sched_rt.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  6. {
  7. return container_of(rt_se, struct task_struct, rt);
  8. }
  9. #ifdef CONFIG_RT_GROUP_SCHED
  10. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  11. {
  12. return rt_rq->rq;
  13. }
  14. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  15. {
  16. return rt_se->rt_rq;
  17. }
  18. #else /* CONFIG_RT_GROUP_SCHED */
  19. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  20. {
  21. return container_of(rt_rq, struct rq, rt);
  22. }
  23. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  24. {
  25. struct task_struct *p = rt_task_of(rt_se);
  26. struct rq *rq = task_rq(p);
  27. return &rq->rt;
  28. }
  29. #endif /* CONFIG_RT_GROUP_SCHED */
  30. #ifdef CONFIG_SMP
  31. static inline int rt_overloaded(struct rq *rq)
  32. {
  33. return atomic_read(&rq->rd->rto_count);
  34. }
  35. static inline void rt_set_overload(struct rq *rq)
  36. {
  37. if (!rq->online)
  38. return;
  39. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  40. /*
  41. * Make sure the mask is visible before we set
  42. * the overload count. That is checked to determine
  43. * if we should look at the mask. It would be a shame
  44. * if we looked at the mask, but the mask was not
  45. * updated yet.
  46. */
  47. wmb();
  48. atomic_inc(&rq->rd->rto_count);
  49. }
  50. static inline void rt_clear_overload(struct rq *rq)
  51. {
  52. if (!rq->online)
  53. return;
  54. /* the order here really doesn't matter */
  55. atomic_dec(&rq->rd->rto_count);
  56. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  57. }
  58. static void update_rt_migration(struct rt_rq *rt_rq)
  59. {
  60. if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) {
  61. if (!rt_rq->overloaded) {
  62. rt_set_overload(rq_of_rt_rq(rt_rq));
  63. rt_rq->overloaded = 1;
  64. }
  65. } else if (rt_rq->overloaded) {
  66. rt_clear_overload(rq_of_rt_rq(rt_rq));
  67. rt_rq->overloaded = 0;
  68. }
  69. }
  70. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  71. {
  72. if (rt_se->nr_cpus_allowed > 1)
  73. rt_rq->rt_nr_migratory++;
  74. update_rt_migration(rt_rq);
  75. }
  76. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  77. {
  78. if (rt_se->nr_cpus_allowed > 1)
  79. rt_rq->rt_nr_migratory--;
  80. update_rt_migration(rt_rq);
  81. }
  82. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  83. {
  84. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  85. plist_node_init(&p->pushable_tasks, p->prio);
  86. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  87. }
  88. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  89. {
  90. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  91. }
  92. #else
  93. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  94. {
  95. }
  96. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  97. {
  98. }
  99. static inline
  100. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  101. {
  102. }
  103. static inline
  104. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  105. {
  106. }
  107. #endif /* CONFIG_SMP */
  108. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  109. {
  110. return !list_empty(&rt_se->run_list);
  111. }
  112. #ifdef CONFIG_RT_GROUP_SCHED
  113. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  114. {
  115. if (!rt_rq->tg)
  116. return RUNTIME_INF;
  117. return rt_rq->rt_runtime;
  118. }
  119. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  120. {
  121. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  122. }
  123. #define for_each_leaf_rt_rq(rt_rq, rq) \
  124. list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  125. #define for_each_sched_rt_entity(rt_se) \
  126. for (; rt_se; rt_se = rt_se->parent)
  127. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  128. {
  129. return rt_se->my_q;
  130. }
  131. static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
  132. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  133. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  134. {
  135. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  136. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  137. if (rt_rq->rt_nr_running) {
  138. if (rt_se && !on_rt_rq(rt_se))
  139. enqueue_rt_entity(rt_se);
  140. if (rt_rq->highest_prio.curr < curr->prio)
  141. resched_task(curr);
  142. }
  143. }
  144. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  145. {
  146. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  147. if (rt_se && on_rt_rq(rt_se))
  148. dequeue_rt_entity(rt_se);
  149. }
  150. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  151. {
  152. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  153. }
  154. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  155. {
  156. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  157. struct task_struct *p;
  158. if (rt_rq)
  159. return !!rt_rq->rt_nr_boosted;
  160. p = rt_task_of(rt_se);
  161. return p->prio != p->normal_prio;
  162. }
  163. #ifdef CONFIG_SMP
  164. static inline const struct cpumask *sched_rt_period_mask(void)
  165. {
  166. return cpu_rq(smp_processor_id())->rd->span;
  167. }
  168. #else
  169. static inline const struct cpumask *sched_rt_period_mask(void)
  170. {
  171. return cpu_online_mask;
  172. }
  173. #endif
  174. static inline
  175. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  176. {
  177. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  178. }
  179. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  180. {
  181. return &rt_rq->tg->rt_bandwidth;
  182. }
  183. #else /* !CONFIG_RT_GROUP_SCHED */
  184. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  185. {
  186. return rt_rq->rt_runtime;
  187. }
  188. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  189. {
  190. return ktime_to_ns(def_rt_bandwidth.rt_period);
  191. }
  192. #define for_each_leaf_rt_rq(rt_rq, rq) \
  193. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  194. #define for_each_sched_rt_entity(rt_se) \
  195. for (; rt_se; rt_se = NULL)
  196. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  197. {
  198. return NULL;
  199. }
  200. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  201. {
  202. if (rt_rq->rt_nr_running)
  203. resched_task(rq_of_rt_rq(rt_rq)->curr);
  204. }
  205. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  206. {
  207. }
  208. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  209. {
  210. return rt_rq->rt_throttled;
  211. }
  212. static inline const struct cpumask *sched_rt_period_mask(void)
  213. {
  214. return cpu_online_mask;
  215. }
  216. static inline
  217. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  218. {
  219. return &cpu_rq(cpu)->rt;
  220. }
  221. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  222. {
  223. return &def_rt_bandwidth;
  224. }
  225. #endif /* CONFIG_RT_GROUP_SCHED */
  226. #ifdef CONFIG_SMP
  227. /*
  228. * We ran out of runtime, see if we can borrow some from our neighbours.
  229. */
  230. static int do_balance_runtime(struct rt_rq *rt_rq)
  231. {
  232. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  233. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  234. int i, weight, more = 0;
  235. u64 rt_period;
  236. weight = cpumask_weight(rd->span);
  237. spin_lock(&rt_b->rt_runtime_lock);
  238. rt_period = ktime_to_ns(rt_b->rt_period);
  239. for_each_cpu(i, rd->span) {
  240. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  241. s64 diff;
  242. if (iter == rt_rq)
  243. continue;
  244. spin_lock(&iter->rt_runtime_lock);
  245. /*
  246. * Either all rqs have inf runtime and there's nothing to steal
  247. * or __disable_runtime() below sets a specific rq to inf to
  248. * indicate its been disabled and disalow stealing.
  249. */
  250. if (iter->rt_runtime == RUNTIME_INF)
  251. goto next;
  252. /*
  253. * From runqueues with spare time, take 1/n part of their
  254. * spare time, but no more than our period.
  255. */
  256. diff = iter->rt_runtime - iter->rt_time;
  257. if (diff > 0) {
  258. diff = div_u64((u64)diff, weight);
  259. if (rt_rq->rt_runtime + diff > rt_period)
  260. diff = rt_period - rt_rq->rt_runtime;
  261. iter->rt_runtime -= diff;
  262. rt_rq->rt_runtime += diff;
  263. more = 1;
  264. if (rt_rq->rt_runtime == rt_period) {
  265. spin_unlock(&iter->rt_runtime_lock);
  266. break;
  267. }
  268. }
  269. next:
  270. spin_unlock(&iter->rt_runtime_lock);
  271. }
  272. spin_unlock(&rt_b->rt_runtime_lock);
  273. return more;
  274. }
  275. /*
  276. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  277. */
  278. static void __disable_runtime(struct rq *rq)
  279. {
  280. struct root_domain *rd = rq->rd;
  281. struct rt_rq *rt_rq;
  282. if (unlikely(!scheduler_running))
  283. return;
  284. for_each_leaf_rt_rq(rt_rq, rq) {
  285. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  286. s64 want;
  287. int i;
  288. spin_lock(&rt_b->rt_runtime_lock);
  289. spin_lock(&rt_rq->rt_runtime_lock);
  290. /*
  291. * Either we're all inf and nobody needs to borrow, or we're
  292. * already disabled and thus have nothing to do, or we have
  293. * exactly the right amount of runtime to take out.
  294. */
  295. if (rt_rq->rt_runtime == RUNTIME_INF ||
  296. rt_rq->rt_runtime == rt_b->rt_runtime)
  297. goto balanced;
  298. spin_unlock(&rt_rq->rt_runtime_lock);
  299. /*
  300. * Calculate the difference between what we started out with
  301. * and what we current have, that's the amount of runtime
  302. * we lend and now have to reclaim.
  303. */
  304. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  305. /*
  306. * Greedy reclaim, take back as much as we can.
  307. */
  308. for_each_cpu(i, rd->span) {
  309. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  310. s64 diff;
  311. /*
  312. * Can't reclaim from ourselves or disabled runqueues.
  313. */
  314. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  315. continue;
  316. spin_lock(&iter->rt_runtime_lock);
  317. if (want > 0) {
  318. diff = min_t(s64, iter->rt_runtime, want);
  319. iter->rt_runtime -= diff;
  320. want -= diff;
  321. } else {
  322. iter->rt_runtime -= want;
  323. want -= want;
  324. }
  325. spin_unlock(&iter->rt_runtime_lock);
  326. if (!want)
  327. break;
  328. }
  329. spin_lock(&rt_rq->rt_runtime_lock);
  330. /*
  331. * We cannot be left wanting - that would mean some runtime
  332. * leaked out of the system.
  333. */
  334. BUG_ON(want);
  335. balanced:
  336. /*
  337. * Disable all the borrow logic by pretending we have inf
  338. * runtime - in which case borrowing doesn't make sense.
  339. */
  340. rt_rq->rt_runtime = RUNTIME_INF;
  341. spin_unlock(&rt_rq->rt_runtime_lock);
  342. spin_unlock(&rt_b->rt_runtime_lock);
  343. }
  344. }
  345. static void disable_runtime(struct rq *rq)
  346. {
  347. unsigned long flags;
  348. spin_lock_irqsave(&rq->lock, flags);
  349. __disable_runtime(rq);
  350. spin_unlock_irqrestore(&rq->lock, flags);
  351. }
  352. static void __enable_runtime(struct rq *rq)
  353. {
  354. struct rt_rq *rt_rq;
  355. if (unlikely(!scheduler_running))
  356. return;
  357. /*
  358. * Reset each runqueue's bandwidth settings
  359. */
  360. for_each_leaf_rt_rq(rt_rq, rq) {
  361. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  362. spin_lock(&rt_b->rt_runtime_lock);
  363. spin_lock(&rt_rq->rt_runtime_lock);
  364. rt_rq->rt_runtime = rt_b->rt_runtime;
  365. rt_rq->rt_time = 0;
  366. rt_rq->rt_throttled = 0;
  367. spin_unlock(&rt_rq->rt_runtime_lock);
  368. spin_unlock(&rt_b->rt_runtime_lock);
  369. }
  370. }
  371. static void enable_runtime(struct rq *rq)
  372. {
  373. unsigned long flags;
  374. spin_lock_irqsave(&rq->lock, flags);
  375. __enable_runtime(rq);
  376. spin_unlock_irqrestore(&rq->lock, flags);
  377. }
  378. static int balance_runtime(struct rt_rq *rt_rq)
  379. {
  380. int more = 0;
  381. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  382. spin_unlock(&rt_rq->rt_runtime_lock);
  383. more = do_balance_runtime(rt_rq);
  384. spin_lock(&rt_rq->rt_runtime_lock);
  385. }
  386. return more;
  387. }
  388. #else /* !CONFIG_SMP */
  389. static inline int balance_runtime(struct rt_rq *rt_rq)
  390. {
  391. return 0;
  392. }
  393. #endif /* CONFIG_SMP */
  394. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  395. {
  396. int i, idle = 1;
  397. const struct cpumask *span;
  398. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  399. return 1;
  400. span = sched_rt_period_mask();
  401. for_each_cpu(i, span) {
  402. int enqueue = 0;
  403. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  404. struct rq *rq = rq_of_rt_rq(rt_rq);
  405. spin_lock(&rq->lock);
  406. if (rt_rq->rt_time) {
  407. u64 runtime;
  408. spin_lock(&rt_rq->rt_runtime_lock);
  409. if (rt_rq->rt_throttled)
  410. balance_runtime(rt_rq);
  411. runtime = rt_rq->rt_runtime;
  412. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  413. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  414. rt_rq->rt_throttled = 0;
  415. enqueue = 1;
  416. }
  417. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  418. idle = 0;
  419. spin_unlock(&rt_rq->rt_runtime_lock);
  420. } else if (rt_rq->rt_nr_running)
  421. idle = 0;
  422. if (enqueue)
  423. sched_rt_rq_enqueue(rt_rq);
  424. spin_unlock(&rq->lock);
  425. }
  426. return idle;
  427. }
  428. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  429. {
  430. #ifdef CONFIG_RT_GROUP_SCHED
  431. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  432. if (rt_rq)
  433. return rt_rq->highest_prio.curr;
  434. #endif
  435. return rt_task_of(rt_se)->prio;
  436. }
  437. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  438. {
  439. u64 runtime = sched_rt_runtime(rt_rq);
  440. if (rt_rq->rt_throttled)
  441. return rt_rq_throttled(rt_rq);
  442. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  443. return 0;
  444. balance_runtime(rt_rq);
  445. runtime = sched_rt_runtime(rt_rq);
  446. if (runtime == RUNTIME_INF)
  447. return 0;
  448. if (rt_rq->rt_time > runtime) {
  449. rt_rq->rt_throttled = 1;
  450. if (rt_rq_throttled(rt_rq)) {
  451. sched_rt_rq_dequeue(rt_rq);
  452. return 1;
  453. }
  454. }
  455. return 0;
  456. }
  457. /*
  458. * Update the current task's runtime statistics. Skip current tasks that
  459. * are not in our scheduling class.
  460. */
  461. static void update_curr_rt(struct rq *rq)
  462. {
  463. struct task_struct *curr = rq->curr;
  464. struct sched_rt_entity *rt_se = &curr->rt;
  465. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  466. u64 delta_exec;
  467. if (!task_has_rt_policy(curr))
  468. return;
  469. delta_exec = rq->clock - curr->se.exec_start;
  470. if (unlikely((s64)delta_exec < 0))
  471. delta_exec = 0;
  472. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  473. curr->se.sum_exec_runtime += delta_exec;
  474. account_group_exec_runtime(curr, delta_exec);
  475. curr->se.exec_start = rq->clock;
  476. cpuacct_charge(curr, delta_exec);
  477. if (!rt_bandwidth_enabled())
  478. return;
  479. for_each_sched_rt_entity(rt_se) {
  480. rt_rq = rt_rq_of_se(rt_se);
  481. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  482. spin_lock(&rt_rq->rt_runtime_lock);
  483. rt_rq->rt_time += delta_exec;
  484. if (sched_rt_runtime_exceeded(rt_rq))
  485. resched_task(curr);
  486. spin_unlock(&rt_rq->rt_runtime_lock);
  487. }
  488. }
  489. }
  490. #if defined CONFIG_SMP
  491. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
  492. static inline int next_prio(struct rq *rq)
  493. {
  494. struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
  495. if (next && rt_prio(next->prio))
  496. return next->prio;
  497. else
  498. return MAX_RT_PRIO;
  499. }
  500. static void
  501. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  502. {
  503. struct rq *rq = rq_of_rt_rq(rt_rq);
  504. if (prio < prev_prio) {
  505. /*
  506. * If the new task is higher in priority than anything on the
  507. * run-queue, we know that the previous high becomes our
  508. * next-highest.
  509. */
  510. rt_rq->highest_prio.next = prev_prio;
  511. if (rq->online)
  512. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  513. } else if (prio == rt_rq->highest_prio.curr)
  514. /*
  515. * If the next task is equal in priority to the highest on
  516. * the run-queue, then we implicitly know that the next highest
  517. * task cannot be any lower than current
  518. */
  519. rt_rq->highest_prio.next = prio;
  520. else if (prio < rt_rq->highest_prio.next)
  521. /*
  522. * Otherwise, we need to recompute next-highest
  523. */
  524. rt_rq->highest_prio.next = next_prio(rq);
  525. }
  526. static void
  527. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  528. {
  529. struct rq *rq = rq_of_rt_rq(rt_rq);
  530. if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
  531. rt_rq->highest_prio.next = next_prio(rq);
  532. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  533. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  534. }
  535. #else /* CONFIG_SMP */
  536. static inline
  537. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  538. static inline
  539. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  540. #endif /* CONFIG_SMP */
  541. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  542. static void
  543. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  544. {
  545. int prev_prio = rt_rq->highest_prio.curr;
  546. if (prio < prev_prio)
  547. rt_rq->highest_prio.curr = prio;
  548. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  549. }
  550. static void
  551. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  552. {
  553. int prev_prio = rt_rq->highest_prio.curr;
  554. if (rt_rq->rt_nr_running) {
  555. WARN_ON(prio < prev_prio);
  556. /*
  557. * This may have been our highest task, and therefore
  558. * we may have some recomputation to do
  559. */
  560. if (prio == prev_prio) {
  561. struct rt_prio_array *array = &rt_rq->active;
  562. rt_rq->highest_prio.curr =
  563. sched_find_first_bit(array->bitmap);
  564. }
  565. } else
  566. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  567. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  568. }
  569. #else
  570. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  571. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  572. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  573. #ifdef CONFIG_RT_GROUP_SCHED
  574. static void
  575. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  576. {
  577. if (rt_se_boosted(rt_se))
  578. rt_rq->rt_nr_boosted++;
  579. if (rt_rq->tg)
  580. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  581. }
  582. static void
  583. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  584. {
  585. if (rt_se_boosted(rt_se))
  586. rt_rq->rt_nr_boosted--;
  587. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  588. }
  589. #else /* CONFIG_RT_GROUP_SCHED */
  590. static void
  591. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  592. {
  593. start_rt_bandwidth(&def_rt_bandwidth);
  594. }
  595. static inline
  596. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  597. #endif /* CONFIG_RT_GROUP_SCHED */
  598. static inline
  599. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  600. {
  601. int prio = rt_se_prio(rt_se);
  602. WARN_ON(!rt_prio(prio));
  603. rt_rq->rt_nr_running++;
  604. inc_rt_prio(rt_rq, prio);
  605. inc_rt_migration(rt_se, rt_rq);
  606. inc_rt_group(rt_se, rt_rq);
  607. }
  608. static inline
  609. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  610. {
  611. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  612. WARN_ON(!rt_rq->rt_nr_running);
  613. rt_rq->rt_nr_running--;
  614. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  615. dec_rt_migration(rt_se, rt_rq);
  616. dec_rt_group(rt_se, rt_rq);
  617. }
  618. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
  619. {
  620. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  621. struct rt_prio_array *array = &rt_rq->active;
  622. struct rt_rq *group_rq = group_rt_rq(rt_se);
  623. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  624. /*
  625. * Don't enqueue the group if its throttled, or when empty.
  626. * The latter is a consequence of the former when a child group
  627. * get throttled and the current group doesn't have any other
  628. * active members.
  629. */
  630. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  631. return;
  632. list_add_tail(&rt_se->run_list, queue);
  633. __set_bit(rt_se_prio(rt_se), array->bitmap);
  634. inc_rt_tasks(rt_se, rt_rq);
  635. }
  636. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  637. {
  638. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  639. struct rt_prio_array *array = &rt_rq->active;
  640. list_del_init(&rt_se->run_list);
  641. if (list_empty(array->queue + rt_se_prio(rt_se)))
  642. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  643. dec_rt_tasks(rt_se, rt_rq);
  644. }
  645. /*
  646. * Because the prio of an upper entry depends on the lower
  647. * entries, we must remove entries top - down.
  648. */
  649. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  650. {
  651. struct sched_rt_entity *back = NULL;
  652. for_each_sched_rt_entity(rt_se) {
  653. rt_se->back = back;
  654. back = rt_se;
  655. }
  656. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  657. if (on_rt_rq(rt_se))
  658. __dequeue_rt_entity(rt_se);
  659. }
  660. }
  661. static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
  662. {
  663. dequeue_rt_stack(rt_se);
  664. for_each_sched_rt_entity(rt_se)
  665. __enqueue_rt_entity(rt_se);
  666. }
  667. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  668. {
  669. dequeue_rt_stack(rt_se);
  670. for_each_sched_rt_entity(rt_se) {
  671. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  672. if (rt_rq && rt_rq->rt_nr_running)
  673. __enqueue_rt_entity(rt_se);
  674. }
  675. }
  676. /*
  677. * Adding/removing a task to/from a priority array:
  678. */
  679. static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
  680. {
  681. struct sched_rt_entity *rt_se = &p->rt;
  682. if (wakeup)
  683. rt_se->timeout = 0;
  684. enqueue_rt_entity(rt_se);
  685. if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
  686. enqueue_pushable_task(rq, p);
  687. inc_cpu_load(rq, p->se.load.weight);
  688. }
  689. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  690. {
  691. struct sched_rt_entity *rt_se = &p->rt;
  692. update_curr_rt(rq);
  693. dequeue_rt_entity(rt_se);
  694. dequeue_pushable_task(rq, p);
  695. dec_cpu_load(rq, p->se.load.weight);
  696. }
  697. /*
  698. * Put task to the end of the run list without the overhead of dequeue
  699. * followed by enqueue.
  700. */
  701. static void
  702. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  703. {
  704. if (on_rt_rq(rt_se)) {
  705. struct rt_prio_array *array = &rt_rq->active;
  706. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  707. if (head)
  708. list_move(&rt_se->run_list, queue);
  709. else
  710. list_move_tail(&rt_se->run_list, queue);
  711. }
  712. }
  713. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  714. {
  715. struct sched_rt_entity *rt_se = &p->rt;
  716. struct rt_rq *rt_rq;
  717. for_each_sched_rt_entity(rt_se) {
  718. rt_rq = rt_rq_of_se(rt_se);
  719. requeue_rt_entity(rt_rq, rt_se, head);
  720. }
  721. }
  722. static void yield_task_rt(struct rq *rq)
  723. {
  724. requeue_task_rt(rq, rq->curr, 0);
  725. }
  726. #ifdef CONFIG_SMP
  727. static int find_lowest_rq(struct task_struct *task);
  728. static int select_task_rq_rt(struct task_struct *p, int sync)
  729. {
  730. struct rq *rq = task_rq(p);
  731. /*
  732. * If the current task is an RT task, then
  733. * try to see if we can wake this RT task up on another
  734. * runqueue. Otherwise simply start this RT task
  735. * on its current runqueue.
  736. *
  737. * We want to avoid overloading runqueues. Even if
  738. * the RT task is of higher priority than the current RT task.
  739. * RT tasks behave differently than other tasks. If
  740. * one gets preempted, we try to push it off to another queue.
  741. * So trying to keep a preempting RT task on the same
  742. * cache hot CPU will force the running RT task to
  743. * a cold CPU. So we waste all the cache for the lower
  744. * RT task in hopes of saving some of a RT task
  745. * that is just being woken and probably will have
  746. * cold cache anyway.
  747. */
  748. if (unlikely(rt_task(rq->curr)) &&
  749. (p->rt.nr_cpus_allowed > 1)) {
  750. int cpu = find_lowest_rq(p);
  751. return (cpu == -1) ? task_cpu(p) : cpu;
  752. }
  753. /*
  754. * Otherwise, just let it ride on the affined RQ and the
  755. * post-schedule router will push the preempted task away
  756. */
  757. return task_cpu(p);
  758. }
  759. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  760. {
  761. cpumask_var_t mask;
  762. if (rq->curr->rt.nr_cpus_allowed == 1)
  763. return;
  764. if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
  765. return;
  766. if (p->rt.nr_cpus_allowed != 1
  767. && cpupri_find(&rq->rd->cpupri, p, mask))
  768. goto free;
  769. if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
  770. goto free;
  771. /*
  772. * There appears to be other cpus that can accept
  773. * current and none to run 'p', so lets reschedule
  774. * to try and push current away:
  775. */
  776. requeue_task_rt(rq, p, 1);
  777. resched_task(rq->curr);
  778. free:
  779. free_cpumask_var(mask);
  780. }
  781. #endif /* CONFIG_SMP */
  782. /*
  783. * Preempt the current task with a newly woken task if needed:
  784. */
  785. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
  786. {
  787. if (p->prio < rq->curr->prio) {
  788. resched_task(rq->curr);
  789. return;
  790. }
  791. #ifdef CONFIG_SMP
  792. /*
  793. * If:
  794. *
  795. * - the newly woken task is of equal priority to the current task
  796. * - the newly woken task is non-migratable while current is migratable
  797. * - current will be preempted on the next reschedule
  798. *
  799. * we should check to see if current can readily move to a different
  800. * cpu. If so, we will reschedule to allow the push logic to try
  801. * to move current somewhere else, making room for our non-migratable
  802. * task.
  803. */
  804. if (p->prio == rq->curr->prio && !need_resched())
  805. check_preempt_equal_prio(rq, p);
  806. #endif
  807. }
  808. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  809. struct rt_rq *rt_rq)
  810. {
  811. struct rt_prio_array *array = &rt_rq->active;
  812. struct sched_rt_entity *next = NULL;
  813. struct list_head *queue;
  814. int idx;
  815. idx = sched_find_first_bit(array->bitmap);
  816. BUG_ON(idx >= MAX_RT_PRIO);
  817. queue = array->queue + idx;
  818. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  819. return next;
  820. }
  821. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  822. {
  823. struct sched_rt_entity *rt_se;
  824. struct task_struct *p;
  825. struct rt_rq *rt_rq;
  826. rt_rq = &rq->rt;
  827. if (unlikely(!rt_rq->rt_nr_running))
  828. return NULL;
  829. if (rt_rq_throttled(rt_rq))
  830. return NULL;
  831. do {
  832. rt_se = pick_next_rt_entity(rq, rt_rq);
  833. BUG_ON(!rt_se);
  834. rt_rq = group_rt_rq(rt_se);
  835. } while (rt_rq);
  836. p = rt_task_of(rt_se);
  837. p->se.exec_start = rq->clock;
  838. return p;
  839. }
  840. static struct task_struct *pick_next_task_rt(struct rq *rq)
  841. {
  842. struct task_struct *p = _pick_next_task_rt(rq);
  843. /* The running task is never eligible for pushing */
  844. if (p)
  845. dequeue_pushable_task(rq, p);
  846. return p;
  847. }
  848. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  849. {
  850. update_curr_rt(rq);
  851. p->se.exec_start = 0;
  852. /*
  853. * The previous task needs to be made eligible for pushing
  854. * if it is still active
  855. */
  856. if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
  857. enqueue_pushable_task(rq, p);
  858. }
  859. #ifdef CONFIG_SMP
  860. /* Only try algorithms three times */
  861. #define RT_MAX_TRIES 3
  862. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  863. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  864. {
  865. if (!task_running(rq, p) &&
  866. (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
  867. (p->rt.nr_cpus_allowed > 1))
  868. return 1;
  869. return 0;
  870. }
  871. /* Return the second highest RT task, NULL otherwise */
  872. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  873. {
  874. struct task_struct *next = NULL;
  875. struct sched_rt_entity *rt_se;
  876. struct rt_prio_array *array;
  877. struct rt_rq *rt_rq;
  878. int idx;
  879. for_each_leaf_rt_rq(rt_rq, rq) {
  880. array = &rt_rq->active;
  881. idx = sched_find_first_bit(array->bitmap);
  882. next_idx:
  883. if (idx >= MAX_RT_PRIO)
  884. continue;
  885. if (next && next->prio < idx)
  886. continue;
  887. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  888. struct task_struct *p = rt_task_of(rt_se);
  889. if (pick_rt_task(rq, p, cpu)) {
  890. next = p;
  891. break;
  892. }
  893. }
  894. if (!next) {
  895. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  896. goto next_idx;
  897. }
  898. }
  899. return next;
  900. }
  901. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  902. static inline int pick_optimal_cpu(int this_cpu,
  903. const struct cpumask *mask)
  904. {
  905. int first;
  906. /* "this_cpu" is cheaper to preempt than a remote processor */
  907. if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
  908. return this_cpu;
  909. first = cpumask_first(mask);
  910. if (first < nr_cpu_ids)
  911. return first;
  912. return -1;
  913. }
  914. static int find_lowest_rq(struct task_struct *task)
  915. {
  916. struct sched_domain *sd;
  917. struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
  918. int this_cpu = smp_processor_id();
  919. int cpu = task_cpu(task);
  920. cpumask_var_t domain_mask;
  921. if (task->rt.nr_cpus_allowed == 1)
  922. return -1; /* No other targets possible */
  923. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  924. return -1; /* No targets found */
  925. /*
  926. * Only consider CPUs that are usable for migration.
  927. * I guess we might want to change cpupri_find() to ignore those
  928. * in the first place.
  929. */
  930. cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
  931. /*
  932. * At this point we have built a mask of cpus representing the
  933. * lowest priority tasks in the system. Now we want to elect
  934. * the best one based on our affinity and topology.
  935. *
  936. * We prioritize the last cpu that the task executed on since
  937. * it is most likely cache-hot in that location.
  938. */
  939. if (cpumask_test_cpu(cpu, lowest_mask))
  940. return cpu;
  941. /*
  942. * Otherwise, we consult the sched_domains span maps to figure
  943. * out which cpu is logically closest to our hot cache data.
  944. */
  945. if (this_cpu == cpu)
  946. this_cpu = -1; /* Skip this_cpu opt if the same */
  947. if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
  948. for_each_domain(cpu, sd) {
  949. if (sd->flags & SD_WAKE_AFFINE) {
  950. int best_cpu;
  951. cpumask_and(domain_mask,
  952. sched_domain_span(sd),
  953. lowest_mask);
  954. best_cpu = pick_optimal_cpu(this_cpu,
  955. domain_mask);
  956. if (best_cpu != -1) {
  957. free_cpumask_var(domain_mask);
  958. return best_cpu;
  959. }
  960. }
  961. }
  962. free_cpumask_var(domain_mask);
  963. }
  964. /*
  965. * And finally, if there were no matches within the domains
  966. * just give the caller *something* to work with from the compatible
  967. * locations.
  968. */
  969. return pick_optimal_cpu(this_cpu, lowest_mask);
  970. }
  971. /* Will lock the rq it finds */
  972. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  973. {
  974. struct rq *lowest_rq = NULL;
  975. int tries;
  976. int cpu;
  977. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  978. cpu = find_lowest_rq(task);
  979. if ((cpu == -1) || (cpu == rq->cpu))
  980. break;
  981. lowest_rq = cpu_rq(cpu);
  982. /* if the prio of this runqueue changed, try again */
  983. if (double_lock_balance(rq, lowest_rq)) {
  984. /*
  985. * We had to unlock the run queue. In
  986. * the mean time, task could have
  987. * migrated already or had its affinity changed.
  988. * Also make sure that it wasn't scheduled on its rq.
  989. */
  990. if (unlikely(task_rq(task) != rq ||
  991. !cpumask_test_cpu(lowest_rq->cpu,
  992. &task->cpus_allowed) ||
  993. task_running(rq, task) ||
  994. !task->se.on_rq)) {
  995. spin_unlock(&lowest_rq->lock);
  996. lowest_rq = NULL;
  997. break;
  998. }
  999. }
  1000. /* If this rq is still suitable use it. */
  1001. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1002. break;
  1003. /* try again */
  1004. double_unlock_balance(rq, lowest_rq);
  1005. lowest_rq = NULL;
  1006. }
  1007. return lowest_rq;
  1008. }
  1009. static inline int has_pushable_tasks(struct rq *rq)
  1010. {
  1011. return !plist_head_empty(&rq->rt.pushable_tasks);
  1012. }
  1013. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1014. {
  1015. struct task_struct *p;
  1016. if (!has_pushable_tasks(rq))
  1017. return NULL;
  1018. p = plist_first_entry(&rq->rt.pushable_tasks,
  1019. struct task_struct, pushable_tasks);
  1020. BUG_ON(rq->cpu != task_cpu(p));
  1021. BUG_ON(task_current(rq, p));
  1022. BUG_ON(p->rt.nr_cpus_allowed <= 1);
  1023. BUG_ON(!p->se.on_rq);
  1024. BUG_ON(!rt_task(p));
  1025. return p;
  1026. }
  1027. /*
  1028. * If the current CPU has more than one RT task, see if the non
  1029. * running task can migrate over to a CPU that is running a task
  1030. * of lesser priority.
  1031. */
  1032. static int push_rt_task(struct rq *rq)
  1033. {
  1034. struct task_struct *next_task;
  1035. struct rq *lowest_rq;
  1036. if (!rq->rt.overloaded)
  1037. return 0;
  1038. next_task = pick_next_pushable_task(rq);
  1039. if (!next_task)
  1040. return 0;
  1041. retry:
  1042. if (unlikely(next_task == rq->curr)) {
  1043. WARN_ON(1);
  1044. return 0;
  1045. }
  1046. /*
  1047. * It's possible that the next_task slipped in of
  1048. * higher priority than current. If that's the case
  1049. * just reschedule current.
  1050. */
  1051. if (unlikely(next_task->prio < rq->curr->prio)) {
  1052. resched_task(rq->curr);
  1053. return 0;
  1054. }
  1055. /* We might release rq lock */
  1056. get_task_struct(next_task);
  1057. /* find_lock_lowest_rq locks the rq if found */
  1058. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1059. if (!lowest_rq) {
  1060. struct task_struct *task;
  1061. /*
  1062. * find lock_lowest_rq releases rq->lock
  1063. * so it is possible that next_task has migrated.
  1064. *
  1065. * We need to make sure that the task is still on the same
  1066. * run-queue and is also still the next task eligible for
  1067. * pushing.
  1068. */
  1069. task = pick_next_pushable_task(rq);
  1070. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1071. /*
  1072. * If we get here, the task hasnt moved at all, but
  1073. * it has failed to push. We will not try again,
  1074. * since the other cpus will pull from us when they
  1075. * are ready.
  1076. */
  1077. dequeue_pushable_task(rq, next_task);
  1078. goto out;
  1079. }
  1080. if (!task)
  1081. /* No more tasks, just exit */
  1082. goto out;
  1083. /*
  1084. * Something has shifted, try again.
  1085. */
  1086. put_task_struct(next_task);
  1087. next_task = task;
  1088. goto retry;
  1089. }
  1090. deactivate_task(rq, next_task, 0);
  1091. set_task_cpu(next_task, lowest_rq->cpu);
  1092. activate_task(lowest_rq, next_task, 0);
  1093. resched_task(lowest_rq->curr);
  1094. double_unlock_balance(rq, lowest_rq);
  1095. out:
  1096. put_task_struct(next_task);
  1097. return 1;
  1098. }
  1099. static void push_rt_tasks(struct rq *rq)
  1100. {
  1101. /* push_rt_task will return true if it moved an RT */
  1102. while (push_rt_task(rq))
  1103. ;
  1104. }
  1105. static int pull_rt_task(struct rq *this_rq)
  1106. {
  1107. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1108. struct task_struct *p;
  1109. struct rq *src_rq;
  1110. if (likely(!rt_overloaded(this_rq)))
  1111. return 0;
  1112. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1113. if (this_cpu == cpu)
  1114. continue;
  1115. src_rq = cpu_rq(cpu);
  1116. /*
  1117. * Don't bother taking the src_rq->lock if the next highest
  1118. * task is known to be lower-priority than our current task.
  1119. * This may look racy, but if this value is about to go
  1120. * logically higher, the src_rq will push this task away.
  1121. * And if its going logically lower, we do not care
  1122. */
  1123. if (src_rq->rt.highest_prio.next >=
  1124. this_rq->rt.highest_prio.curr)
  1125. continue;
  1126. /*
  1127. * We can potentially drop this_rq's lock in
  1128. * double_lock_balance, and another CPU could
  1129. * alter this_rq
  1130. */
  1131. double_lock_balance(this_rq, src_rq);
  1132. /*
  1133. * Are there still pullable RT tasks?
  1134. */
  1135. if (src_rq->rt.rt_nr_running <= 1)
  1136. goto skip;
  1137. p = pick_next_highest_task_rt(src_rq, this_cpu);
  1138. /*
  1139. * Do we have an RT task that preempts
  1140. * the to-be-scheduled task?
  1141. */
  1142. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1143. WARN_ON(p == src_rq->curr);
  1144. WARN_ON(!p->se.on_rq);
  1145. /*
  1146. * There's a chance that p is higher in priority
  1147. * than what's currently running on its cpu.
  1148. * This is just that p is wakeing up and hasn't
  1149. * had a chance to schedule. We only pull
  1150. * p if it is lower in priority than the
  1151. * current task on the run queue
  1152. */
  1153. if (p->prio < src_rq->curr->prio)
  1154. goto skip;
  1155. ret = 1;
  1156. deactivate_task(src_rq, p, 0);
  1157. set_task_cpu(p, this_cpu);
  1158. activate_task(this_rq, p, 0);
  1159. /*
  1160. * We continue with the search, just in
  1161. * case there's an even higher prio task
  1162. * in another runqueue. (low likelyhood
  1163. * but possible)
  1164. */
  1165. }
  1166. skip:
  1167. double_unlock_balance(this_rq, src_rq);
  1168. }
  1169. return ret;
  1170. }
  1171. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  1172. {
  1173. /* Try to pull RT tasks here if we lower this rq's prio */
  1174. if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
  1175. pull_rt_task(rq);
  1176. }
  1177. /*
  1178. * assumes rq->lock is held
  1179. */
  1180. static int needs_post_schedule_rt(struct rq *rq)
  1181. {
  1182. return has_pushable_tasks(rq);
  1183. }
  1184. static void post_schedule_rt(struct rq *rq)
  1185. {
  1186. /*
  1187. * This is only called if needs_post_schedule_rt() indicates that
  1188. * we need to push tasks away
  1189. */
  1190. spin_lock_irq(&rq->lock);
  1191. push_rt_tasks(rq);
  1192. spin_unlock_irq(&rq->lock);
  1193. }
  1194. /*
  1195. * If we are not running and we are not going to reschedule soon, we should
  1196. * try to push tasks away now
  1197. */
  1198. static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
  1199. {
  1200. if (!task_running(rq, p) &&
  1201. !test_tsk_need_resched(rq->curr) &&
  1202. has_pushable_tasks(rq) &&
  1203. p->rt.nr_cpus_allowed > 1)
  1204. push_rt_tasks(rq);
  1205. }
  1206. static unsigned long
  1207. load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1208. unsigned long max_load_move,
  1209. struct sched_domain *sd, enum cpu_idle_type idle,
  1210. int *all_pinned, int *this_best_prio)
  1211. {
  1212. /* don't touch RT tasks */
  1213. return 0;
  1214. }
  1215. static int
  1216. move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1217. struct sched_domain *sd, enum cpu_idle_type idle)
  1218. {
  1219. /* don't touch RT tasks */
  1220. return 0;
  1221. }
  1222. static void set_cpus_allowed_rt(struct task_struct *p,
  1223. const struct cpumask *new_mask)
  1224. {
  1225. int weight = cpumask_weight(new_mask);
  1226. BUG_ON(!rt_task(p));
  1227. /*
  1228. * Update the migration status of the RQ if we have an RT task
  1229. * which is running AND changing its weight value.
  1230. */
  1231. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1232. struct rq *rq = task_rq(p);
  1233. if (!task_current(rq, p)) {
  1234. /*
  1235. * Make sure we dequeue this task from the pushable list
  1236. * before going further. It will either remain off of
  1237. * the list because we are no longer pushable, or it
  1238. * will be requeued.
  1239. */
  1240. if (p->rt.nr_cpus_allowed > 1)
  1241. dequeue_pushable_task(rq, p);
  1242. /*
  1243. * Requeue if our weight is changing and still > 1
  1244. */
  1245. if (weight > 1)
  1246. enqueue_pushable_task(rq, p);
  1247. }
  1248. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1249. rq->rt.rt_nr_migratory++;
  1250. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1251. BUG_ON(!rq->rt.rt_nr_migratory);
  1252. rq->rt.rt_nr_migratory--;
  1253. }
  1254. update_rt_migration(&rq->rt);
  1255. }
  1256. cpumask_copy(&p->cpus_allowed, new_mask);
  1257. p->rt.nr_cpus_allowed = weight;
  1258. }
  1259. /* Assumes rq->lock is held */
  1260. static void rq_online_rt(struct rq *rq)
  1261. {
  1262. if (rq->rt.overloaded)
  1263. rt_set_overload(rq);
  1264. __enable_runtime(rq);
  1265. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1266. }
  1267. /* Assumes rq->lock is held */
  1268. static void rq_offline_rt(struct rq *rq)
  1269. {
  1270. if (rq->rt.overloaded)
  1271. rt_clear_overload(rq);
  1272. __disable_runtime(rq);
  1273. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1274. }
  1275. /*
  1276. * When switch from the rt queue, we bring ourselves to a position
  1277. * that we might want to pull RT tasks from other runqueues.
  1278. */
  1279. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1280. int running)
  1281. {
  1282. /*
  1283. * If there are other RT tasks then we will reschedule
  1284. * and the scheduling of the other RT tasks will handle
  1285. * the balancing. But if we are the last RT task
  1286. * we may need to handle the pulling of RT tasks
  1287. * now.
  1288. */
  1289. if (!rq->rt.rt_nr_running)
  1290. pull_rt_task(rq);
  1291. }
  1292. static inline void init_sched_rt_class(void)
  1293. {
  1294. unsigned int i;
  1295. for_each_possible_cpu(i)
  1296. alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1297. GFP_KERNEL, cpu_to_node(i));
  1298. }
  1299. #endif /* CONFIG_SMP */
  1300. /*
  1301. * When switching a task to RT, we may overload the runqueue
  1302. * with RT tasks. In this case we try to push them off to
  1303. * other runqueues.
  1304. */
  1305. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1306. int running)
  1307. {
  1308. int check_resched = 1;
  1309. /*
  1310. * If we are already running, then there's nothing
  1311. * that needs to be done. But if we are not running
  1312. * we may need to preempt the current running task.
  1313. * If that current running task is also an RT task
  1314. * then see if we can move to another run queue.
  1315. */
  1316. if (!running) {
  1317. #ifdef CONFIG_SMP
  1318. if (rq->rt.overloaded && push_rt_task(rq) &&
  1319. /* Don't resched if we changed runqueues */
  1320. rq != task_rq(p))
  1321. check_resched = 0;
  1322. #endif /* CONFIG_SMP */
  1323. if (check_resched && p->prio < rq->curr->prio)
  1324. resched_task(rq->curr);
  1325. }
  1326. }
  1327. /*
  1328. * Priority of the task has changed. This may cause
  1329. * us to initiate a push or pull.
  1330. */
  1331. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1332. int oldprio, int running)
  1333. {
  1334. if (running) {
  1335. #ifdef CONFIG_SMP
  1336. /*
  1337. * If our priority decreases while running, we
  1338. * may need to pull tasks to this runqueue.
  1339. */
  1340. if (oldprio < p->prio)
  1341. pull_rt_task(rq);
  1342. /*
  1343. * If there's a higher priority task waiting to run
  1344. * then reschedule. Note, the above pull_rt_task
  1345. * can release the rq lock and p could migrate.
  1346. * Only reschedule if p is still on the same runqueue.
  1347. */
  1348. if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
  1349. resched_task(p);
  1350. #else
  1351. /* For UP simply resched on drop of prio */
  1352. if (oldprio < p->prio)
  1353. resched_task(p);
  1354. #endif /* CONFIG_SMP */
  1355. } else {
  1356. /*
  1357. * This task is not running, but if it is
  1358. * greater than the current running task
  1359. * then reschedule.
  1360. */
  1361. if (p->prio < rq->curr->prio)
  1362. resched_task(rq->curr);
  1363. }
  1364. }
  1365. static void watchdog(struct rq *rq, struct task_struct *p)
  1366. {
  1367. unsigned long soft, hard;
  1368. if (!p->signal)
  1369. return;
  1370. soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
  1371. hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
  1372. if (soft != RLIM_INFINITY) {
  1373. unsigned long next;
  1374. p->rt.timeout++;
  1375. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1376. if (p->rt.timeout > next)
  1377. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1378. }
  1379. }
  1380. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1381. {
  1382. update_curr_rt(rq);
  1383. watchdog(rq, p);
  1384. /*
  1385. * RR tasks need a special form of timeslice management.
  1386. * FIFO tasks have no timeslices.
  1387. */
  1388. if (p->policy != SCHED_RR)
  1389. return;
  1390. if (--p->rt.time_slice)
  1391. return;
  1392. p->rt.time_slice = DEF_TIMESLICE;
  1393. /*
  1394. * Requeue to the end of queue if we are not the only element
  1395. * on the queue:
  1396. */
  1397. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1398. requeue_task_rt(rq, p, 0);
  1399. set_tsk_need_resched(p);
  1400. }
  1401. }
  1402. static void set_curr_task_rt(struct rq *rq)
  1403. {
  1404. struct task_struct *p = rq->curr;
  1405. p->se.exec_start = rq->clock;
  1406. /* The running task is never eligible for pushing */
  1407. dequeue_pushable_task(rq, p);
  1408. }
  1409. static const struct sched_class rt_sched_class = {
  1410. .next = &fair_sched_class,
  1411. .enqueue_task = enqueue_task_rt,
  1412. .dequeue_task = dequeue_task_rt,
  1413. .yield_task = yield_task_rt,
  1414. .check_preempt_curr = check_preempt_curr_rt,
  1415. .pick_next_task = pick_next_task_rt,
  1416. .put_prev_task = put_prev_task_rt,
  1417. #ifdef CONFIG_SMP
  1418. .select_task_rq = select_task_rq_rt,
  1419. .load_balance = load_balance_rt,
  1420. .move_one_task = move_one_task_rt,
  1421. .set_cpus_allowed = set_cpus_allowed_rt,
  1422. .rq_online = rq_online_rt,
  1423. .rq_offline = rq_offline_rt,
  1424. .pre_schedule = pre_schedule_rt,
  1425. .needs_post_schedule = needs_post_schedule_rt,
  1426. .post_schedule = post_schedule_rt,
  1427. .task_wake_up = task_wake_up_rt,
  1428. .switched_from = switched_from_rt,
  1429. #endif
  1430. .set_curr_task = set_curr_task_rt,
  1431. .task_tick = task_tick_rt,
  1432. .prio_changed = prio_changed_rt,
  1433. .switched_to = switched_to_rt,
  1434. };
  1435. #ifdef CONFIG_SCHED_DEBUG
  1436. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1437. static void print_rt_stats(struct seq_file *m, int cpu)
  1438. {
  1439. struct rt_rq *rt_rq;
  1440. rcu_read_lock();
  1441. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1442. print_rt_rq(m, cpu, rt_rq);
  1443. rcu_read_unlock();
  1444. }
  1445. #endif /* CONFIG_SCHED_DEBUG */