  721. return -EINVAL;
  722. /*
  723. * Round up the value to the closest page size
  724. */
  725. *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
  726. return 0;
  727. }
  728. static ssize_t mem_cgroup_read(struct cgroup *cont,
  729. struct cftype *cft, struct file *file,
  730. char __user *userbuf, size_t nbytes, loff_t *ppos)
  731. {
  732. return res_counter_read(&mem_cgroup_from_cont(cont)->res,
  733. cft->private, userbuf, nbytes, ppos,
  734. NULL);
  735. }
  736. static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
  737. struct file *file, const char __user *userbuf,
  738. size_t nbytes, loff_t *ppos)
  739. {
  740. return res_counter_write(&mem_cgroup_from_cont(cont)->res,
  741. cft->private, userbuf, nbytes, ppos,
  742. mem_cgroup_write_strategy);
  743. }
  744. static ssize_t mem_force_empty_write(struct cgroup *cont,
  745. struct cftype *cft, struct file *file,
  746. const char __user *userbuf,
  747. size_t nbytes, loff_t *ppos)
  748. {
  749. struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
  750. int ret = mem_cgroup_force_empty(mem);
  751. if (!ret)
  752. ret = nbytes;
  753. return ret;
  754. }
  755. /*
  756. * Note: This should be removed if cgroup supports write-only file.
  757. */
  758. static ssize_t mem_force_empty_read(struct cgroup *cont,
  759. struct cftype *cft,
  760. struct file *file, char __user *userbuf,
  761. size_t nbytes, loff_t *ppos)
  762. {
  763. return -EINVAL;
  764. }
  765. static const struct mem_cgroup_stat_desc {
  766. const char *msg;
  767. u64 unit;
  768. } mem_cgroup_stat_desc[] = {
  769. [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
  770. [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
  771. };
  772. static int mem_control_stat_show(struct seq_file *m, void *arg)
  773. {
  774. struct cgroup *cont = m->private;
  775. struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
  776. struct mem_cgroup_stat *stat = &mem_cont->stat;
  777. int i;
  778. for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
  779. s64 val;
  780. val = mem_cgroup_read_stat(stat, i);
  781. val *= mem_cgroup_stat_desc[i].unit;
  782. seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
  783. (long long)val);
  784. }
  785. /* showing # of active pages */
  786. {
  787. unsigned long active, inactive;
  788. inactive = mem_cgroup_get_all_zonestat(mem_cont,
  789. MEM_CGROUP_ZSTAT_INACTIVE);
  790. active = mem_cgroup_get_all_zonestat(mem_cont,
  791. MEM_CGROUP_ZSTAT_ACTIVE);
  792. seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
  793. seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
  794. }
  795. return 0;
  796. }
  797. static const struct file_operations mem_control_stat_file_operations = {
  798. .read = seq_read,
  799. .llseek = seq_lseek,
  800. .release = single_release,
  801. };
  802. static int mem_control_stat_open(struct inode *unused, struct file *file)
  803. {
  804. /* XXX __d_cont */
  805. struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
  806. file->f_op = &mem_control_stat_file_operations;
  807. return single_open(file, mem_control_stat_show, cont);
  808. }
  809. static struct cftype mem_cgroup_files[] = {
  810. {
  811. .name = "usage_in_bytes",
  812. .private = RES_USAGE,
  813. .read = mem_cgroup_read,
  814. },
  815. {
  816. .name = "limit_in_bytes",
  817. .private = RES_LIMIT,
  818. .write = mem_cgroup_write,
  819. .read = mem_cgroup_read,
  820. },
  821. {
  822. .name = "failcnt",
  823. .private = RES_FAILCNT,
  824. .read = mem_cgroup_read,
  825. },
  826. {
  827. .name = "force_empty",
  828. .write = mem_force_empty_write,
  829. .read = mem_force_empty_read,
  830. },
  831. {
  832. .name = "stat",
  833. .open = mem_control_stat_open,
  834. },
  835. };
  836. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
  837. {
  838. struct mem_cgroup_per_node *pn;
  839. struct mem_cgroup_per_zone *mz;
  840. int zone;
  841. /*
  842. * This routine is called against possible nodes.
  843. * But it's BUG to call kmalloc() against offline node.
  844. *
  845. * TODO: this routine can waste much memory for nodes which will
  846. * never be onlined. It's better to use memory hotplug callback
  847. * function.
  848. */
  849. if (node_state(node, N_HIGH_MEMORY))
  850. pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
  851. else
  852. pn = kmalloc(sizeof(*pn), GFP_KERNEL);
  853. if (!pn)
  854. return 1;
  855. mem->info.nodeinfo[node] = pn;
  856. memset(pn, 0, sizeof(*pn));
  857. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  858. mz = &pn->zoneinfo[zone];
  859. INIT_LIST_HEAD(&mz->active_list);
  860. INIT_LIST_HEAD(&mz->inactive_list);
  861. spin_lock_init(&mz->lru_lock);
  862. }
  863. return 0;
  864. }
  865. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
  866. {
  867. kfree(mem->info.nodeinfo[node]);
  868. }
  869. static struct cgroup_subsys_state *
  870. mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
  871. {
  872. struct mem_cgroup *mem;
  873. int node;
  874. if (unlikely((cont->parent) == NULL)) {
  875. mem = &init_mem_cgroup;
  876. init_mm.mem_cgroup = mem;
  877. } else
  878. mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
  879. if (mem == NULL)
  880. return ERR_PTR(-ENOMEM);
  881. res_counter_init(&mem->res);
  882. memset(&mem->info, 0, sizeof(mem->info));
  883. for_each_node_state(node, N_POSSIBLE)
  884. if (alloc_mem_cgroup_per_zone_info(mem, node))
  885. goto free_out;
  886. return &mem->css;
  887. free_out:
  888. for_each_node_state(node, N_POSSIBLE)
  889. free_mem_cgroup_per_zone_info(mem, node);
  890. if (cont->parent != NULL)
  891. kfree(mem);
  892. return ERR_PTR(-ENOMEM);
  893. }
  894. static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
  895. struct cgroup *cont)
  896. {
  897. struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
  898. mem_cgroup_force_empty(mem);
  899. }
  900. static void mem_cgroup_destroy(struct cgroup_subsys *ss,
  901. struct cgroup *cont)
  902. {
  903. int node;
  904. struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
  905. for_each_node_state(node, N_POSSIBLE)
  906. free_mem_cgroup_per_zone_info(mem, node);
  907. kfree(mem_cgroup_from_cont(cont));
  908. }
  909. static int mem_cgroup_populate(struct cgroup_subsys *ss,
  910. struct cgroup *cont)
  911. {
  912. return cgroup_add_files(cont, ss, mem_cgroup_files,
  913. ARRAY_SIZE(mem_cgroup_files));
  914. }
  915. static void mem_cgroup_move_task(struct cgroup_subsys *ss,
  916. struct cgroup *cont,
  917. struct cgroup *old_cont,
  918. struct task_struct *p)
  919. {
  920. struct mm_struct *mm;
  921. struct mem_cgroup *mem, *old_mem;
  922. mm = get_task_mm(p);
  923. if (mm == NULL)
  924. return;
  925. mem = mem_cgroup_from_cont(cont);
  926. old_mem = mem_cgroup_from_cont(old_cont);
  927. if (mem == old_mem)
  928. goto out;
  929. /*
  930. * Only thread group leaders are allowed to migrate, the mm_struct is
  931. * in effect owned by the leader
  932. */
  933. if (p->tgid != p->pid)
  934. goto out;
  935. css_get(&mem->css);
  936. rcu_assign_pointer(mm->mem_cgroup, mem);
  937. css_put(&old_mem->css);
  938. out:
  939. mmput(mm);
  940. }
  941. struct cgroup_subsys mem_cgroup_subsys = {
  942. .name = "memory",
  943. .subsys_id = mem_cgroup_subsys_id,
  944. .create = mem_cgroup_create,
  945. .pre_destroy = mem_cgroup_pre_destroy,
  946. .destroy = mem_cgroup_destroy,
  947. .populate = mem_cgroup_populate,
  948. .attach = mem_cgroup_move_task,
  949. .early_init = 0,
  950. };