fork.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/freezer.h>
  47. #include <linux/delayacct.h>
  48. #include <linux/taskstats_kern.h>
  49. #include <linux/random.h>
  50. #include <asm/pgtable.h>
  51. #include <asm/pgalloc.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/mmu_context.h>
  54. #include <asm/cacheflush.h>
  55. #include <asm/tlbflush.h>
  56. /*
  57. * Protected counters by write_lock_irq(&tasklist_lock)
  58. */
  59. unsigned long total_forks; /* Handle normal Linux uptimes. */
  60. int nr_threads; /* The idle threads do not count.. */
  61. int max_threads; /* tunable limit on nr_threads */
  62. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  63. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  64. int nr_processes(void)
  65. {
  66. int cpu;
  67. int total = 0;
  68. for_each_online_cpu(cpu)
  69. total += per_cpu(process_counts, cpu);
  70. return total;
  71. }
  72. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  73. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  74. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  75. static struct kmem_cache *task_struct_cachep;
  76. #endif
  77. /* SLAB cache for signal_struct structures (tsk->signal) */
  78. static struct kmem_cache *signal_cachep;
  79. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  80. struct kmem_cache *sighand_cachep;
  81. /* SLAB cache for files_struct structures (tsk->files) */
  82. struct kmem_cache *files_cachep;
  83. /* SLAB cache for fs_struct structures (tsk->fs) */
  84. struct kmem_cache *fs_cachep;
  85. /* SLAB cache for vm_area_struct structures */
  86. struct kmem_cache *vm_area_cachep;
  87. /* SLAB cache for mm_struct structures (tsk->mm) */
  88. static struct kmem_cache *mm_cachep;
  89. void free_task(struct task_struct *tsk)
  90. {
  91. free_thread_info(tsk->stack);
  92. rt_mutex_debug_task_free(tsk);
  93. free_task_struct(tsk);
  94. }
  95. EXPORT_SYMBOL(free_task);
  96. void __put_task_struct(struct task_struct *tsk)
  97. {
  98. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  99. WARN_ON(atomic_read(&tsk->usage));
  100. WARN_ON(tsk == current);
  101. security_task_free(tsk);
  102. free_uid(tsk->user);
  103. put_group_info(tsk->group_info);
  104. delayacct_tsk_free(tsk);
  105. if (!profile_handoff_task(tsk))
  106. free_task(tsk);
  107. }
  108. void __init fork_init(unsigned long mempages)
  109. {
  110. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  111. #ifndef ARCH_MIN_TASKALIGN
  112. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  113. #endif
  114. /* create a slab on which task_structs can be allocated */
  115. task_struct_cachep =
  116. kmem_cache_create("task_struct", sizeof(struct task_struct),
  117. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  118. #endif
  119. /*
  120. * The default maximum number of threads is set to a safe
  121. * value: the thread structures can take up at most half
  122. * of memory.
  123. */
  124. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  125. /*
  126. * we need to allow at least 20 threads to boot a system
  127. */
  128. if(max_threads < 20)
  129. max_threads = 20;
  130. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  131. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  132. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  133. init_task.signal->rlim[RLIMIT_NPROC];
  134. }
  135. static struct task_struct *dup_task_struct(struct task_struct *orig)
  136. {
  137. struct task_struct *tsk;
  138. struct thread_info *ti;
  139. prepare_to_copy(orig);
  140. tsk = alloc_task_struct();
  141. if (!tsk)
  142. return NULL;
  143. ti = alloc_thread_info(tsk);
  144. if (!ti) {
  145. free_task_struct(tsk);
  146. return NULL;
  147. }
  148. *tsk = *orig;
  149. tsk->stack = ti;
  150. setup_thread_stack(tsk, orig);
  151. #ifdef CONFIG_CC_STACKPROTECTOR
  152. tsk->stack_canary = get_random_int();
  153. #endif
  154. /* One for us, one for whoever does the "release_task()" (usually parent) */
  155. atomic_set(&tsk->usage,2);
  156. atomic_set(&tsk->fs_excl, 0);
  157. #ifdef CONFIG_BLK_DEV_IO_TRACE
  158. tsk->btrace_seq = 0;
  159. #endif
  160. tsk->splice_pipe = NULL;
  161. return tsk;
  162. }
  163. #ifdef CONFIG_MMU
  164. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  165. {
  166. struct vm_area_struct *mpnt, *tmp, **pprev;
  167. struct rb_node **rb_link, *rb_parent;
  168. int retval;
  169. unsigned long charge;
  170. struct mempolicy *pol;
  171. down_write(&oldmm->mmap_sem);
  172. flush_cache_dup_mm(oldmm);
  173. /*
  174. * Not linked in yet - no deadlock potential:
  175. */
  176. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  177. mm->locked_vm = 0;
  178. mm->mmap = NULL;
  179. mm->mmap_cache = NULL;
  180. mm->free_area_cache = oldmm->mmap_base;
  181. mm->cached_hole_size = ~0UL;
  182. mm->map_count = 0;
  183. cpus_clear(mm->cpu_vm_mask);
  184. mm->mm_rb = RB_ROOT;
  185. rb_link = &mm->mm_rb.rb_node;
  186. rb_parent = NULL;
  187. pprev = &mm->mmap;
  188. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  189. struct file *file;
  190. if (mpnt->vm_flags & VM_DONTCOPY) {
  191. long pages = vma_pages(mpnt);
  192. mm->total_vm -= pages;
  193. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  194. -pages);
  195. continue;
  196. }
  197. charge = 0;
  198. if (mpnt->vm_flags & VM_ACCOUNT) {
  199. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  200. if (security_vm_enough_memory(len))
  201. goto fail_nomem;
  202. charge = len;
  203. }
  204. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  205. if (!tmp)
  206. goto fail_nomem;
  207. *tmp = *mpnt;
  208. pol = mpol_copy(vma_policy(mpnt));
  209. retval = PTR_ERR(pol);
  210. if (IS_ERR(pol))
  211. goto fail_nomem_policy;
  212. vma_set_policy(tmp, pol);
  213. tmp->vm_flags &= ~VM_LOCKED;
  214. tmp->vm_mm = mm;
  215. tmp->vm_next = NULL;
  216. anon_vma_link(tmp);
  217. file = tmp->vm_file;
  218. if (file) {
  219. struct inode *inode = file->f_path.dentry->d_inode;
  220. get_file(file);
  221. if (tmp->vm_flags & VM_DENYWRITE)
  222. atomic_dec(&inode->i_writecount);
  223. /* insert tmp into the share list, just after mpnt */
  224. spin_lock(&file->f_mapping->i_mmap_lock);
  225. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  226. flush_dcache_mmap_lock(file->f_mapping);
  227. vma_prio_tree_add(tmp, mpnt);
  228. flush_dcache_mmap_unlock(file->f_mapping);
  229. spin_unlock(&file->f_mapping->i_mmap_lock);
  230. }
  231. /*
  232. * Link in the new vma and copy the page table entries.
  233. */
  234. *pprev = tmp;
  235. pprev = &tmp->vm_next;
  236. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  237. rb_link = &tmp->vm_rb.rb_right;
  238. rb_parent = &tmp->vm_rb;
  239. mm->map_count++;
  240. retval = copy_page_range(mm, oldmm, mpnt);
  241. if (tmp->vm_ops && tmp->vm_ops->open)
  242. tmp->vm_ops->open(tmp);
  243. if (retval)
  244. goto out;
  245. }
  246. /* a new mm has just been created */
  247. arch_dup_mmap(oldmm, mm);
  248. retval = 0;
  249. out:
  250. up_write(&mm->mmap_sem);
  251. flush_tlb_mm(oldmm);
  252. up_write(&oldmm->mmap_sem);
  253. return retval;
  254. fail_nomem_policy:
  255. kmem_cache_free(vm_area_cachep, tmp);
  256. fail_nomem:
  257. retval = -ENOMEM;
  258. vm_unacct_memory(charge);
  259. goto out;
  260. }
  261. static inline int mm_alloc_pgd(struct mm_struct * mm)
  262. {
  263. mm->pgd = pgd_alloc(mm);
  264. if (unlikely(!mm->pgd))
  265. return -ENOMEM;
  266. return 0;
  267. }
  268. static inline void mm_free_pgd(struct mm_struct * mm)
  269. {
  270. pgd_free(mm->pgd);
  271. }
  272. #else
  273. #define dup_mmap(mm, oldmm) (0)
  274. #define mm_alloc_pgd(mm) (0)
  275. #define mm_free_pgd(mm)
  276. #endif /* CONFIG_MMU */
  277. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  278. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  279. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  280. #include <linux/init_task.h>
  281. static struct mm_struct * mm_init(struct mm_struct * mm)
  282. {
  283. atomic_set(&mm->mm_users, 1);
  284. atomic_set(&mm->mm_count, 1);
  285. init_rwsem(&mm->mmap_sem);
  286. INIT_LIST_HEAD(&mm->mmlist);
  287. mm->core_waiters = 0;
  288. mm->nr_ptes = 0;
  289. set_mm_counter(mm, file_rss, 0);
  290. set_mm_counter(mm, anon_rss, 0);
  291. spin_lock_init(&mm->page_table_lock);
  292. rwlock_init(&mm->ioctx_list_lock);
  293. mm->ioctx_list = NULL;
  294. mm->free_area_cache = TASK_UNMAPPED_BASE;
  295. mm->cached_hole_size = ~0UL;
  296. if (likely(!mm_alloc_pgd(mm))) {
  297. mm->def_flags = 0;
  298. return mm;
  299. }
  300. free_mm(mm);
  301. return NULL;
  302. }
  303. /*
  304. * Allocate and initialize an mm_struct.
  305. */
  306. struct mm_struct * mm_alloc(void)
  307. {
  308. struct mm_struct * mm;
  309. mm = allocate_mm();
  310. if (mm) {
  311. memset(mm, 0, sizeof(*mm));
  312. mm = mm_init(mm);
  313. }
  314. return mm;
  315. }
  316. /*
  317. * Called when the last reference to the mm
  318. * is dropped: either by a lazy thread or by
  319. * mmput. Free the page directory and the mm.
  320. */
  321. void fastcall __mmdrop(struct mm_struct *mm)
  322. {
  323. BUG_ON(mm == &init_mm);
  324. mm_free_pgd(mm);
  325. destroy_context(mm);
  326. free_mm(mm);
  327. }
  328. /*
  329. * Decrement the use count and release all resources for an mm.
  330. */
  331. void mmput(struct mm_struct *mm)
  332. {
  333. might_sleep();
  334. if (atomic_dec_and_test(&mm->mm_users)) {
  335. exit_aio(mm);
  336. exit_mmap(mm);
  337. if (!list_empty(&mm->mmlist)) {
  338. spin_lock(&mmlist_lock);
  339. list_del(&mm->mmlist);
  340. spin_unlock(&mmlist_lock);
  341. }
  342. put_swap_token(mm);
  343. mmdrop(mm);
  344. }
  345. }
  346. EXPORT_SYMBOL_GPL(mmput);
  347. /**
  348. * get_task_mm - acquire a reference to the task's mm
  349. *
  350. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  351. * this kernel workthread has transiently adopted a user mm with use_mm,
  352. * to do its AIO) is not set and if so returns a reference to it, after
  353. * bumping up the use count. User must release the mm via mmput()
  354. * after use. Typically used by /proc and ptrace.
  355. */
  356. struct mm_struct *get_task_mm(struct task_struct *task)
  357. {
  358. struct mm_struct *mm;
  359. task_lock(task);
  360. mm = task->mm;
  361. if (mm) {
  362. if (task->flags & PF_BORROWED_MM)
  363. mm = NULL;
  364. else
  365. atomic_inc(&mm->mm_users);
  366. }
  367. task_unlock(task);
  368. return mm;
  369. }
  370. EXPORT_SYMBOL_GPL(get_task_mm);
  371. /* Please note the differences between mmput and mm_release.
  372. * mmput is called whenever we stop holding onto a mm_struct,
  373. * error success whatever.
  374. *
  375. * mm_release is called after a mm_struct has been removed
  376. * from the current process.
  377. *
  378. * This difference is important for error handling, when we
  379. * only half set up a mm_struct for a new process and need to restore
  380. * the old one. Because we mmput the new mm_struct before
  381. * restoring the old one. . .
  382. * Eric Biederman 10 January 1998
  383. */
  384. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  385. {
  386. struct completion *vfork_done = tsk->vfork_done;
  387. /* Get rid of any cached register state */
  388. deactivate_mm(tsk, mm);
  389. /* notify parent sleeping on vfork() */
  390. if (vfork_done) {
  391. tsk->vfork_done = NULL;
  392. complete(vfork_done);
  393. }
  394. /*
  395. * If we're exiting normally, clear a user-space tid field if
  396. * requested. We leave this alone when dying by signal, to leave
  397. * the value intact in a core dump, and to save the unnecessary
  398. * trouble otherwise. Userland only wants this done for a sys_exit.
  399. */
  400. if (tsk->clear_child_tid
  401. && !(tsk->flags & PF_SIGNALED)
  402. && atomic_read(&mm->mm_users) > 1) {
  403. u32 __user * tidptr = tsk->clear_child_tid;
  404. tsk->clear_child_tid = NULL;
  405. /*
  406. * We don't check the error code - if userspace has
  407. * not set up a proper pointer then tough luck.
  408. */
  409. put_user(0, tidptr);
  410. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  411. }
  412. }
  413. /*
  414. * Allocate a new mm structure and copy contents from the
  415. * mm structure of the passed in task structure.
  416. */
  417. static struct mm_struct *dup_mm(struct task_struct *tsk)
  418. {
  419. struct mm_struct *mm, *oldmm = current->mm;
  420. int err;
  421. if (!oldmm)
  422. return NULL;
  423. mm = allocate_mm();
  424. if (!mm)
  425. goto fail_nomem;
  426. memcpy(mm, oldmm, sizeof(*mm));
  427. /* Initializing for Swap token stuff */
  428. mm->token_priority = 0;
  429. mm->last_interval = 0;
  430. if (!mm_init(mm))
  431. goto fail_nomem;
  432. if (init_new_context(tsk, mm))
  433. goto fail_nocontext;
  434. err = dup_mmap(mm, oldmm);
  435. if (err)
  436. goto free_pt;
  437. mm->hiwater_rss = get_mm_rss(mm);
  438. mm->hiwater_vm = mm->total_vm;
  439. return mm;
  440. free_pt:
  441. mmput(mm);
  442. fail_nomem:
  443. return NULL;
  444. fail_nocontext:
  445. /*
  446. * If init_new_context() failed, we cannot use mmput() to free the mm
  447. * because it calls destroy_context()
  448. */
  449. mm_free_pgd(mm);
  450. free_mm(mm);
  451. return NULL;
  452. }
  453. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  454. {
  455. struct mm_struct * mm, *oldmm;
  456. int retval;
  457. tsk->min_flt = tsk->maj_flt = 0;
  458. tsk->nvcsw = tsk->nivcsw = 0;
  459. tsk->mm = NULL;
  460. tsk->active_mm = NULL;
  461. /*
  462. * Are we cloning a kernel thread?
  463. *
  464. * We need to steal a active VM for that..
  465. */
  466. oldmm = current->mm;
  467. if (!oldmm)
  468. return 0;
  469. if (clone_flags & CLONE_VM) {
  470. atomic_inc(&oldmm->mm_users);
  471. mm = oldmm;
  472. goto good_mm;
  473. }
  474. retval = -ENOMEM;
  475. mm = dup_mm(tsk);
  476. if (!mm)
  477. goto fail_nomem;
  478. good_mm:
  479. /* Initializing for Swap token stuff */
  480. mm->token_priority = 0;
  481. mm->last_interval = 0;
  482. tsk->mm = mm;
  483. tsk->active_mm = mm;
  484. return 0;
  485. fail_nomem:
  486. return retval;
  487. }
  488. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  489. {
  490. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  491. /* We don't need to lock fs - think why ;-) */
  492. if (fs) {
  493. atomic_set(&fs->count, 1);
  494. rwlock_init(&fs->lock);
  495. fs->umask = old->umask;
  496. read_lock(&old->lock);
  497. fs->rootmnt = mntget(old->rootmnt);
  498. fs->root = dget(old->root);
  499. fs->pwdmnt = mntget(old->pwdmnt);
  500. fs->pwd = dget(old->pwd);
  501. if (old->altroot) {
  502. fs->altrootmnt = mntget(old->altrootmnt);
  503. fs->altroot = dget(old->altroot);
  504. } else {
  505. fs->altrootmnt = NULL;
  506. fs->altroot = NULL;
  507. }
  508. read_unlock(&old->lock);
  509. }
  510. return fs;
  511. }
  512. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  513. {
  514. return __copy_fs_struct(old);
  515. }
  516. EXPORT_SYMBOL_GPL(copy_fs_struct);
  517. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  518. {
  519. if (clone_flags & CLONE_FS) {
  520. atomic_inc(&current->fs->count);
  521. return 0;
  522. }
  523. tsk->fs = __copy_fs_struct(current->fs);
  524. if (!tsk->fs)
  525. return -ENOMEM;
  526. return 0;
  527. }
  528. static int count_open_files(struct fdtable *fdt)
  529. {
  530. int size = fdt->max_fds;
  531. int i;
  532. /* Find the last open fd */
  533. for (i = size/(8*sizeof(long)); i > 0; ) {
  534. if (fdt->open_fds->fds_bits[--i])
  535. break;
  536. }
  537. i = (i+1) * 8 * sizeof(long);
  538. return i;
  539. }
  540. static struct files_struct *alloc_files(void)
  541. {
  542. struct files_struct *newf;
  543. struct fdtable *fdt;
  544. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  545. if (!newf)
  546. goto out;
  547. atomic_set(&newf->count, 1);
  548. spin_lock_init(&newf->file_lock);
  549. newf->next_fd = 0;
  550. fdt = &newf->fdtab;
  551. fdt->max_fds = NR_OPEN_DEFAULT;
  552. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  553. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  554. fdt->fd = &newf->fd_array[0];
  555. INIT_RCU_HEAD(&fdt->rcu);
  556. fdt->next = NULL;
  557. rcu_assign_pointer(newf->fdt, fdt);
  558. out:
  559. return newf;
  560. }
  561. /*
  562. * Allocate a new files structure and copy contents from the
  563. * passed in files structure.
  564. * errorp will be valid only when the returned files_struct is NULL.
  565. */
  566. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  567. {
  568. struct files_struct *newf;
  569. struct file **old_fds, **new_fds;
  570. int open_files, size, i;
  571. struct fdtable *old_fdt, *new_fdt;
  572. *errorp = -ENOMEM;
  573. newf = alloc_files();
  574. if (!newf)
  575. goto out;
  576. spin_lock(&oldf->file_lock);
  577. old_fdt = files_fdtable(oldf);
  578. new_fdt = files_fdtable(newf);
  579. open_files = count_open_files(old_fdt);
  580. /*
  581. * Check whether we need to allocate a larger fd array and fd set.
  582. * Note: we're not a clone task, so the open count won't change.
  583. */
  584. if (open_files > new_fdt->max_fds) {
  585. new_fdt->max_fds = 0;
  586. spin_unlock(&oldf->file_lock);
  587. spin_lock(&newf->file_lock);
  588. *errorp = expand_files(newf, open_files-1);
  589. spin_unlock(&newf->file_lock);
  590. if (*errorp < 0)
  591. goto out_release;
  592. new_fdt = files_fdtable(newf);
  593. /*
  594. * Reacquire the oldf lock and a pointer to its fd table
  595. * who knows it may have a new bigger fd table. We need
  596. * the latest pointer.
  597. */
  598. spin_lock(&oldf->file_lock);
  599. old_fdt = files_fdtable(oldf);
  600. }
  601. old_fds = old_fdt->fd;
  602. new_fds = new_fdt->fd;
  603. memcpy(new_fdt->open_fds->fds_bits,
  604. old_fdt->open_fds->fds_bits, open_files/8);
  605. memcpy(new_fdt->close_on_exec->fds_bits,
  606. old_fdt->close_on_exec->fds_bits, open_files/8);
  607. for (i = open_files; i != 0; i--) {
  608. struct file *f = *old_fds++;
  609. if (f) {
  610. get_file(f);
  611. } else {
  612. /*
  613. * The fd may be claimed in the fd bitmap but not yet
  614. * instantiated in the files array if a sibling thread
  615. * is partway through open(). So make sure that this
  616. * fd is available to the new process.
  617. */
  618. FD_CLR(open_files - i, new_fdt->open_fds);
  619. }
  620. rcu_assign_pointer(*new_fds++, f);
  621. }
  622. spin_unlock(&oldf->file_lock);
  623. /* compute the remainder to be cleared */
  624. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  625. /* This is long word aligned thus could use a optimized version */
  626. memset(new_fds, 0, size);
  627. if (new_fdt->max_fds > open_files) {
  628. int left = (new_fdt->max_fds-open_files)/8;
  629. int start = open_files / (8 * sizeof(unsigned long));
  630. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  631. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  632. }
  633. return newf;
  634. out_release:
  635. kmem_cache_free(files_cachep, newf);
  636. out:
  637. return NULL;
  638. }
  639. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  640. {
  641. struct files_struct *oldf, *newf;
  642. int error = 0;
  643. /*
  644. * A background process may not have any files ...
  645. */
  646. oldf = current->files;
  647. if (!oldf)
  648. goto out;
  649. if (clone_flags & CLONE_FILES) {
  650. atomic_inc(&oldf->count);
  651. goto out;
  652. }
  653. /*
  654. * Note: we may be using current for both targets (See exec.c)
  655. * This works because we cache current->files (old) as oldf. Don't
  656. * break this.
  657. */
  658. tsk->files = NULL;
  659. newf = dup_fd(oldf, &error);
  660. if (!newf)
  661. goto out;
  662. tsk->files = newf;
  663. error = 0;
  664. out:
  665. return error;
  666. }
  667. /*
  668. * Helper to unshare the files of the current task.
  669. * We don't want to expose copy_files internals to
  670. * the exec layer of the kernel.
  671. */
  672. int unshare_files(void)
  673. {
  674. struct files_struct *files = current->files;
  675. int rc;
  676. BUG_ON(!files);
  677. /* This can race but the race causes us to copy when we don't
  678. need to and drop the copy */
  679. if(atomic_read(&files->count) == 1)
  680. {
  681. atomic_inc(&files->count);
  682. return 0;
  683. }
  684. rc = copy_files(0, current);
  685. if(rc)
  686. current->files = files;
  687. return rc;
  688. }
  689. EXPORT_SYMBOL(unshare_files);
  690. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  691. {
  692. struct sighand_struct *sig;
  693. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  694. atomic_inc(&current->sighand->count);
  695. return 0;
  696. }
  697. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  698. rcu_assign_pointer(tsk->sighand, sig);
  699. if (!sig)
  700. return -ENOMEM;
  701. atomic_set(&sig->count, 1);
  702. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  703. return 0;
  704. }
  705. void __cleanup_sighand(struct sighand_struct *sighand)
  706. {
  707. if (atomic_dec_and_test(&sighand->count))
  708. kmem_cache_free(sighand_cachep, sighand);
  709. }
  710. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  711. {
  712. struct signal_struct *sig;
  713. int ret;
  714. if (clone_flags & CLONE_THREAD) {
  715. atomic_inc(&current->signal->count);
  716. atomic_inc(&current->signal->live);
  717. return 0;
  718. }
  719. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  720. tsk->signal = sig;
  721. if (!sig)
  722. return -ENOMEM;
  723. ret = copy_thread_group_keys(tsk);
  724. if (ret < 0) {
  725. kmem_cache_free(signal_cachep, sig);
  726. return ret;
  727. }
  728. atomic_set(&sig->count, 1);
  729. atomic_set(&sig->live, 1);
  730. init_waitqueue_head(&sig->wait_chldexit);
  731. sig->flags = 0;
  732. sig->group_exit_code = 0;
  733. sig->group_exit_task = NULL;
  734. sig->group_stop_count = 0;
  735. sig->curr_target = NULL;
  736. init_sigpending(&sig->shared_pending);
  737. INIT_LIST_HEAD(&sig->posix_timers);
  738. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  739. sig->it_real_incr.tv64 = 0;
  740. sig->real_timer.function = it_real_fn;
  741. sig->tsk = tsk;
  742. sig->it_virt_expires = cputime_zero;
  743. sig->it_virt_incr = cputime_zero;
  744. sig->it_prof_expires = cputime_zero;
  745. sig->it_prof_incr = cputime_zero;
  746. sig->leader = 0; /* session leadership doesn't inherit */
  747. sig->tty_old_pgrp = NULL;
  748. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  749. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  750. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  751. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  752. sig->sched_time = 0;
  753. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  754. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  755. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  756. taskstats_tgid_init(sig);
  757. task_lock(current->group_leader);
  758. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  759. task_unlock(current->group_leader);
  760. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  761. /*
  762. * New sole thread in the process gets an expiry time
  763. * of the whole CPU time limit.
  764. */
  765. tsk->it_prof_expires =
  766. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  767. }
  768. acct_init_pacct(&sig->pacct);
  769. return 0;
  770. }
  771. void __cleanup_signal(struct signal_struct *sig)
  772. {
  773. exit_thread_group_keys(sig);
  774. kmem_cache_free(signal_cachep, sig);
  775. }
  776. static inline void cleanup_signal(struct task_struct *tsk)
  777. {
  778. struct signal_struct *sig = tsk->signal;
  779. atomic_dec(&sig->live);
  780. if (atomic_dec_and_test(&sig->count))
  781. __cleanup_signal(sig);
  782. }
  783. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  784. {
  785. unsigned long new_flags = p->flags;
  786. new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
  787. new_flags |= PF_FORKNOEXEC;
  788. if (!(clone_flags & CLONE_PTRACE))
  789. p->ptrace = 0;
  790. p->flags = new_flags;
  791. }
  792. asmlinkage long sys_set_tid_address(int __user *tidptr)
  793. {
  794. current->clear_child_tid = tidptr;
  795. return current->pid;
  796. }
  797. static inline void rt_mutex_init_task(struct task_struct *p)
  798. {
  799. spin_lock_init(&p->pi_lock);
  800. #ifdef CONFIG_RT_MUTEXES
  801. plist_head_init(&p->pi_waiters, &p->pi_lock);
  802. p->pi_blocked_on = NULL;
  803. #endif
  804. }
  805. /*
  806. * This creates a new process as a copy of the old one,
  807. * but does not actually start it yet.
  808. *
  809. * It copies the registers, and all the appropriate
  810. * parts of the process environment (as per the clone
  811. * flags). The actual kick-off is left to the caller.
  812. */
  813. static struct task_struct *copy_process(unsigned long clone_flags,
  814. unsigned long stack_start,
  815. struct pt_regs *regs,
  816. unsigned long stack_size,
  817. int __user *parent_tidptr,
  818. int __user *child_tidptr,
  819. struct pid *pid)
  820. {
  821. int retval;
  822. struct task_struct *p = NULL;
  823. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  824. return ERR_PTR(-EINVAL);
  825. /*
  826. * Thread groups must share signals as well, and detached threads
  827. * can only be started up within the thread group.
  828. */
  829. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  830. return ERR_PTR(-EINVAL);
  831. /*
  832. * Shared signal handlers imply shared VM. By way of the above,
  833. * thread groups also imply shared VM. Blocking this case allows
  834. * for various simplifications in other code.
  835. */
  836. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  837. return ERR_PTR(-EINVAL);
  838. retval = security_task_create(clone_flags);
  839. if (retval)
  840. goto fork_out;
  841. retval = -ENOMEM;
  842. p = dup_task_struct(current);
  843. if (!p)
  844. goto fork_out;
  845. rt_mutex_init_task(p);
  846. #ifdef CONFIG_TRACE_IRQFLAGS
  847. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  848. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  849. #endif
  850. retval = -EAGAIN;
  851. if (atomic_read(&p->user->processes) >=
  852. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  853. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  854. p->user != &root_user)
  855. goto bad_fork_free;
  856. }
  857. atomic_inc(&p->user->__count);
  858. atomic_inc(&p->user->processes);
  859. get_group_info(p->group_info);
  860. /*
  861. * If multiple threads are within copy_process(), then this check
  862. * triggers too late. This doesn't hurt, the check is only there
  863. * to stop root fork bombs.
  864. */
  865. if (nr_threads >= max_threads)
  866. goto bad_fork_cleanup_count;
  867. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  868. goto bad_fork_cleanup_count;
  869. if (p->binfmt && !try_module_get(p->binfmt->module))
  870. goto bad_fork_cleanup_put_domain;
  871. p->did_exec = 0;
  872. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  873. copy_flags(clone_flags, p);
  874. p->pid = pid_nr(pid);
  875. retval = -EFAULT;
  876. if (clone_flags & CLONE_PARENT_SETTID)
  877. if (put_user(p->pid, parent_tidptr))
  878. goto bad_fork_cleanup_delays_binfmt;
  879. INIT_LIST_HEAD(&p->children);
  880. INIT_LIST_HEAD(&p->sibling);
  881. p->vfork_done = NULL;
  882. spin_lock_init(&p->alloc_lock);
  883. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  884. init_sigpending(&p->pending);
  885. p->utime = cputime_zero;
  886. p->stime = cputime_zero;
  887. p->sched_time = 0;
  888. #ifdef CONFIG_TASK_XACCT
  889. p->rchar = 0; /* I/O counter: bytes read */
  890. p->wchar = 0; /* I/O counter: bytes written */
  891. p->syscr = 0; /* I/O counter: read syscalls */
  892. p->syscw = 0; /* I/O counter: write syscalls */
  893. #endif
  894. task_io_accounting_init(p);
  895. acct_clear_integrals(p);
  896. p->it_virt_expires = cputime_zero;
  897. p->it_prof_expires = cputime_zero;
  898. p->it_sched_expires = 0;
  899. INIT_LIST_HEAD(&p->cpu_timers[0]);
  900. INIT_LIST_HEAD(&p->cpu_timers[1]);
  901. INIT_LIST_HEAD(&p->cpu_timers[2]);
  902. p->lock_depth = -1; /* -1 = no lock */
  903. do_posix_clock_monotonic_gettime(&p->start_time);
  904. p->security = NULL;
  905. p->io_context = NULL;
  906. p->io_wait = NULL;
  907. p->audit_context = NULL;
  908. cpuset_fork(p);
  909. #ifdef CONFIG_NUMA
  910. p->mempolicy = mpol_copy(p->mempolicy);
  911. if (IS_ERR(p->mempolicy)) {
  912. retval = PTR_ERR(p->mempolicy);
  913. p->mempolicy = NULL;
  914. goto bad_fork_cleanup_cpuset;
  915. }
  916. mpol_fix_fork_child_flag(p);
  917. #endif
  918. #ifdef CONFIG_TRACE_IRQFLAGS
  919. p->irq_events = 0;
  920. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  921. p->hardirqs_enabled = 1;
  922. #else
  923. p->hardirqs_enabled = 0;
  924. #endif
  925. p->hardirq_enable_ip = 0;
  926. p->hardirq_enable_event = 0;
  927. p->hardirq_disable_ip = _THIS_IP_;
  928. p->hardirq_disable_event = 0;
  929. p->softirqs_enabled = 1;
  930. p->softirq_enable_ip = _THIS_IP_;
  931. p->softirq_enable_event = 0;
  932. p->softirq_disable_ip = 0;
  933. p->softirq_disable_event = 0;
  934. p->hardirq_context = 0;
  935. p->softirq_context = 0;
  936. #endif
  937. #ifdef CONFIG_LOCKDEP
  938. p->lockdep_depth = 0; /* no locks held yet */
  939. p->curr_chain_key = 0;
  940. p->lockdep_recursion = 0;
  941. #endif
  942. #ifdef CONFIG_DEBUG_MUTEXES
  943. p->blocked_on = NULL; /* not blocked yet */
  944. #endif
  945. p->tgid = p->pid;
  946. if (clone_flags & CLONE_THREAD)
  947. p->tgid = current->tgid;
  948. if ((retval = security_task_alloc(p)))
  949. goto bad_fork_cleanup_policy;
  950. if ((retval = audit_alloc(p)))
  951. goto bad_fork_cleanup_security;
  952. /* copy all the process information */
  953. if ((retval = copy_semundo(clone_flags, p)))
  954. goto bad_fork_cleanup_audit;
  955. if ((retval = copy_files(clone_flags, p)))
  956. goto bad_fork_cleanup_semundo;
  957. if ((retval = copy_fs(clone_flags, p)))
  958. goto bad_fork_cleanup_files;
  959. if ((retval = copy_sighand(clone_flags, p)))
  960. goto bad_fork_cleanup_fs;
  961. if ((retval = copy_signal(clone_flags, p)))
  962. goto bad_fork_cleanup_sighand;
  963. if ((retval = copy_mm(clone_flags, p)))
  964. goto bad_fork_cleanup_signal;
  965. if ((retval = copy_keys(clone_flags, p)))
  966. goto bad_fork_cleanup_mm;
  967. if ((retval = copy_namespaces(clone_flags, p)))
  968. goto bad_fork_cleanup_keys;
  969. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  970. if (retval)
  971. goto bad_fork_cleanup_namespaces;
  972. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  973. /*
  974. * Clear TID on mm_release()?
  975. */
  976. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  977. p->robust_list = NULL;
  978. #ifdef CONFIG_COMPAT
  979. p->compat_robust_list = NULL;
  980. #endif
  981. INIT_LIST_HEAD(&p->pi_state_list);
  982. p->pi_state_cache = NULL;
  983. /*
  984. * sigaltstack should be cleared when sharing the same VM
  985. */
  986. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  987. p->sas_ss_sp = p->sas_ss_size = 0;
  988. /*
  989. * Syscall tracing should be turned off in the child regardless
  990. * of CLONE_PTRACE.
  991. */
  992. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  993. #ifdef TIF_SYSCALL_EMU
  994. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  995. #endif
  996. /* Our parent execution domain becomes current domain
  997. These must match for thread signalling to apply */
  998. p->parent_exec_id = p->self_exec_id;
  999. /* ok, now we should be set up.. */
  1000. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1001. p->pdeath_signal = 0;
  1002. p->exit_state = 0;
  1003. /*
  1004. * Ok, make it visible to the rest of the system.
  1005. * We dont wake it up yet.
  1006. */
  1007. p->group_leader = p;
  1008. INIT_LIST_HEAD(&p->thread_group);
  1009. INIT_LIST_HEAD(&p->ptrace_children);
  1010. INIT_LIST_HEAD(&p->ptrace_list);
  1011. /* Perform scheduler related setup. Assign this task to a CPU. */
  1012. sched_fork(p, clone_flags);
  1013. /* Need tasklist lock for parent etc handling! */
  1014. write_lock_irq(&tasklist_lock);
  1015. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1016. p->ioprio = current->ioprio;
  1017. /*
  1018. * The task hasn't been attached yet, so its cpus_allowed mask will
  1019. * not be changed, nor will its assigned CPU.
  1020. *
  1021. * The cpus_allowed mask of the parent may have changed after it was
  1022. * copied first time - so re-copy it here, then check the child's CPU
  1023. * to ensure it is on a valid CPU (and if not, just force it back to
  1024. * parent's CPU). This avoids alot of nasty races.
  1025. */
  1026. p->cpus_allowed = current->cpus_allowed;
  1027. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1028. !cpu_online(task_cpu(p))))
  1029. set_task_cpu(p, smp_processor_id());
  1030. /* CLONE_PARENT re-uses the old parent */
  1031. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1032. p->real_parent = current->real_parent;
  1033. else
  1034. p->real_parent = current;
  1035. p->parent = p->real_parent;
  1036. spin_lock(&current->sighand->siglock);
  1037. /*
  1038. * Process group and session signals need to be delivered to just the
  1039. * parent before the fork or both the parent and the child after the
  1040. * fork. Restart if a signal comes in before we add the new process to
  1041. * it's process group.
  1042. * A fatal signal pending means that current will exit, so the new
  1043. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1044. */
  1045. recalc_sigpending();
  1046. if (signal_pending(current)) {
  1047. spin_unlock(&current->sighand->siglock);
  1048. write_unlock_irq(&tasklist_lock);
  1049. retval = -ERESTARTNOINTR;
  1050. goto bad_fork_cleanup_namespaces;
  1051. }
  1052. if (clone_flags & CLONE_THREAD) {
  1053. p->group_leader = current->group_leader;
  1054. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1055. if (!cputime_eq(current->signal->it_virt_expires,
  1056. cputime_zero) ||
  1057. !cputime_eq(current->signal->it_prof_expires,
  1058. cputime_zero) ||
  1059. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1060. !list_empty(&current->signal->cpu_timers[0]) ||
  1061. !list_empty(&current->signal->cpu_timers[1]) ||
  1062. !list_empty(&current->signal->cpu_timers[2])) {
  1063. /*
  1064. * Have child wake up on its first tick to check
  1065. * for process CPU timers.
  1066. */
  1067. p->it_prof_expires = jiffies_to_cputime(1);
  1068. }
  1069. }
  1070. if (likely(p->pid)) {
  1071. add_parent(p);
  1072. if (unlikely(p->ptrace & PT_PTRACED))
  1073. __ptrace_link(p, current->parent);
  1074. if (thread_group_leader(p)) {
  1075. p->signal->tty = current->signal->tty;
  1076. p->signal->pgrp = process_group(current);
  1077. set_signal_session(p->signal, process_session(current));
  1078. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1079. attach_pid(p, PIDTYPE_SID, task_session(current));
  1080. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1081. __get_cpu_var(process_counts)++;
  1082. }
  1083. attach_pid(p, PIDTYPE_PID, pid);
  1084. nr_threads++;
  1085. }
  1086. total_forks++;
  1087. spin_unlock(&current->sighand->siglock);
  1088. write_unlock_irq(&tasklist_lock);
  1089. proc_fork_connector(p);
  1090. return p;
  1091. bad_fork_cleanup_namespaces:
  1092. exit_task_namespaces(p);
  1093. bad_fork_cleanup_keys:
  1094. exit_keys(p);
  1095. bad_fork_cleanup_mm:
  1096. if (p->mm)
  1097. mmput(p->mm);
  1098. bad_fork_cleanup_signal:
  1099. cleanup_signal(p);
  1100. bad_fork_cleanup_sighand:
  1101. __cleanup_sighand(p->sighand);
  1102. bad_fork_cleanup_fs:
  1103. exit_fs(p); /* blocking */
  1104. bad_fork_cleanup_files:
  1105. exit_files(p); /* blocking */
  1106. bad_fork_cleanup_semundo:
  1107. exit_sem(p);
  1108. bad_fork_cleanup_audit:
  1109. audit_free(p);
  1110. bad_fork_cleanup_security:
  1111. security_task_free(p);
  1112. bad_fork_cleanup_policy:
  1113. #ifdef CONFIG_NUMA
  1114. mpol_free(p->mempolicy);
  1115. bad_fork_cleanup_cpuset:
  1116. #endif
  1117. cpuset_exit(p);
  1118. bad_fork_cleanup_delays_binfmt:
  1119. delayacct_tsk_free(p);
  1120. if (p->binfmt)
  1121. module_put(p->binfmt->module);
  1122. bad_fork_cleanup_put_domain:
  1123. module_put(task_thread_info(p)->exec_domain->module);
  1124. bad_fork_cleanup_count:
  1125. put_group_info(p->group_info);
  1126. atomic_dec(&p->user->processes);
  1127. free_uid(p->user);
  1128. bad_fork_free:
  1129. free_task(p);
  1130. fork_out:
  1131. return ERR_PTR(retval);
  1132. }
  1133. noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1134. {
  1135. memset(regs, 0, sizeof(struct pt_regs));
  1136. return regs;
  1137. }
  1138. struct task_struct * __cpuinit fork_idle(int cpu)
  1139. {
  1140. struct task_struct *task;
  1141. struct pt_regs regs;
  1142. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
  1143. &init_struct_pid);
  1144. if (!IS_ERR(task))
  1145. init_idle(task, cpu);
  1146. return task;
  1147. }
  1148. static inline int fork_traceflag (unsigned clone_flags)
  1149. {
  1150. if (clone_flags & CLONE_UNTRACED)
  1151. return 0;
  1152. else if (clone_flags & CLONE_VFORK) {
  1153. if (current->ptrace & PT_TRACE_VFORK)
  1154. return PTRACE_EVENT_VFORK;
  1155. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1156. if (current->ptrace & PT_TRACE_CLONE)
  1157. return PTRACE_EVENT_CLONE;
  1158. } else if (current->ptrace & PT_TRACE_FORK)
  1159. return PTRACE_EVENT_FORK;
  1160. return 0;
  1161. }
  1162. /*
  1163. * Ok, this is the main fork-routine.
  1164. *
  1165. * It copies the process, and if successful kick-starts
  1166. * it and waits for it to finish using the VM if required.
  1167. */
  1168. long do_fork(unsigned long clone_flags,
  1169. unsigned long stack_start,
  1170. struct pt_regs *regs,
  1171. unsigned long stack_size,
  1172. int __user *parent_tidptr,
  1173. int __user *child_tidptr)
  1174. {
  1175. struct task_struct *p;
  1176. int trace = 0;
  1177. struct pid *pid = alloc_pid();
  1178. long nr;
  1179. if (!pid)
  1180. return -EAGAIN;
  1181. nr = pid->nr;
  1182. if (unlikely(current->ptrace)) {
  1183. trace = fork_traceflag (clone_flags);
  1184. if (trace)
  1185. clone_flags |= CLONE_PTRACE;
  1186. }
  1187. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
  1188. /*
  1189. * Do this prior waking up the new thread - the thread pointer
  1190. * might get invalid after that point, if the thread exits quickly.
  1191. */
  1192. if (!IS_ERR(p)) {
  1193. struct completion vfork;
  1194. if (clone_flags & CLONE_VFORK) {
  1195. p->vfork_done = &vfork;
  1196. init_completion(&vfork);
  1197. }
  1198. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1199. /*
  1200. * We'll start up with an immediate SIGSTOP.
  1201. */
  1202. sigaddset(&p->pending.signal, SIGSTOP);
  1203. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1204. }
  1205. if (!(clone_flags & CLONE_STOPPED))
  1206. wake_up_new_task(p, clone_flags);
  1207. else
  1208. p->state = TASK_STOPPED;
  1209. if (unlikely (trace)) {
  1210. current->ptrace_message = nr;
  1211. ptrace_notify ((trace << 8) | SIGTRAP);
  1212. }
  1213. if (clone_flags & CLONE_VFORK) {
  1214. freezer_do_not_count();
  1215. wait_for_completion(&vfork);
  1216. freezer_count();
  1217. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1218. current->ptrace_message = nr;
  1219. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1220. }
  1221. }
  1222. } else {
  1223. free_pid(pid);
  1224. nr = PTR_ERR(p);
  1225. }
  1226. return nr;
  1227. }
  1228. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1229. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1230. #endif
  1231. static void sighand_ctor(void *data, struct kmem_cache *cachep,
  1232. unsigned long flags)
  1233. {
  1234. struct sighand_struct *sighand = data;
  1235. spin_lock_init(&sighand->siglock);
  1236. INIT_LIST_HEAD(&sighand->signalfd_list);
  1237. }
  1238. void __init proc_caches_init(void)
  1239. {
  1240. sighand_cachep = kmem_cache_create("sighand_cache",
  1241. sizeof(struct sighand_struct), 0,
  1242. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1243. sighand_ctor, NULL);
  1244. signal_cachep = kmem_cache_create("signal_cache",
  1245. sizeof(struct signal_struct), 0,
  1246. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1247. files_cachep = kmem_cache_create("files_cache",
  1248. sizeof(struct files_struct), 0,
  1249. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1250. fs_cachep = kmem_cache_create("fs_cache",
  1251. sizeof(struct fs_struct), 0,
  1252. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1253. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1254. sizeof(struct vm_area_struct), 0,
  1255. SLAB_PANIC, NULL, NULL);
  1256. mm_cachep = kmem_cache_create("mm_struct",
  1257. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1258. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1259. }
  1260. /*
  1261. * Check constraints on flags passed to the unshare system call and
  1262. * force unsharing of additional process context as appropriate.
  1263. */
  1264. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1265. {
  1266. /*
  1267. * If unsharing a thread from a thread group, must also
  1268. * unshare vm.
  1269. */
  1270. if (*flags_ptr & CLONE_THREAD)
  1271. *flags_ptr |= CLONE_VM;
  1272. /*
  1273. * If unsharing vm, must also unshare signal handlers.
  1274. */
  1275. if (*flags_ptr & CLONE_VM)
  1276. *flags_ptr |= CLONE_SIGHAND;
  1277. /*
  1278. * If unsharing signal handlers and the task was created
  1279. * using CLONE_THREAD, then must unshare the thread
  1280. */
  1281. if ((*flags_ptr & CLONE_SIGHAND) &&
  1282. (atomic_read(&current->signal->count) > 1))
  1283. *flags_ptr |= CLONE_THREAD;
  1284. /*
  1285. * If unsharing namespace, must also unshare filesystem information.
  1286. */
  1287. if (*flags_ptr & CLONE_NEWNS)
  1288. *flags_ptr |= CLONE_FS;
  1289. }
  1290. /*
  1291. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1292. */
  1293. static int unshare_thread(unsigned long unshare_flags)
  1294. {
  1295. if (unshare_flags & CLONE_THREAD)
  1296. return -EINVAL;
  1297. return 0;
  1298. }
  1299. /*
  1300. * Unshare the filesystem structure if it is being shared
  1301. */
  1302. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1303. {
  1304. struct fs_struct *fs = current->fs;
  1305. if ((unshare_flags & CLONE_FS) &&
  1306. (fs && atomic_read(&fs->count) > 1)) {
  1307. *new_fsp = __copy_fs_struct(current->fs);
  1308. if (!*new_fsp)
  1309. return -ENOMEM;
  1310. }
  1311. return 0;
  1312. }
  1313. /*
  1314. * Unsharing of sighand is not supported yet
  1315. */
  1316. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1317. {
  1318. struct sighand_struct *sigh = current->sighand;
  1319. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1320. return -EINVAL;
  1321. else
  1322. return 0;
  1323. }
  1324. /*
  1325. * Unshare vm if it is being shared
  1326. */
  1327. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1328. {
  1329. struct mm_struct *mm = current->mm;
  1330. if ((unshare_flags & CLONE_VM) &&
  1331. (mm && atomic_read(&mm->mm_users) > 1)) {
  1332. return -EINVAL;
  1333. }
  1334. return 0;
  1335. }
  1336. /*
  1337. * Unshare file descriptor table if it is being shared
  1338. */
  1339. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1340. {
  1341. struct files_struct *fd = current->files;
  1342. int error = 0;
  1343. if ((unshare_flags & CLONE_FILES) &&
  1344. (fd && atomic_read(&fd->count) > 1)) {
  1345. *new_fdp = dup_fd(fd, &error);
  1346. if (!*new_fdp)
  1347. return error;
  1348. }
  1349. return 0;
  1350. }
  1351. /*
  1352. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1353. * supported yet
  1354. */
  1355. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1356. {
  1357. if (unshare_flags & CLONE_SYSVSEM)
  1358. return -EINVAL;
  1359. return 0;
  1360. }
  1361. /*
  1362. * unshare allows a process to 'unshare' part of the process
  1363. * context which was originally shared using clone. copy_*
  1364. * functions used by do_fork() cannot be used here directly
  1365. * because they modify an inactive task_struct that is being
  1366. * constructed. Here we are modifying the current, active,
  1367. * task_struct.
  1368. */
  1369. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1370. {
  1371. int err = 0;
  1372. struct fs_struct *fs, *new_fs = NULL;
  1373. struct sighand_struct *new_sigh = NULL;
  1374. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1375. struct files_struct *fd, *new_fd = NULL;
  1376. struct sem_undo_list *new_ulist = NULL;
  1377. struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
  1378. check_unshare_flags(&unshare_flags);
  1379. /* Return -EINVAL for all unsupported flags */
  1380. err = -EINVAL;
  1381. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1382. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1383. CLONE_NEWUTS|CLONE_NEWIPC))
  1384. goto bad_unshare_out;
  1385. if ((err = unshare_thread(unshare_flags)))
  1386. goto bad_unshare_out;
  1387. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1388. goto bad_unshare_cleanup_thread;
  1389. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1390. goto bad_unshare_cleanup_fs;
  1391. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1392. goto bad_unshare_cleanup_sigh;
  1393. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1394. goto bad_unshare_cleanup_vm;
  1395. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1396. goto bad_unshare_cleanup_fd;
  1397. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1398. new_fs)))
  1399. goto bad_unshare_cleanup_semundo;
  1400. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1401. task_lock(current);
  1402. if (new_nsproxy) {
  1403. old_nsproxy = current->nsproxy;
  1404. current->nsproxy = new_nsproxy;
  1405. new_nsproxy = old_nsproxy;
  1406. }
  1407. if (new_fs) {
  1408. fs = current->fs;
  1409. current->fs = new_fs;
  1410. new_fs = fs;
  1411. }
  1412. if (new_mm) {
  1413. mm = current->mm;
  1414. active_mm = current->active_mm;
  1415. current->mm = new_mm;
  1416. current->active_mm = new_mm;
  1417. activate_mm(active_mm, new_mm);
  1418. new_mm = mm;
  1419. }
  1420. if (new_fd) {
  1421. fd = current->files;
  1422. current->files = new_fd;
  1423. new_fd = fd;
  1424. }
  1425. task_unlock(current);
  1426. }
  1427. if (new_nsproxy)
  1428. put_nsproxy(new_nsproxy);
  1429. bad_unshare_cleanup_semundo:
  1430. bad_unshare_cleanup_fd:
  1431. if (new_fd)
  1432. put_files_struct(new_fd);
  1433. bad_unshare_cleanup_vm:
  1434. if (new_mm)
  1435. mmput(new_mm);
  1436. bad_unshare_cleanup_sigh:
  1437. if (new_sigh)
  1438. if (atomic_dec_and_test(&new_sigh->count))
  1439. kmem_cache_free(sighand_cachep, new_sigh);
  1440. bad_unshare_cleanup_fs:
  1441. if (new_fs)
  1442. put_fs_struct(new_fs);
  1443. bad_unshare_cleanup_thread:
  1444. bad_unshare_out:
  1445. return err;
  1446. }