sched.c 180 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/freezer.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/tsacct_kern.h>
  52. #include <linux/kprobes.h>
  53. #include <linux/delayacct.h>
  54. #include <linux/reciprocal_div.h>
  55. #include <asm/tlb.h>
  56. #include <asm/unistd.h>
  57. /*
  58. * Scheduler clock - returns current time in nanosec units.
  59. * This is default implementation.
  60. * Architectures and sub-architectures can override this.
  61. */
  62. unsigned long long __attribute__((weak)) sched_clock(void)
  63. {
  64. return (unsigned long long)jiffies * (1000000000 / HZ);
  65. }
  66. /*
  67. * Convert user-nice values [ -20 ... 0 ... 19 ]
  68. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  69. * and back.
  70. */
  71. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  72. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  73. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  74. /*
  75. * 'User priority' is the nice value converted to something we
  76. * can work with better when scaling various scheduler parameters,
  77. * it's a [ 0 ... 39 ] range.
  78. */
  79. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  80. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  81. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  82. /*
  83. * Some helpers for converting nanosecond timing to jiffy resolution
  84. */
  85. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  86. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  87. /*
  88. * These are the 'tuning knobs' of the scheduler:
  89. *
  90. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  91. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  92. * Timeslices get refilled after they expire.
  93. */
  94. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  95. #define DEF_TIMESLICE (100 * HZ / 1000)
  96. #define ON_RUNQUEUE_WEIGHT 30
  97. #define CHILD_PENALTY 95
  98. #define PARENT_PENALTY 100
  99. #define EXIT_WEIGHT 3
  100. #define PRIO_BONUS_RATIO 25
  101. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  102. #define INTERACTIVE_DELTA 2
  103. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  104. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  105. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  106. /*
  107. * If a task is 'interactive' then we reinsert it in the active
  108. * array after it has expired its current timeslice. (it will not
  109. * continue to run immediately, it will still roundrobin with
  110. * other interactive tasks.)
  111. *
  112. * This part scales the interactivity limit depending on niceness.
  113. *
  114. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  115. * Here are a few examples of different nice levels:
  116. *
  117. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  118. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  119. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  120. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  121. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  122. *
  123. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  124. * priority range a task can explore, a value of '1' means the
  125. * task is rated interactive.)
  126. *
  127. * Ie. nice +19 tasks can never get 'interactive' enough to be
  128. * reinserted into the active array. And only heavily CPU-hog nice -20
  129. * tasks will be expired. Default nice 0 tasks are somewhere between,
  130. * it takes some effort for them to get interactive, but it's not
  131. * too hard.
  132. */
  133. #define CURRENT_BONUS(p) \
  134. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  135. MAX_SLEEP_AVG)
  136. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  137. #ifdef CONFIG_SMP
  138. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  139. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  140. num_online_cpus())
  141. #else
  142. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  143. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  144. #endif
  145. #define SCALE(v1,v1_max,v2_max) \
  146. (v1) * (v2_max) / (v1_max)
  147. #define DELTA(p) \
  148. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  149. INTERACTIVE_DELTA)
  150. #define TASK_INTERACTIVE(p) \
  151. ((p)->prio <= (p)->static_prio - DELTA(p))
  152. #define INTERACTIVE_SLEEP(p) \
  153. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  154. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  155. #define TASK_PREEMPTS_CURR(p, rq) \
  156. ((p)->prio < (rq)->curr->prio)
  157. #define SCALE_PRIO(x, prio) \
  158. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  159. static unsigned int static_prio_timeslice(int static_prio)
  160. {
  161. if (static_prio < NICE_TO_PRIO(0))
  162. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  163. else
  164. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  165. }
  166. #ifdef CONFIG_SMP
  167. /*
  168. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  169. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  170. */
  171. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  172. {
  173. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  174. }
  175. /*
  176. * Each time a sched group cpu_power is changed,
  177. * we must compute its reciprocal value
  178. */
  179. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  180. {
  181. sg->__cpu_power += val;
  182. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  183. }
  184. #endif
  185. /*
  186. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  187. * to time slice values: [800ms ... 100ms ... 5ms]
  188. *
  189. * The higher a thread's priority, the bigger timeslices
  190. * it gets during one round of execution. But even the lowest
  191. * priority thread gets MIN_TIMESLICE worth of execution time.
  192. */
  193. static inline unsigned int task_timeslice(struct task_struct *p)
  194. {
  195. return static_prio_timeslice(p->static_prio);
  196. }
  197. /*
  198. * These are the runqueue data structures:
  199. */
  200. struct prio_array {
  201. unsigned int nr_active;
  202. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  203. struct list_head queue[MAX_PRIO];
  204. };
  205. /*
  206. * This is the main, per-CPU runqueue data structure.
  207. *
  208. * Locking rule: those places that want to lock multiple runqueues
  209. * (such as the load balancing or the thread migration code), lock
  210. * acquire operations must be ordered by ascending &runqueue.
  211. */
  212. struct rq {
  213. spinlock_t lock;
  214. /*
  215. * nr_running and cpu_load should be in the same cacheline because
  216. * remote CPUs use both these fields when doing load calculation.
  217. */
  218. unsigned long nr_running;
  219. unsigned long raw_weighted_load;
  220. #ifdef CONFIG_SMP
  221. unsigned long cpu_load[3];
  222. unsigned char idle_at_tick;
  223. #ifdef CONFIG_NO_HZ
  224. unsigned char in_nohz_recently;
  225. #endif
  226. #endif
  227. unsigned long long nr_switches;
  228. /*
  229. * This is part of a global counter where only the total sum
  230. * over all CPUs matters. A task can increase this counter on
  231. * one CPU and if it got migrated afterwards it may decrease
  232. * it on another CPU. Always updated under the runqueue lock:
  233. */
  234. unsigned long nr_uninterruptible;
  235. unsigned long expired_timestamp;
  236. /* Cached timestamp set by update_cpu_clock() */
  237. unsigned long long most_recent_timestamp;
  238. struct task_struct *curr, *idle;
  239. unsigned long next_balance;
  240. struct mm_struct *prev_mm;
  241. struct prio_array *active, *expired, arrays[2];
  242. int best_expired_prio;
  243. atomic_t nr_iowait;
  244. #ifdef CONFIG_SMP
  245. struct sched_domain *sd;
  246. /* For active balancing */
  247. int active_balance;
  248. int push_cpu;
  249. int cpu; /* cpu of this runqueue */
  250. struct task_struct *migration_thread;
  251. struct list_head migration_queue;
  252. #endif
  253. #ifdef CONFIG_SCHEDSTATS
  254. /* latency stats */
  255. struct sched_info rq_sched_info;
  256. /* sys_sched_yield() stats */
  257. unsigned long yld_exp_empty;
  258. unsigned long yld_act_empty;
  259. unsigned long yld_both_empty;
  260. unsigned long yld_cnt;
  261. /* schedule() stats */
  262. unsigned long sched_switch;
  263. unsigned long sched_cnt;
  264. unsigned long sched_goidle;
  265. /* try_to_wake_up() stats */
  266. unsigned long ttwu_cnt;
  267. unsigned long ttwu_local;
  268. #endif
  269. struct lock_class_key rq_lock_key;
  270. };
  271. static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
  272. static DEFINE_MUTEX(sched_hotcpu_mutex);
  273. static inline int cpu_of(struct rq *rq)
  274. {
  275. #ifdef CONFIG_SMP
  276. return rq->cpu;
  277. #else
  278. return 0;
  279. #endif
  280. }
  281. /*
  282. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  283. * See detach_destroy_domains: synchronize_sched for details.
  284. *
  285. * The domain tree of any CPU may only be accessed from within
  286. * preempt-disabled sections.
  287. */
  288. #define for_each_domain(cpu, __sd) \
  289. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  290. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  291. #define this_rq() (&__get_cpu_var(runqueues))
  292. #define task_rq(p) cpu_rq(task_cpu(p))
  293. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  294. #ifndef prepare_arch_switch
  295. # define prepare_arch_switch(next) do { } while (0)
  296. #endif
  297. #ifndef finish_arch_switch
  298. # define finish_arch_switch(prev) do { } while (0)
  299. #endif
  300. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  301. static inline int task_running(struct rq *rq, struct task_struct *p)
  302. {
  303. return rq->curr == p;
  304. }
  305. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  306. {
  307. }
  308. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  309. {
  310. #ifdef CONFIG_DEBUG_SPINLOCK
  311. /* this is a valid case when another task releases the spinlock */
  312. rq->lock.owner = current;
  313. #endif
  314. /*
  315. * If we are tracking spinlock dependencies then we have to
  316. * fix up the runqueue lock - which gets 'carried over' from
  317. * prev into current:
  318. */
  319. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  320. spin_unlock_irq(&rq->lock);
  321. }
  322. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  323. static inline int task_running(struct rq *rq, struct task_struct *p)
  324. {
  325. #ifdef CONFIG_SMP
  326. return p->oncpu;
  327. #else
  328. return rq->curr == p;
  329. #endif
  330. }
  331. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  332. {
  333. #ifdef CONFIG_SMP
  334. /*
  335. * We can optimise this out completely for !SMP, because the
  336. * SMP rebalancing from interrupt is the only thing that cares
  337. * here.
  338. */
  339. next->oncpu = 1;
  340. #endif
  341. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  342. spin_unlock_irq(&rq->lock);
  343. #else
  344. spin_unlock(&rq->lock);
  345. #endif
  346. }
  347. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  348. {
  349. #ifdef CONFIG_SMP
  350. /*
  351. * After ->oncpu is cleared, the task can be moved to a different CPU.
  352. * We must ensure this doesn't happen until the switch is completely
  353. * finished.
  354. */
  355. smp_wmb();
  356. prev->oncpu = 0;
  357. #endif
  358. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  359. local_irq_enable();
  360. #endif
  361. }
  362. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  363. /*
  364. * __task_rq_lock - lock the runqueue a given task resides on.
  365. * Must be called interrupts disabled.
  366. */
  367. static inline struct rq *__task_rq_lock(struct task_struct *p)
  368. __acquires(rq->lock)
  369. {
  370. struct rq *rq;
  371. repeat_lock_task:
  372. rq = task_rq(p);
  373. spin_lock(&rq->lock);
  374. if (unlikely(rq != task_rq(p))) {
  375. spin_unlock(&rq->lock);
  376. goto repeat_lock_task;
  377. }
  378. return rq;
  379. }
  380. /*
  381. * task_rq_lock - lock the runqueue a given task resides on and disable
  382. * interrupts. Note the ordering: we can safely lookup the task_rq without
  383. * explicitly disabling preemption.
  384. */
  385. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  386. __acquires(rq->lock)
  387. {
  388. struct rq *rq;
  389. repeat_lock_task:
  390. local_irq_save(*flags);
  391. rq = task_rq(p);
  392. spin_lock(&rq->lock);
  393. if (unlikely(rq != task_rq(p))) {
  394. spin_unlock_irqrestore(&rq->lock, *flags);
  395. goto repeat_lock_task;
  396. }
  397. return rq;
  398. }
  399. static inline void __task_rq_unlock(struct rq *rq)
  400. __releases(rq->lock)
  401. {
  402. spin_unlock(&rq->lock);
  403. }
  404. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  405. __releases(rq->lock)
  406. {
  407. spin_unlock_irqrestore(&rq->lock, *flags);
  408. }
  409. #ifdef CONFIG_SCHEDSTATS
  410. /*
  411. * bump this up when changing the output format or the meaning of an existing
  412. * format, so that tools can adapt (or abort)
  413. */
  414. #define SCHEDSTAT_VERSION 14
  415. static int show_schedstat(struct seq_file *seq, void *v)
  416. {
  417. int cpu;
  418. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  419. seq_printf(seq, "timestamp %lu\n", jiffies);
  420. for_each_online_cpu(cpu) {
  421. struct rq *rq = cpu_rq(cpu);
  422. #ifdef CONFIG_SMP
  423. struct sched_domain *sd;
  424. int dcnt = 0;
  425. #endif
  426. /* runqueue-specific stats */
  427. seq_printf(seq,
  428. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  429. cpu, rq->yld_both_empty,
  430. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  431. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  432. rq->ttwu_cnt, rq->ttwu_local,
  433. rq->rq_sched_info.cpu_time,
  434. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  435. seq_printf(seq, "\n");
  436. #ifdef CONFIG_SMP
  437. /* domain-specific stats */
  438. preempt_disable();
  439. for_each_domain(cpu, sd) {
  440. enum idle_type itype;
  441. char mask_str[NR_CPUS];
  442. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  443. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  444. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  445. itype++) {
  446. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
  447. "%lu",
  448. sd->lb_cnt[itype],
  449. sd->lb_balanced[itype],
  450. sd->lb_failed[itype],
  451. sd->lb_imbalance[itype],
  452. sd->lb_gained[itype],
  453. sd->lb_hot_gained[itype],
  454. sd->lb_nobusyq[itype],
  455. sd->lb_nobusyg[itype]);
  456. }
  457. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
  458. " %lu %lu %lu\n",
  459. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  460. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  461. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  462. sd->ttwu_wake_remote, sd->ttwu_move_affine,
  463. sd->ttwu_move_balance);
  464. }
  465. preempt_enable();
  466. #endif
  467. }
  468. return 0;
  469. }
  470. static int schedstat_open(struct inode *inode, struct file *file)
  471. {
  472. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  473. char *buf = kmalloc(size, GFP_KERNEL);
  474. struct seq_file *m;
  475. int res;
  476. if (!buf)
  477. return -ENOMEM;
  478. res = single_open(file, show_schedstat, NULL);
  479. if (!res) {
  480. m = file->private_data;
  481. m->buf = buf;
  482. m->size = size;
  483. } else
  484. kfree(buf);
  485. return res;
  486. }
  487. const struct file_operations proc_schedstat_operations = {
  488. .open = schedstat_open,
  489. .read = seq_read,
  490. .llseek = seq_lseek,
  491. .release = single_release,
  492. };
  493. /*
  494. * Expects runqueue lock to be held for atomicity of update
  495. */
  496. static inline void
  497. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  498. {
  499. if (rq) {
  500. rq->rq_sched_info.run_delay += delta_jiffies;
  501. rq->rq_sched_info.pcnt++;
  502. }
  503. }
  504. /*
  505. * Expects runqueue lock to be held for atomicity of update
  506. */
  507. static inline void
  508. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  509. {
  510. if (rq)
  511. rq->rq_sched_info.cpu_time += delta_jiffies;
  512. }
  513. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  514. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  515. #else /* !CONFIG_SCHEDSTATS */
  516. static inline void
  517. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  518. {}
  519. static inline void
  520. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  521. {}
  522. # define schedstat_inc(rq, field) do { } while (0)
  523. # define schedstat_add(rq, field, amt) do { } while (0)
  524. #endif
  525. /*
  526. * this_rq_lock - lock this runqueue and disable interrupts.
  527. */
  528. static inline struct rq *this_rq_lock(void)
  529. __acquires(rq->lock)
  530. {
  531. struct rq *rq;
  532. local_irq_disable();
  533. rq = this_rq();
  534. spin_lock(&rq->lock);
  535. return rq;
  536. }
  537. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  538. /*
  539. * Called when a process is dequeued from the active array and given
  540. * the cpu. We should note that with the exception of interactive
  541. * tasks, the expired queue will become the active queue after the active
  542. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  543. * expired queue. (Interactive tasks may be requeued directly to the
  544. * active queue, thus delaying tasks in the expired queue from running;
  545. * see scheduler_tick()).
  546. *
  547. * This function is only called from sched_info_arrive(), rather than
  548. * dequeue_task(). Even though a task may be queued and dequeued multiple
  549. * times as it is shuffled about, we're really interested in knowing how
  550. * long it was from the *first* time it was queued to the time that it
  551. * finally hit a cpu.
  552. */
  553. static inline void sched_info_dequeued(struct task_struct *t)
  554. {
  555. t->sched_info.last_queued = 0;
  556. }
  557. /*
  558. * Called when a task finally hits the cpu. We can now calculate how
  559. * long it was waiting to run. We also note when it began so that we
  560. * can keep stats on how long its timeslice is.
  561. */
  562. static void sched_info_arrive(struct task_struct *t)
  563. {
  564. unsigned long now = jiffies, delta_jiffies = 0;
  565. if (t->sched_info.last_queued)
  566. delta_jiffies = now - t->sched_info.last_queued;
  567. sched_info_dequeued(t);
  568. t->sched_info.run_delay += delta_jiffies;
  569. t->sched_info.last_arrival = now;
  570. t->sched_info.pcnt++;
  571. rq_sched_info_arrive(task_rq(t), delta_jiffies);
  572. }
  573. /*
  574. * Called when a process is queued into either the active or expired
  575. * array. The time is noted and later used to determine how long we
  576. * had to wait for us to reach the cpu. Since the expired queue will
  577. * become the active queue after active queue is empty, without dequeuing
  578. * and requeuing any tasks, we are interested in queuing to either. It
  579. * is unusual but not impossible for tasks to be dequeued and immediately
  580. * requeued in the same or another array: this can happen in sched_yield(),
  581. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  582. * to runqueue.
  583. *
  584. * This function is only called from enqueue_task(), but also only updates
  585. * the timestamp if it is already not set. It's assumed that
  586. * sched_info_dequeued() will clear that stamp when appropriate.
  587. */
  588. static inline void sched_info_queued(struct task_struct *t)
  589. {
  590. if (unlikely(sched_info_on()))
  591. if (!t->sched_info.last_queued)
  592. t->sched_info.last_queued = jiffies;
  593. }
  594. /*
  595. * Called when a process ceases being the active-running process, either
  596. * voluntarily or involuntarily. Now we can calculate how long we ran.
  597. */
  598. static inline void sched_info_depart(struct task_struct *t)
  599. {
  600. unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
  601. t->sched_info.cpu_time += delta_jiffies;
  602. rq_sched_info_depart(task_rq(t), delta_jiffies);
  603. }
  604. /*
  605. * Called when tasks are switched involuntarily due, typically, to expiring
  606. * their time slice. (This may also be called when switching to or from
  607. * the idle task.) We are only called when prev != next.
  608. */
  609. static inline void
  610. __sched_info_switch(struct task_struct *prev, struct task_struct *next)
  611. {
  612. struct rq *rq = task_rq(prev);
  613. /*
  614. * prev now departs the cpu. It's not interesting to record
  615. * stats about how efficient we were at scheduling the idle
  616. * process, however.
  617. */
  618. if (prev != rq->idle)
  619. sched_info_depart(prev);
  620. if (next != rq->idle)
  621. sched_info_arrive(next);
  622. }
  623. static inline void
  624. sched_info_switch(struct task_struct *prev, struct task_struct *next)
  625. {
  626. if (unlikely(sched_info_on()))
  627. __sched_info_switch(prev, next);
  628. }
  629. #else
  630. #define sched_info_queued(t) do { } while (0)
  631. #define sched_info_switch(t, next) do { } while (0)
  632. #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
  633. /*
  634. * Adding/removing a task to/from a priority array:
  635. */
  636. static void dequeue_task(struct task_struct *p, struct prio_array *array)
  637. {
  638. array->nr_active--;
  639. list_del(&p->run_list);
  640. if (list_empty(array->queue + p->prio))
  641. __clear_bit(p->prio, array->bitmap);
  642. }
  643. static void enqueue_task(struct task_struct *p, struct prio_array *array)
  644. {
  645. sched_info_queued(p);
  646. list_add_tail(&p->run_list, array->queue + p->prio);
  647. __set_bit(p->prio, array->bitmap);
  648. array->nr_active++;
  649. p->array = array;
  650. }
  651. /*
  652. * Put task to the end of the run list without the overhead of dequeue
  653. * followed by enqueue.
  654. */
  655. static void requeue_task(struct task_struct *p, struct prio_array *array)
  656. {
  657. list_move_tail(&p->run_list, array->queue + p->prio);
  658. }
  659. static inline void
  660. enqueue_task_head(struct task_struct *p, struct prio_array *array)
  661. {
  662. list_add(&p->run_list, array->queue + p->prio);
  663. __set_bit(p->prio, array->bitmap);
  664. array->nr_active++;
  665. p->array = array;
  666. }
  667. /*
  668. * __normal_prio - return the priority that is based on the static
  669. * priority but is modified by bonuses/penalties.
  670. *
  671. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  672. * into the -5 ... 0 ... +5 bonus/penalty range.
  673. *
  674. * We use 25% of the full 0...39 priority range so that:
  675. *
  676. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  677. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  678. *
  679. * Both properties are important to certain workloads.
  680. */
  681. static inline int __normal_prio(struct task_struct *p)
  682. {
  683. int bonus, prio;
  684. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  685. prio = p->static_prio - bonus;
  686. if (prio < MAX_RT_PRIO)
  687. prio = MAX_RT_PRIO;
  688. if (prio > MAX_PRIO-1)
  689. prio = MAX_PRIO-1;
  690. return prio;
  691. }
  692. /*
  693. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  694. * of tasks with abnormal "nice" values across CPUs the contribution that
  695. * each task makes to its run queue's load is weighted according to its
  696. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  697. * scaled version of the new time slice allocation that they receive on time
  698. * slice expiry etc.
  699. */
  700. /*
  701. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  702. * If static_prio_timeslice() is ever changed to break this assumption then
  703. * this code will need modification
  704. */
  705. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  706. #define LOAD_WEIGHT(lp) \
  707. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  708. #define PRIO_TO_LOAD_WEIGHT(prio) \
  709. LOAD_WEIGHT(static_prio_timeslice(prio))
  710. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  711. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  712. static void set_load_weight(struct task_struct *p)
  713. {
  714. if (has_rt_policy(p)) {
  715. #ifdef CONFIG_SMP
  716. if (p == task_rq(p)->migration_thread)
  717. /*
  718. * The migration thread does the actual balancing.
  719. * Giving its load any weight will skew balancing
  720. * adversely.
  721. */
  722. p->load_weight = 0;
  723. else
  724. #endif
  725. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  726. } else
  727. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  728. }
  729. static inline void
  730. inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  731. {
  732. rq->raw_weighted_load += p->load_weight;
  733. }
  734. static inline void
  735. dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  736. {
  737. rq->raw_weighted_load -= p->load_weight;
  738. }
  739. static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
  740. {
  741. rq->nr_running++;
  742. inc_raw_weighted_load(rq, p);
  743. }
  744. static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
  745. {
  746. rq->nr_running--;
  747. dec_raw_weighted_load(rq, p);
  748. }
  749. /*
  750. * Calculate the expected normal priority: i.e. priority
  751. * without taking RT-inheritance into account. Might be
  752. * boosted by interactivity modifiers. Changes upon fork,
  753. * setprio syscalls, and whenever the interactivity
  754. * estimator recalculates.
  755. */
  756. static inline int normal_prio(struct task_struct *p)
  757. {
  758. int prio;
  759. if (has_rt_policy(p))
  760. prio = MAX_RT_PRIO-1 - p->rt_priority;
  761. else
  762. prio = __normal_prio(p);
  763. return prio;
  764. }
  765. /*
  766. * Calculate the current priority, i.e. the priority
  767. * taken into account by the scheduler. This value might
  768. * be boosted by RT tasks, or might be boosted by
  769. * interactivity modifiers. Will be RT if the task got
  770. * RT-boosted. If not then it returns p->normal_prio.
  771. */
  772. static int effective_prio(struct task_struct *p)
  773. {
  774. p->normal_prio = normal_prio(p);
  775. /*
  776. * If we are RT tasks or we were boosted to RT priority,
  777. * keep the priority unchanged. Otherwise, update priority
  778. * to the normal priority:
  779. */
  780. if (!rt_prio(p->prio))
  781. return p->normal_prio;
  782. return p->prio;
  783. }
  784. /*
  785. * __activate_task - move a task to the runqueue.
  786. */
  787. static void __activate_task(struct task_struct *p, struct rq *rq)
  788. {
  789. struct prio_array *target = rq->active;
  790. if (batch_task(p))
  791. target = rq->expired;
  792. enqueue_task(p, target);
  793. inc_nr_running(p, rq);
  794. }
  795. /*
  796. * __activate_idle_task - move idle task to the _front_ of runqueue.
  797. */
  798. static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
  799. {
  800. enqueue_task_head(p, rq->active);
  801. inc_nr_running(p, rq);
  802. }
  803. /*
  804. * Recalculate p->normal_prio and p->prio after having slept,
  805. * updating the sleep-average too:
  806. */
  807. static int recalc_task_prio(struct task_struct *p, unsigned long long now)
  808. {
  809. /* Caller must always ensure 'now >= p->timestamp' */
  810. unsigned long sleep_time = now - p->timestamp;
  811. if (batch_task(p))
  812. sleep_time = 0;
  813. if (likely(sleep_time > 0)) {
  814. /*
  815. * This ceiling is set to the lowest priority that would allow
  816. * a task to be reinserted into the active array on timeslice
  817. * completion.
  818. */
  819. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  820. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  821. /*
  822. * Prevents user tasks from achieving best priority
  823. * with one single large enough sleep.
  824. */
  825. p->sleep_avg = ceiling;
  826. /*
  827. * Using INTERACTIVE_SLEEP() as a ceiling places a
  828. * nice(0) task 1ms sleep away from promotion, and
  829. * gives it 700ms to round-robin with no chance of
  830. * being demoted. This is more than generous, so
  831. * mark this sleep as non-interactive to prevent the
  832. * on-runqueue bonus logic from intervening should
  833. * this task not receive cpu immediately.
  834. */
  835. p->sleep_type = SLEEP_NONINTERACTIVE;
  836. } else {
  837. /*
  838. * Tasks waking from uninterruptible sleep are
  839. * limited in their sleep_avg rise as they
  840. * are likely to be waiting on I/O
  841. */
  842. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  843. if (p->sleep_avg >= ceiling)
  844. sleep_time = 0;
  845. else if (p->sleep_avg + sleep_time >=
  846. ceiling) {
  847. p->sleep_avg = ceiling;
  848. sleep_time = 0;
  849. }
  850. }
  851. /*
  852. * This code gives a bonus to interactive tasks.
  853. *
  854. * The boost works by updating the 'average sleep time'
  855. * value here, based on ->timestamp. The more time a
  856. * task spends sleeping, the higher the average gets -
  857. * and the higher the priority boost gets as well.
  858. */
  859. p->sleep_avg += sleep_time;
  860. }
  861. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  862. p->sleep_avg = NS_MAX_SLEEP_AVG;
  863. }
  864. return effective_prio(p);
  865. }
  866. /*
  867. * activate_task - move a task to the runqueue and do priority recalculation
  868. *
  869. * Update all the scheduling statistics stuff. (sleep average
  870. * calculation, priority modifiers, etc.)
  871. */
  872. static void activate_task(struct task_struct *p, struct rq *rq, int local)
  873. {
  874. unsigned long long now;
  875. if (rt_task(p))
  876. goto out;
  877. now = sched_clock();
  878. #ifdef CONFIG_SMP
  879. if (!local) {
  880. /* Compensate for drifting sched_clock */
  881. struct rq *this_rq = this_rq();
  882. now = (now - this_rq->most_recent_timestamp)
  883. + rq->most_recent_timestamp;
  884. }
  885. #endif
  886. /*
  887. * Sleep time is in units of nanosecs, so shift by 20 to get a
  888. * milliseconds-range estimation of the amount of time that the task
  889. * spent sleeping:
  890. */
  891. if (unlikely(prof_on == SLEEP_PROFILING)) {
  892. if (p->state == TASK_UNINTERRUPTIBLE)
  893. profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
  894. (now - p->timestamp) >> 20);
  895. }
  896. p->prio = recalc_task_prio(p, now);
  897. /*
  898. * This checks to make sure it's not an uninterruptible task
  899. * that is now waking up.
  900. */
  901. if (p->sleep_type == SLEEP_NORMAL) {
  902. /*
  903. * Tasks which were woken up by interrupts (ie. hw events)
  904. * are most likely of interactive nature. So we give them
  905. * the credit of extending their sleep time to the period
  906. * of time they spend on the runqueue, waiting for execution
  907. * on a CPU, first time around:
  908. */
  909. if (in_interrupt())
  910. p->sleep_type = SLEEP_INTERRUPTED;
  911. else {
  912. /*
  913. * Normal first-time wakeups get a credit too for
  914. * on-runqueue time, but it will be weighted down:
  915. */
  916. p->sleep_type = SLEEP_INTERACTIVE;
  917. }
  918. }
  919. p->timestamp = now;
  920. out:
  921. __activate_task(p, rq);
  922. }
  923. /*
  924. * deactivate_task - remove a task from the runqueue.
  925. */
  926. static void deactivate_task(struct task_struct *p, struct rq *rq)
  927. {
  928. dec_nr_running(p, rq);
  929. dequeue_task(p, p->array);
  930. p->array = NULL;
  931. }
  932. /*
  933. * resched_task - mark a task 'to be rescheduled now'.
  934. *
  935. * On UP this means the setting of the need_resched flag, on SMP it
  936. * might also involve a cross-CPU call to trigger the scheduler on
  937. * the target CPU.
  938. */
  939. #ifdef CONFIG_SMP
  940. #ifndef tsk_is_polling
  941. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  942. #endif
  943. static void resched_task(struct task_struct *p)
  944. {
  945. int cpu;
  946. assert_spin_locked(&task_rq(p)->lock);
  947. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  948. return;
  949. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  950. cpu = task_cpu(p);
  951. if (cpu == smp_processor_id())
  952. return;
  953. /* NEED_RESCHED must be visible before we test polling */
  954. smp_mb();
  955. if (!tsk_is_polling(p))
  956. smp_send_reschedule(cpu);
  957. }
  958. static void resched_cpu(int cpu)
  959. {
  960. struct rq *rq = cpu_rq(cpu);
  961. unsigned long flags;
  962. if (!spin_trylock_irqsave(&rq->lock, flags))
  963. return;
  964. resched_task(cpu_curr(cpu));
  965. spin_unlock_irqrestore(&rq->lock, flags);
  966. }
  967. #else
  968. static inline void resched_task(struct task_struct *p)
  969. {
  970. assert_spin_locked(&task_rq(p)->lock);
  971. set_tsk_need_resched(p);
  972. }
  973. #endif
  974. /**
  975. * task_curr - is this task currently executing on a CPU?
  976. * @p: the task in question.
  977. */
  978. inline int task_curr(const struct task_struct *p)
  979. {
  980. return cpu_curr(task_cpu(p)) == p;
  981. }
  982. /* Used instead of source_load when we know the type == 0 */
  983. unsigned long weighted_cpuload(const int cpu)
  984. {
  985. return cpu_rq(cpu)->raw_weighted_load;
  986. }
  987. #ifdef CONFIG_SMP
  988. struct migration_req {
  989. struct list_head list;
  990. struct task_struct *task;
  991. int dest_cpu;
  992. struct completion done;
  993. };
  994. /*
  995. * The task's runqueue lock must be held.
  996. * Returns true if you have to wait for migration thread.
  997. */
  998. static int
  999. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1000. {
  1001. struct rq *rq = task_rq(p);
  1002. /*
  1003. * If the task is not on a runqueue (and not running), then
  1004. * it is sufficient to simply update the task's cpu field.
  1005. */
  1006. if (!p->array && !task_running(rq, p)) {
  1007. set_task_cpu(p, dest_cpu);
  1008. return 0;
  1009. }
  1010. init_completion(&req->done);
  1011. req->task = p;
  1012. req->dest_cpu = dest_cpu;
  1013. list_add(&req->list, &rq->migration_queue);
  1014. return 1;
  1015. }
  1016. /*
  1017. * wait_task_inactive - wait for a thread to unschedule.
  1018. *
  1019. * The caller must ensure that the task *will* unschedule sometime soon,
  1020. * else this function might spin for a *long* time. This function can't
  1021. * be called with interrupts off, or it may introduce deadlock with
  1022. * smp_call_function() if an IPI is sent by the same process we are
  1023. * waiting to become inactive.
  1024. */
  1025. void wait_task_inactive(struct task_struct *p)
  1026. {
  1027. unsigned long flags;
  1028. struct rq *rq;
  1029. int preempted;
  1030. repeat:
  1031. rq = task_rq_lock(p, &flags);
  1032. /* Must be off runqueue entirely, not preempted. */
  1033. if (unlikely(p->array || task_running(rq, p))) {
  1034. /* If it's preempted, we yield. It could be a while. */
  1035. preempted = !task_running(rq, p);
  1036. task_rq_unlock(rq, &flags);
  1037. cpu_relax();
  1038. if (preempted)
  1039. yield();
  1040. goto repeat;
  1041. }
  1042. task_rq_unlock(rq, &flags);
  1043. }
  1044. /***
  1045. * kick_process - kick a running thread to enter/exit the kernel
  1046. * @p: the to-be-kicked thread
  1047. *
  1048. * Cause a process which is running on another CPU to enter
  1049. * kernel-mode, without any delay. (to get signals handled.)
  1050. *
  1051. * NOTE: this function doesnt have to take the runqueue lock,
  1052. * because all it wants to ensure is that the remote task enters
  1053. * the kernel. If the IPI races and the task has been migrated
  1054. * to another CPU then no harm is done and the purpose has been
  1055. * achieved as well.
  1056. */
  1057. void kick_process(struct task_struct *p)
  1058. {
  1059. int cpu;
  1060. preempt_disable();
  1061. cpu = task_cpu(p);
  1062. if ((cpu != smp_processor_id()) && task_curr(p))
  1063. smp_send_reschedule(cpu);
  1064. preempt_enable();
  1065. }
  1066. /*
  1067. * Return a low guess at the load of a migration-source cpu weighted
  1068. * according to the scheduling class and "nice" value.
  1069. *
  1070. * We want to under-estimate the load of migration sources, to
  1071. * balance conservatively.
  1072. */
  1073. static inline unsigned long source_load(int cpu, int type)
  1074. {
  1075. struct rq *rq = cpu_rq(cpu);
  1076. if (type == 0)
  1077. return rq->raw_weighted_load;
  1078. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  1079. }
  1080. /*
  1081. * Return a high guess at the load of a migration-target cpu weighted
  1082. * according to the scheduling class and "nice" value.
  1083. */
  1084. static inline unsigned long target_load(int cpu, int type)
  1085. {
  1086. struct rq *rq = cpu_rq(cpu);
  1087. if (type == 0)
  1088. return rq->raw_weighted_load;
  1089. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  1090. }
  1091. /*
  1092. * Return the average load per task on the cpu's run queue
  1093. */
  1094. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1095. {
  1096. struct rq *rq = cpu_rq(cpu);
  1097. unsigned long n = rq->nr_running;
  1098. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  1099. }
  1100. /*
  1101. * find_idlest_group finds and returns the least busy CPU group within the
  1102. * domain.
  1103. */
  1104. static struct sched_group *
  1105. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1106. {
  1107. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1108. unsigned long min_load = ULONG_MAX, this_load = 0;
  1109. int load_idx = sd->forkexec_idx;
  1110. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1111. do {
  1112. unsigned long load, avg_load;
  1113. int local_group;
  1114. int i;
  1115. /* Skip over this group if it has no CPUs allowed */
  1116. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1117. goto nextgroup;
  1118. local_group = cpu_isset(this_cpu, group->cpumask);
  1119. /* Tally up the load of all CPUs in the group */
  1120. avg_load = 0;
  1121. for_each_cpu_mask(i, group->cpumask) {
  1122. /* Bias balancing toward cpus of our domain */
  1123. if (local_group)
  1124. load = source_load(i, load_idx);
  1125. else
  1126. load = target_load(i, load_idx);
  1127. avg_load += load;
  1128. }
  1129. /* Adjust by relative CPU power of the group */
  1130. avg_load = sg_div_cpu_power(group,
  1131. avg_load * SCHED_LOAD_SCALE);
  1132. if (local_group) {
  1133. this_load = avg_load;
  1134. this = group;
  1135. } else if (avg_load < min_load) {
  1136. min_load = avg_load;
  1137. idlest = group;
  1138. }
  1139. nextgroup:
  1140. group = group->next;
  1141. } while (group != sd->groups);
  1142. if (!idlest || 100*this_load < imbalance*min_load)
  1143. return NULL;
  1144. return idlest;
  1145. }
  1146. /*
  1147. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1148. */
  1149. static int
  1150. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1151. {
  1152. cpumask_t tmp;
  1153. unsigned long load, min_load = ULONG_MAX;
  1154. int idlest = -1;
  1155. int i;
  1156. /* Traverse only the allowed CPUs */
  1157. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1158. for_each_cpu_mask(i, tmp) {
  1159. load = weighted_cpuload(i);
  1160. if (load < min_load || (load == min_load && i == this_cpu)) {
  1161. min_load = load;
  1162. idlest = i;
  1163. }
  1164. }
  1165. return idlest;
  1166. }
  1167. /*
  1168. * sched_balance_self: balance the current task (running on cpu) in domains
  1169. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1170. * SD_BALANCE_EXEC.
  1171. *
  1172. * Balance, ie. select the least loaded group.
  1173. *
  1174. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1175. *
  1176. * preempt must be disabled.
  1177. */
  1178. static int sched_balance_self(int cpu, int flag)
  1179. {
  1180. struct task_struct *t = current;
  1181. struct sched_domain *tmp, *sd = NULL;
  1182. for_each_domain(cpu, tmp) {
  1183. /*
  1184. * If power savings logic is enabled for a domain, stop there.
  1185. */
  1186. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1187. break;
  1188. if (tmp->flags & flag)
  1189. sd = tmp;
  1190. }
  1191. while (sd) {
  1192. cpumask_t span;
  1193. struct sched_group *group;
  1194. int new_cpu, weight;
  1195. if (!(sd->flags & flag)) {
  1196. sd = sd->child;
  1197. continue;
  1198. }
  1199. span = sd->span;
  1200. group = find_idlest_group(sd, t, cpu);
  1201. if (!group) {
  1202. sd = sd->child;
  1203. continue;
  1204. }
  1205. new_cpu = find_idlest_cpu(group, t, cpu);
  1206. if (new_cpu == -1 || new_cpu == cpu) {
  1207. /* Now try balancing at a lower domain level of cpu */
  1208. sd = sd->child;
  1209. continue;
  1210. }
  1211. /* Now try balancing at a lower domain level of new_cpu */
  1212. cpu = new_cpu;
  1213. sd = NULL;
  1214. weight = cpus_weight(span);
  1215. for_each_domain(cpu, tmp) {
  1216. if (weight <= cpus_weight(tmp->span))
  1217. break;
  1218. if (tmp->flags & flag)
  1219. sd = tmp;
  1220. }
  1221. /* while loop will break here if sd == NULL */
  1222. }
  1223. return cpu;
  1224. }
  1225. #endif /* CONFIG_SMP */
  1226. /*
  1227. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1228. * not idle and an idle cpu is available. The span of cpus to
  1229. * search starts with cpus closest then further out as needed,
  1230. * so we always favor a closer, idle cpu.
  1231. *
  1232. * Returns the CPU we should wake onto.
  1233. */
  1234. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1235. static int wake_idle(int cpu, struct task_struct *p)
  1236. {
  1237. cpumask_t tmp;
  1238. struct sched_domain *sd;
  1239. int i;
  1240. /*
  1241. * If it is idle, then it is the best cpu to run this task.
  1242. *
  1243. * This cpu is also the best, if it has more than one task already.
  1244. * Siblings must be also busy(in most cases) as they didn't already
  1245. * pickup the extra load from this cpu and hence we need not check
  1246. * sibling runqueue info. This will avoid the checks and cache miss
  1247. * penalities associated with that.
  1248. */
  1249. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1250. return cpu;
  1251. for_each_domain(cpu, sd) {
  1252. if (sd->flags & SD_WAKE_IDLE) {
  1253. cpus_and(tmp, sd->span, p->cpus_allowed);
  1254. for_each_cpu_mask(i, tmp) {
  1255. if (idle_cpu(i))
  1256. return i;
  1257. }
  1258. }
  1259. else
  1260. break;
  1261. }
  1262. return cpu;
  1263. }
  1264. #else
  1265. static inline int wake_idle(int cpu, struct task_struct *p)
  1266. {
  1267. return cpu;
  1268. }
  1269. #endif
  1270. /***
  1271. * try_to_wake_up - wake up a thread
  1272. * @p: the to-be-woken-up thread
  1273. * @state: the mask of task states that can be woken
  1274. * @sync: do a synchronous wakeup?
  1275. *
  1276. * Put it on the run-queue if it's not already there. The "current"
  1277. * thread is always on the run-queue (except when the actual
  1278. * re-schedule is in progress), and as such you're allowed to do
  1279. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1280. * runnable without the overhead of this.
  1281. *
  1282. * returns failure only if the task is already active.
  1283. */
  1284. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1285. {
  1286. int cpu, this_cpu, success = 0;
  1287. unsigned long flags;
  1288. long old_state;
  1289. struct rq *rq;
  1290. #ifdef CONFIG_SMP
  1291. struct sched_domain *sd, *this_sd = NULL;
  1292. unsigned long load, this_load;
  1293. int new_cpu;
  1294. #endif
  1295. rq = task_rq_lock(p, &flags);
  1296. old_state = p->state;
  1297. if (!(old_state & state))
  1298. goto out;
  1299. if (p->array)
  1300. goto out_running;
  1301. cpu = task_cpu(p);
  1302. this_cpu = smp_processor_id();
  1303. #ifdef CONFIG_SMP
  1304. if (unlikely(task_running(rq, p)))
  1305. goto out_activate;
  1306. new_cpu = cpu;
  1307. schedstat_inc(rq, ttwu_cnt);
  1308. if (cpu == this_cpu) {
  1309. schedstat_inc(rq, ttwu_local);
  1310. goto out_set_cpu;
  1311. }
  1312. for_each_domain(this_cpu, sd) {
  1313. if (cpu_isset(cpu, sd->span)) {
  1314. schedstat_inc(sd, ttwu_wake_remote);
  1315. this_sd = sd;
  1316. break;
  1317. }
  1318. }
  1319. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1320. goto out_set_cpu;
  1321. /*
  1322. * Check for affine wakeup and passive balancing possibilities.
  1323. */
  1324. if (this_sd) {
  1325. int idx = this_sd->wake_idx;
  1326. unsigned int imbalance;
  1327. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1328. load = source_load(cpu, idx);
  1329. this_load = target_load(this_cpu, idx);
  1330. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1331. if (this_sd->flags & SD_WAKE_AFFINE) {
  1332. unsigned long tl = this_load;
  1333. unsigned long tl_per_task;
  1334. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1335. /*
  1336. * If sync wakeup then subtract the (maximum possible)
  1337. * effect of the currently running task from the load
  1338. * of the current CPU:
  1339. */
  1340. if (sync)
  1341. tl -= current->load_weight;
  1342. if ((tl <= load &&
  1343. tl + target_load(cpu, idx) <= tl_per_task) ||
  1344. 100*(tl + p->load_weight) <= imbalance*load) {
  1345. /*
  1346. * This domain has SD_WAKE_AFFINE and
  1347. * p is cache cold in this domain, and
  1348. * there is no bad imbalance.
  1349. */
  1350. schedstat_inc(this_sd, ttwu_move_affine);
  1351. goto out_set_cpu;
  1352. }
  1353. }
  1354. /*
  1355. * Start passive balancing when half the imbalance_pct
  1356. * limit is reached.
  1357. */
  1358. if (this_sd->flags & SD_WAKE_BALANCE) {
  1359. if (imbalance*this_load <= 100*load) {
  1360. schedstat_inc(this_sd, ttwu_move_balance);
  1361. goto out_set_cpu;
  1362. }
  1363. }
  1364. }
  1365. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1366. out_set_cpu:
  1367. new_cpu = wake_idle(new_cpu, p);
  1368. if (new_cpu != cpu) {
  1369. set_task_cpu(p, new_cpu);
  1370. task_rq_unlock(rq, &flags);
  1371. /* might preempt at this point */
  1372. rq = task_rq_lock(p, &flags);
  1373. old_state = p->state;
  1374. if (!(old_state & state))
  1375. goto out;
  1376. if (p->array)
  1377. goto out_running;
  1378. this_cpu = smp_processor_id();
  1379. cpu = task_cpu(p);
  1380. }
  1381. out_activate:
  1382. #endif /* CONFIG_SMP */
  1383. if (old_state == TASK_UNINTERRUPTIBLE) {
  1384. rq->nr_uninterruptible--;
  1385. /*
  1386. * Tasks on involuntary sleep don't earn
  1387. * sleep_avg beyond just interactive state.
  1388. */
  1389. p->sleep_type = SLEEP_NONINTERACTIVE;
  1390. } else
  1391. /*
  1392. * Tasks that have marked their sleep as noninteractive get
  1393. * woken up with their sleep average not weighted in an
  1394. * interactive way.
  1395. */
  1396. if (old_state & TASK_NONINTERACTIVE)
  1397. p->sleep_type = SLEEP_NONINTERACTIVE;
  1398. activate_task(p, rq, cpu == this_cpu);
  1399. /*
  1400. * Sync wakeups (i.e. those types of wakeups where the waker
  1401. * has indicated that it will leave the CPU in short order)
  1402. * don't trigger a preemption, if the woken up task will run on
  1403. * this cpu. (in this case the 'I will reschedule' promise of
  1404. * the waker guarantees that the freshly woken up task is going
  1405. * to be considered on this CPU.)
  1406. */
  1407. if (!sync || cpu != this_cpu) {
  1408. if (TASK_PREEMPTS_CURR(p, rq))
  1409. resched_task(rq->curr);
  1410. }
  1411. success = 1;
  1412. out_running:
  1413. p->state = TASK_RUNNING;
  1414. out:
  1415. task_rq_unlock(rq, &flags);
  1416. return success;
  1417. }
  1418. int fastcall wake_up_process(struct task_struct *p)
  1419. {
  1420. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1421. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1422. }
  1423. EXPORT_SYMBOL(wake_up_process);
  1424. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1425. {
  1426. return try_to_wake_up(p, state, 0);
  1427. }
  1428. static void task_running_tick(struct rq *rq, struct task_struct *p);
  1429. /*
  1430. * Perform scheduler related setup for a newly forked process p.
  1431. * p is forked by current.
  1432. */
  1433. void fastcall sched_fork(struct task_struct *p, int clone_flags)
  1434. {
  1435. int cpu = get_cpu();
  1436. #ifdef CONFIG_SMP
  1437. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1438. #endif
  1439. set_task_cpu(p, cpu);
  1440. /*
  1441. * We mark the process as running here, but have not actually
  1442. * inserted it onto the runqueue yet. This guarantees that
  1443. * nobody will actually run it, and a signal or other external
  1444. * event cannot wake it up and insert it on the runqueue either.
  1445. */
  1446. p->state = TASK_RUNNING;
  1447. /*
  1448. * Make sure we do not leak PI boosting priority to the child:
  1449. */
  1450. p->prio = current->normal_prio;
  1451. INIT_LIST_HEAD(&p->run_list);
  1452. p->array = NULL;
  1453. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1454. if (unlikely(sched_info_on()))
  1455. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1456. #endif
  1457. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1458. p->oncpu = 0;
  1459. #endif
  1460. #ifdef CONFIG_PREEMPT
  1461. /* Want to start with kernel preemption disabled. */
  1462. task_thread_info(p)->preempt_count = 1;
  1463. #endif
  1464. /*
  1465. * Share the timeslice between parent and child, thus the
  1466. * total amount of pending timeslices in the system doesn't change,
  1467. * resulting in more scheduling fairness.
  1468. */
  1469. local_irq_disable();
  1470. p->time_slice = (current->time_slice + 1) >> 1;
  1471. /*
  1472. * The remainder of the first timeslice might be recovered by
  1473. * the parent if the child exits early enough.
  1474. */
  1475. p->first_time_slice = 1;
  1476. current->time_slice >>= 1;
  1477. p->timestamp = sched_clock();
  1478. if (unlikely(!current->time_slice)) {
  1479. /*
  1480. * This case is rare, it happens when the parent has only
  1481. * a single jiffy left from its timeslice. Taking the
  1482. * runqueue lock is not a problem.
  1483. */
  1484. current->time_slice = 1;
  1485. task_running_tick(cpu_rq(cpu), current);
  1486. }
  1487. local_irq_enable();
  1488. put_cpu();
  1489. }
  1490. /*
  1491. * wake_up_new_task - wake up a newly created task for the first time.
  1492. *
  1493. * This function will do some initial scheduler statistics housekeeping
  1494. * that must be done for every newly created context, then puts the task
  1495. * on the runqueue and wakes it.
  1496. */
  1497. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1498. {
  1499. struct rq *rq, *this_rq;
  1500. unsigned long flags;
  1501. int this_cpu, cpu;
  1502. rq = task_rq_lock(p, &flags);
  1503. BUG_ON(p->state != TASK_RUNNING);
  1504. this_cpu = smp_processor_id();
  1505. cpu = task_cpu(p);
  1506. /*
  1507. * We decrease the sleep average of forking parents
  1508. * and children as well, to keep max-interactive tasks
  1509. * from forking tasks that are max-interactive. The parent
  1510. * (current) is done further down, under its lock.
  1511. */
  1512. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1513. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1514. p->prio = effective_prio(p);
  1515. if (likely(cpu == this_cpu)) {
  1516. if (!(clone_flags & CLONE_VM)) {
  1517. /*
  1518. * The VM isn't cloned, so we're in a good position to
  1519. * do child-runs-first in anticipation of an exec. This
  1520. * usually avoids a lot of COW overhead.
  1521. */
  1522. if (unlikely(!current->array))
  1523. __activate_task(p, rq);
  1524. else {
  1525. p->prio = current->prio;
  1526. p->normal_prio = current->normal_prio;
  1527. list_add_tail(&p->run_list, &current->run_list);
  1528. p->array = current->array;
  1529. p->array->nr_active++;
  1530. inc_nr_running(p, rq);
  1531. }
  1532. set_need_resched();
  1533. } else
  1534. /* Run child last */
  1535. __activate_task(p, rq);
  1536. /*
  1537. * We skip the following code due to cpu == this_cpu
  1538. *
  1539. * task_rq_unlock(rq, &flags);
  1540. * this_rq = task_rq_lock(current, &flags);
  1541. */
  1542. this_rq = rq;
  1543. } else {
  1544. this_rq = cpu_rq(this_cpu);
  1545. /*
  1546. * Not the local CPU - must adjust timestamp. This should
  1547. * get optimised away in the !CONFIG_SMP case.
  1548. */
  1549. p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
  1550. + rq->most_recent_timestamp;
  1551. __activate_task(p, rq);
  1552. if (TASK_PREEMPTS_CURR(p, rq))
  1553. resched_task(rq->curr);
  1554. /*
  1555. * Parent and child are on different CPUs, now get the
  1556. * parent runqueue to update the parent's ->sleep_avg:
  1557. */
  1558. task_rq_unlock(rq, &flags);
  1559. this_rq = task_rq_lock(current, &flags);
  1560. }
  1561. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1562. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1563. task_rq_unlock(this_rq, &flags);
  1564. }
  1565. /*
  1566. * Potentially available exiting-child timeslices are
  1567. * retrieved here - this way the parent does not get
  1568. * penalized for creating too many threads.
  1569. *
  1570. * (this cannot be used to 'generate' timeslices
  1571. * artificially, because any timeslice recovered here
  1572. * was given away by the parent in the first place.)
  1573. */
  1574. void fastcall sched_exit(struct task_struct *p)
  1575. {
  1576. unsigned long flags;
  1577. struct rq *rq;
  1578. /*
  1579. * If the child was a (relative-) CPU hog then decrease
  1580. * the sleep_avg of the parent as well.
  1581. */
  1582. rq = task_rq_lock(p->parent, &flags);
  1583. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1584. p->parent->time_slice += p->time_slice;
  1585. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1586. p->parent->time_slice = task_timeslice(p);
  1587. }
  1588. if (p->sleep_avg < p->parent->sleep_avg)
  1589. p->parent->sleep_avg = p->parent->sleep_avg /
  1590. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1591. (EXIT_WEIGHT + 1);
  1592. task_rq_unlock(rq, &flags);
  1593. }
  1594. /**
  1595. * prepare_task_switch - prepare to switch tasks
  1596. * @rq: the runqueue preparing to switch
  1597. * @next: the task we are going to switch to.
  1598. *
  1599. * This is called with the rq lock held and interrupts off. It must
  1600. * be paired with a subsequent finish_task_switch after the context
  1601. * switch.
  1602. *
  1603. * prepare_task_switch sets up locking and calls architecture specific
  1604. * hooks.
  1605. */
  1606. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1607. {
  1608. prepare_lock_switch(rq, next);
  1609. prepare_arch_switch(next);
  1610. }
  1611. /**
  1612. * finish_task_switch - clean up after a task-switch
  1613. * @rq: runqueue associated with task-switch
  1614. * @prev: the thread we just switched away from.
  1615. *
  1616. * finish_task_switch must be called after the context switch, paired
  1617. * with a prepare_task_switch call before the context switch.
  1618. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1619. * and do any other architecture-specific cleanup actions.
  1620. *
  1621. * Note that we may have delayed dropping an mm in context_switch(). If
  1622. * so, we finish that here outside of the runqueue lock. (Doing it
  1623. * with the lock held can cause deadlocks; see schedule() for
  1624. * details.)
  1625. */
  1626. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1627. __releases(rq->lock)
  1628. {
  1629. struct mm_struct *mm = rq->prev_mm;
  1630. long prev_state;
  1631. rq->prev_mm = NULL;
  1632. /*
  1633. * A task struct has one reference for the use as "current".
  1634. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1635. * schedule one last time. The schedule call will never return, and
  1636. * the scheduled task must drop that reference.
  1637. * The test for TASK_DEAD must occur while the runqueue locks are
  1638. * still held, otherwise prev could be scheduled on another cpu, die
  1639. * there before we look at prev->state, and then the reference would
  1640. * be dropped twice.
  1641. * Manfred Spraul <manfred@colorfullife.com>
  1642. */
  1643. prev_state = prev->state;
  1644. finish_arch_switch(prev);
  1645. finish_lock_switch(rq, prev);
  1646. if (mm)
  1647. mmdrop(mm);
  1648. if (unlikely(prev_state == TASK_DEAD)) {
  1649. /*
  1650. * Remove function-return probe instances associated with this
  1651. * task and put them back on the free list.
  1652. */
  1653. kprobe_flush_task(prev);
  1654. put_task_struct(prev);
  1655. }
  1656. }
  1657. /**
  1658. * schedule_tail - first thing a freshly forked thread must call.
  1659. * @prev: the thread we just switched away from.
  1660. */
  1661. asmlinkage void schedule_tail(struct task_struct *prev)
  1662. __releases(rq->lock)
  1663. {
  1664. struct rq *rq = this_rq();
  1665. finish_task_switch(rq, prev);
  1666. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1667. /* In this case, finish_task_switch does not reenable preemption */
  1668. preempt_enable();
  1669. #endif
  1670. if (current->set_child_tid)
  1671. put_user(current->pid, current->set_child_tid);
  1672. }
  1673. /*
  1674. * context_switch - switch to the new MM and the new
  1675. * thread's register state.
  1676. */
  1677. static inline struct task_struct *
  1678. context_switch(struct rq *rq, struct task_struct *prev,
  1679. struct task_struct *next)
  1680. {
  1681. struct mm_struct *mm = next->mm;
  1682. struct mm_struct *oldmm = prev->active_mm;
  1683. /*
  1684. * For paravirt, this is coupled with an exit in switch_to to
  1685. * combine the page table reload and the switch backend into
  1686. * one hypercall.
  1687. */
  1688. arch_enter_lazy_cpu_mode();
  1689. if (!mm) {
  1690. next->active_mm = oldmm;
  1691. atomic_inc(&oldmm->mm_count);
  1692. enter_lazy_tlb(oldmm, next);
  1693. } else
  1694. switch_mm(oldmm, mm, next);
  1695. if (!prev->mm) {
  1696. prev->active_mm = NULL;
  1697. WARN_ON(rq->prev_mm);
  1698. rq->prev_mm = oldmm;
  1699. }
  1700. /*
  1701. * Since the runqueue lock will be released by the next
  1702. * task (which is an invalid locking op but in the case
  1703. * of the scheduler it's an obvious special-case), so we
  1704. * do an early lockdep release here:
  1705. */
  1706. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1707. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1708. #endif
  1709. /* Here we just switch the register state and the stack. */
  1710. switch_to(prev, next, prev);
  1711. return prev;
  1712. }
  1713. /*
  1714. * nr_running, nr_uninterruptible and nr_context_switches:
  1715. *
  1716. * externally visible scheduler statistics: current number of runnable
  1717. * threads, current number of uninterruptible-sleeping threads, total
  1718. * number of context switches performed since bootup.
  1719. */
  1720. unsigned long nr_running(void)
  1721. {
  1722. unsigned long i, sum = 0;
  1723. for_each_online_cpu(i)
  1724. sum += cpu_rq(i)->nr_running;
  1725. return sum;
  1726. }
  1727. unsigned long nr_uninterruptible(void)
  1728. {
  1729. unsigned long i, sum = 0;
  1730. for_each_possible_cpu(i)
  1731. sum += cpu_rq(i)->nr_uninterruptible;
  1732. /*
  1733. * Since we read the counters lockless, it might be slightly
  1734. * inaccurate. Do not allow it to go below zero though:
  1735. */
  1736. if (unlikely((long)sum < 0))
  1737. sum = 0;
  1738. return sum;
  1739. }
  1740. unsigned long long nr_context_switches(void)
  1741. {
  1742. int i;
  1743. unsigned long long sum = 0;
  1744. for_each_possible_cpu(i)
  1745. sum += cpu_rq(i)->nr_switches;
  1746. return sum;
  1747. }
  1748. unsigned long nr_iowait(void)
  1749. {
  1750. unsigned long i, sum = 0;
  1751. for_each_possible_cpu(i)
  1752. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1753. return sum;
  1754. }
  1755. unsigned long nr_active(void)
  1756. {
  1757. unsigned long i, running = 0, uninterruptible = 0;
  1758. for_each_online_cpu(i) {
  1759. running += cpu_rq(i)->nr_running;
  1760. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1761. }
  1762. if (unlikely((long)uninterruptible < 0))
  1763. uninterruptible = 0;
  1764. return running + uninterruptible;
  1765. }
  1766. #ifdef CONFIG_SMP
  1767. /*
  1768. * Is this task likely cache-hot:
  1769. */
  1770. static inline int
  1771. task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
  1772. {
  1773. return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
  1774. }
  1775. /*
  1776. * double_rq_lock - safely lock two runqueues
  1777. *
  1778. * Note this does not disable interrupts like task_rq_lock,
  1779. * you need to do so manually before calling.
  1780. */
  1781. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1782. __acquires(rq1->lock)
  1783. __acquires(rq2->lock)
  1784. {
  1785. BUG_ON(!irqs_disabled());
  1786. if (rq1 == rq2) {
  1787. spin_lock(&rq1->lock);
  1788. __acquire(rq2->lock); /* Fake it out ;) */
  1789. } else {
  1790. if (rq1 < rq2) {
  1791. spin_lock(&rq1->lock);
  1792. spin_lock(&rq2->lock);
  1793. } else {
  1794. spin_lock(&rq2->lock);
  1795. spin_lock(&rq1->lock);
  1796. }
  1797. }
  1798. }
  1799. /*
  1800. * double_rq_unlock - safely unlock two runqueues
  1801. *
  1802. * Note this does not restore interrupts like task_rq_unlock,
  1803. * you need to do so manually after calling.
  1804. */
  1805. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1806. __releases(rq1->lock)
  1807. __releases(rq2->lock)
  1808. {
  1809. spin_unlock(&rq1->lock);
  1810. if (rq1 != rq2)
  1811. spin_unlock(&rq2->lock);
  1812. else
  1813. __release(rq2->lock);
  1814. }
  1815. /*
  1816. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1817. */
  1818. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1819. __releases(this_rq->lock)
  1820. __acquires(busiest->lock)
  1821. __acquires(this_rq->lock)
  1822. {
  1823. if (unlikely(!irqs_disabled())) {
  1824. /* printk() doesn't work good under rq->lock */
  1825. spin_unlock(&this_rq->lock);
  1826. BUG_ON(1);
  1827. }
  1828. if (unlikely(!spin_trylock(&busiest->lock))) {
  1829. if (busiest < this_rq) {
  1830. spin_unlock(&this_rq->lock);
  1831. spin_lock(&busiest->lock);
  1832. spin_lock(&this_rq->lock);
  1833. } else
  1834. spin_lock(&busiest->lock);
  1835. }
  1836. }
  1837. /*
  1838. * If dest_cpu is allowed for this process, migrate the task to it.
  1839. * This is accomplished by forcing the cpu_allowed mask to only
  1840. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1841. * the cpu_allowed mask is restored.
  1842. */
  1843. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1844. {
  1845. struct migration_req req;
  1846. unsigned long flags;
  1847. struct rq *rq;
  1848. rq = task_rq_lock(p, &flags);
  1849. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1850. || unlikely(cpu_is_offline(dest_cpu)))
  1851. goto out;
  1852. /* force the process onto the specified CPU */
  1853. if (migrate_task(p, dest_cpu, &req)) {
  1854. /* Need to wait for migration thread (might exit: take ref). */
  1855. struct task_struct *mt = rq->migration_thread;
  1856. get_task_struct(mt);
  1857. task_rq_unlock(rq, &flags);
  1858. wake_up_process(mt);
  1859. put_task_struct(mt);
  1860. wait_for_completion(&req.done);
  1861. return;
  1862. }
  1863. out:
  1864. task_rq_unlock(rq, &flags);
  1865. }
  1866. /*
  1867. * sched_exec - execve() is a valuable balancing opportunity, because at
  1868. * this point the task has the smallest effective memory and cache footprint.
  1869. */
  1870. void sched_exec(void)
  1871. {
  1872. int new_cpu, this_cpu = get_cpu();
  1873. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1874. put_cpu();
  1875. if (new_cpu != this_cpu)
  1876. sched_migrate_task(current, new_cpu);
  1877. }
  1878. /*
  1879. * pull_task - move a task from a remote runqueue to the local runqueue.
  1880. * Both runqueues must be locked.
  1881. */
  1882. static void pull_task(struct rq *src_rq, struct prio_array *src_array,
  1883. struct task_struct *p, struct rq *this_rq,
  1884. struct prio_array *this_array, int this_cpu)
  1885. {
  1886. dequeue_task(p, src_array);
  1887. dec_nr_running(p, src_rq);
  1888. set_task_cpu(p, this_cpu);
  1889. inc_nr_running(p, this_rq);
  1890. enqueue_task(p, this_array);
  1891. p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
  1892. + this_rq->most_recent_timestamp;
  1893. /*
  1894. * Note that idle threads have a prio of MAX_PRIO, for this test
  1895. * to be always true for them.
  1896. */
  1897. if (TASK_PREEMPTS_CURR(p, this_rq))
  1898. resched_task(this_rq->curr);
  1899. }
  1900. /*
  1901. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1902. */
  1903. static
  1904. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1905. struct sched_domain *sd, enum idle_type idle,
  1906. int *all_pinned)
  1907. {
  1908. /*
  1909. * We do not migrate tasks that are:
  1910. * 1) running (obviously), or
  1911. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1912. * 3) are cache-hot on their current CPU.
  1913. */
  1914. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1915. return 0;
  1916. *all_pinned = 0;
  1917. if (task_running(rq, p))
  1918. return 0;
  1919. /*
  1920. * Aggressive migration if:
  1921. * 1) task is cache cold, or
  1922. * 2) too many balance attempts have failed.
  1923. */
  1924. if (sd->nr_balance_failed > sd->cache_nice_tries) {
  1925. #ifdef CONFIG_SCHEDSTATS
  1926. if (task_hot(p, rq->most_recent_timestamp, sd))
  1927. schedstat_inc(sd, lb_hot_gained[idle]);
  1928. #endif
  1929. return 1;
  1930. }
  1931. if (task_hot(p, rq->most_recent_timestamp, sd))
  1932. return 0;
  1933. return 1;
  1934. }
  1935. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1936. /*
  1937. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1938. * load from busiest to this_rq, as part of a balancing operation within
  1939. * "domain". Returns the number of tasks moved.
  1940. *
  1941. * Called with both runqueues locked.
  1942. */
  1943. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1944. unsigned long max_nr_move, unsigned long max_load_move,
  1945. struct sched_domain *sd, enum idle_type idle,
  1946. int *all_pinned)
  1947. {
  1948. int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
  1949. best_prio_seen, skip_for_load;
  1950. struct prio_array *array, *dst_array;
  1951. struct list_head *head, *curr;
  1952. struct task_struct *tmp;
  1953. long rem_load_move;
  1954. if (max_nr_move == 0 || max_load_move == 0)
  1955. goto out;
  1956. rem_load_move = max_load_move;
  1957. pinned = 1;
  1958. this_best_prio = rq_best_prio(this_rq);
  1959. best_prio = rq_best_prio(busiest);
  1960. /*
  1961. * Enable handling of the case where there is more than one task
  1962. * with the best priority. If the current running task is one
  1963. * of those with prio==best_prio we know it won't be moved
  1964. * and therefore it's safe to override the skip (based on load) of
  1965. * any task we find with that prio.
  1966. */
  1967. best_prio_seen = best_prio == busiest->curr->prio;
  1968. /*
  1969. * We first consider expired tasks. Those will likely not be
  1970. * executed in the near future, and they are most likely to
  1971. * be cache-cold, thus switching CPUs has the least effect
  1972. * on them.
  1973. */
  1974. if (busiest->expired->nr_active) {
  1975. array = busiest->expired;
  1976. dst_array = this_rq->expired;
  1977. } else {
  1978. array = busiest->active;
  1979. dst_array = this_rq->active;
  1980. }
  1981. new_array:
  1982. /* Start searching at priority 0: */
  1983. idx = 0;
  1984. skip_bitmap:
  1985. if (!idx)
  1986. idx = sched_find_first_bit(array->bitmap);
  1987. else
  1988. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1989. if (idx >= MAX_PRIO) {
  1990. if (array == busiest->expired && busiest->active->nr_active) {
  1991. array = busiest->active;
  1992. dst_array = this_rq->active;
  1993. goto new_array;
  1994. }
  1995. goto out;
  1996. }
  1997. head = array->queue + idx;
  1998. curr = head->prev;
  1999. skip_queue:
  2000. tmp = list_entry(curr, struct task_struct, run_list);
  2001. curr = curr->prev;
  2002. /*
  2003. * To help distribute high priority tasks accross CPUs we don't
  2004. * skip a task if it will be the highest priority task (i.e. smallest
  2005. * prio value) on its new queue regardless of its load weight
  2006. */
  2007. skip_for_load = tmp->load_weight > rem_load_move;
  2008. if (skip_for_load && idx < this_best_prio)
  2009. skip_for_load = !best_prio_seen && idx == best_prio;
  2010. if (skip_for_load ||
  2011. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  2012. best_prio_seen |= idx == best_prio;
  2013. if (curr != head)
  2014. goto skip_queue;
  2015. idx++;
  2016. goto skip_bitmap;
  2017. }
  2018. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  2019. pulled++;
  2020. rem_load_move -= tmp->load_weight;
  2021. /*
  2022. * We only want to steal up to the prescribed number of tasks
  2023. * and the prescribed amount of weighted load.
  2024. */
  2025. if (pulled < max_nr_move && rem_load_move > 0) {
  2026. if (idx < this_best_prio)
  2027. this_best_prio = idx;
  2028. if (curr != head)
  2029. goto skip_queue;
  2030. idx++;
  2031. goto skip_bitmap;
  2032. }
  2033. out:
  2034. /*
  2035. * Right now, this is the only place pull_task() is called,
  2036. * so we can safely collect pull_task() stats here rather than
  2037. * inside pull_task().
  2038. */
  2039. schedstat_add(sd, lb_gained[idle], pulled);
  2040. if (all_pinned)
  2041. *all_pinned = pinned;
  2042. return pulled;
  2043. }
  2044. /*
  2045. * find_busiest_group finds and returns the busiest CPU group within the
  2046. * domain. It calculates and returns the amount of weighted load which
  2047. * should be moved to restore balance via the imbalance parameter.
  2048. */
  2049. static struct sched_group *
  2050. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2051. unsigned long *imbalance, enum idle_type idle, int *sd_idle,
  2052. cpumask_t *cpus, int *balance)
  2053. {
  2054. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2055. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2056. unsigned long max_pull;
  2057. unsigned long busiest_load_per_task, busiest_nr_running;
  2058. unsigned long this_load_per_task, this_nr_running;
  2059. int load_idx;
  2060. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2061. int power_savings_balance = 1;
  2062. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2063. unsigned long min_nr_running = ULONG_MAX;
  2064. struct sched_group *group_min = NULL, *group_leader = NULL;
  2065. #endif
  2066. max_load = this_load = total_load = total_pwr = 0;
  2067. busiest_load_per_task = busiest_nr_running = 0;
  2068. this_load_per_task = this_nr_running = 0;
  2069. if (idle == NOT_IDLE)
  2070. load_idx = sd->busy_idx;
  2071. else if (idle == NEWLY_IDLE)
  2072. load_idx = sd->newidle_idx;
  2073. else
  2074. load_idx = sd->idle_idx;
  2075. do {
  2076. unsigned long load, group_capacity;
  2077. int local_group;
  2078. int i;
  2079. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2080. unsigned long sum_nr_running, sum_weighted_load;
  2081. local_group = cpu_isset(this_cpu, group->cpumask);
  2082. if (local_group)
  2083. balance_cpu = first_cpu(group->cpumask);
  2084. /* Tally up the load of all CPUs in the group */
  2085. sum_weighted_load = sum_nr_running = avg_load = 0;
  2086. for_each_cpu_mask(i, group->cpumask) {
  2087. struct rq *rq;
  2088. if (!cpu_isset(i, *cpus))
  2089. continue;
  2090. rq = cpu_rq(i);
  2091. if (*sd_idle && !idle_cpu(i))
  2092. *sd_idle = 0;
  2093. /* Bias balancing toward cpus of our domain */
  2094. if (local_group) {
  2095. if (idle_cpu(i) && !first_idle_cpu) {
  2096. first_idle_cpu = 1;
  2097. balance_cpu = i;
  2098. }
  2099. load = target_load(i, load_idx);
  2100. } else
  2101. load = source_load(i, load_idx);
  2102. avg_load += load;
  2103. sum_nr_running += rq->nr_running;
  2104. sum_weighted_load += rq->raw_weighted_load;
  2105. }
  2106. /*
  2107. * First idle cpu or the first cpu(busiest) in this sched group
  2108. * is eligible for doing load balancing at this and above
  2109. * domains.
  2110. */
  2111. if (local_group && balance_cpu != this_cpu && balance) {
  2112. *balance = 0;
  2113. goto ret;
  2114. }
  2115. total_load += avg_load;
  2116. total_pwr += group->__cpu_power;
  2117. /* Adjust by relative CPU power of the group */
  2118. avg_load = sg_div_cpu_power(group,
  2119. avg_load * SCHED_LOAD_SCALE);
  2120. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2121. if (local_group) {
  2122. this_load = avg_load;
  2123. this = group;
  2124. this_nr_running = sum_nr_running;
  2125. this_load_per_task = sum_weighted_load;
  2126. } else if (avg_load > max_load &&
  2127. sum_nr_running > group_capacity) {
  2128. max_load = avg_load;
  2129. busiest = group;
  2130. busiest_nr_running = sum_nr_running;
  2131. busiest_load_per_task = sum_weighted_load;
  2132. }
  2133. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2134. /*
  2135. * Busy processors will not participate in power savings
  2136. * balance.
  2137. */
  2138. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2139. goto group_next;
  2140. /*
  2141. * If the local group is idle or completely loaded
  2142. * no need to do power savings balance at this domain
  2143. */
  2144. if (local_group && (this_nr_running >= group_capacity ||
  2145. !this_nr_running))
  2146. power_savings_balance = 0;
  2147. /*
  2148. * If a group is already running at full capacity or idle,
  2149. * don't include that group in power savings calculations
  2150. */
  2151. if (!power_savings_balance || sum_nr_running >= group_capacity
  2152. || !sum_nr_running)
  2153. goto group_next;
  2154. /*
  2155. * Calculate the group which has the least non-idle load.
  2156. * This is the group from where we need to pick up the load
  2157. * for saving power
  2158. */
  2159. if ((sum_nr_running < min_nr_running) ||
  2160. (sum_nr_running == min_nr_running &&
  2161. first_cpu(group->cpumask) <
  2162. first_cpu(group_min->cpumask))) {
  2163. group_min = group;
  2164. min_nr_running = sum_nr_running;
  2165. min_load_per_task = sum_weighted_load /
  2166. sum_nr_running;
  2167. }
  2168. /*
  2169. * Calculate the group which is almost near its
  2170. * capacity but still has some space to pick up some load
  2171. * from other group and save more power
  2172. */
  2173. if (sum_nr_running <= group_capacity - 1) {
  2174. if (sum_nr_running > leader_nr_running ||
  2175. (sum_nr_running == leader_nr_running &&
  2176. first_cpu(group->cpumask) >
  2177. first_cpu(group_leader->cpumask))) {
  2178. group_leader = group;
  2179. leader_nr_running = sum_nr_running;
  2180. }
  2181. }
  2182. group_next:
  2183. #endif
  2184. group = group->next;
  2185. } while (group != sd->groups);
  2186. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2187. goto out_balanced;
  2188. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2189. if (this_load >= avg_load ||
  2190. 100*max_load <= sd->imbalance_pct*this_load)
  2191. goto out_balanced;
  2192. busiest_load_per_task /= busiest_nr_running;
  2193. /*
  2194. * We're trying to get all the cpus to the average_load, so we don't
  2195. * want to push ourselves above the average load, nor do we wish to
  2196. * reduce the max loaded cpu below the average load, as either of these
  2197. * actions would just result in more rebalancing later, and ping-pong
  2198. * tasks around. Thus we look for the minimum possible imbalance.
  2199. * Negative imbalances (*we* are more loaded than anyone else) will
  2200. * be counted as no imbalance for these purposes -- we can't fix that
  2201. * by pulling tasks to us. Be careful of negative numbers as they'll
  2202. * appear as very large values with unsigned longs.
  2203. */
  2204. if (max_load <= busiest_load_per_task)
  2205. goto out_balanced;
  2206. /*
  2207. * In the presence of smp nice balancing, certain scenarios can have
  2208. * max load less than avg load(as we skip the groups at or below
  2209. * its cpu_power, while calculating max_load..)
  2210. */
  2211. if (max_load < avg_load) {
  2212. *imbalance = 0;
  2213. goto small_imbalance;
  2214. }
  2215. /* Don't want to pull so many tasks that a group would go idle */
  2216. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2217. /* How much load to actually move to equalise the imbalance */
  2218. *imbalance = min(max_pull * busiest->__cpu_power,
  2219. (avg_load - this_load) * this->__cpu_power)
  2220. / SCHED_LOAD_SCALE;
  2221. /*
  2222. * if *imbalance is less than the average load per runnable task
  2223. * there is no gaurantee that any tasks will be moved so we'll have
  2224. * a think about bumping its value to force at least one task to be
  2225. * moved
  2226. */
  2227. if (*imbalance < busiest_load_per_task) {
  2228. unsigned long tmp, pwr_now, pwr_move;
  2229. unsigned int imbn;
  2230. small_imbalance:
  2231. pwr_move = pwr_now = 0;
  2232. imbn = 2;
  2233. if (this_nr_running) {
  2234. this_load_per_task /= this_nr_running;
  2235. if (busiest_load_per_task > this_load_per_task)
  2236. imbn = 1;
  2237. } else
  2238. this_load_per_task = SCHED_LOAD_SCALE;
  2239. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2240. *imbalance = busiest_load_per_task;
  2241. return busiest;
  2242. }
  2243. /*
  2244. * OK, we don't have enough imbalance to justify moving tasks,
  2245. * however we may be able to increase total CPU power used by
  2246. * moving them.
  2247. */
  2248. pwr_now += busiest->__cpu_power *
  2249. min(busiest_load_per_task, max_load);
  2250. pwr_now += this->__cpu_power *
  2251. min(this_load_per_task, this_load);
  2252. pwr_now /= SCHED_LOAD_SCALE;
  2253. /* Amount of load we'd subtract */
  2254. tmp = sg_div_cpu_power(busiest,
  2255. busiest_load_per_task * SCHED_LOAD_SCALE);
  2256. if (max_load > tmp)
  2257. pwr_move += busiest->__cpu_power *
  2258. min(busiest_load_per_task, max_load - tmp);
  2259. /* Amount of load we'd add */
  2260. if (max_load * busiest->__cpu_power <
  2261. busiest_load_per_task * SCHED_LOAD_SCALE)
  2262. tmp = sg_div_cpu_power(this,
  2263. max_load * busiest->__cpu_power);
  2264. else
  2265. tmp = sg_div_cpu_power(this,
  2266. busiest_load_per_task * SCHED_LOAD_SCALE);
  2267. pwr_move += this->__cpu_power *
  2268. min(this_load_per_task, this_load + tmp);
  2269. pwr_move /= SCHED_LOAD_SCALE;
  2270. /* Move if we gain throughput */
  2271. if (pwr_move <= pwr_now)
  2272. goto out_balanced;
  2273. *imbalance = busiest_load_per_task;
  2274. }
  2275. return busiest;
  2276. out_balanced:
  2277. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2278. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2279. goto ret;
  2280. if (this == group_leader && group_leader != group_min) {
  2281. *imbalance = min_load_per_task;
  2282. return group_min;
  2283. }
  2284. #endif
  2285. ret:
  2286. *imbalance = 0;
  2287. return NULL;
  2288. }
  2289. /*
  2290. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2291. */
  2292. static struct rq *
  2293. find_busiest_queue(struct sched_group *group, enum idle_type idle,
  2294. unsigned long imbalance, cpumask_t *cpus)
  2295. {
  2296. struct rq *busiest = NULL, *rq;
  2297. unsigned long max_load = 0;
  2298. int i;
  2299. for_each_cpu_mask(i, group->cpumask) {
  2300. if (!cpu_isset(i, *cpus))
  2301. continue;
  2302. rq = cpu_rq(i);
  2303. if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
  2304. continue;
  2305. if (rq->raw_weighted_load > max_load) {
  2306. max_load = rq->raw_weighted_load;
  2307. busiest = rq;
  2308. }
  2309. }
  2310. return busiest;
  2311. }
  2312. /*
  2313. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2314. * so long as it is large enough.
  2315. */
  2316. #define MAX_PINNED_INTERVAL 512
  2317. static inline unsigned long minus_1_or_zero(unsigned long n)
  2318. {
  2319. return n > 0 ? n - 1 : 0;
  2320. }
  2321. /*
  2322. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2323. * tasks if there is an imbalance.
  2324. */
  2325. static int load_balance(int this_cpu, struct rq *this_rq,
  2326. struct sched_domain *sd, enum idle_type idle,
  2327. int *balance)
  2328. {
  2329. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2330. struct sched_group *group;
  2331. unsigned long imbalance;
  2332. struct rq *busiest;
  2333. cpumask_t cpus = CPU_MASK_ALL;
  2334. unsigned long flags;
  2335. /*
  2336. * When power savings policy is enabled for the parent domain, idle
  2337. * sibling can pick up load irrespective of busy siblings. In this case,
  2338. * let the state of idle sibling percolate up as IDLE, instead of
  2339. * portraying it as NOT_IDLE.
  2340. */
  2341. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2342. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2343. sd_idle = 1;
  2344. schedstat_inc(sd, lb_cnt[idle]);
  2345. redo:
  2346. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2347. &cpus, balance);
  2348. if (*balance == 0)
  2349. goto out_balanced;
  2350. if (!group) {
  2351. schedstat_inc(sd, lb_nobusyg[idle]);
  2352. goto out_balanced;
  2353. }
  2354. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2355. if (!busiest) {
  2356. schedstat_inc(sd, lb_nobusyq[idle]);
  2357. goto out_balanced;
  2358. }
  2359. BUG_ON(busiest == this_rq);
  2360. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2361. nr_moved = 0;
  2362. if (busiest->nr_running > 1) {
  2363. /*
  2364. * Attempt to move tasks. If find_busiest_group has found
  2365. * an imbalance but busiest->nr_running <= 1, the group is
  2366. * still unbalanced. nr_moved simply stays zero, so it is
  2367. * correctly treated as an imbalance.
  2368. */
  2369. local_irq_save(flags);
  2370. double_rq_lock(this_rq, busiest);
  2371. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2372. minus_1_or_zero(busiest->nr_running),
  2373. imbalance, sd, idle, &all_pinned);
  2374. double_rq_unlock(this_rq, busiest);
  2375. local_irq_restore(flags);
  2376. /*
  2377. * some other cpu did the load balance for us.
  2378. */
  2379. if (nr_moved && this_cpu != smp_processor_id())
  2380. resched_cpu(this_cpu);
  2381. /* All tasks on this runqueue were pinned by CPU affinity */
  2382. if (unlikely(all_pinned)) {
  2383. cpu_clear(cpu_of(busiest), cpus);
  2384. if (!cpus_empty(cpus))
  2385. goto redo;
  2386. goto out_balanced;
  2387. }
  2388. }
  2389. if (!nr_moved) {
  2390. schedstat_inc(sd, lb_failed[idle]);
  2391. sd->nr_balance_failed++;
  2392. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2393. spin_lock_irqsave(&busiest->lock, flags);
  2394. /* don't kick the migration_thread, if the curr
  2395. * task on busiest cpu can't be moved to this_cpu
  2396. */
  2397. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2398. spin_unlock_irqrestore(&busiest->lock, flags);
  2399. all_pinned = 1;
  2400. goto out_one_pinned;
  2401. }
  2402. if (!busiest->active_balance) {
  2403. busiest->active_balance = 1;
  2404. busiest->push_cpu = this_cpu;
  2405. active_balance = 1;
  2406. }
  2407. spin_unlock_irqrestore(&busiest->lock, flags);
  2408. if (active_balance)
  2409. wake_up_process(busiest->migration_thread);
  2410. /*
  2411. * We've kicked active balancing, reset the failure
  2412. * counter.
  2413. */
  2414. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2415. }
  2416. } else
  2417. sd->nr_balance_failed = 0;
  2418. if (likely(!active_balance)) {
  2419. /* We were unbalanced, so reset the balancing interval */
  2420. sd->balance_interval = sd->min_interval;
  2421. } else {
  2422. /*
  2423. * If we've begun active balancing, start to back off. This
  2424. * case may not be covered by the all_pinned logic if there
  2425. * is only 1 task on the busy runqueue (because we don't call
  2426. * move_tasks).
  2427. */
  2428. if (sd->balance_interval < sd->max_interval)
  2429. sd->balance_interval *= 2;
  2430. }
  2431. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2432. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2433. return -1;
  2434. return nr_moved;
  2435. out_balanced:
  2436. schedstat_inc(sd, lb_balanced[idle]);
  2437. sd->nr_balance_failed = 0;
  2438. out_one_pinned:
  2439. /* tune up the balancing interval */
  2440. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2441. (sd->balance_interval < sd->max_interval))
  2442. sd->balance_interval *= 2;
  2443. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2444. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2445. return -1;
  2446. return 0;
  2447. }
  2448. /*
  2449. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2450. * tasks if there is an imbalance.
  2451. *
  2452. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  2453. * this_rq is locked.
  2454. */
  2455. static int
  2456. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2457. {
  2458. struct sched_group *group;
  2459. struct rq *busiest = NULL;
  2460. unsigned long imbalance;
  2461. int nr_moved = 0;
  2462. int sd_idle = 0;
  2463. cpumask_t cpus = CPU_MASK_ALL;
  2464. /*
  2465. * When power savings policy is enabled for the parent domain, idle
  2466. * sibling can pick up load irrespective of busy siblings. In this case,
  2467. * let the state of idle sibling percolate up as IDLE, instead of
  2468. * portraying it as NOT_IDLE.
  2469. */
  2470. if (sd->flags & SD_SHARE_CPUPOWER &&
  2471. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2472. sd_idle = 1;
  2473. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  2474. redo:
  2475. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
  2476. &sd_idle, &cpus, NULL);
  2477. if (!group) {
  2478. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  2479. goto out_balanced;
  2480. }
  2481. busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
  2482. &cpus);
  2483. if (!busiest) {
  2484. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  2485. goto out_balanced;
  2486. }
  2487. BUG_ON(busiest == this_rq);
  2488. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  2489. nr_moved = 0;
  2490. if (busiest->nr_running > 1) {
  2491. /* Attempt to move tasks */
  2492. double_lock_balance(this_rq, busiest);
  2493. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2494. minus_1_or_zero(busiest->nr_running),
  2495. imbalance, sd, NEWLY_IDLE, NULL);
  2496. spin_unlock(&busiest->lock);
  2497. if (!nr_moved) {
  2498. cpu_clear(cpu_of(busiest), cpus);
  2499. if (!cpus_empty(cpus))
  2500. goto redo;
  2501. }
  2502. }
  2503. if (!nr_moved) {
  2504. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  2505. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2506. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2507. return -1;
  2508. } else
  2509. sd->nr_balance_failed = 0;
  2510. return nr_moved;
  2511. out_balanced:
  2512. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  2513. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2514. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2515. return -1;
  2516. sd->nr_balance_failed = 0;
  2517. return 0;
  2518. }
  2519. /*
  2520. * idle_balance is called by schedule() if this_cpu is about to become
  2521. * idle. Attempts to pull tasks from other CPUs.
  2522. */
  2523. static void idle_balance(int this_cpu, struct rq *this_rq)
  2524. {
  2525. struct sched_domain *sd;
  2526. int pulled_task = 0;
  2527. unsigned long next_balance = jiffies + 60 * HZ;
  2528. for_each_domain(this_cpu, sd) {
  2529. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2530. /* If we've pulled tasks over stop searching: */
  2531. pulled_task = load_balance_newidle(this_cpu,
  2532. this_rq, sd);
  2533. if (time_after(next_balance,
  2534. sd->last_balance + sd->balance_interval))
  2535. next_balance = sd->last_balance
  2536. + sd->balance_interval;
  2537. if (pulled_task)
  2538. break;
  2539. }
  2540. }
  2541. if (!pulled_task)
  2542. /*
  2543. * We are going idle. next_balance may be set based on
  2544. * a busy processor. So reset next_balance.
  2545. */
  2546. this_rq->next_balance = next_balance;
  2547. }
  2548. /*
  2549. * active_load_balance is run by migration threads. It pushes running tasks
  2550. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2551. * running on each physical CPU where possible, and avoids physical /
  2552. * logical imbalances.
  2553. *
  2554. * Called with busiest_rq locked.
  2555. */
  2556. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2557. {
  2558. int target_cpu = busiest_rq->push_cpu;
  2559. struct sched_domain *sd;
  2560. struct rq *target_rq;
  2561. /* Is there any task to move? */
  2562. if (busiest_rq->nr_running <= 1)
  2563. return;
  2564. target_rq = cpu_rq(target_cpu);
  2565. /*
  2566. * This condition is "impossible", if it occurs
  2567. * we need to fix it. Originally reported by
  2568. * Bjorn Helgaas on a 128-cpu setup.
  2569. */
  2570. BUG_ON(busiest_rq == target_rq);
  2571. /* move a task from busiest_rq to target_rq */
  2572. double_lock_balance(busiest_rq, target_rq);
  2573. /* Search for an sd spanning us and the target CPU. */
  2574. for_each_domain(target_cpu, sd) {
  2575. if ((sd->flags & SD_LOAD_BALANCE) &&
  2576. cpu_isset(busiest_cpu, sd->span))
  2577. break;
  2578. }
  2579. if (likely(sd)) {
  2580. schedstat_inc(sd, alb_cnt);
  2581. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2582. RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
  2583. NULL))
  2584. schedstat_inc(sd, alb_pushed);
  2585. else
  2586. schedstat_inc(sd, alb_failed);
  2587. }
  2588. spin_unlock(&target_rq->lock);
  2589. }
  2590. static void update_load(struct rq *this_rq)
  2591. {
  2592. unsigned long this_load;
  2593. unsigned int i, scale;
  2594. this_load = this_rq->raw_weighted_load;
  2595. /* Update our load: */
  2596. for (i = 0, scale = 1; i < 3; i++, scale += scale) {
  2597. unsigned long old_load, new_load;
  2598. /* scale is effectively 1 << i now, and >> i divides by scale */
  2599. old_load = this_rq->cpu_load[i];
  2600. new_load = this_load;
  2601. /*
  2602. * Round up the averaging division if load is increasing. This
  2603. * prevents us from getting stuck on 9 if the load is 10, for
  2604. * example.
  2605. */
  2606. if (new_load > old_load)
  2607. new_load += scale-1;
  2608. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2609. }
  2610. }
  2611. #ifdef CONFIG_NO_HZ
  2612. static struct {
  2613. atomic_t load_balancer;
  2614. cpumask_t cpu_mask;
  2615. } nohz ____cacheline_aligned = {
  2616. .load_balancer = ATOMIC_INIT(-1),
  2617. .cpu_mask = CPU_MASK_NONE,
  2618. };
  2619. /*
  2620. * This routine will try to nominate the ilb (idle load balancing)
  2621. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2622. * load balancing on behalf of all those cpus. If all the cpus in the system
  2623. * go into this tickless mode, then there will be no ilb owner (as there is
  2624. * no need for one) and all the cpus will sleep till the next wakeup event
  2625. * arrives...
  2626. *
  2627. * For the ilb owner, tick is not stopped. And this tick will be used
  2628. * for idle load balancing. ilb owner will still be part of
  2629. * nohz.cpu_mask..
  2630. *
  2631. * While stopping the tick, this cpu will become the ilb owner if there
  2632. * is no other owner. And will be the owner till that cpu becomes busy
  2633. * or if all cpus in the system stop their ticks at which point
  2634. * there is no need for ilb owner.
  2635. *
  2636. * When the ilb owner becomes busy, it nominates another owner, during the
  2637. * next busy scheduler_tick()
  2638. */
  2639. int select_nohz_load_balancer(int stop_tick)
  2640. {
  2641. int cpu = smp_processor_id();
  2642. if (stop_tick) {
  2643. cpu_set(cpu, nohz.cpu_mask);
  2644. cpu_rq(cpu)->in_nohz_recently = 1;
  2645. /*
  2646. * If we are going offline and still the leader, give up!
  2647. */
  2648. if (cpu_is_offline(cpu) &&
  2649. atomic_read(&nohz.load_balancer) == cpu) {
  2650. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2651. BUG();
  2652. return 0;
  2653. }
  2654. /* time for ilb owner also to sleep */
  2655. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2656. if (atomic_read(&nohz.load_balancer) == cpu)
  2657. atomic_set(&nohz.load_balancer, -1);
  2658. return 0;
  2659. }
  2660. if (atomic_read(&nohz.load_balancer) == -1) {
  2661. /* make me the ilb owner */
  2662. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2663. return 1;
  2664. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2665. return 1;
  2666. } else {
  2667. if (!cpu_isset(cpu, nohz.cpu_mask))
  2668. return 0;
  2669. cpu_clear(cpu, nohz.cpu_mask);
  2670. if (atomic_read(&nohz.load_balancer) == cpu)
  2671. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2672. BUG();
  2673. }
  2674. return 0;
  2675. }
  2676. #endif
  2677. static DEFINE_SPINLOCK(balancing);
  2678. /*
  2679. * It checks each scheduling domain to see if it is due to be balanced,
  2680. * and initiates a balancing operation if so.
  2681. *
  2682. * Balancing parameters are set up in arch_init_sched_domains.
  2683. */
  2684. static inline void rebalance_domains(int cpu, enum idle_type idle)
  2685. {
  2686. int balance = 1;
  2687. struct rq *rq = cpu_rq(cpu);
  2688. unsigned long interval;
  2689. struct sched_domain *sd;
  2690. /* Earliest time when we have to do rebalance again */
  2691. unsigned long next_balance = jiffies + 60*HZ;
  2692. for_each_domain(cpu, sd) {
  2693. if (!(sd->flags & SD_LOAD_BALANCE))
  2694. continue;
  2695. interval = sd->balance_interval;
  2696. if (idle != SCHED_IDLE)
  2697. interval *= sd->busy_factor;
  2698. /* scale ms to jiffies */
  2699. interval = msecs_to_jiffies(interval);
  2700. if (unlikely(!interval))
  2701. interval = 1;
  2702. if (sd->flags & SD_SERIALIZE) {
  2703. if (!spin_trylock(&balancing))
  2704. goto out;
  2705. }
  2706. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2707. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2708. /*
  2709. * We've pulled tasks over so either we're no
  2710. * longer idle, or one of our SMT siblings is
  2711. * not idle.
  2712. */
  2713. idle = NOT_IDLE;
  2714. }
  2715. sd->last_balance = jiffies;
  2716. }
  2717. if (sd->flags & SD_SERIALIZE)
  2718. spin_unlock(&balancing);
  2719. out:
  2720. if (time_after(next_balance, sd->last_balance + interval))
  2721. next_balance = sd->last_balance + interval;
  2722. /*
  2723. * Stop the load balance at this level. There is another
  2724. * CPU in our sched group which is doing load balancing more
  2725. * actively.
  2726. */
  2727. if (!balance)
  2728. break;
  2729. }
  2730. rq->next_balance = next_balance;
  2731. }
  2732. /*
  2733. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2734. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2735. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2736. */
  2737. static void run_rebalance_domains(struct softirq_action *h)
  2738. {
  2739. int local_cpu = smp_processor_id();
  2740. struct rq *local_rq = cpu_rq(local_cpu);
  2741. enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
  2742. rebalance_domains(local_cpu, idle);
  2743. #ifdef CONFIG_NO_HZ
  2744. /*
  2745. * If this cpu is the owner for idle load balancing, then do the
  2746. * balancing on behalf of the other idle cpus whose ticks are
  2747. * stopped.
  2748. */
  2749. if (local_rq->idle_at_tick &&
  2750. atomic_read(&nohz.load_balancer) == local_cpu) {
  2751. cpumask_t cpus = nohz.cpu_mask;
  2752. struct rq *rq;
  2753. int balance_cpu;
  2754. cpu_clear(local_cpu, cpus);
  2755. for_each_cpu_mask(balance_cpu, cpus) {
  2756. /*
  2757. * If this cpu gets work to do, stop the load balancing
  2758. * work being done for other cpus. Next load
  2759. * balancing owner will pick it up.
  2760. */
  2761. if (need_resched())
  2762. break;
  2763. rebalance_domains(balance_cpu, SCHED_IDLE);
  2764. rq = cpu_rq(balance_cpu);
  2765. if (time_after(local_rq->next_balance, rq->next_balance))
  2766. local_rq->next_balance = rq->next_balance;
  2767. }
  2768. }
  2769. #endif
  2770. }
  2771. /*
  2772. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2773. *
  2774. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2775. * idle load balancing owner or decide to stop the periodic load balancing,
  2776. * if the whole system is idle.
  2777. */
  2778. static inline void trigger_load_balance(int cpu)
  2779. {
  2780. struct rq *rq = cpu_rq(cpu);
  2781. #ifdef CONFIG_NO_HZ
  2782. /*
  2783. * If we were in the nohz mode recently and busy at the current
  2784. * scheduler tick, then check if we need to nominate new idle
  2785. * load balancer.
  2786. */
  2787. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2788. rq->in_nohz_recently = 0;
  2789. if (atomic_read(&nohz.load_balancer) == cpu) {
  2790. cpu_clear(cpu, nohz.cpu_mask);
  2791. atomic_set(&nohz.load_balancer, -1);
  2792. }
  2793. if (atomic_read(&nohz.load_balancer) == -1) {
  2794. /*
  2795. * simple selection for now: Nominate the
  2796. * first cpu in the nohz list to be the next
  2797. * ilb owner.
  2798. *
  2799. * TBD: Traverse the sched domains and nominate
  2800. * the nearest cpu in the nohz.cpu_mask.
  2801. */
  2802. int ilb = first_cpu(nohz.cpu_mask);
  2803. if (ilb != NR_CPUS)
  2804. resched_cpu(ilb);
  2805. }
  2806. }
  2807. /*
  2808. * If this cpu is idle and doing idle load balancing for all the
  2809. * cpus with ticks stopped, is it time for that to stop?
  2810. */
  2811. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2812. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2813. resched_cpu(cpu);
  2814. return;
  2815. }
  2816. /*
  2817. * If this cpu is idle and the idle load balancing is done by
  2818. * someone else, then no need raise the SCHED_SOFTIRQ
  2819. */
  2820. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2821. cpu_isset(cpu, nohz.cpu_mask))
  2822. return;
  2823. #endif
  2824. if (time_after_eq(jiffies, rq->next_balance))
  2825. raise_softirq(SCHED_SOFTIRQ);
  2826. }
  2827. #else
  2828. /*
  2829. * on UP we do not need to balance between CPUs:
  2830. */
  2831. static inline void idle_balance(int cpu, struct rq *rq)
  2832. {
  2833. }
  2834. #endif
  2835. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2836. EXPORT_PER_CPU_SYMBOL(kstat);
  2837. /*
  2838. * This is called on clock ticks and on context switches.
  2839. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2840. */
  2841. static inline void
  2842. update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
  2843. {
  2844. p->sched_time += now - p->last_ran;
  2845. p->last_ran = rq->most_recent_timestamp = now;
  2846. }
  2847. /*
  2848. * Return current->sched_time plus any more ns on the sched_clock
  2849. * that have not yet been banked.
  2850. */
  2851. unsigned long long current_sched_time(const struct task_struct *p)
  2852. {
  2853. unsigned long long ns;
  2854. unsigned long flags;
  2855. local_irq_save(flags);
  2856. ns = p->sched_time + sched_clock() - p->last_ran;
  2857. local_irq_restore(flags);
  2858. return ns;
  2859. }
  2860. /*
  2861. * We place interactive tasks back into the active array, if possible.
  2862. *
  2863. * To guarantee that this does not starve expired tasks we ignore the
  2864. * interactivity of a task if the first expired task had to wait more
  2865. * than a 'reasonable' amount of time. This deadline timeout is
  2866. * load-dependent, as the frequency of array switched decreases with
  2867. * increasing number of running tasks. We also ignore the interactivity
  2868. * if a better static_prio task has expired:
  2869. */
  2870. static inline int expired_starving(struct rq *rq)
  2871. {
  2872. if (rq->curr->static_prio > rq->best_expired_prio)
  2873. return 1;
  2874. if (!STARVATION_LIMIT || !rq->expired_timestamp)
  2875. return 0;
  2876. if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
  2877. return 1;
  2878. return 0;
  2879. }
  2880. /*
  2881. * Account user cpu time to a process.
  2882. * @p: the process that the cpu time gets accounted to
  2883. * @hardirq_offset: the offset to subtract from hardirq_count()
  2884. * @cputime: the cpu time spent in user space since the last update
  2885. */
  2886. void account_user_time(struct task_struct *p, cputime_t cputime)
  2887. {
  2888. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2889. cputime64_t tmp;
  2890. p->utime = cputime_add(p->utime, cputime);
  2891. /* Add user time to cpustat. */
  2892. tmp = cputime_to_cputime64(cputime);
  2893. if (TASK_NICE(p) > 0)
  2894. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2895. else
  2896. cpustat->user = cputime64_add(cpustat->user, tmp);
  2897. }
  2898. /*
  2899. * Account system cpu time to a process.
  2900. * @p: the process that the cpu time gets accounted to
  2901. * @hardirq_offset: the offset to subtract from hardirq_count()
  2902. * @cputime: the cpu time spent in kernel space since the last update
  2903. */
  2904. void account_system_time(struct task_struct *p, int hardirq_offset,
  2905. cputime_t cputime)
  2906. {
  2907. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2908. struct rq *rq = this_rq();
  2909. cputime64_t tmp;
  2910. p->stime = cputime_add(p->stime, cputime);
  2911. /* Add system time to cpustat. */
  2912. tmp = cputime_to_cputime64(cputime);
  2913. if (hardirq_count() - hardirq_offset)
  2914. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2915. else if (softirq_count())
  2916. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2917. else if (p != rq->idle)
  2918. cpustat->system = cputime64_add(cpustat->system, tmp);
  2919. else if (atomic_read(&rq->nr_iowait) > 0)
  2920. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2921. else
  2922. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2923. /* Account for system time used */
  2924. acct_update_integrals(p);
  2925. }
  2926. /*
  2927. * Account for involuntary wait time.
  2928. * @p: the process from which the cpu time has been stolen
  2929. * @steal: the cpu time spent in involuntary wait
  2930. */
  2931. void account_steal_time(struct task_struct *p, cputime_t steal)
  2932. {
  2933. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2934. cputime64_t tmp = cputime_to_cputime64(steal);
  2935. struct rq *rq = this_rq();
  2936. if (p == rq->idle) {
  2937. p->stime = cputime_add(p->stime, steal);
  2938. if (atomic_read(&rq->nr_iowait) > 0)
  2939. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2940. else
  2941. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2942. } else
  2943. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2944. }
  2945. static void task_running_tick(struct rq *rq, struct task_struct *p)
  2946. {
  2947. if (p->array != rq->active) {
  2948. /* Task has expired but was not scheduled yet */
  2949. set_tsk_need_resched(p);
  2950. return;
  2951. }
  2952. spin_lock(&rq->lock);
  2953. /*
  2954. * The task was running during this tick - update the
  2955. * time slice counter. Note: we do not update a thread's
  2956. * priority until it either goes to sleep or uses up its
  2957. * timeslice. This makes it possible for interactive tasks
  2958. * to use up their timeslices at their highest priority levels.
  2959. */
  2960. if (rt_task(p)) {
  2961. /*
  2962. * RR tasks need a special form of timeslice management.
  2963. * FIFO tasks have no timeslices.
  2964. */
  2965. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2966. p->time_slice = task_timeslice(p);
  2967. p->first_time_slice = 0;
  2968. set_tsk_need_resched(p);
  2969. /* put it at the end of the queue: */
  2970. requeue_task(p, rq->active);
  2971. }
  2972. goto out_unlock;
  2973. }
  2974. if (!--p->time_slice) {
  2975. dequeue_task(p, rq->active);
  2976. set_tsk_need_resched(p);
  2977. p->prio = effective_prio(p);
  2978. p->time_slice = task_timeslice(p);
  2979. p->first_time_slice = 0;
  2980. if (!rq->expired_timestamp)
  2981. rq->expired_timestamp = jiffies;
  2982. if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
  2983. enqueue_task(p, rq->expired);
  2984. if (p->static_prio < rq->best_expired_prio)
  2985. rq->best_expired_prio = p->static_prio;
  2986. } else
  2987. enqueue_task(p, rq->active);
  2988. } else {
  2989. /*
  2990. * Prevent a too long timeslice allowing a task to monopolize
  2991. * the CPU. We do this by splitting up the timeslice into
  2992. * smaller pieces.
  2993. *
  2994. * Note: this does not mean the task's timeslices expire or
  2995. * get lost in any way, they just might be preempted by
  2996. * another task of equal priority. (one with higher
  2997. * priority would have preempted this task already.) We
  2998. * requeue this task to the end of the list on this priority
  2999. * level, which is in essence a round-robin of tasks with
  3000. * equal priority.
  3001. *
  3002. * This only applies to tasks in the interactive
  3003. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  3004. */
  3005. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  3006. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  3007. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  3008. (p->array == rq->active)) {
  3009. requeue_task(p, rq->active);
  3010. set_tsk_need_resched(p);
  3011. }
  3012. }
  3013. out_unlock:
  3014. spin_unlock(&rq->lock);
  3015. }
  3016. /*
  3017. * This function gets called by the timer code, with HZ frequency.
  3018. * We call it with interrupts disabled.
  3019. *
  3020. * It also gets called by the fork code, when changing the parent's
  3021. * timeslices.
  3022. */
  3023. void scheduler_tick(void)
  3024. {
  3025. unsigned long long now = sched_clock();
  3026. struct task_struct *p = current;
  3027. int cpu = smp_processor_id();
  3028. int idle_at_tick = idle_cpu(cpu);
  3029. struct rq *rq = cpu_rq(cpu);
  3030. update_cpu_clock(p, rq, now);
  3031. if (!idle_at_tick)
  3032. task_running_tick(rq, p);
  3033. #ifdef CONFIG_SMP
  3034. update_load(rq);
  3035. rq->idle_at_tick = idle_at_tick;
  3036. trigger_load_balance(cpu);
  3037. #endif
  3038. }
  3039. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3040. void fastcall add_preempt_count(int val)
  3041. {
  3042. /*
  3043. * Underflow?
  3044. */
  3045. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3046. return;
  3047. preempt_count() += val;
  3048. /*
  3049. * Spinlock count overflowing soon?
  3050. */
  3051. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3052. PREEMPT_MASK - 10);
  3053. }
  3054. EXPORT_SYMBOL(add_preempt_count);
  3055. void fastcall sub_preempt_count(int val)
  3056. {
  3057. /*
  3058. * Underflow?
  3059. */
  3060. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3061. return;
  3062. /*
  3063. * Is the spinlock portion underflowing?
  3064. */
  3065. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3066. !(preempt_count() & PREEMPT_MASK)))
  3067. return;
  3068. preempt_count() -= val;
  3069. }
  3070. EXPORT_SYMBOL(sub_preempt_count);
  3071. #endif
  3072. static inline int interactive_sleep(enum sleep_type sleep_type)
  3073. {
  3074. return (sleep_type == SLEEP_INTERACTIVE ||
  3075. sleep_type == SLEEP_INTERRUPTED);
  3076. }
  3077. /*
  3078. * schedule() is the main scheduler function.
  3079. */
  3080. asmlinkage void __sched schedule(void)
  3081. {
  3082. struct task_struct *prev, *next;
  3083. struct prio_array *array;
  3084. struct list_head *queue;
  3085. unsigned long long now;
  3086. unsigned long run_time;
  3087. int cpu, idx, new_prio;
  3088. long *switch_count;
  3089. struct rq *rq;
  3090. /*
  3091. * Test if we are atomic. Since do_exit() needs to call into
  3092. * schedule() atomically, we ignore that path for now.
  3093. * Otherwise, whine if we are scheduling when we should not be.
  3094. */
  3095. if (unlikely(in_atomic() && !current->exit_state)) {
  3096. printk(KERN_ERR "BUG: scheduling while atomic: "
  3097. "%s/0x%08x/%d\n",
  3098. current->comm, preempt_count(), current->pid);
  3099. debug_show_held_locks(current);
  3100. if (irqs_disabled())
  3101. print_irqtrace_events(current);
  3102. dump_stack();
  3103. }
  3104. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3105. need_resched:
  3106. preempt_disable();
  3107. prev = current;
  3108. release_kernel_lock(prev);
  3109. need_resched_nonpreemptible:
  3110. rq = this_rq();
  3111. /*
  3112. * The idle thread is not allowed to schedule!
  3113. * Remove this check after it has been exercised a bit.
  3114. */
  3115. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  3116. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  3117. dump_stack();
  3118. }
  3119. schedstat_inc(rq, sched_cnt);
  3120. now = sched_clock();
  3121. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  3122. run_time = now - prev->timestamp;
  3123. if (unlikely((long long)(now - prev->timestamp) < 0))
  3124. run_time = 0;
  3125. } else
  3126. run_time = NS_MAX_SLEEP_AVG;
  3127. /*
  3128. * Tasks charged proportionately less run_time at high sleep_avg to
  3129. * delay them losing their interactive status
  3130. */
  3131. run_time /= (CURRENT_BONUS(prev) ? : 1);
  3132. spin_lock_irq(&rq->lock);
  3133. switch_count = &prev->nivcsw;
  3134. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3135. switch_count = &prev->nvcsw;
  3136. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3137. unlikely(signal_pending(prev))))
  3138. prev->state = TASK_RUNNING;
  3139. else {
  3140. if (prev->state == TASK_UNINTERRUPTIBLE)
  3141. rq->nr_uninterruptible++;
  3142. deactivate_task(prev, rq);
  3143. }
  3144. }
  3145. cpu = smp_processor_id();
  3146. if (unlikely(!rq->nr_running)) {
  3147. idle_balance(cpu, rq);
  3148. if (!rq->nr_running) {
  3149. next = rq->idle;
  3150. rq->expired_timestamp = 0;
  3151. goto switch_tasks;
  3152. }
  3153. }
  3154. array = rq->active;
  3155. if (unlikely(!array->nr_active)) {
  3156. /*
  3157. * Switch the active and expired arrays.
  3158. */
  3159. schedstat_inc(rq, sched_switch);
  3160. rq->active = rq->expired;
  3161. rq->expired = array;
  3162. array = rq->active;
  3163. rq->expired_timestamp = 0;
  3164. rq->best_expired_prio = MAX_PRIO;
  3165. }
  3166. idx = sched_find_first_bit(array->bitmap);
  3167. queue = array->queue + idx;
  3168. next = list_entry(queue->next, struct task_struct, run_list);
  3169. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  3170. unsigned long long delta = now - next->timestamp;
  3171. if (unlikely((long long)(now - next->timestamp) < 0))
  3172. delta = 0;
  3173. if (next->sleep_type == SLEEP_INTERACTIVE)
  3174. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  3175. array = next->array;
  3176. new_prio = recalc_task_prio(next, next->timestamp + delta);
  3177. if (unlikely(next->prio != new_prio)) {
  3178. dequeue_task(next, array);
  3179. next->prio = new_prio;
  3180. enqueue_task(next, array);
  3181. }
  3182. }
  3183. next->sleep_type = SLEEP_NORMAL;
  3184. switch_tasks:
  3185. if (next == rq->idle)
  3186. schedstat_inc(rq, sched_goidle);
  3187. prefetch(next);
  3188. prefetch_stack(next);
  3189. clear_tsk_need_resched(prev);
  3190. rcu_qsctr_inc(task_cpu(prev));
  3191. update_cpu_clock(prev, rq, now);
  3192. prev->sleep_avg -= run_time;
  3193. if ((long)prev->sleep_avg <= 0)
  3194. prev->sleep_avg = 0;
  3195. prev->timestamp = prev->last_ran = now;
  3196. sched_info_switch(prev, next);
  3197. if (likely(prev != next)) {
  3198. next->timestamp = next->last_ran = now;
  3199. rq->nr_switches++;
  3200. rq->curr = next;
  3201. ++*switch_count;
  3202. prepare_task_switch(rq, next);
  3203. prev = context_switch(rq, prev, next);
  3204. barrier();
  3205. /*
  3206. * this_rq must be evaluated again because prev may have moved
  3207. * CPUs since it called schedule(), thus the 'rq' on its stack
  3208. * frame will be invalid.
  3209. */
  3210. finish_task_switch(this_rq(), prev);
  3211. } else
  3212. spin_unlock_irq(&rq->lock);
  3213. prev = current;
  3214. if (unlikely(reacquire_kernel_lock(prev) < 0))
  3215. goto need_resched_nonpreemptible;
  3216. preempt_enable_no_resched();
  3217. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3218. goto need_resched;
  3219. }
  3220. EXPORT_SYMBOL(schedule);
  3221. #ifdef CONFIG_PREEMPT
  3222. /*
  3223. * this is the entry point to schedule() from in-kernel preemption
  3224. * off of preempt_enable. Kernel preemptions off return from interrupt
  3225. * occur there and call schedule directly.
  3226. */
  3227. asmlinkage void __sched preempt_schedule(void)
  3228. {
  3229. struct thread_info *ti = current_thread_info();
  3230. #ifdef CONFIG_PREEMPT_BKL
  3231. struct task_struct *task = current;
  3232. int saved_lock_depth;
  3233. #endif
  3234. /*
  3235. * If there is a non-zero preempt_count or interrupts are disabled,
  3236. * we do not want to preempt the current task. Just return..
  3237. */
  3238. if (likely(ti->preempt_count || irqs_disabled()))
  3239. return;
  3240. need_resched:
  3241. add_preempt_count(PREEMPT_ACTIVE);
  3242. /*
  3243. * We keep the big kernel semaphore locked, but we
  3244. * clear ->lock_depth so that schedule() doesnt
  3245. * auto-release the semaphore:
  3246. */
  3247. #ifdef CONFIG_PREEMPT_BKL
  3248. saved_lock_depth = task->lock_depth;
  3249. task->lock_depth = -1;
  3250. #endif
  3251. schedule();
  3252. #ifdef CONFIG_PREEMPT_BKL
  3253. task->lock_depth = saved_lock_depth;
  3254. #endif
  3255. sub_preempt_count(PREEMPT_ACTIVE);
  3256. /* we could miss a preemption opportunity between schedule and now */
  3257. barrier();
  3258. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3259. goto need_resched;
  3260. }
  3261. EXPORT_SYMBOL(preempt_schedule);
  3262. /*
  3263. * this is the entry point to schedule() from kernel preemption
  3264. * off of irq context.
  3265. * Note, that this is called and return with irqs disabled. This will
  3266. * protect us against recursive calling from irq.
  3267. */
  3268. asmlinkage void __sched preempt_schedule_irq(void)
  3269. {
  3270. struct thread_info *ti = current_thread_info();
  3271. #ifdef CONFIG_PREEMPT_BKL
  3272. struct task_struct *task = current;
  3273. int saved_lock_depth;
  3274. #endif
  3275. /* Catch callers which need to be fixed */
  3276. BUG_ON(ti->preempt_count || !irqs_disabled());
  3277. need_resched:
  3278. add_preempt_count(PREEMPT_ACTIVE);
  3279. /*
  3280. * We keep the big kernel semaphore locked, but we
  3281. * clear ->lock_depth so that schedule() doesnt
  3282. * auto-release the semaphore:
  3283. */
  3284. #ifdef CONFIG_PREEMPT_BKL
  3285. saved_lock_depth = task->lock_depth;
  3286. task->lock_depth = -1;
  3287. #endif
  3288. local_irq_enable();
  3289. schedule();
  3290. local_irq_disable();
  3291. #ifdef CONFIG_PREEMPT_BKL
  3292. task->lock_depth = saved_lock_depth;
  3293. #endif
  3294. sub_preempt_count(PREEMPT_ACTIVE);
  3295. /* we could miss a preemption opportunity between schedule and now */
  3296. barrier();
  3297. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3298. goto need_resched;
  3299. }
  3300. #endif /* CONFIG_PREEMPT */
  3301. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3302. void *key)
  3303. {
  3304. return try_to_wake_up(curr->private, mode, sync);
  3305. }
  3306. EXPORT_SYMBOL(default_wake_function);
  3307. /*
  3308. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3309. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3310. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3311. *
  3312. * There are circumstances in which we can try to wake a task which has already
  3313. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3314. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3315. */
  3316. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3317. int nr_exclusive, int sync, void *key)
  3318. {
  3319. struct list_head *tmp, *next;
  3320. list_for_each_safe(tmp, next, &q->task_list) {
  3321. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3322. unsigned flags = curr->flags;
  3323. if (curr->func(curr, mode, sync, key) &&
  3324. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3325. break;
  3326. }
  3327. }
  3328. /**
  3329. * __wake_up - wake up threads blocked on a waitqueue.
  3330. * @q: the waitqueue
  3331. * @mode: which threads
  3332. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3333. * @key: is directly passed to the wakeup function
  3334. */
  3335. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3336. int nr_exclusive, void *key)
  3337. {
  3338. unsigned long flags;
  3339. spin_lock_irqsave(&q->lock, flags);
  3340. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3341. spin_unlock_irqrestore(&q->lock, flags);
  3342. }
  3343. EXPORT_SYMBOL(__wake_up);
  3344. /*
  3345. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3346. */
  3347. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3348. {
  3349. __wake_up_common(q, mode, 1, 0, NULL);
  3350. }
  3351. /**
  3352. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3353. * @q: the waitqueue
  3354. * @mode: which threads
  3355. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3356. *
  3357. * The sync wakeup differs that the waker knows that it will schedule
  3358. * away soon, so while the target thread will be woken up, it will not
  3359. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3360. * with each other. This can prevent needless bouncing between CPUs.
  3361. *
  3362. * On UP it can prevent extra preemption.
  3363. */
  3364. void fastcall
  3365. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3366. {
  3367. unsigned long flags;
  3368. int sync = 1;
  3369. if (unlikely(!q))
  3370. return;
  3371. if (unlikely(!nr_exclusive))
  3372. sync = 0;
  3373. spin_lock_irqsave(&q->lock, flags);
  3374. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3375. spin_unlock_irqrestore(&q->lock, flags);
  3376. }
  3377. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3378. void fastcall complete(struct completion *x)
  3379. {
  3380. unsigned long flags;
  3381. spin_lock_irqsave(&x->wait.lock, flags);
  3382. x->done++;
  3383. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3384. 1, 0, NULL);
  3385. spin_unlock_irqrestore(&x->wait.lock, flags);
  3386. }
  3387. EXPORT_SYMBOL(complete);
  3388. void fastcall complete_all(struct completion *x)
  3389. {
  3390. unsigned long flags;
  3391. spin_lock_irqsave(&x->wait.lock, flags);
  3392. x->done += UINT_MAX/2;
  3393. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3394. 0, 0, NULL);
  3395. spin_unlock_irqrestore(&x->wait.lock, flags);
  3396. }
  3397. EXPORT_SYMBOL(complete_all);
  3398. void fastcall __sched wait_for_completion(struct completion *x)
  3399. {
  3400. might_sleep();
  3401. spin_lock_irq(&x->wait.lock);
  3402. if (!x->done) {
  3403. DECLARE_WAITQUEUE(wait, current);
  3404. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3405. __add_wait_queue_tail(&x->wait, &wait);
  3406. do {
  3407. __set_current_state(TASK_UNINTERRUPTIBLE);
  3408. spin_unlock_irq(&x->wait.lock);
  3409. schedule();
  3410. spin_lock_irq(&x->wait.lock);
  3411. } while (!x->done);
  3412. __remove_wait_queue(&x->wait, &wait);
  3413. }
  3414. x->done--;
  3415. spin_unlock_irq(&x->wait.lock);
  3416. }
  3417. EXPORT_SYMBOL(wait_for_completion);
  3418. unsigned long fastcall __sched
  3419. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3420. {
  3421. might_sleep();
  3422. spin_lock_irq(&x->wait.lock);
  3423. if (!x->done) {
  3424. DECLARE_WAITQUEUE(wait, current);
  3425. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3426. __add_wait_queue_tail(&x->wait, &wait);
  3427. do {
  3428. __set_current_state(TASK_UNINTERRUPTIBLE);
  3429. spin_unlock_irq(&x->wait.lock);
  3430. timeout = schedule_timeout(timeout);
  3431. spin_lock_irq(&x->wait.lock);
  3432. if (!timeout) {
  3433. __remove_wait_queue(&x->wait, &wait);
  3434. goto out;
  3435. }
  3436. } while (!x->done);
  3437. __remove_wait_queue(&x->wait, &wait);
  3438. }
  3439. x->done--;
  3440. out:
  3441. spin_unlock_irq(&x->wait.lock);
  3442. return timeout;
  3443. }
  3444. EXPORT_SYMBOL(wait_for_completion_timeout);
  3445. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3446. {
  3447. int ret = 0;
  3448. might_sleep();
  3449. spin_lock_irq(&x->wait.lock);
  3450. if (!x->done) {
  3451. DECLARE_WAITQUEUE(wait, current);
  3452. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3453. __add_wait_queue_tail(&x->wait, &wait);
  3454. do {
  3455. if (signal_pending(current)) {
  3456. ret = -ERESTARTSYS;
  3457. __remove_wait_queue(&x->wait, &wait);
  3458. goto out;
  3459. }
  3460. __set_current_state(TASK_INTERRUPTIBLE);
  3461. spin_unlock_irq(&x->wait.lock);
  3462. schedule();
  3463. spin_lock_irq(&x->wait.lock);
  3464. } while (!x->done);
  3465. __remove_wait_queue(&x->wait, &wait);
  3466. }
  3467. x->done--;
  3468. out:
  3469. spin_unlock_irq(&x->wait.lock);
  3470. return ret;
  3471. }
  3472. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3473. unsigned long fastcall __sched
  3474. wait_for_completion_interruptible_timeout(struct completion *x,
  3475. unsigned long timeout)
  3476. {
  3477. might_sleep();
  3478. spin_lock_irq(&x->wait.lock);
  3479. if (!x->done) {
  3480. DECLARE_WAITQUEUE(wait, current);
  3481. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3482. __add_wait_queue_tail(&x->wait, &wait);
  3483. do {
  3484. if (signal_pending(current)) {
  3485. timeout = -ERESTARTSYS;
  3486. __remove_wait_queue(&x->wait, &wait);
  3487. goto out;
  3488. }
  3489. __set_current_state(TASK_INTERRUPTIBLE);
  3490. spin_unlock_irq(&x->wait.lock);
  3491. timeout = schedule_timeout(timeout);
  3492. spin_lock_irq(&x->wait.lock);
  3493. if (!timeout) {
  3494. __remove_wait_queue(&x->wait, &wait);
  3495. goto out;
  3496. }
  3497. } while (!x->done);
  3498. __remove_wait_queue(&x->wait, &wait);
  3499. }
  3500. x->done--;
  3501. out:
  3502. spin_unlock_irq(&x->wait.lock);
  3503. return timeout;
  3504. }
  3505. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3506. #define SLEEP_ON_VAR \
  3507. unsigned long flags; \
  3508. wait_queue_t wait; \
  3509. init_waitqueue_entry(&wait, current);
  3510. #define SLEEP_ON_HEAD \
  3511. spin_lock_irqsave(&q->lock,flags); \
  3512. __add_wait_queue(q, &wait); \
  3513. spin_unlock(&q->lock);
  3514. #define SLEEP_ON_TAIL \
  3515. spin_lock_irq(&q->lock); \
  3516. __remove_wait_queue(q, &wait); \
  3517. spin_unlock_irqrestore(&q->lock, flags);
  3518. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3519. {
  3520. SLEEP_ON_VAR
  3521. current->state = TASK_INTERRUPTIBLE;
  3522. SLEEP_ON_HEAD
  3523. schedule();
  3524. SLEEP_ON_TAIL
  3525. }
  3526. EXPORT_SYMBOL(interruptible_sleep_on);
  3527. long fastcall __sched
  3528. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3529. {
  3530. SLEEP_ON_VAR
  3531. current->state = TASK_INTERRUPTIBLE;
  3532. SLEEP_ON_HEAD
  3533. timeout = schedule_timeout(timeout);
  3534. SLEEP_ON_TAIL
  3535. return timeout;
  3536. }
  3537. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3538. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3539. {
  3540. SLEEP_ON_VAR
  3541. current->state = TASK_UNINTERRUPTIBLE;
  3542. SLEEP_ON_HEAD
  3543. schedule();
  3544. SLEEP_ON_TAIL
  3545. }
  3546. EXPORT_SYMBOL(sleep_on);
  3547. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3548. {
  3549. SLEEP_ON_VAR
  3550. current->state = TASK_UNINTERRUPTIBLE;
  3551. SLEEP_ON_HEAD
  3552. timeout = schedule_timeout(timeout);
  3553. SLEEP_ON_TAIL
  3554. return timeout;
  3555. }
  3556. EXPORT_SYMBOL(sleep_on_timeout);
  3557. #ifdef CONFIG_RT_MUTEXES
  3558. /*
  3559. * rt_mutex_setprio - set the current priority of a task
  3560. * @p: task
  3561. * @prio: prio value (kernel-internal form)
  3562. *
  3563. * This function changes the 'effective' priority of a task. It does
  3564. * not touch ->normal_prio like __setscheduler().
  3565. *
  3566. * Used by the rt_mutex code to implement priority inheritance logic.
  3567. */
  3568. void rt_mutex_setprio(struct task_struct *p, int prio)
  3569. {
  3570. struct prio_array *array;
  3571. unsigned long flags;
  3572. struct rq *rq;
  3573. int oldprio;
  3574. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3575. rq = task_rq_lock(p, &flags);
  3576. oldprio = p->prio;
  3577. array = p->array;
  3578. if (array)
  3579. dequeue_task(p, array);
  3580. p->prio = prio;
  3581. if (array) {
  3582. /*
  3583. * If changing to an RT priority then queue it
  3584. * in the active array!
  3585. */
  3586. if (rt_task(p))
  3587. array = rq->active;
  3588. enqueue_task(p, array);
  3589. /*
  3590. * Reschedule if we are currently running on this runqueue and
  3591. * our priority decreased, or if we are not currently running on
  3592. * this runqueue and our priority is higher than the current's
  3593. */
  3594. if (task_running(rq, p)) {
  3595. if (p->prio > oldprio)
  3596. resched_task(rq->curr);
  3597. } else if (TASK_PREEMPTS_CURR(p, rq))
  3598. resched_task(rq->curr);
  3599. }
  3600. task_rq_unlock(rq, &flags);
  3601. }
  3602. #endif
  3603. void set_user_nice(struct task_struct *p, long nice)
  3604. {
  3605. struct prio_array *array;
  3606. int old_prio, delta;
  3607. unsigned long flags;
  3608. struct rq *rq;
  3609. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3610. return;
  3611. /*
  3612. * We have to be careful, if called from sys_setpriority(),
  3613. * the task might be in the middle of scheduling on another CPU.
  3614. */
  3615. rq = task_rq_lock(p, &flags);
  3616. /*
  3617. * The RT priorities are set via sched_setscheduler(), but we still
  3618. * allow the 'normal' nice value to be set - but as expected
  3619. * it wont have any effect on scheduling until the task is
  3620. * not SCHED_NORMAL/SCHED_BATCH:
  3621. */
  3622. if (has_rt_policy(p)) {
  3623. p->static_prio = NICE_TO_PRIO(nice);
  3624. goto out_unlock;
  3625. }
  3626. array = p->array;
  3627. if (array) {
  3628. dequeue_task(p, array);
  3629. dec_raw_weighted_load(rq, p);
  3630. }
  3631. p->static_prio = NICE_TO_PRIO(nice);
  3632. set_load_weight(p);
  3633. old_prio = p->prio;
  3634. p->prio = effective_prio(p);
  3635. delta = p->prio - old_prio;
  3636. if (array) {
  3637. enqueue_task(p, array);
  3638. inc_raw_weighted_load(rq, p);
  3639. /*
  3640. * If the task increased its priority or is running and
  3641. * lowered its priority, then reschedule its CPU:
  3642. */
  3643. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3644. resched_task(rq->curr);
  3645. }
  3646. out_unlock:
  3647. task_rq_unlock(rq, &flags);
  3648. }
  3649. EXPORT_SYMBOL(set_user_nice);
  3650. /*
  3651. * can_nice - check if a task can reduce its nice value
  3652. * @p: task
  3653. * @nice: nice value
  3654. */
  3655. int can_nice(const struct task_struct *p, const int nice)
  3656. {
  3657. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3658. int nice_rlim = 20 - nice;
  3659. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3660. capable(CAP_SYS_NICE));
  3661. }
  3662. #ifdef __ARCH_WANT_SYS_NICE
  3663. /*
  3664. * sys_nice - change the priority of the current process.
  3665. * @increment: priority increment
  3666. *
  3667. * sys_setpriority is a more generic, but much slower function that
  3668. * does similar things.
  3669. */
  3670. asmlinkage long sys_nice(int increment)
  3671. {
  3672. long nice, retval;
  3673. /*
  3674. * Setpriority might change our priority at the same moment.
  3675. * We don't have to worry. Conceptually one call occurs first
  3676. * and we have a single winner.
  3677. */
  3678. if (increment < -40)
  3679. increment = -40;
  3680. if (increment > 40)
  3681. increment = 40;
  3682. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3683. if (nice < -20)
  3684. nice = -20;
  3685. if (nice > 19)
  3686. nice = 19;
  3687. if (increment < 0 && !can_nice(current, nice))
  3688. return -EPERM;
  3689. retval = security_task_setnice(current, nice);
  3690. if (retval)
  3691. return retval;
  3692. set_user_nice(current, nice);
  3693. return 0;
  3694. }
  3695. #endif
  3696. /**
  3697. * task_prio - return the priority value of a given task.
  3698. * @p: the task in question.
  3699. *
  3700. * This is the priority value as seen by users in /proc.
  3701. * RT tasks are offset by -200. Normal tasks are centered
  3702. * around 0, value goes from -16 to +15.
  3703. */
  3704. int task_prio(const struct task_struct *p)
  3705. {
  3706. return p->prio - MAX_RT_PRIO;
  3707. }
  3708. /**
  3709. * task_nice - return the nice value of a given task.
  3710. * @p: the task in question.
  3711. */
  3712. int task_nice(const struct task_struct *p)
  3713. {
  3714. return TASK_NICE(p);
  3715. }
  3716. EXPORT_SYMBOL_GPL(task_nice);
  3717. /**
  3718. * idle_cpu - is a given cpu idle currently?
  3719. * @cpu: the processor in question.
  3720. */
  3721. int idle_cpu(int cpu)
  3722. {
  3723. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3724. }
  3725. /**
  3726. * idle_task - return the idle task for a given cpu.
  3727. * @cpu: the processor in question.
  3728. */
  3729. struct task_struct *idle_task(int cpu)
  3730. {
  3731. return cpu_rq(cpu)->idle;
  3732. }
  3733. /**
  3734. * find_process_by_pid - find a process with a matching PID value.
  3735. * @pid: the pid in question.
  3736. */
  3737. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3738. {
  3739. return pid ? find_task_by_pid(pid) : current;
  3740. }
  3741. /* Actually do priority change: must hold rq lock. */
  3742. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3743. {
  3744. BUG_ON(p->array);
  3745. p->policy = policy;
  3746. p->rt_priority = prio;
  3747. p->normal_prio = normal_prio(p);
  3748. /* we are holding p->pi_lock already */
  3749. p->prio = rt_mutex_getprio(p);
  3750. /*
  3751. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3752. */
  3753. if (policy == SCHED_BATCH)
  3754. p->sleep_avg = 0;
  3755. set_load_weight(p);
  3756. }
  3757. /**
  3758. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3759. * @p: the task in question.
  3760. * @policy: new policy.
  3761. * @param: structure containing the new RT priority.
  3762. *
  3763. * NOTE that the task may be already dead.
  3764. */
  3765. int sched_setscheduler(struct task_struct *p, int policy,
  3766. struct sched_param *param)
  3767. {
  3768. int retval, oldprio, oldpolicy = -1;
  3769. struct prio_array *array;
  3770. unsigned long flags;
  3771. struct rq *rq;
  3772. /* may grab non-irq protected spin_locks */
  3773. BUG_ON(in_interrupt());
  3774. recheck:
  3775. /* double check policy once rq lock held */
  3776. if (policy < 0)
  3777. policy = oldpolicy = p->policy;
  3778. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3779. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3780. return -EINVAL;
  3781. /*
  3782. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3783. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3784. * SCHED_BATCH is 0.
  3785. */
  3786. if (param->sched_priority < 0 ||
  3787. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3788. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3789. return -EINVAL;
  3790. if (is_rt_policy(policy) != (param->sched_priority != 0))
  3791. return -EINVAL;
  3792. /*
  3793. * Allow unprivileged RT tasks to decrease priority:
  3794. */
  3795. if (!capable(CAP_SYS_NICE)) {
  3796. if (is_rt_policy(policy)) {
  3797. unsigned long rlim_rtprio;
  3798. unsigned long flags;
  3799. if (!lock_task_sighand(p, &flags))
  3800. return -ESRCH;
  3801. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3802. unlock_task_sighand(p, &flags);
  3803. /* can't set/change the rt policy */
  3804. if (policy != p->policy && !rlim_rtprio)
  3805. return -EPERM;
  3806. /* can't increase priority */
  3807. if (param->sched_priority > p->rt_priority &&
  3808. param->sched_priority > rlim_rtprio)
  3809. return -EPERM;
  3810. }
  3811. /* can't change other user's priorities */
  3812. if ((current->euid != p->euid) &&
  3813. (current->euid != p->uid))
  3814. return -EPERM;
  3815. }
  3816. retval = security_task_setscheduler(p, policy, param);
  3817. if (retval)
  3818. return retval;
  3819. /*
  3820. * make sure no PI-waiters arrive (or leave) while we are
  3821. * changing the priority of the task:
  3822. */
  3823. spin_lock_irqsave(&p->pi_lock, flags);
  3824. /*
  3825. * To be able to change p->policy safely, the apropriate
  3826. * runqueue lock must be held.
  3827. */
  3828. rq = __task_rq_lock(p);
  3829. /* recheck policy now with rq lock held */
  3830. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3831. policy = oldpolicy = -1;
  3832. __task_rq_unlock(rq);
  3833. spin_unlock_irqrestore(&p->pi_lock, flags);
  3834. goto recheck;
  3835. }
  3836. array = p->array;
  3837. if (array)
  3838. deactivate_task(p, rq);
  3839. oldprio = p->prio;
  3840. __setscheduler(p, policy, param->sched_priority);
  3841. if (array) {
  3842. __activate_task(p, rq);
  3843. /*
  3844. * Reschedule if we are currently running on this runqueue and
  3845. * our priority decreased, or if we are not currently running on
  3846. * this runqueue and our priority is higher than the current's
  3847. */
  3848. if (task_running(rq, p)) {
  3849. if (p->prio > oldprio)
  3850. resched_task(rq->curr);
  3851. } else if (TASK_PREEMPTS_CURR(p, rq))
  3852. resched_task(rq->curr);
  3853. }
  3854. __task_rq_unlock(rq);
  3855. spin_unlock_irqrestore(&p->pi_lock, flags);
  3856. rt_mutex_adjust_pi(p);
  3857. return 0;
  3858. }
  3859. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3860. static int
  3861. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3862. {
  3863. struct sched_param lparam;
  3864. struct task_struct *p;
  3865. int retval;
  3866. if (!param || pid < 0)
  3867. return -EINVAL;
  3868. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3869. return -EFAULT;
  3870. rcu_read_lock();
  3871. retval = -ESRCH;
  3872. p = find_process_by_pid(pid);
  3873. if (p != NULL)
  3874. retval = sched_setscheduler(p, policy, &lparam);
  3875. rcu_read_unlock();
  3876. return retval;
  3877. }
  3878. /**
  3879. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3880. * @pid: the pid in question.
  3881. * @policy: new policy.
  3882. * @param: structure containing the new RT priority.
  3883. */
  3884. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3885. struct sched_param __user *param)
  3886. {
  3887. /* negative values for policy are not valid */
  3888. if (policy < 0)
  3889. return -EINVAL;
  3890. return do_sched_setscheduler(pid, policy, param);
  3891. }
  3892. /**
  3893. * sys_sched_setparam - set/change the RT priority of a thread
  3894. * @pid: the pid in question.
  3895. * @param: structure containing the new RT priority.
  3896. */
  3897. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3898. {
  3899. return do_sched_setscheduler(pid, -1, param);
  3900. }
  3901. /**
  3902. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3903. * @pid: the pid in question.
  3904. */
  3905. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3906. {
  3907. struct task_struct *p;
  3908. int retval = -EINVAL;
  3909. if (pid < 0)
  3910. goto out_nounlock;
  3911. retval = -ESRCH;
  3912. read_lock(&tasklist_lock);
  3913. p = find_process_by_pid(pid);
  3914. if (p) {
  3915. retval = security_task_getscheduler(p);
  3916. if (!retval)
  3917. retval = p->policy;
  3918. }
  3919. read_unlock(&tasklist_lock);
  3920. out_nounlock:
  3921. return retval;
  3922. }
  3923. /**
  3924. * sys_sched_getscheduler - get the RT priority of a thread
  3925. * @pid: the pid in question.
  3926. * @param: structure containing the RT priority.
  3927. */
  3928. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3929. {
  3930. struct sched_param lp;
  3931. struct task_struct *p;
  3932. int retval = -EINVAL;
  3933. if (!param || pid < 0)
  3934. goto out_nounlock;
  3935. read_lock(&tasklist_lock);
  3936. p = find_process_by_pid(pid);
  3937. retval = -ESRCH;
  3938. if (!p)
  3939. goto out_unlock;
  3940. retval = security_task_getscheduler(p);
  3941. if (retval)
  3942. goto out_unlock;
  3943. lp.sched_priority = p->rt_priority;
  3944. read_unlock(&tasklist_lock);
  3945. /*
  3946. * This one might sleep, we cannot do it with a spinlock held ...
  3947. */
  3948. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3949. out_nounlock:
  3950. return retval;
  3951. out_unlock:
  3952. read_unlock(&tasklist_lock);
  3953. return retval;
  3954. }
  3955. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3956. {
  3957. cpumask_t cpus_allowed;
  3958. struct task_struct *p;
  3959. int retval;
  3960. mutex_lock(&sched_hotcpu_mutex);
  3961. read_lock(&tasklist_lock);
  3962. p = find_process_by_pid(pid);
  3963. if (!p) {
  3964. read_unlock(&tasklist_lock);
  3965. mutex_unlock(&sched_hotcpu_mutex);
  3966. return -ESRCH;
  3967. }
  3968. /*
  3969. * It is not safe to call set_cpus_allowed with the
  3970. * tasklist_lock held. We will bump the task_struct's
  3971. * usage count and then drop tasklist_lock.
  3972. */
  3973. get_task_struct(p);
  3974. read_unlock(&tasklist_lock);
  3975. retval = -EPERM;
  3976. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3977. !capable(CAP_SYS_NICE))
  3978. goto out_unlock;
  3979. retval = security_task_setscheduler(p, 0, NULL);
  3980. if (retval)
  3981. goto out_unlock;
  3982. cpus_allowed = cpuset_cpus_allowed(p);
  3983. cpus_and(new_mask, new_mask, cpus_allowed);
  3984. retval = set_cpus_allowed(p, new_mask);
  3985. out_unlock:
  3986. put_task_struct(p);
  3987. mutex_unlock(&sched_hotcpu_mutex);
  3988. return retval;
  3989. }
  3990. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3991. cpumask_t *new_mask)
  3992. {
  3993. if (len < sizeof(cpumask_t)) {
  3994. memset(new_mask, 0, sizeof(cpumask_t));
  3995. } else if (len > sizeof(cpumask_t)) {
  3996. len = sizeof(cpumask_t);
  3997. }
  3998. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3999. }
  4000. /**
  4001. * sys_sched_setaffinity - set the cpu affinity of a process
  4002. * @pid: pid of the process
  4003. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4004. * @user_mask_ptr: user-space pointer to the new cpu mask
  4005. */
  4006. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4007. unsigned long __user *user_mask_ptr)
  4008. {
  4009. cpumask_t new_mask;
  4010. int retval;
  4011. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4012. if (retval)
  4013. return retval;
  4014. return sched_setaffinity(pid, new_mask);
  4015. }
  4016. /*
  4017. * Represents all cpu's present in the system
  4018. * In systems capable of hotplug, this map could dynamically grow
  4019. * as new cpu's are detected in the system via any platform specific
  4020. * method, such as ACPI for e.g.
  4021. */
  4022. cpumask_t cpu_present_map __read_mostly;
  4023. EXPORT_SYMBOL(cpu_present_map);
  4024. #ifndef CONFIG_SMP
  4025. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4026. EXPORT_SYMBOL(cpu_online_map);
  4027. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4028. EXPORT_SYMBOL(cpu_possible_map);
  4029. #endif
  4030. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4031. {
  4032. struct task_struct *p;
  4033. int retval;
  4034. mutex_lock(&sched_hotcpu_mutex);
  4035. read_lock(&tasklist_lock);
  4036. retval = -ESRCH;
  4037. p = find_process_by_pid(pid);
  4038. if (!p)
  4039. goto out_unlock;
  4040. retval = security_task_getscheduler(p);
  4041. if (retval)
  4042. goto out_unlock;
  4043. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4044. out_unlock:
  4045. read_unlock(&tasklist_lock);
  4046. mutex_unlock(&sched_hotcpu_mutex);
  4047. if (retval)
  4048. return retval;
  4049. return 0;
  4050. }
  4051. /**
  4052. * sys_sched_getaffinity - get the cpu affinity of a process
  4053. * @pid: pid of the process
  4054. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4055. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4056. */
  4057. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4058. unsigned long __user *user_mask_ptr)
  4059. {
  4060. int ret;
  4061. cpumask_t mask;
  4062. if (len < sizeof(cpumask_t))
  4063. return -EINVAL;
  4064. ret = sched_getaffinity(pid, &mask);
  4065. if (ret < 0)
  4066. return ret;
  4067. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4068. return -EFAULT;
  4069. return sizeof(cpumask_t);
  4070. }
  4071. /**
  4072. * sys_sched_yield - yield the current processor to other threads.
  4073. *
  4074. * This function yields the current CPU by moving the calling thread
  4075. * to the expired array. If there are no other threads running on this
  4076. * CPU then this function will return.
  4077. */
  4078. asmlinkage long sys_sched_yield(void)
  4079. {
  4080. struct rq *rq = this_rq_lock();
  4081. struct prio_array *array = current->array, *target = rq->expired;
  4082. schedstat_inc(rq, yld_cnt);
  4083. /*
  4084. * We implement yielding by moving the task into the expired
  4085. * queue.
  4086. *
  4087. * (special rule: RT tasks will just roundrobin in the active
  4088. * array.)
  4089. */
  4090. if (rt_task(current))
  4091. target = rq->active;
  4092. if (array->nr_active == 1) {
  4093. schedstat_inc(rq, yld_act_empty);
  4094. if (!rq->expired->nr_active)
  4095. schedstat_inc(rq, yld_both_empty);
  4096. } else if (!rq->expired->nr_active)
  4097. schedstat_inc(rq, yld_exp_empty);
  4098. if (array != target) {
  4099. dequeue_task(current, array);
  4100. enqueue_task(current, target);
  4101. } else
  4102. /*
  4103. * requeue_task is cheaper so perform that if possible.
  4104. */
  4105. requeue_task(current, array);
  4106. /*
  4107. * Since we are going to call schedule() anyway, there's
  4108. * no need to preempt or enable interrupts:
  4109. */
  4110. __release(rq->lock);
  4111. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4112. _raw_spin_unlock(&rq->lock);
  4113. preempt_enable_no_resched();
  4114. schedule();
  4115. return 0;
  4116. }
  4117. static void __cond_resched(void)
  4118. {
  4119. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4120. __might_sleep(__FILE__, __LINE__);
  4121. #endif
  4122. /*
  4123. * The BKS might be reacquired before we have dropped
  4124. * PREEMPT_ACTIVE, which could trigger a second
  4125. * cond_resched() call.
  4126. */
  4127. do {
  4128. add_preempt_count(PREEMPT_ACTIVE);
  4129. schedule();
  4130. sub_preempt_count(PREEMPT_ACTIVE);
  4131. } while (need_resched());
  4132. }
  4133. int __sched cond_resched(void)
  4134. {
  4135. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4136. system_state == SYSTEM_RUNNING) {
  4137. __cond_resched();
  4138. return 1;
  4139. }
  4140. return 0;
  4141. }
  4142. EXPORT_SYMBOL(cond_resched);
  4143. /*
  4144. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4145. * call schedule, and on return reacquire the lock.
  4146. *
  4147. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4148. * operations here to prevent schedule() from being called twice (once via
  4149. * spin_unlock(), once by hand).
  4150. */
  4151. int cond_resched_lock(spinlock_t *lock)
  4152. {
  4153. int ret = 0;
  4154. if (need_lockbreak(lock)) {
  4155. spin_unlock(lock);
  4156. cpu_relax();
  4157. ret = 1;
  4158. spin_lock(lock);
  4159. }
  4160. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4161. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4162. _raw_spin_unlock(lock);
  4163. preempt_enable_no_resched();
  4164. __cond_resched();
  4165. ret = 1;
  4166. spin_lock(lock);
  4167. }
  4168. return ret;
  4169. }
  4170. EXPORT_SYMBOL(cond_resched_lock);
  4171. int __sched cond_resched_softirq(void)
  4172. {
  4173. BUG_ON(!in_softirq());
  4174. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4175. local_bh_enable();
  4176. __cond_resched();
  4177. local_bh_disable();
  4178. return 1;
  4179. }
  4180. return 0;
  4181. }
  4182. EXPORT_SYMBOL(cond_resched_softirq);
  4183. /**
  4184. * yield - yield the current processor to other threads.
  4185. *
  4186. * This is a shortcut for kernel-space yielding - it marks the
  4187. * thread runnable and calls sys_sched_yield().
  4188. */
  4189. void __sched yield(void)
  4190. {
  4191. set_current_state(TASK_RUNNING);
  4192. sys_sched_yield();
  4193. }
  4194. EXPORT_SYMBOL(yield);
  4195. /*
  4196. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4197. * that process accounting knows that this is a task in IO wait state.
  4198. *
  4199. * But don't do that if it is a deliberate, throttling IO wait (this task
  4200. * has set its backing_dev_info: the queue against which it should throttle)
  4201. */
  4202. void __sched io_schedule(void)
  4203. {
  4204. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4205. delayacct_blkio_start();
  4206. atomic_inc(&rq->nr_iowait);
  4207. schedule();
  4208. atomic_dec(&rq->nr_iowait);
  4209. delayacct_blkio_end();
  4210. }
  4211. EXPORT_SYMBOL(io_schedule);
  4212. long __sched io_schedule_timeout(long timeout)
  4213. {
  4214. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4215. long ret;
  4216. delayacct_blkio_start();
  4217. atomic_inc(&rq->nr_iowait);
  4218. ret = schedule_timeout(timeout);
  4219. atomic_dec(&rq->nr_iowait);
  4220. delayacct_blkio_end();
  4221. return ret;
  4222. }
  4223. /**
  4224. * sys_sched_get_priority_max - return maximum RT priority.
  4225. * @policy: scheduling class.
  4226. *
  4227. * this syscall returns the maximum rt_priority that can be used
  4228. * by a given scheduling class.
  4229. */
  4230. asmlinkage long sys_sched_get_priority_max(int policy)
  4231. {
  4232. int ret = -EINVAL;
  4233. switch (policy) {
  4234. case SCHED_FIFO:
  4235. case SCHED_RR:
  4236. ret = MAX_USER_RT_PRIO-1;
  4237. break;
  4238. case SCHED_NORMAL:
  4239. case SCHED_BATCH:
  4240. ret = 0;
  4241. break;
  4242. }
  4243. return ret;
  4244. }
  4245. /**
  4246. * sys_sched_get_priority_min - return minimum RT priority.
  4247. * @policy: scheduling class.
  4248. *
  4249. * this syscall returns the minimum rt_priority that can be used
  4250. * by a given scheduling class.
  4251. */
  4252. asmlinkage long sys_sched_get_priority_min(int policy)
  4253. {
  4254. int ret = -EINVAL;
  4255. switch (policy) {
  4256. case SCHED_FIFO:
  4257. case SCHED_RR:
  4258. ret = 1;
  4259. break;
  4260. case SCHED_NORMAL:
  4261. case SCHED_BATCH:
  4262. ret = 0;
  4263. }
  4264. return ret;
  4265. }
  4266. /**
  4267. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4268. * @pid: pid of the process.
  4269. * @interval: userspace pointer to the timeslice value.
  4270. *
  4271. * this syscall writes the default timeslice value of a given process
  4272. * into the user-space timespec buffer. A value of '0' means infinity.
  4273. */
  4274. asmlinkage
  4275. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4276. {
  4277. struct task_struct *p;
  4278. int retval = -EINVAL;
  4279. struct timespec t;
  4280. if (pid < 0)
  4281. goto out_nounlock;
  4282. retval = -ESRCH;
  4283. read_lock(&tasklist_lock);
  4284. p = find_process_by_pid(pid);
  4285. if (!p)
  4286. goto out_unlock;
  4287. retval = security_task_getscheduler(p);
  4288. if (retval)
  4289. goto out_unlock;
  4290. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4291. 0 : task_timeslice(p), &t);
  4292. read_unlock(&tasklist_lock);
  4293. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4294. out_nounlock:
  4295. return retval;
  4296. out_unlock:
  4297. read_unlock(&tasklist_lock);
  4298. return retval;
  4299. }
  4300. static const char stat_nam[] = "RSDTtZX";
  4301. static void show_task(struct task_struct *p)
  4302. {
  4303. unsigned long free = 0;
  4304. unsigned state;
  4305. state = p->state ? __ffs(p->state) + 1 : 0;
  4306. printk("%-13.13s %c", p->comm,
  4307. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4308. #if (BITS_PER_LONG == 32)
  4309. if (state == TASK_RUNNING)
  4310. printk(" running ");
  4311. else
  4312. printk(" %08lX ", thread_saved_pc(p));
  4313. #else
  4314. if (state == TASK_RUNNING)
  4315. printk(" running task ");
  4316. else
  4317. printk(" %016lx ", thread_saved_pc(p));
  4318. #endif
  4319. #ifdef CONFIG_DEBUG_STACK_USAGE
  4320. {
  4321. unsigned long *n = end_of_stack(p);
  4322. while (!*n)
  4323. n++;
  4324. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4325. }
  4326. #endif
  4327. printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
  4328. if (!p->mm)
  4329. printk(" (L-TLB)\n");
  4330. else
  4331. printk(" (NOTLB)\n");
  4332. if (state != TASK_RUNNING)
  4333. show_stack(p, NULL);
  4334. }
  4335. void show_state_filter(unsigned long state_filter)
  4336. {
  4337. struct task_struct *g, *p;
  4338. #if (BITS_PER_LONG == 32)
  4339. printk("\n"
  4340. " free sibling\n");
  4341. printk(" task PC stack pid father child younger older\n");
  4342. #else
  4343. printk("\n"
  4344. " free sibling\n");
  4345. printk(" task PC stack pid father child younger older\n");
  4346. #endif
  4347. read_lock(&tasklist_lock);
  4348. do_each_thread(g, p) {
  4349. /*
  4350. * reset the NMI-timeout, listing all files on a slow
  4351. * console might take alot of time:
  4352. */
  4353. touch_nmi_watchdog();
  4354. if (!state_filter || (p->state & state_filter))
  4355. show_task(p);
  4356. } while_each_thread(g, p);
  4357. touch_all_softlockup_watchdogs();
  4358. read_unlock(&tasklist_lock);
  4359. /*
  4360. * Only show locks if all tasks are dumped:
  4361. */
  4362. if (state_filter == -1)
  4363. debug_show_all_locks();
  4364. }
  4365. /**
  4366. * init_idle - set up an idle thread for a given CPU
  4367. * @idle: task in question
  4368. * @cpu: cpu the idle task belongs to
  4369. *
  4370. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4371. * flag, to make booting more robust.
  4372. */
  4373. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4374. {
  4375. struct rq *rq = cpu_rq(cpu);
  4376. unsigned long flags;
  4377. idle->timestamp = sched_clock();
  4378. idle->sleep_avg = 0;
  4379. idle->array = NULL;
  4380. idle->prio = idle->normal_prio = MAX_PRIO;
  4381. idle->state = TASK_RUNNING;
  4382. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4383. set_task_cpu(idle, cpu);
  4384. spin_lock_irqsave(&rq->lock, flags);
  4385. rq->curr = rq->idle = idle;
  4386. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4387. idle->oncpu = 1;
  4388. #endif
  4389. spin_unlock_irqrestore(&rq->lock, flags);
  4390. /* Set the preempt count _outside_ the spinlocks! */
  4391. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4392. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4393. #else
  4394. task_thread_info(idle)->preempt_count = 0;
  4395. #endif
  4396. }
  4397. /*
  4398. * In a system that switches off the HZ timer nohz_cpu_mask
  4399. * indicates which cpus entered this state. This is used
  4400. * in the rcu update to wait only for active cpus. For system
  4401. * which do not switch off the HZ timer nohz_cpu_mask should
  4402. * always be CPU_MASK_NONE.
  4403. */
  4404. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4405. #ifdef CONFIG_SMP
  4406. /*
  4407. * This is how migration works:
  4408. *
  4409. * 1) we queue a struct migration_req structure in the source CPU's
  4410. * runqueue and wake up that CPU's migration thread.
  4411. * 2) we down() the locked semaphore => thread blocks.
  4412. * 3) migration thread wakes up (implicitly it forces the migrated
  4413. * thread off the CPU)
  4414. * 4) it gets the migration request and checks whether the migrated
  4415. * task is still in the wrong runqueue.
  4416. * 5) if it's in the wrong runqueue then the migration thread removes
  4417. * it and puts it into the right queue.
  4418. * 6) migration thread up()s the semaphore.
  4419. * 7) we wake up and the migration is done.
  4420. */
  4421. /*
  4422. * Change a given task's CPU affinity. Migrate the thread to a
  4423. * proper CPU and schedule it away if the CPU it's executing on
  4424. * is removed from the allowed bitmask.
  4425. *
  4426. * NOTE: the caller must have a valid reference to the task, the
  4427. * task must not exit() & deallocate itself prematurely. The
  4428. * call is not atomic; no spinlocks may be held.
  4429. */
  4430. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4431. {
  4432. struct migration_req req;
  4433. unsigned long flags;
  4434. struct rq *rq;
  4435. int ret = 0;
  4436. rq = task_rq_lock(p, &flags);
  4437. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4438. ret = -EINVAL;
  4439. goto out;
  4440. }
  4441. p->cpus_allowed = new_mask;
  4442. /* Can the task run on the task's current CPU? If so, we're done */
  4443. if (cpu_isset(task_cpu(p), new_mask))
  4444. goto out;
  4445. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4446. /* Need help from migration thread: drop lock and wait. */
  4447. task_rq_unlock(rq, &flags);
  4448. wake_up_process(rq->migration_thread);
  4449. wait_for_completion(&req.done);
  4450. tlb_migrate_finish(p->mm);
  4451. return 0;
  4452. }
  4453. out:
  4454. task_rq_unlock(rq, &flags);
  4455. return ret;
  4456. }
  4457. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4458. /*
  4459. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4460. * this because either it can't run here any more (set_cpus_allowed()
  4461. * away from this CPU, or CPU going down), or because we're
  4462. * attempting to rebalance this task on exec (sched_exec).
  4463. *
  4464. * So we race with normal scheduler movements, but that's OK, as long
  4465. * as the task is no longer on this CPU.
  4466. *
  4467. * Returns non-zero if task was successfully migrated.
  4468. */
  4469. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4470. {
  4471. struct rq *rq_dest, *rq_src;
  4472. int ret = 0;
  4473. if (unlikely(cpu_is_offline(dest_cpu)))
  4474. return ret;
  4475. rq_src = cpu_rq(src_cpu);
  4476. rq_dest = cpu_rq(dest_cpu);
  4477. double_rq_lock(rq_src, rq_dest);
  4478. /* Already moved. */
  4479. if (task_cpu(p) != src_cpu)
  4480. goto out;
  4481. /* Affinity changed (again). */
  4482. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4483. goto out;
  4484. set_task_cpu(p, dest_cpu);
  4485. if (p->array) {
  4486. /*
  4487. * Sync timestamp with rq_dest's before activating.
  4488. * The same thing could be achieved by doing this step
  4489. * afterwards, and pretending it was a local activate.
  4490. * This way is cleaner and logically correct.
  4491. */
  4492. p->timestamp = p->timestamp - rq_src->most_recent_timestamp
  4493. + rq_dest->most_recent_timestamp;
  4494. deactivate_task(p, rq_src);
  4495. __activate_task(p, rq_dest);
  4496. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4497. resched_task(rq_dest->curr);
  4498. }
  4499. ret = 1;
  4500. out:
  4501. double_rq_unlock(rq_src, rq_dest);
  4502. return ret;
  4503. }
  4504. /*
  4505. * migration_thread - this is a highprio system thread that performs
  4506. * thread migration by bumping thread off CPU then 'pushing' onto
  4507. * another runqueue.
  4508. */
  4509. static int migration_thread(void *data)
  4510. {
  4511. int cpu = (long)data;
  4512. struct rq *rq;
  4513. rq = cpu_rq(cpu);
  4514. BUG_ON(rq->migration_thread != current);
  4515. set_current_state(TASK_INTERRUPTIBLE);
  4516. while (!kthread_should_stop()) {
  4517. struct migration_req *req;
  4518. struct list_head *head;
  4519. try_to_freeze();
  4520. spin_lock_irq(&rq->lock);
  4521. if (cpu_is_offline(cpu)) {
  4522. spin_unlock_irq(&rq->lock);
  4523. goto wait_to_die;
  4524. }
  4525. if (rq->active_balance) {
  4526. active_load_balance(rq, cpu);
  4527. rq->active_balance = 0;
  4528. }
  4529. head = &rq->migration_queue;
  4530. if (list_empty(head)) {
  4531. spin_unlock_irq(&rq->lock);
  4532. schedule();
  4533. set_current_state(TASK_INTERRUPTIBLE);
  4534. continue;
  4535. }
  4536. req = list_entry(head->next, struct migration_req, list);
  4537. list_del_init(head->next);
  4538. spin_unlock(&rq->lock);
  4539. __migrate_task(req->task, cpu, req->dest_cpu);
  4540. local_irq_enable();
  4541. complete(&req->done);
  4542. }
  4543. __set_current_state(TASK_RUNNING);
  4544. return 0;
  4545. wait_to_die:
  4546. /* Wait for kthread_stop */
  4547. set_current_state(TASK_INTERRUPTIBLE);
  4548. while (!kthread_should_stop()) {
  4549. schedule();
  4550. set_current_state(TASK_INTERRUPTIBLE);
  4551. }
  4552. __set_current_state(TASK_RUNNING);
  4553. return 0;
  4554. }
  4555. #ifdef CONFIG_HOTPLUG_CPU
  4556. /*
  4557. * Figure out where task on dead CPU should go, use force if neccessary.
  4558. * NOTE: interrupts should be disabled by the caller
  4559. */
  4560. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4561. {
  4562. unsigned long flags;
  4563. cpumask_t mask;
  4564. struct rq *rq;
  4565. int dest_cpu;
  4566. restart:
  4567. /* On same node? */
  4568. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4569. cpus_and(mask, mask, p->cpus_allowed);
  4570. dest_cpu = any_online_cpu(mask);
  4571. /* On any allowed CPU? */
  4572. if (dest_cpu == NR_CPUS)
  4573. dest_cpu = any_online_cpu(p->cpus_allowed);
  4574. /* No more Mr. Nice Guy. */
  4575. if (dest_cpu == NR_CPUS) {
  4576. rq = task_rq_lock(p, &flags);
  4577. cpus_setall(p->cpus_allowed);
  4578. dest_cpu = any_online_cpu(p->cpus_allowed);
  4579. task_rq_unlock(rq, &flags);
  4580. /*
  4581. * Don't tell them about moving exiting tasks or
  4582. * kernel threads (both mm NULL), since they never
  4583. * leave kernel.
  4584. */
  4585. if (p->mm && printk_ratelimit())
  4586. printk(KERN_INFO "process %d (%s) no "
  4587. "longer affine to cpu%d\n",
  4588. p->pid, p->comm, dead_cpu);
  4589. }
  4590. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4591. goto restart;
  4592. }
  4593. /*
  4594. * While a dead CPU has no uninterruptible tasks queued at this point,
  4595. * it might still have a nonzero ->nr_uninterruptible counter, because
  4596. * for performance reasons the counter is not stricly tracking tasks to
  4597. * their home CPUs. So we just add the counter to another CPU's counter,
  4598. * to keep the global sum constant after CPU-down:
  4599. */
  4600. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4601. {
  4602. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4603. unsigned long flags;
  4604. local_irq_save(flags);
  4605. double_rq_lock(rq_src, rq_dest);
  4606. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4607. rq_src->nr_uninterruptible = 0;
  4608. double_rq_unlock(rq_src, rq_dest);
  4609. local_irq_restore(flags);
  4610. }
  4611. /* Run through task list and migrate tasks from the dead cpu. */
  4612. static void migrate_live_tasks(int src_cpu)
  4613. {
  4614. struct task_struct *p, *t;
  4615. write_lock_irq(&tasklist_lock);
  4616. do_each_thread(t, p) {
  4617. if (p == current)
  4618. continue;
  4619. if (task_cpu(p) == src_cpu)
  4620. move_task_off_dead_cpu(src_cpu, p);
  4621. } while_each_thread(t, p);
  4622. write_unlock_irq(&tasklist_lock);
  4623. }
  4624. /* Schedules idle task to be the next runnable task on current CPU.
  4625. * It does so by boosting its priority to highest possible and adding it to
  4626. * the _front_ of the runqueue. Used by CPU offline code.
  4627. */
  4628. void sched_idle_next(void)
  4629. {
  4630. int this_cpu = smp_processor_id();
  4631. struct rq *rq = cpu_rq(this_cpu);
  4632. struct task_struct *p = rq->idle;
  4633. unsigned long flags;
  4634. /* cpu has to be offline */
  4635. BUG_ON(cpu_online(this_cpu));
  4636. /*
  4637. * Strictly not necessary since rest of the CPUs are stopped by now
  4638. * and interrupts disabled on the current cpu.
  4639. */
  4640. spin_lock_irqsave(&rq->lock, flags);
  4641. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4642. /* Add idle task to the _front_ of its priority queue: */
  4643. __activate_idle_task(p, rq);
  4644. spin_unlock_irqrestore(&rq->lock, flags);
  4645. }
  4646. /*
  4647. * Ensures that the idle task is using init_mm right before its cpu goes
  4648. * offline.
  4649. */
  4650. void idle_task_exit(void)
  4651. {
  4652. struct mm_struct *mm = current->active_mm;
  4653. BUG_ON(cpu_online(smp_processor_id()));
  4654. if (mm != &init_mm)
  4655. switch_mm(mm, &init_mm, current);
  4656. mmdrop(mm);
  4657. }
  4658. /* called under rq->lock with disabled interrupts */
  4659. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4660. {
  4661. struct rq *rq = cpu_rq(dead_cpu);
  4662. /* Must be exiting, otherwise would be on tasklist. */
  4663. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4664. /* Cannot have done final schedule yet: would have vanished. */
  4665. BUG_ON(p->state == TASK_DEAD);
  4666. get_task_struct(p);
  4667. /*
  4668. * Drop lock around migration; if someone else moves it,
  4669. * that's OK. No task can be added to this CPU, so iteration is
  4670. * fine.
  4671. * NOTE: interrupts should be left disabled --dev@
  4672. */
  4673. spin_unlock(&rq->lock);
  4674. move_task_off_dead_cpu(dead_cpu, p);
  4675. spin_lock(&rq->lock);
  4676. put_task_struct(p);
  4677. }
  4678. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4679. static void migrate_dead_tasks(unsigned int dead_cpu)
  4680. {
  4681. struct rq *rq = cpu_rq(dead_cpu);
  4682. unsigned int arr, i;
  4683. for (arr = 0; arr < 2; arr++) {
  4684. for (i = 0; i < MAX_PRIO; i++) {
  4685. struct list_head *list = &rq->arrays[arr].queue[i];
  4686. while (!list_empty(list))
  4687. migrate_dead(dead_cpu, list_entry(list->next,
  4688. struct task_struct, run_list));
  4689. }
  4690. }
  4691. }
  4692. #endif /* CONFIG_HOTPLUG_CPU */
  4693. /*
  4694. * migration_call - callback that gets triggered when a CPU is added.
  4695. * Here we can start up the necessary migration thread for the new CPU.
  4696. */
  4697. static int __cpuinit
  4698. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4699. {
  4700. struct task_struct *p;
  4701. int cpu = (long)hcpu;
  4702. unsigned long flags;
  4703. struct rq *rq;
  4704. switch (action) {
  4705. case CPU_LOCK_ACQUIRE:
  4706. mutex_lock(&sched_hotcpu_mutex);
  4707. break;
  4708. case CPU_UP_PREPARE:
  4709. case CPU_UP_PREPARE_FROZEN:
  4710. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4711. if (IS_ERR(p))
  4712. return NOTIFY_BAD;
  4713. p->flags |= PF_NOFREEZE;
  4714. kthread_bind(p, cpu);
  4715. /* Must be high prio: stop_machine expects to yield to it. */
  4716. rq = task_rq_lock(p, &flags);
  4717. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4718. task_rq_unlock(rq, &flags);
  4719. cpu_rq(cpu)->migration_thread = p;
  4720. break;
  4721. case CPU_ONLINE:
  4722. case CPU_ONLINE_FROZEN:
  4723. /* Strictly unneccessary, as first user will wake it. */
  4724. wake_up_process(cpu_rq(cpu)->migration_thread);
  4725. break;
  4726. #ifdef CONFIG_HOTPLUG_CPU
  4727. case CPU_UP_CANCELED:
  4728. case CPU_UP_CANCELED_FROZEN:
  4729. if (!cpu_rq(cpu)->migration_thread)
  4730. break;
  4731. /* Unbind it from offline cpu so it can run. Fall thru. */
  4732. kthread_bind(cpu_rq(cpu)->migration_thread,
  4733. any_online_cpu(cpu_online_map));
  4734. kthread_stop(cpu_rq(cpu)->migration_thread);
  4735. cpu_rq(cpu)->migration_thread = NULL;
  4736. break;
  4737. case CPU_DEAD:
  4738. case CPU_DEAD_FROZEN:
  4739. migrate_live_tasks(cpu);
  4740. rq = cpu_rq(cpu);
  4741. kthread_stop(rq->migration_thread);
  4742. rq->migration_thread = NULL;
  4743. /* Idle task back to normal (off runqueue, low prio) */
  4744. rq = task_rq_lock(rq->idle, &flags);
  4745. deactivate_task(rq->idle, rq);
  4746. rq->idle->static_prio = MAX_PRIO;
  4747. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4748. migrate_dead_tasks(cpu);
  4749. task_rq_unlock(rq, &flags);
  4750. migrate_nr_uninterruptible(rq);
  4751. BUG_ON(rq->nr_running != 0);
  4752. /* No need to migrate the tasks: it was best-effort if
  4753. * they didn't take sched_hotcpu_mutex. Just wake up
  4754. * the requestors. */
  4755. spin_lock_irq(&rq->lock);
  4756. while (!list_empty(&rq->migration_queue)) {
  4757. struct migration_req *req;
  4758. req = list_entry(rq->migration_queue.next,
  4759. struct migration_req, list);
  4760. list_del_init(&req->list);
  4761. complete(&req->done);
  4762. }
  4763. spin_unlock_irq(&rq->lock);
  4764. break;
  4765. #endif
  4766. case CPU_LOCK_RELEASE:
  4767. mutex_unlock(&sched_hotcpu_mutex);
  4768. break;
  4769. }
  4770. return NOTIFY_OK;
  4771. }
  4772. /* Register at highest priority so that task migration (migrate_all_tasks)
  4773. * happens before everything else.
  4774. */
  4775. static struct notifier_block __cpuinitdata migration_notifier = {
  4776. .notifier_call = migration_call,
  4777. .priority = 10
  4778. };
  4779. int __init migration_init(void)
  4780. {
  4781. void *cpu = (void *)(long)smp_processor_id();
  4782. int err;
  4783. /* Start one for the boot CPU: */
  4784. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4785. BUG_ON(err == NOTIFY_BAD);
  4786. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4787. register_cpu_notifier(&migration_notifier);
  4788. return 0;
  4789. }
  4790. #endif
  4791. #ifdef CONFIG_SMP
  4792. /* Number of possible processor ids */
  4793. int nr_cpu_ids __read_mostly = NR_CPUS;
  4794. EXPORT_SYMBOL(nr_cpu_ids);
  4795. #undef SCHED_DOMAIN_DEBUG
  4796. #ifdef SCHED_DOMAIN_DEBUG
  4797. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4798. {
  4799. int level = 0;
  4800. if (!sd) {
  4801. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4802. return;
  4803. }
  4804. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4805. do {
  4806. int i;
  4807. char str[NR_CPUS];
  4808. struct sched_group *group = sd->groups;
  4809. cpumask_t groupmask;
  4810. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4811. cpus_clear(groupmask);
  4812. printk(KERN_DEBUG);
  4813. for (i = 0; i < level + 1; i++)
  4814. printk(" ");
  4815. printk("domain %d: ", level);
  4816. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4817. printk("does not load-balance\n");
  4818. if (sd->parent)
  4819. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4820. " has parent");
  4821. break;
  4822. }
  4823. printk("span %s\n", str);
  4824. if (!cpu_isset(cpu, sd->span))
  4825. printk(KERN_ERR "ERROR: domain->span does not contain "
  4826. "CPU%d\n", cpu);
  4827. if (!cpu_isset(cpu, group->cpumask))
  4828. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4829. " CPU%d\n", cpu);
  4830. printk(KERN_DEBUG);
  4831. for (i = 0; i < level + 2; i++)
  4832. printk(" ");
  4833. printk("groups:");
  4834. do {
  4835. if (!group) {
  4836. printk("\n");
  4837. printk(KERN_ERR "ERROR: group is NULL\n");
  4838. break;
  4839. }
  4840. if (!group->__cpu_power) {
  4841. printk("\n");
  4842. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4843. "set\n");
  4844. }
  4845. if (!cpus_weight(group->cpumask)) {
  4846. printk("\n");
  4847. printk(KERN_ERR "ERROR: empty group\n");
  4848. }
  4849. if (cpus_intersects(groupmask, group->cpumask)) {
  4850. printk("\n");
  4851. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4852. }
  4853. cpus_or(groupmask, groupmask, group->cpumask);
  4854. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4855. printk(" %s", str);
  4856. group = group->next;
  4857. } while (group != sd->groups);
  4858. printk("\n");
  4859. if (!cpus_equal(sd->span, groupmask))
  4860. printk(KERN_ERR "ERROR: groups don't span "
  4861. "domain->span\n");
  4862. level++;
  4863. sd = sd->parent;
  4864. if (!sd)
  4865. continue;
  4866. if (!cpus_subset(groupmask, sd->span))
  4867. printk(KERN_ERR "ERROR: parent span is not a superset "
  4868. "of domain->span\n");
  4869. } while (sd);
  4870. }
  4871. #else
  4872. # define sched_domain_debug(sd, cpu) do { } while (0)
  4873. #endif
  4874. static int sd_degenerate(struct sched_domain *sd)
  4875. {
  4876. if (cpus_weight(sd->span) == 1)
  4877. return 1;
  4878. /* Following flags need at least 2 groups */
  4879. if (sd->flags & (SD_LOAD_BALANCE |
  4880. SD_BALANCE_NEWIDLE |
  4881. SD_BALANCE_FORK |
  4882. SD_BALANCE_EXEC |
  4883. SD_SHARE_CPUPOWER |
  4884. SD_SHARE_PKG_RESOURCES)) {
  4885. if (sd->groups != sd->groups->next)
  4886. return 0;
  4887. }
  4888. /* Following flags don't use groups */
  4889. if (sd->flags & (SD_WAKE_IDLE |
  4890. SD_WAKE_AFFINE |
  4891. SD_WAKE_BALANCE))
  4892. return 0;
  4893. return 1;
  4894. }
  4895. static int
  4896. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4897. {
  4898. unsigned long cflags = sd->flags, pflags = parent->flags;
  4899. if (sd_degenerate(parent))
  4900. return 1;
  4901. if (!cpus_equal(sd->span, parent->span))
  4902. return 0;
  4903. /* Does parent contain flags not in child? */
  4904. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4905. if (cflags & SD_WAKE_AFFINE)
  4906. pflags &= ~SD_WAKE_BALANCE;
  4907. /* Flags needing groups don't count if only 1 group in parent */
  4908. if (parent->groups == parent->groups->next) {
  4909. pflags &= ~(SD_LOAD_BALANCE |
  4910. SD_BALANCE_NEWIDLE |
  4911. SD_BALANCE_FORK |
  4912. SD_BALANCE_EXEC |
  4913. SD_SHARE_CPUPOWER |
  4914. SD_SHARE_PKG_RESOURCES);
  4915. }
  4916. if (~cflags & pflags)
  4917. return 0;
  4918. return 1;
  4919. }
  4920. /*
  4921. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4922. * hold the hotplug lock.
  4923. */
  4924. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4925. {
  4926. struct rq *rq = cpu_rq(cpu);
  4927. struct sched_domain *tmp;
  4928. /* Remove the sched domains which do not contribute to scheduling. */
  4929. for (tmp = sd; tmp; tmp = tmp->parent) {
  4930. struct sched_domain *parent = tmp->parent;
  4931. if (!parent)
  4932. break;
  4933. if (sd_parent_degenerate(tmp, parent)) {
  4934. tmp->parent = parent->parent;
  4935. if (parent->parent)
  4936. parent->parent->child = tmp;
  4937. }
  4938. }
  4939. if (sd && sd_degenerate(sd)) {
  4940. sd = sd->parent;
  4941. if (sd)
  4942. sd->child = NULL;
  4943. }
  4944. sched_domain_debug(sd, cpu);
  4945. rcu_assign_pointer(rq->sd, sd);
  4946. }
  4947. /* cpus with isolated domains */
  4948. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4949. /* Setup the mask of cpus configured for isolated domains */
  4950. static int __init isolated_cpu_setup(char *str)
  4951. {
  4952. int ints[NR_CPUS], i;
  4953. str = get_options(str, ARRAY_SIZE(ints), ints);
  4954. cpus_clear(cpu_isolated_map);
  4955. for (i = 1; i <= ints[0]; i++)
  4956. if (ints[i] < NR_CPUS)
  4957. cpu_set(ints[i], cpu_isolated_map);
  4958. return 1;
  4959. }
  4960. __setup ("isolcpus=", isolated_cpu_setup);
  4961. /*
  4962. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4963. * to a function which identifies what group(along with sched group) a CPU
  4964. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4965. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4966. *
  4967. * init_sched_build_groups will build a circular linked list of the groups
  4968. * covered by the given span, and will set each group's ->cpumask correctly,
  4969. * and ->cpu_power to 0.
  4970. */
  4971. static void
  4972. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4973. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4974. struct sched_group **sg))
  4975. {
  4976. struct sched_group *first = NULL, *last = NULL;
  4977. cpumask_t covered = CPU_MASK_NONE;
  4978. int i;
  4979. for_each_cpu_mask(i, span) {
  4980. struct sched_group *sg;
  4981. int group = group_fn(i, cpu_map, &sg);
  4982. int j;
  4983. if (cpu_isset(i, covered))
  4984. continue;
  4985. sg->cpumask = CPU_MASK_NONE;
  4986. sg->__cpu_power = 0;
  4987. for_each_cpu_mask(j, span) {
  4988. if (group_fn(j, cpu_map, NULL) != group)
  4989. continue;
  4990. cpu_set(j, covered);
  4991. cpu_set(j, sg->cpumask);
  4992. }
  4993. if (!first)
  4994. first = sg;
  4995. if (last)
  4996. last->next = sg;
  4997. last = sg;
  4998. }
  4999. last->next = first;
  5000. }
  5001. #define SD_NODES_PER_DOMAIN 16
  5002. /*
  5003. * Self-tuning task migration cost measurement between source and target CPUs.
  5004. *
  5005. * This is done by measuring the cost of manipulating buffers of varying
  5006. * sizes. For a given buffer-size here are the steps that are taken:
  5007. *
  5008. * 1) the source CPU reads+dirties a shared buffer
  5009. * 2) the target CPU reads+dirties the same shared buffer
  5010. *
  5011. * We measure how long they take, in the following 4 scenarios:
  5012. *
  5013. * - source: CPU1, target: CPU2 | cost1
  5014. * - source: CPU2, target: CPU1 | cost2
  5015. * - source: CPU1, target: CPU1 | cost3
  5016. * - source: CPU2, target: CPU2 | cost4
  5017. *
  5018. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  5019. * the cost of migration.
  5020. *
  5021. * We then start off from a small buffer-size and iterate up to larger
  5022. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  5023. * doing a maximum search for the cost. (The maximum cost for a migration
  5024. * normally occurs when the working set size is around the effective cache
  5025. * size.)
  5026. */
  5027. #define SEARCH_SCOPE 2
  5028. #define MIN_CACHE_SIZE (64*1024U)
  5029. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  5030. #define ITERATIONS 1
  5031. #define SIZE_THRESH 130
  5032. #define COST_THRESH 130
  5033. /*
  5034. * The migration cost is a function of 'domain distance'. Domain
  5035. * distance is the number of steps a CPU has to iterate down its
  5036. * domain tree to share a domain with the other CPU. The farther
  5037. * two CPUs are from each other, the larger the distance gets.
  5038. *
  5039. * Note that we use the distance only to cache measurement results,
  5040. * the distance value is not used numerically otherwise. When two
  5041. * CPUs have the same distance it is assumed that the migration
  5042. * cost is the same. (this is a simplification but quite practical)
  5043. */
  5044. #define MAX_DOMAIN_DISTANCE 32
  5045. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  5046. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  5047. /*
  5048. * Architectures may override the migration cost and thus avoid
  5049. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  5050. * virtualized hardware:
  5051. */
  5052. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  5053. CONFIG_DEFAULT_MIGRATION_COST
  5054. #else
  5055. -1LL
  5056. #endif
  5057. };
  5058. /*
  5059. * Allow override of migration cost - in units of microseconds.
  5060. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  5061. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  5062. */
  5063. static int __init migration_cost_setup(char *str)
  5064. {
  5065. int ints[MAX_DOMAIN_DISTANCE+1], i;
  5066. str = get_options(str, ARRAY_SIZE(ints), ints);
  5067. printk("#ints: %d\n", ints[0]);
  5068. for (i = 1; i <= ints[0]; i++) {
  5069. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  5070. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  5071. }
  5072. return 1;
  5073. }
  5074. __setup ("migration_cost=", migration_cost_setup);
  5075. /*
  5076. * Global multiplier (divisor) for migration-cutoff values,
  5077. * in percentiles. E.g. use a value of 150 to get 1.5 times
  5078. * longer cache-hot cutoff times.
  5079. *
  5080. * (We scale it from 100 to 128 to long long handling easier.)
  5081. */
  5082. #define MIGRATION_FACTOR_SCALE 128
  5083. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  5084. static int __init setup_migration_factor(char *str)
  5085. {
  5086. get_option(&str, &migration_factor);
  5087. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  5088. return 1;
  5089. }
  5090. __setup("migration_factor=", setup_migration_factor);
  5091. /*
  5092. * Estimated distance of two CPUs, measured via the number of domains
  5093. * we have to pass for the two CPUs to be in the same span:
  5094. */
  5095. static unsigned long domain_distance(int cpu1, int cpu2)
  5096. {
  5097. unsigned long distance = 0;
  5098. struct sched_domain *sd;
  5099. for_each_domain(cpu1, sd) {
  5100. WARN_ON(!cpu_isset(cpu1, sd->span));
  5101. if (cpu_isset(cpu2, sd->span))
  5102. return distance;
  5103. distance++;
  5104. }
  5105. if (distance >= MAX_DOMAIN_DISTANCE) {
  5106. WARN_ON(1);
  5107. distance = MAX_DOMAIN_DISTANCE-1;
  5108. }
  5109. return distance;
  5110. }
  5111. static unsigned int migration_debug;
  5112. static int __init setup_migration_debug(char *str)
  5113. {
  5114. get_option(&str, &migration_debug);
  5115. return 1;
  5116. }
  5117. __setup("migration_debug=", setup_migration_debug);
  5118. /*
  5119. * Maximum cache-size that the scheduler should try to measure.
  5120. * Architectures with larger caches should tune this up during
  5121. * bootup. Gets used in the domain-setup code (i.e. during SMP
  5122. * bootup).
  5123. */
  5124. unsigned int max_cache_size;
  5125. static int __init setup_max_cache_size(char *str)
  5126. {
  5127. get_option(&str, &max_cache_size);
  5128. return 1;
  5129. }
  5130. __setup("max_cache_size=", setup_max_cache_size);
  5131. /*
  5132. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  5133. * is the operation that is timed, so we try to generate unpredictable
  5134. * cachemisses that still end up filling the L2 cache:
  5135. */
  5136. static void touch_cache(void *__cache, unsigned long __size)
  5137. {
  5138. unsigned long size = __size / sizeof(long);
  5139. unsigned long chunk1 = size / 3;
  5140. unsigned long chunk2 = 2 * size / 3;
  5141. unsigned long *cache = __cache;
  5142. int i;
  5143. for (i = 0; i < size/6; i += 8) {
  5144. switch (i % 6) {
  5145. case 0: cache[i]++;
  5146. case 1: cache[size-1-i]++;
  5147. case 2: cache[chunk1-i]++;
  5148. case 3: cache[chunk1+i]++;
  5149. case 4: cache[chunk2-i]++;
  5150. case 5: cache[chunk2+i]++;
  5151. }
  5152. }
  5153. }
  5154. /*
  5155. * Measure the cache-cost of one task migration. Returns in units of nsec.
  5156. */
  5157. static unsigned long long
  5158. measure_one(void *cache, unsigned long size, int source, int target)
  5159. {
  5160. cpumask_t mask, saved_mask;
  5161. unsigned long long t0, t1, t2, t3, cost;
  5162. saved_mask = current->cpus_allowed;
  5163. /*
  5164. * Flush source caches to RAM and invalidate them:
  5165. */
  5166. sched_cacheflush();
  5167. /*
  5168. * Migrate to the source CPU:
  5169. */
  5170. mask = cpumask_of_cpu(source);
  5171. set_cpus_allowed(current, mask);
  5172. WARN_ON(smp_processor_id() != source);
  5173. /*
  5174. * Dirty the working set:
  5175. */
  5176. t0 = sched_clock();
  5177. touch_cache(cache, size);
  5178. t1 = sched_clock();
  5179. /*
  5180. * Migrate to the target CPU, dirty the L2 cache and access
  5181. * the shared buffer. (which represents the working set
  5182. * of a migrated task.)
  5183. */
  5184. mask = cpumask_of_cpu(target);
  5185. set_cpus_allowed(current, mask);
  5186. WARN_ON(smp_processor_id() != target);
  5187. t2 = sched_clock();
  5188. touch_cache(cache, size);
  5189. t3 = sched_clock();
  5190. cost = t1-t0 + t3-t2;
  5191. if (migration_debug >= 2)
  5192. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  5193. source, target, t1-t0, t1-t0, t3-t2, cost);
  5194. /*
  5195. * Flush target caches to RAM and invalidate them:
  5196. */
  5197. sched_cacheflush();
  5198. set_cpus_allowed(current, saved_mask);
  5199. return cost;
  5200. }
  5201. /*
  5202. * Measure a series of task migrations and return the average
  5203. * result. Since this code runs early during bootup the system
  5204. * is 'undisturbed' and the average latency makes sense.
  5205. *
  5206. * The algorithm in essence auto-detects the relevant cache-size,
  5207. * so it will properly detect different cachesizes for different
  5208. * cache-hierarchies, depending on how the CPUs are connected.
  5209. *
  5210. * Architectures can prime the upper limit of the search range via
  5211. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  5212. */
  5213. static unsigned long long
  5214. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  5215. {
  5216. unsigned long long cost1, cost2;
  5217. int i;
  5218. /*
  5219. * Measure the migration cost of 'size' bytes, over an
  5220. * average of 10 runs:
  5221. *
  5222. * (We perturb the cache size by a small (0..4k)
  5223. * value to compensate size/alignment related artifacts.
  5224. * We also subtract the cost of the operation done on
  5225. * the same CPU.)
  5226. */
  5227. cost1 = 0;
  5228. /*
  5229. * dry run, to make sure we start off cache-cold on cpu1,
  5230. * and to get any vmalloc pagefaults in advance:
  5231. */
  5232. measure_one(cache, size, cpu1, cpu2);
  5233. for (i = 0; i < ITERATIONS; i++)
  5234. cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
  5235. measure_one(cache, size, cpu2, cpu1);
  5236. for (i = 0; i < ITERATIONS; i++)
  5237. cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
  5238. /*
  5239. * (We measure the non-migrating [cached] cost on both
  5240. * cpu1 and cpu2, to handle CPUs with different speeds)
  5241. */
  5242. cost2 = 0;
  5243. measure_one(cache, size, cpu1, cpu1);
  5244. for (i = 0; i < ITERATIONS; i++)
  5245. cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
  5246. measure_one(cache, size, cpu2, cpu2);
  5247. for (i = 0; i < ITERATIONS; i++)
  5248. cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
  5249. /*
  5250. * Get the per-iteration migration cost:
  5251. */
  5252. do_div(cost1, 2 * ITERATIONS);
  5253. do_div(cost2, 2 * ITERATIONS);
  5254. return cost1 - cost2;
  5255. }
  5256. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  5257. {
  5258. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  5259. unsigned int max_size, size, size_found = 0;
  5260. long long cost = 0, prev_cost;
  5261. void *cache;
  5262. /*
  5263. * Search from max_cache_size*5 down to 64K - the real relevant
  5264. * cachesize has to lie somewhere inbetween.
  5265. */
  5266. if (max_cache_size) {
  5267. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  5268. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  5269. } else {
  5270. /*
  5271. * Since we have no estimation about the relevant
  5272. * search range
  5273. */
  5274. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  5275. size = MIN_CACHE_SIZE;
  5276. }
  5277. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  5278. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  5279. return 0;
  5280. }
  5281. /*
  5282. * Allocate the working set:
  5283. */
  5284. cache = vmalloc(max_size);
  5285. if (!cache) {
  5286. printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
  5287. return 1000000; /* return 1 msec on very small boxen */
  5288. }
  5289. while (size <= max_size) {
  5290. prev_cost = cost;
  5291. cost = measure_cost(cpu1, cpu2, cache, size);
  5292. /*
  5293. * Update the max:
  5294. */
  5295. if (cost > 0) {
  5296. if (max_cost < cost) {
  5297. max_cost = cost;
  5298. size_found = size;
  5299. }
  5300. }
  5301. /*
  5302. * Calculate average fluctuation, we use this to prevent
  5303. * noise from triggering an early break out of the loop:
  5304. */
  5305. fluct = abs(cost - prev_cost);
  5306. avg_fluct = (avg_fluct + fluct)/2;
  5307. if (migration_debug)
  5308. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
  5309. "(%8Ld %8Ld)\n",
  5310. cpu1, cpu2, size,
  5311. (long)cost / 1000000,
  5312. ((long)cost / 100000) % 10,
  5313. (long)max_cost / 1000000,
  5314. ((long)max_cost / 100000) % 10,
  5315. domain_distance(cpu1, cpu2),
  5316. cost, avg_fluct);
  5317. /*
  5318. * If we iterated at least 20% past the previous maximum,
  5319. * and the cost has dropped by more than 20% already,
  5320. * (taking fluctuations into account) then we assume to
  5321. * have found the maximum and break out of the loop early:
  5322. */
  5323. if (size_found && (size*100 > size_found*SIZE_THRESH))
  5324. if (cost+avg_fluct <= 0 ||
  5325. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  5326. if (migration_debug)
  5327. printk("-> found max.\n");
  5328. break;
  5329. }
  5330. /*
  5331. * Increase the cachesize in 10% steps:
  5332. */
  5333. size = size * 10 / 9;
  5334. }
  5335. if (migration_debug)
  5336. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  5337. cpu1, cpu2, size_found, max_cost);
  5338. vfree(cache);
  5339. /*
  5340. * A task is considered 'cache cold' if at least 2 times
  5341. * the worst-case cost of migration has passed.
  5342. *
  5343. * (this limit is only listened to if the load-balancing
  5344. * situation is 'nice' - if there is a large imbalance we
  5345. * ignore it for the sake of CPU utilization and
  5346. * processing fairness.)
  5347. */
  5348. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  5349. }
  5350. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  5351. {
  5352. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  5353. unsigned long j0, j1, distance, max_distance = 0;
  5354. struct sched_domain *sd;
  5355. j0 = jiffies;
  5356. /*
  5357. * First pass - calculate the cacheflush times:
  5358. */
  5359. for_each_cpu_mask(cpu1, *cpu_map) {
  5360. for_each_cpu_mask(cpu2, *cpu_map) {
  5361. if (cpu1 == cpu2)
  5362. continue;
  5363. distance = domain_distance(cpu1, cpu2);
  5364. max_distance = max(max_distance, distance);
  5365. /*
  5366. * No result cached yet?
  5367. */
  5368. if (migration_cost[distance] == -1LL)
  5369. migration_cost[distance] =
  5370. measure_migration_cost(cpu1, cpu2);
  5371. }
  5372. }
  5373. /*
  5374. * Second pass - update the sched domain hierarchy with
  5375. * the new cache-hot-time estimations:
  5376. */
  5377. for_each_cpu_mask(cpu, *cpu_map) {
  5378. distance = 0;
  5379. for_each_domain(cpu, sd) {
  5380. sd->cache_hot_time = migration_cost[distance];
  5381. distance++;
  5382. }
  5383. }
  5384. /*
  5385. * Print the matrix:
  5386. */
  5387. if (migration_debug)
  5388. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  5389. max_cache_size,
  5390. #ifdef CONFIG_X86
  5391. cpu_khz/1000
  5392. #else
  5393. -1
  5394. #endif
  5395. );
  5396. if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
  5397. printk("migration_cost=");
  5398. for (distance = 0; distance <= max_distance; distance++) {
  5399. if (distance)
  5400. printk(",");
  5401. printk("%ld", (long)migration_cost[distance] / 1000);
  5402. }
  5403. printk("\n");
  5404. }
  5405. j1 = jiffies;
  5406. if (migration_debug)
  5407. printk("migration: %ld seconds\n", (j1-j0) / HZ);
  5408. /*
  5409. * Move back to the original CPU. NUMA-Q gets confused
  5410. * if we migrate to another quad during bootup.
  5411. */
  5412. if (raw_smp_processor_id() != orig_cpu) {
  5413. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  5414. saved_mask = current->cpus_allowed;
  5415. set_cpus_allowed(current, mask);
  5416. set_cpus_allowed(current, saved_mask);
  5417. }
  5418. }
  5419. #ifdef CONFIG_NUMA
  5420. /**
  5421. * find_next_best_node - find the next node to include in a sched_domain
  5422. * @node: node whose sched_domain we're building
  5423. * @used_nodes: nodes already in the sched_domain
  5424. *
  5425. * Find the next node to include in a given scheduling domain. Simply
  5426. * finds the closest node not already in the @used_nodes map.
  5427. *
  5428. * Should use nodemask_t.
  5429. */
  5430. static int find_next_best_node(int node, unsigned long *used_nodes)
  5431. {
  5432. int i, n, val, min_val, best_node = 0;
  5433. min_val = INT_MAX;
  5434. for (i = 0; i < MAX_NUMNODES; i++) {
  5435. /* Start at @node */
  5436. n = (node + i) % MAX_NUMNODES;
  5437. if (!nr_cpus_node(n))
  5438. continue;
  5439. /* Skip already used nodes */
  5440. if (test_bit(n, used_nodes))
  5441. continue;
  5442. /* Simple min distance search */
  5443. val = node_distance(node, n);
  5444. if (val < min_val) {
  5445. min_val = val;
  5446. best_node = n;
  5447. }
  5448. }
  5449. set_bit(best_node, used_nodes);
  5450. return best_node;
  5451. }
  5452. /**
  5453. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5454. * @node: node whose cpumask we're constructing
  5455. * @size: number of nodes to include in this span
  5456. *
  5457. * Given a node, construct a good cpumask for its sched_domain to span. It
  5458. * should be one that prevents unnecessary balancing, but also spreads tasks
  5459. * out optimally.
  5460. */
  5461. static cpumask_t sched_domain_node_span(int node)
  5462. {
  5463. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5464. cpumask_t span, nodemask;
  5465. int i;
  5466. cpus_clear(span);
  5467. bitmap_zero(used_nodes, MAX_NUMNODES);
  5468. nodemask = node_to_cpumask(node);
  5469. cpus_or(span, span, nodemask);
  5470. set_bit(node, used_nodes);
  5471. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5472. int next_node = find_next_best_node(node, used_nodes);
  5473. nodemask = node_to_cpumask(next_node);
  5474. cpus_or(span, span, nodemask);
  5475. }
  5476. return span;
  5477. }
  5478. #endif
  5479. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5480. /*
  5481. * SMT sched-domains:
  5482. */
  5483. #ifdef CONFIG_SCHED_SMT
  5484. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5485. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5486. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5487. struct sched_group **sg)
  5488. {
  5489. if (sg)
  5490. *sg = &per_cpu(sched_group_cpus, cpu);
  5491. return cpu;
  5492. }
  5493. #endif
  5494. /*
  5495. * multi-core sched-domains:
  5496. */
  5497. #ifdef CONFIG_SCHED_MC
  5498. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5499. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5500. #endif
  5501. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5502. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5503. struct sched_group **sg)
  5504. {
  5505. int group;
  5506. cpumask_t mask = cpu_sibling_map[cpu];
  5507. cpus_and(mask, mask, *cpu_map);
  5508. group = first_cpu(mask);
  5509. if (sg)
  5510. *sg = &per_cpu(sched_group_core, group);
  5511. return group;
  5512. }
  5513. #elif defined(CONFIG_SCHED_MC)
  5514. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5515. struct sched_group **sg)
  5516. {
  5517. if (sg)
  5518. *sg = &per_cpu(sched_group_core, cpu);
  5519. return cpu;
  5520. }
  5521. #endif
  5522. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5523. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5524. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5525. struct sched_group **sg)
  5526. {
  5527. int group;
  5528. #ifdef CONFIG_SCHED_MC
  5529. cpumask_t mask = cpu_coregroup_map(cpu);
  5530. cpus_and(mask, mask, *cpu_map);
  5531. group = first_cpu(mask);
  5532. #elif defined(CONFIG_SCHED_SMT)
  5533. cpumask_t mask = cpu_sibling_map[cpu];
  5534. cpus_and(mask, mask, *cpu_map);
  5535. group = first_cpu(mask);
  5536. #else
  5537. group = cpu;
  5538. #endif
  5539. if (sg)
  5540. *sg = &per_cpu(sched_group_phys, group);
  5541. return group;
  5542. }
  5543. #ifdef CONFIG_NUMA
  5544. /*
  5545. * The init_sched_build_groups can't handle what we want to do with node
  5546. * groups, so roll our own. Now each node has its own list of groups which
  5547. * gets dynamically allocated.
  5548. */
  5549. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5550. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5551. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5552. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5553. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5554. struct sched_group **sg)
  5555. {
  5556. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5557. int group;
  5558. cpus_and(nodemask, nodemask, *cpu_map);
  5559. group = first_cpu(nodemask);
  5560. if (sg)
  5561. *sg = &per_cpu(sched_group_allnodes, group);
  5562. return group;
  5563. }
  5564. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5565. {
  5566. struct sched_group *sg = group_head;
  5567. int j;
  5568. if (!sg)
  5569. return;
  5570. next_sg:
  5571. for_each_cpu_mask(j, sg->cpumask) {
  5572. struct sched_domain *sd;
  5573. sd = &per_cpu(phys_domains, j);
  5574. if (j != first_cpu(sd->groups->cpumask)) {
  5575. /*
  5576. * Only add "power" once for each
  5577. * physical package.
  5578. */
  5579. continue;
  5580. }
  5581. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5582. }
  5583. sg = sg->next;
  5584. if (sg != group_head)
  5585. goto next_sg;
  5586. }
  5587. #endif
  5588. #ifdef CONFIG_NUMA
  5589. /* Free memory allocated for various sched_group structures */
  5590. static void free_sched_groups(const cpumask_t *cpu_map)
  5591. {
  5592. int cpu, i;
  5593. for_each_cpu_mask(cpu, *cpu_map) {
  5594. struct sched_group **sched_group_nodes
  5595. = sched_group_nodes_bycpu[cpu];
  5596. if (!sched_group_nodes)
  5597. continue;
  5598. for (i = 0; i < MAX_NUMNODES; i++) {
  5599. cpumask_t nodemask = node_to_cpumask(i);
  5600. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5601. cpus_and(nodemask, nodemask, *cpu_map);
  5602. if (cpus_empty(nodemask))
  5603. continue;
  5604. if (sg == NULL)
  5605. continue;
  5606. sg = sg->next;
  5607. next_sg:
  5608. oldsg = sg;
  5609. sg = sg->next;
  5610. kfree(oldsg);
  5611. if (oldsg != sched_group_nodes[i])
  5612. goto next_sg;
  5613. }
  5614. kfree(sched_group_nodes);
  5615. sched_group_nodes_bycpu[cpu] = NULL;
  5616. }
  5617. }
  5618. #else
  5619. static void free_sched_groups(const cpumask_t *cpu_map)
  5620. {
  5621. }
  5622. #endif
  5623. /*
  5624. * Initialize sched groups cpu_power.
  5625. *
  5626. * cpu_power indicates the capacity of sched group, which is used while
  5627. * distributing the load between different sched groups in a sched domain.
  5628. * Typically cpu_power for all the groups in a sched domain will be same unless
  5629. * there are asymmetries in the topology. If there are asymmetries, group
  5630. * having more cpu_power will pickup more load compared to the group having
  5631. * less cpu_power.
  5632. *
  5633. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5634. * the maximum number of tasks a group can handle in the presence of other idle
  5635. * or lightly loaded groups in the same sched domain.
  5636. */
  5637. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5638. {
  5639. struct sched_domain *child;
  5640. struct sched_group *group;
  5641. WARN_ON(!sd || !sd->groups);
  5642. if (cpu != first_cpu(sd->groups->cpumask))
  5643. return;
  5644. child = sd->child;
  5645. sd->groups->__cpu_power = 0;
  5646. /*
  5647. * For perf policy, if the groups in child domain share resources
  5648. * (for example cores sharing some portions of the cache hierarchy
  5649. * or SMT), then set this domain groups cpu_power such that each group
  5650. * can handle only one task, when there are other idle groups in the
  5651. * same sched domain.
  5652. */
  5653. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5654. (child->flags &
  5655. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5656. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5657. return;
  5658. }
  5659. /*
  5660. * add cpu_power of each child group to this groups cpu_power
  5661. */
  5662. group = child->groups;
  5663. do {
  5664. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5665. group = group->next;
  5666. } while (group != child->groups);
  5667. }
  5668. /*
  5669. * Build sched domains for a given set of cpus and attach the sched domains
  5670. * to the individual cpus
  5671. */
  5672. static int build_sched_domains(const cpumask_t *cpu_map)
  5673. {
  5674. int i;
  5675. struct sched_domain *sd;
  5676. #ifdef CONFIG_NUMA
  5677. struct sched_group **sched_group_nodes = NULL;
  5678. int sd_allnodes = 0;
  5679. /*
  5680. * Allocate the per-node list of sched groups
  5681. */
  5682. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5683. GFP_KERNEL);
  5684. if (!sched_group_nodes) {
  5685. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5686. return -ENOMEM;
  5687. }
  5688. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5689. #endif
  5690. /*
  5691. * Set up domains for cpus specified by the cpu_map.
  5692. */
  5693. for_each_cpu_mask(i, *cpu_map) {
  5694. struct sched_domain *sd = NULL, *p;
  5695. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5696. cpus_and(nodemask, nodemask, *cpu_map);
  5697. #ifdef CONFIG_NUMA
  5698. if (cpus_weight(*cpu_map)
  5699. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5700. sd = &per_cpu(allnodes_domains, i);
  5701. *sd = SD_ALLNODES_INIT;
  5702. sd->span = *cpu_map;
  5703. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5704. p = sd;
  5705. sd_allnodes = 1;
  5706. } else
  5707. p = NULL;
  5708. sd = &per_cpu(node_domains, i);
  5709. *sd = SD_NODE_INIT;
  5710. sd->span = sched_domain_node_span(cpu_to_node(i));
  5711. sd->parent = p;
  5712. if (p)
  5713. p->child = sd;
  5714. cpus_and(sd->span, sd->span, *cpu_map);
  5715. #endif
  5716. p = sd;
  5717. sd = &per_cpu(phys_domains, i);
  5718. *sd = SD_CPU_INIT;
  5719. sd->span = nodemask;
  5720. sd->parent = p;
  5721. if (p)
  5722. p->child = sd;
  5723. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5724. #ifdef CONFIG_SCHED_MC
  5725. p = sd;
  5726. sd = &per_cpu(core_domains, i);
  5727. *sd = SD_MC_INIT;
  5728. sd->span = cpu_coregroup_map(i);
  5729. cpus_and(sd->span, sd->span, *cpu_map);
  5730. sd->parent = p;
  5731. p->child = sd;
  5732. cpu_to_core_group(i, cpu_map, &sd->groups);
  5733. #endif
  5734. #ifdef CONFIG_SCHED_SMT
  5735. p = sd;
  5736. sd = &per_cpu(cpu_domains, i);
  5737. *sd = SD_SIBLING_INIT;
  5738. sd->span = cpu_sibling_map[i];
  5739. cpus_and(sd->span, sd->span, *cpu_map);
  5740. sd->parent = p;
  5741. p->child = sd;
  5742. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5743. #endif
  5744. }
  5745. #ifdef CONFIG_SCHED_SMT
  5746. /* Set up CPU (sibling) groups */
  5747. for_each_cpu_mask(i, *cpu_map) {
  5748. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5749. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5750. if (i != first_cpu(this_sibling_map))
  5751. continue;
  5752. init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
  5753. }
  5754. #endif
  5755. #ifdef CONFIG_SCHED_MC
  5756. /* Set up multi-core groups */
  5757. for_each_cpu_mask(i, *cpu_map) {
  5758. cpumask_t this_core_map = cpu_coregroup_map(i);
  5759. cpus_and(this_core_map, this_core_map, *cpu_map);
  5760. if (i != first_cpu(this_core_map))
  5761. continue;
  5762. init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
  5763. }
  5764. #endif
  5765. /* Set up physical groups */
  5766. for (i = 0; i < MAX_NUMNODES; i++) {
  5767. cpumask_t nodemask = node_to_cpumask(i);
  5768. cpus_and(nodemask, nodemask, *cpu_map);
  5769. if (cpus_empty(nodemask))
  5770. continue;
  5771. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5772. }
  5773. #ifdef CONFIG_NUMA
  5774. /* Set up node groups */
  5775. if (sd_allnodes)
  5776. init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
  5777. for (i = 0; i < MAX_NUMNODES; i++) {
  5778. /* Set up node groups */
  5779. struct sched_group *sg, *prev;
  5780. cpumask_t nodemask = node_to_cpumask(i);
  5781. cpumask_t domainspan;
  5782. cpumask_t covered = CPU_MASK_NONE;
  5783. int j;
  5784. cpus_and(nodemask, nodemask, *cpu_map);
  5785. if (cpus_empty(nodemask)) {
  5786. sched_group_nodes[i] = NULL;
  5787. continue;
  5788. }
  5789. domainspan = sched_domain_node_span(i);
  5790. cpus_and(domainspan, domainspan, *cpu_map);
  5791. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5792. if (!sg) {
  5793. printk(KERN_WARNING "Can not alloc domain group for "
  5794. "node %d\n", i);
  5795. goto error;
  5796. }
  5797. sched_group_nodes[i] = sg;
  5798. for_each_cpu_mask(j, nodemask) {
  5799. struct sched_domain *sd;
  5800. sd = &per_cpu(node_domains, j);
  5801. sd->groups = sg;
  5802. }
  5803. sg->__cpu_power = 0;
  5804. sg->cpumask = nodemask;
  5805. sg->next = sg;
  5806. cpus_or(covered, covered, nodemask);
  5807. prev = sg;
  5808. for (j = 0; j < MAX_NUMNODES; j++) {
  5809. cpumask_t tmp, notcovered;
  5810. int n = (i + j) % MAX_NUMNODES;
  5811. cpus_complement(notcovered, covered);
  5812. cpus_and(tmp, notcovered, *cpu_map);
  5813. cpus_and(tmp, tmp, domainspan);
  5814. if (cpus_empty(tmp))
  5815. break;
  5816. nodemask = node_to_cpumask(n);
  5817. cpus_and(tmp, tmp, nodemask);
  5818. if (cpus_empty(tmp))
  5819. continue;
  5820. sg = kmalloc_node(sizeof(struct sched_group),
  5821. GFP_KERNEL, i);
  5822. if (!sg) {
  5823. printk(KERN_WARNING
  5824. "Can not alloc domain group for node %d\n", j);
  5825. goto error;
  5826. }
  5827. sg->__cpu_power = 0;
  5828. sg->cpumask = tmp;
  5829. sg->next = prev->next;
  5830. cpus_or(covered, covered, tmp);
  5831. prev->next = sg;
  5832. prev = sg;
  5833. }
  5834. }
  5835. #endif
  5836. /* Calculate CPU power for physical packages and nodes */
  5837. #ifdef CONFIG_SCHED_SMT
  5838. for_each_cpu_mask(i, *cpu_map) {
  5839. sd = &per_cpu(cpu_domains, i);
  5840. init_sched_groups_power(i, sd);
  5841. }
  5842. #endif
  5843. #ifdef CONFIG_SCHED_MC
  5844. for_each_cpu_mask(i, *cpu_map) {
  5845. sd = &per_cpu(core_domains, i);
  5846. init_sched_groups_power(i, sd);
  5847. }
  5848. #endif
  5849. for_each_cpu_mask(i, *cpu_map) {
  5850. sd = &per_cpu(phys_domains, i);
  5851. init_sched_groups_power(i, sd);
  5852. }
  5853. #ifdef CONFIG_NUMA
  5854. for (i = 0; i < MAX_NUMNODES; i++)
  5855. init_numa_sched_groups_power(sched_group_nodes[i]);
  5856. if (sd_allnodes) {
  5857. struct sched_group *sg;
  5858. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5859. init_numa_sched_groups_power(sg);
  5860. }
  5861. #endif
  5862. /* Attach the domains */
  5863. for_each_cpu_mask(i, *cpu_map) {
  5864. struct sched_domain *sd;
  5865. #ifdef CONFIG_SCHED_SMT
  5866. sd = &per_cpu(cpu_domains, i);
  5867. #elif defined(CONFIG_SCHED_MC)
  5868. sd = &per_cpu(core_domains, i);
  5869. #else
  5870. sd = &per_cpu(phys_domains, i);
  5871. #endif
  5872. cpu_attach_domain(sd, i);
  5873. }
  5874. /*
  5875. * Tune cache-hot values:
  5876. */
  5877. calibrate_migration_costs(cpu_map);
  5878. return 0;
  5879. #ifdef CONFIG_NUMA
  5880. error:
  5881. free_sched_groups(cpu_map);
  5882. return -ENOMEM;
  5883. #endif
  5884. }
  5885. /*
  5886. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5887. */
  5888. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5889. {
  5890. cpumask_t cpu_default_map;
  5891. int err;
  5892. /*
  5893. * Setup mask for cpus without special case scheduling requirements.
  5894. * For now this just excludes isolated cpus, but could be used to
  5895. * exclude other special cases in the future.
  5896. */
  5897. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5898. err = build_sched_domains(&cpu_default_map);
  5899. return err;
  5900. }
  5901. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5902. {
  5903. free_sched_groups(cpu_map);
  5904. }
  5905. /*
  5906. * Detach sched domains from a group of cpus specified in cpu_map
  5907. * These cpus will now be attached to the NULL domain
  5908. */
  5909. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5910. {
  5911. int i;
  5912. for_each_cpu_mask(i, *cpu_map)
  5913. cpu_attach_domain(NULL, i);
  5914. synchronize_sched();
  5915. arch_destroy_sched_domains(cpu_map);
  5916. }
  5917. /*
  5918. * Partition sched domains as specified by the cpumasks below.
  5919. * This attaches all cpus from the cpumasks to the NULL domain,
  5920. * waits for a RCU quiescent period, recalculates sched
  5921. * domain information and then attaches them back to the
  5922. * correct sched domains
  5923. * Call with hotplug lock held
  5924. */
  5925. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5926. {
  5927. cpumask_t change_map;
  5928. int err = 0;
  5929. cpus_and(*partition1, *partition1, cpu_online_map);
  5930. cpus_and(*partition2, *partition2, cpu_online_map);
  5931. cpus_or(change_map, *partition1, *partition2);
  5932. /* Detach sched domains from all of the affected cpus */
  5933. detach_destroy_domains(&change_map);
  5934. if (!cpus_empty(*partition1))
  5935. err = build_sched_domains(partition1);
  5936. if (!err && !cpus_empty(*partition2))
  5937. err = build_sched_domains(partition2);
  5938. return err;
  5939. }
  5940. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5941. int arch_reinit_sched_domains(void)
  5942. {
  5943. int err;
  5944. mutex_lock(&sched_hotcpu_mutex);
  5945. detach_destroy_domains(&cpu_online_map);
  5946. err = arch_init_sched_domains(&cpu_online_map);
  5947. mutex_unlock(&sched_hotcpu_mutex);
  5948. return err;
  5949. }
  5950. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5951. {
  5952. int ret;
  5953. if (buf[0] != '0' && buf[0] != '1')
  5954. return -EINVAL;
  5955. if (smt)
  5956. sched_smt_power_savings = (buf[0] == '1');
  5957. else
  5958. sched_mc_power_savings = (buf[0] == '1');
  5959. ret = arch_reinit_sched_domains();
  5960. return ret ? ret : count;
  5961. }
  5962. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5963. {
  5964. int err = 0;
  5965. #ifdef CONFIG_SCHED_SMT
  5966. if (smt_capable())
  5967. err = sysfs_create_file(&cls->kset.kobj,
  5968. &attr_sched_smt_power_savings.attr);
  5969. #endif
  5970. #ifdef CONFIG_SCHED_MC
  5971. if (!err && mc_capable())
  5972. err = sysfs_create_file(&cls->kset.kobj,
  5973. &attr_sched_mc_power_savings.attr);
  5974. #endif
  5975. return err;
  5976. }
  5977. #endif
  5978. #ifdef CONFIG_SCHED_MC
  5979. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5980. {
  5981. return sprintf(page, "%u\n", sched_mc_power_savings);
  5982. }
  5983. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5984. const char *buf, size_t count)
  5985. {
  5986. return sched_power_savings_store(buf, count, 0);
  5987. }
  5988. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5989. sched_mc_power_savings_store);
  5990. #endif
  5991. #ifdef CONFIG_SCHED_SMT
  5992. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5993. {
  5994. return sprintf(page, "%u\n", sched_smt_power_savings);
  5995. }
  5996. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5997. const char *buf, size_t count)
  5998. {
  5999. return sched_power_savings_store(buf, count, 1);
  6000. }
  6001. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6002. sched_smt_power_savings_store);
  6003. #endif
  6004. /*
  6005. * Force a reinitialization of the sched domains hierarchy. The domains
  6006. * and groups cannot be updated in place without racing with the balancing
  6007. * code, so we temporarily attach all running cpus to the NULL domain
  6008. * which will prevent rebalancing while the sched domains are recalculated.
  6009. */
  6010. static int update_sched_domains(struct notifier_block *nfb,
  6011. unsigned long action, void *hcpu)
  6012. {
  6013. switch (action) {
  6014. case CPU_UP_PREPARE:
  6015. case CPU_UP_PREPARE_FROZEN:
  6016. case CPU_DOWN_PREPARE:
  6017. case CPU_DOWN_PREPARE_FROZEN:
  6018. detach_destroy_domains(&cpu_online_map);
  6019. return NOTIFY_OK;
  6020. case CPU_UP_CANCELED:
  6021. case CPU_UP_CANCELED_FROZEN:
  6022. case CPU_DOWN_FAILED:
  6023. case CPU_DOWN_FAILED_FROZEN:
  6024. case CPU_ONLINE:
  6025. case CPU_ONLINE_FROZEN:
  6026. case CPU_DEAD:
  6027. case CPU_DEAD_FROZEN:
  6028. /*
  6029. * Fall through and re-initialise the domains.
  6030. */
  6031. break;
  6032. default:
  6033. return NOTIFY_DONE;
  6034. }
  6035. /* The hotplug lock is already held by cpu_up/cpu_down */
  6036. arch_init_sched_domains(&cpu_online_map);
  6037. return NOTIFY_OK;
  6038. }
  6039. void __init sched_init_smp(void)
  6040. {
  6041. cpumask_t non_isolated_cpus;
  6042. mutex_lock(&sched_hotcpu_mutex);
  6043. arch_init_sched_domains(&cpu_online_map);
  6044. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6045. if (cpus_empty(non_isolated_cpus))
  6046. cpu_set(smp_processor_id(), non_isolated_cpus);
  6047. mutex_unlock(&sched_hotcpu_mutex);
  6048. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6049. hotcpu_notifier(update_sched_domains, 0);
  6050. /* Move init over to a non-isolated CPU */
  6051. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6052. BUG();
  6053. }
  6054. #else
  6055. void __init sched_init_smp(void)
  6056. {
  6057. }
  6058. #endif /* CONFIG_SMP */
  6059. int in_sched_functions(unsigned long addr)
  6060. {
  6061. /* Linker adds these: start and end of __sched functions */
  6062. extern char __sched_text_start[], __sched_text_end[];
  6063. return in_lock_functions(addr) ||
  6064. (addr >= (unsigned long)__sched_text_start
  6065. && addr < (unsigned long)__sched_text_end);
  6066. }
  6067. void __init sched_init(void)
  6068. {
  6069. int i, j, k;
  6070. int highest_cpu = 0;
  6071. for_each_possible_cpu(i) {
  6072. struct prio_array *array;
  6073. struct rq *rq;
  6074. rq = cpu_rq(i);
  6075. spin_lock_init(&rq->lock);
  6076. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6077. rq->nr_running = 0;
  6078. rq->active = rq->arrays;
  6079. rq->expired = rq->arrays + 1;
  6080. rq->best_expired_prio = MAX_PRIO;
  6081. #ifdef CONFIG_SMP
  6082. rq->sd = NULL;
  6083. for (j = 1; j < 3; j++)
  6084. rq->cpu_load[j] = 0;
  6085. rq->active_balance = 0;
  6086. rq->push_cpu = 0;
  6087. rq->cpu = i;
  6088. rq->migration_thread = NULL;
  6089. INIT_LIST_HEAD(&rq->migration_queue);
  6090. #endif
  6091. atomic_set(&rq->nr_iowait, 0);
  6092. for (j = 0; j < 2; j++) {
  6093. array = rq->arrays + j;
  6094. for (k = 0; k < MAX_PRIO; k++) {
  6095. INIT_LIST_HEAD(array->queue + k);
  6096. __clear_bit(k, array->bitmap);
  6097. }
  6098. // delimiter for bitsearch
  6099. __set_bit(MAX_PRIO, array->bitmap);
  6100. }
  6101. highest_cpu = i;
  6102. }
  6103. set_load_weight(&init_task);
  6104. #ifdef CONFIG_SMP
  6105. nr_cpu_ids = highest_cpu + 1;
  6106. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6107. #endif
  6108. #ifdef CONFIG_RT_MUTEXES
  6109. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6110. #endif
  6111. /*
  6112. * The boot idle thread does lazy MMU switching as well:
  6113. */
  6114. atomic_inc(&init_mm.mm_count);
  6115. enter_lazy_tlb(&init_mm, current);
  6116. /*
  6117. * Make us the idle thread. Technically, schedule() should not be
  6118. * called from this thread, however somewhere below it might be,
  6119. * but because we are the idle thread, we just pick up running again
  6120. * when this runqueue becomes "idle".
  6121. */
  6122. init_idle(current, smp_processor_id());
  6123. }
  6124. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6125. void __might_sleep(char *file, int line)
  6126. {
  6127. #ifdef in_atomic
  6128. static unsigned long prev_jiffy; /* ratelimiting */
  6129. if ((in_atomic() || irqs_disabled()) &&
  6130. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6131. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6132. return;
  6133. prev_jiffy = jiffies;
  6134. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6135. " context at %s:%d\n", file, line);
  6136. printk("in_atomic():%d, irqs_disabled():%d\n",
  6137. in_atomic(), irqs_disabled());
  6138. debug_show_held_locks(current);
  6139. if (irqs_disabled())
  6140. print_irqtrace_events(current);
  6141. dump_stack();
  6142. }
  6143. #endif
  6144. }
  6145. EXPORT_SYMBOL(__might_sleep);
  6146. #endif
  6147. #ifdef CONFIG_MAGIC_SYSRQ
  6148. void normalize_rt_tasks(void)
  6149. {
  6150. struct prio_array *array;
  6151. struct task_struct *p;
  6152. unsigned long flags;
  6153. struct rq *rq;
  6154. read_lock_irq(&tasklist_lock);
  6155. for_each_process(p) {
  6156. if (!rt_task(p))
  6157. continue;
  6158. spin_lock_irqsave(&p->pi_lock, flags);
  6159. rq = __task_rq_lock(p);
  6160. array = p->array;
  6161. if (array)
  6162. deactivate_task(p, task_rq(p));
  6163. __setscheduler(p, SCHED_NORMAL, 0);
  6164. if (array) {
  6165. __activate_task(p, task_rq(p));
  6166. resched_task(rq->curr);
  6167. }
  6168. __task_rq_unlock(rq);
  6169. spin_unlock_irqrestore(&p->pi_lock, flags);
  6170. }
  6171. read_unlock_irq(&tasklist_lock);
  6172. }
  6173. #endif /* CONFIG_MAGIC_SYSRQ */
  6174. #ifdef CONFIG_IA64
  6175. /*
  6176. * These functions are only useful for the IA64 MCA handling.
  6177. *
  6178. * They can only be called when the whole system has been
  6179. * stopped - every CPU needs to be quiescent, and no scheduling
  6180. * activity can take place. Using them for anything else would
  6181. * be a serious bug, and as a result, they aren't even visible
  6182. * under any other configuration.
  6183. */
  6184. /**
  6185. * curr_task - return the current task for a given cpu.
  6186. * @cpu: the processor in question.
  6187. *
  6188. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6189. */
  6190. struct task_struct *curr_task(int cpu)
  6191. {
  6192. return cpu_curr(cpu);
  6193. }
  6194. /**
  6195. * set_curr_task - set the current task for a given cpu.
  6196. * @cpu: the processor in question.
  6197. * @p: the task pointer to set.
  6198. *
  6199. * Description: This function must only be used when non-maskable interrupts
  6200. * are serviced on a separate stack. It allows the architecture to switch the
  6201. * notion of the current task on a cpu in a non-blocking manner. This function
  6202. * must be called with all CPU's synchronized, and interrupts disabled, the
  6203. * and caller must save the original value of the current task (see
  6204. * curr_task() above) and restore that value before reenabling interrupts and
  6205. * re-starting the system.
  6206. *
  6207. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6208. */
  6209. void set_curr_task(int cpu, struct task_struct *p)
  6210. {
  6211. cpu_curr(cpu) = p;
  6212. }
  6213. #endif