exit.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/mnt_namespace.h>
  15. #include <linux/iocontext.h>
  16. #include <linux/key.h>
  17. #include <linux/security.h>
  18. #include <linux/cpu.h>
  19. #include <linux/acct.h>
  20. #include <linux/tsacct_kern.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/freezer.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/signal.h>
  38. #include <linux/posix-timers.h>
  39. #include <linux/cn_proc.h>
  40. #include <linux/mutex.h>
  41. #include <linux/futex.h>
  42. #include <linux/pipe_fs_i.h>
  43. #include <linux/audit.h> /* for audit_free() */
  44. #include <linux/resource.h>
  45. #include <linux/blkdev.h>
  46. #include <linux/task_io_accounting_ops.h>
  47. #include <linux/tracehook.h>
  48. #include <linux/fs_struct.h>
  49. #include <linux/init_task.h>
  50. #include <trace/sched.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/unistd.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/mmu_context.h>
  55. #include "cred-internals.h"
  56. DEFINE_TRACE(sched_process_free);
  57. DEFINE_TRACE(sched_process_exit);
  58. DEFINE_TRACE(sched_process_wait);
  59. static void exit_mm(struct task_struct * tsk);
  60. static void __unhash_process(struct task_struct *p)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (thread_group_leader(p)) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. __get_cpu_var(process_counts)--;
  69. }
  70. list_del_rcu(&p->thread_group);
  71. list_del_init(&p->sibling);
  72. }
  73. /*
  74. * This function expects the tasklist_lock write-locked.
  75. */
  76. static void __exit_signal(struct task_struct *tsk)
  77. {
  78. struct signal_struct *sig = tsk->signal;
  79. struct sighand_struct *sighand;
  80. BUG_ON(!sig);
  81. BUG_ON(!atomic_read(&sig->count));
  82. sighand = rcu_dereference(tsk->sighand);
  83. spin_lock(&sighand->siglock);
  84. posix_cpu_timers_exit(tsk);
  85. if (atomic_dec_and_test(&sig->count))
  86. posix_cpu_timers_exit_group(tsk);
  87. else {
  88. /*
  89. * If there is any task waiting for the group exit
  90. * then notify it:
  91. */
  92. if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
  93. wake_up_process(sig->group_exit_task);
  94. if (tsk == sig->curr_target)
  95. sig->curr_target = next_thread(tsk);
  96. /*
  97. * Accumulate here the counters for all threads but the
  98. * group leader as they die, so they can be added into
  99. * the process-wide totals when those are taken.
  100. * The group leader stays around as a zombie as long
  101. * as there are other threads. When it gets reaped,
  102. * the exit.c code will add its counts into these totals.
  103. * We won't ever get here for the group leader, since it
  104. * will have been the last reference on the signal_struct.
  105. */
  106. sig->utime = cputime_add(sig->utime, task_utime(tsk));
  107. sig->stime = cputime_add(sig->stime, task_stime(tsk));
  108. sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
  109. sig->min_flt += tsk->min_flt;
  110. sig->maj_flt += tsk->maj_flt;
  111. sig->nvcsw += tsk->nvcsw;
  112. sig->nivcsw += tsk->nivcsw;
  113. sig->inblock += task_io_get_inblock(tsk);
  114. sig->oublock += task_io_get_oublock(tsk);
  115. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  116. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  117. sig = NULL; /* Marker for below. */
  118. }
  119. __unhash_process(tsk);
  120. /*
  121. * Do this under ->siglock, we can race with another thread
  122. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  123. */
  124. flush_sigqueue(&tsk->pending);
  125. tsk->signal = NULL;
  126. tsk->sighand = NULL;
  127. spin_unlock(&sighand->siglock);
  128. __cleanup_sighand(sighand);
  129. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  130. if (sig) {
  131. flush_sigqueue(&sig->shared_pending);
  132. taskstats_tgid_free(sig);
  133. /*
  134. * Make sure ->signal can't go away under rq->lock,
  135. * see account_group_exec_runtime().
  136. */
  137. task_rq_unlock_wait(tsk);
  138. __cleanup_signal(sig);
  139. }
  140. }
  141. static void delayed_put_task_struct(struct rcu_head *rhp)
  142. {
  143. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  144. trace_sched_process_free(tsk);
  145. put_task_struct(tsk);
  146. }
  147. void release_task(struct task_struct * p)
  148. {
  149. struct task_struct *leader;
  150. int zap_leader;
  151. repeat:
  152. tracehook_prepare_release_task(p);
  153. /* don't need to get the RCU readlock here - the process is dead and
  154. * can't be modifying its own credentials */
  155. atomic_dec(&__task_cred(p)->user->processes);
  156. proc_flush_task(p);
  157. write_lock_irq(&tasklist_lock);
  158. tracehook_finish_release_task(p);
  159. __exit_signal(p);
  160. /*
  161. * If we are the last non-leader member of the thread
  162. * group, and the leader is zombie, then notify the
  163. * group leader's parent process. (if it wants notification.)
  164. */
  165. zap_leader = 0;
  166. leader = p->group_leader;
  167. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  168. BUG_ON(task_detached(leader));
  169. do_notify_parent(leader, leader->exit_signal);
  170. /*
  171. * If we were the last child thread and the leader has
  172. * exited already, and the leader's parent ignores SIGCHLD,
  173. * then we are the one who should release the leader.
  174. *
  175. * do_notify_parent() will have marked it self-reaping in
  176. * that case.
  177. */
  178. zap_leader = task_detached(leader);
  179. /*
  180. * This maintains the invariant that release_task()
  181. * only runs on a task in EXIT_DEAD, just for sanity.
  182. */
  183. if (zap_leader)
  184. leader->exit_state = EXIT_DEAD;
  185. }
  186. write_unlock_irq(&tasklist_lock);
  187. release_thread(p);
  188. call_rcu(&p->rcu, delayed_put_task_struct);
  189. p = leader;
  190. if (unlikely(zap_leader))
  191. goto repeat;
  192. }
  193. /*
  194. * This checks not only the pgrp, but falls back on the pid if no
  195. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  196. * without this...
  197. *
  198. * The caller must hold rcu lock or the tasklist lock.
  199. */
  200. struct pid *session_of_pgrp(struct pid *pgrp)
  201. {
  202. struct task_struct *p;
  203. struct pid *sid = NULL;
  204. p = pid_task(pgrp, PIDTYPE_PGID);
  205. if (p == NULL)
  206. p = pid_task(pgrp, PIDTYPE_PID);
  207. if (p != NULL)
  208. sid = task_session(p);
  209. return sid;
  210. }
  211. /*
  212. * Determine if a process group is "orphaned", according to the POSIX
  213. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  214. * by terminal-generated stop signals. Newly orphaned process groups are
  215. * to receive a SIGHUP and a SIGCONT.
  216. *
  217. * "I ask you, have you ever known what it is to be an orphan?"
  218. */
  219. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  220. {
  221. struct task_struct *p;
  222. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  223. if ((p == ignored_task) ||
  224. (p->exit_state && thread_group_empty(p)) ||
  225. is_global_init(p->real_parent))
  226. continue;
  227. if (task_pgrp(p->real_parent) != pgrp &&
  228. task_session(p->real_parent) == task_session(p))
  229. return 0;
  230. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  231. return 1;
  232. }
  233. int is_current_pgrp_orphaned(void)
  234. {
  235. int retval;
  236. read_lock(&tasklist_lock);
  237. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  238. read_unlock(&tasklist_lock);
  239. return retval;
  240. }
  241. static int has_stopped_jobs(struct pid *pgrp)
  242. {
  243. int retval = 0;
  244. struct task_struct *p;
  245. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  246. if (!task_is_stopped(p))
  247. continue;
  248. retval = 1;
  249. break;
  250. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  251. return retval;
  252. }
  253. /*
  254. * Check to see if any process groups have become orphaned as
  255. * a result of our exiting, and if they have any stopped jobs,
  256. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  257. */
  258. static void
  259. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  260. {
  261. struct pid *pgrp = task_pgrp(tsk);
  262. struct task_struct *ignored_task = tsk;
  263. if (!parent)
  264. /* exit: our father is in a different pgrp than
  265. * we are and we were the only connection outside.
  266. */
  267. parent = tsk->real_parent;
  268. else
  269. /* reparent: our child is in a different pgrp than
  270. * we are, and it was the only connection outside.
  271. */
  272. ignored_task = NULL;
  273. if (task_pgrp(parent) != pgrp &&
  274. task_session(parent) == task_session(tsk) &&
  275. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  276. has_stopped_jobs(pgrp)) {
  277. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  278. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  279. }
  280. }
  281. /**
  282. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  283. *
  284. * If a kernel thread is launched as a result of a system call, or if
  285. * it ever exits, it should generally reparent itself to kthreadd so it
  286. * isn't in the way of other processes and is correctly cleaned up on exit.
  287. *
  288. * The various task state such as scheduling policy and priority may have
  289. * been inherited from a user process, so we reset them to sane values here.
  290. *
  291. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  292. */
  293. static void reparent_to_kthreadd(void)
  294. {
  295. write_lock_irq(&tasklist_lock);
  296. ptrace_unlink(current);
  297. /* Reparent to init */
  298. current->real_parent = current->parent = kthreadd_task;
  299. list_move_tail(&current->sibling, &current->real_parent->children);
  300. /* Set the exit signal to SIGCHLD so we signal init on exit */
  301. current->exit_signal = SIGCHLD;
  302. if (task_nice(current) < 0)
  303. set_user_nice(current, 0);
  304. /* cpus_allowed? */
  305. /* rt_priority? */
  306. /* signals? */
  307. memcpy(current->signal->rlim, init_task.signal->rlim,
  308. sizeof(current->signal->rlim));
  309. atomic_inc(&init_cred.usage);
  310. commit_creds(&init_cred);
  311. write_unlock_irq(&tasklist_lock);
  312. }
  313. void __set_special_pids(struct pid *pid)
  314. {
  315. struct task_struct *curr = current->group_leader;
  316. if (task_session(curr) != pid)
  317. change_pid(curr, PIDTYPE_SID, pid);
  318. if (task_pgrp(curr) != pid)
  319. change_pid(curr, PIDTYPE_PGID, pid);
  320. }
  321. static void set_special_pids(struct pid *pid)
  322. {
  323. write_lock_irq(&tasklist_lock);
  324. __set_special_pids(pid);
  325. write_unlock_irq(&tasklist_lock);
  326. }
  327. /*
  328. * Let kernel threads use this to say that they
  329. * allow a certain signal (since daemonize() will
  330. * have disabled all of them by default).
  331. */
  332. int allow_signal(int sig)
  333. {
  334. if (!valid_signal(sig) || sig < 1)
  335. return -EINVAL;
  336. spin_lock_irq(&current->sighand->siglock);
  337. sigdelset(&current->blocked, sig);
  338. if (!current->mm) {
  339. /* Kernel threads handle their own signals.
  340. Let the signal code know it'll be handled, so
  341. that they don't get converted to SIGKILL or
  342. just silently dropped */
  343. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  344. }
  345. recalc_sigpending();
  346. spin_unlock_irq(&current->sighand->siglock);
  347. return 0;
  348. }
  349. EXPORT_SYMBOL(allow_signal);
  350. int disallow_signal(int sig)
  351. {
  352. if (!valid_signal(sig) || sig < 1)
  353. return -EINVAL;
  354. spin_lock_irq(&current->sighand->siglock);
  355. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  356. recalc_sigpending();
  357. spin_unlock_irq(&current->sighand->siglock);
  358. return 0;
  359. }
  360. EXPORT_SYMBOL(disallow_signal);
  361. /*
  362. * Put all the gunge required to become a kernel thread without
  363. * attached user resources in one place where it belongs.
  364. */
  365. void daemonize(const char *name, ...)
  366. {
  367. va_list args;
  368. sigset_t blocked;
  369. va_start(args, name);
  370. vsnprintf(current->comm, sizeof(current->comm), name, args);
  371. va_end(args);
  372. /*
  373. * If we were started as result of loading a module, close all of the
  374. * user space pages. We don't need them, and if we didn't close them
  375. * they would be locked into memory.
  376. */
  377. exit_mm(current);
  378. /*
  379. * We don't want to have TIF_FREEZE set if the system-wide hibernation
  380. * or suspend transition begins right now.
  381. */
  382. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  383. if (current->nsproxy != &init_nsproxy) {
  384. get_nsproxy(&init_nsproxy);
  385. switch_task_namespaces(current, &init_nsproxy);
  386. }
  387. set_special_pids(&init_struct_pid);
  388. proc_clear_tty(current);
  389. /* Block and flush all signals */
  390. sigfillset(&blocked);
  391. sigprocmask(SIG_BLOCK, &blocked, NULL);
  392. flush_signals(current);
  393. /* Become as one with the init task */
  394. daemonize_fs_struct();
  395. exit_files(current);
  396. current->files = init_task.files;
  397. atomic_inc(&current->files->count);
  398. reparent_to_kthreadd();
  399. }
  400. EXPORT_SYMBOL(daemonize);
  401. static void close_files(struct files_struct * files)
  402. {
  403. int i, j;
  404. struct fdtable *fdt;
  405. j = 0;
  406. /*
  407. * It is safe to dereference the fd table without RCU or
  408. * ->file_lock because this is the last reference to the
  409. * files structure.
  410. */
  411. fdt = files_fdtable(files);
  412. for (;;) {
  413. unsigned long set;
  414. i = j * __NFDBITS;
  415. if (i >= fdt->max_fds)
  416. break;
  417. set = fdt->open_fds->fds_bits[j++];
  418. while (set) {
  419. if (set & 1) {
  420. struct file * file = xchg(&fdt->fd[i], NULL);
  421. if (file) {
  422. filp_close(file, files);
  423. cond_resched();
  424. }
  425. }
  426. i++;
  427. set >>= 1;
  428. }
  429. }
  430. }
  431. struct files_struct *get_files_struct(struct task_struct *task)
  432. {
  433. struct files_struct *files;
  434. task_lock(task);
  435. files = task->files;
  436. if (files)
  437. atomic_inc(&files->count);
  438. task_unlock(task);
  439. return files;
  440. }
  441. void put_files_struct(struct files_struct *files)
  442. {
  443. struct fdtable *fdt;
  444. if (atomic_dec_and_test(&files->count)) {
  445. close_files(files);
  446. /*
  447. * Free the fd and fdset arrays if we expanded them.
  448. * If the fdtable was embedded, pass files for freeing
  449. * at the end of the RCU grace period. Otherwise,
  450. * you can free files immediately.
  451. */
  452. fdt = files_fdtable(files);
  453. if (fdt != &files->fdtab)
  454. kmem_cache_free(files_cachep, files);
  455. free_fdtable(fdt);
  456. }
  457. }
  458. void reset_files_struct(struct files_struct *files)
  459. {
  460. struct task_struct *tsk = current;
  461. struct files_struct *old;
  462. old = tsk->files;
  463. task_lock(tsk);
  464. tsk->files = files;
  465. task_unlock(tsk);
  466. put_files_struct(old);
  467. }
  468. void exit_files(struct task_struct *tsk)
  469. {
  470. struct files_struct * files = tsk->files;
  471. if (files) {
  472. task_lock(tsk);
  473. tsk->files = NULL;
  474. task_unlock(tsk);
  475. put_files_struct(files);
  476. }
  477. }
  478. #ifdef CONFIG_MM_OWNER
  479. /*
  480. * Task p is exiting and it owned mm, lets find a new owner for it
  481. */
  482. static inline int
  483. mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
  484. {
  485. /*
  486. * If there are other users of the mm and the owner (us) is exiting
  487. * we need to find a new owner to take on the responsibility.
  488. */
  489. if (atomic_read(&mm->mm_users) <= 1)
  490. return 0;
  491. if (mm->owner != p)
  492. return 0;
  493. return 1;
  494. }
  495. void mm_update_next_owner(struct mm_struct *mm)
  496. {
  497. struct task_struct *c, *g, *p = current;
  498. retry:
  499. if (!mm_need_new_owner(mm, p))
  500. return;
  501. read_lock(&tasklist_lock);
  502. /*
  503. * Search in the children
  504. */
  505. list_for_each_entry(c, &p->children, sibling) {
  506. if (c->mm == mm)
  507. goto assign_new_owner;
  508. }
  509. /*
  510. * Search in the siblings
  511. */
  512. list_for_each_entry(c, &p->parent->children, sibling) {
  513. if (c->mm == mm)
  514. goto assign_new_owner;
  515. }
  516. /*
  517. * Search through everything else. We should not get
  518. * here often
  519. */
  520. do_each_thread(g, c) {
  521. if (c->mm == mm)
  522. goto assign_new_owner;
  523. } while_each_thread(g, c);
  524. read_unlock(&tasklist_lock);
  525. /*
  526. * We found no owner yet mm_users > 1: this implies that we are
  527. * most likely racing with swapoff (try_to_unuse()) or /proc or
  528. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  529. */
  530. mm->owner = NULL;
  531. return;
  532. assign_new_owner:
  533. BUG_ON(c == p);
  534. get_task_struct(c);
  535. /*
  536. * The task_lock protects c->mm from changing.
  537. * We always want mm->owner->mm == mm
  538. */
  539. task_lock(c);
  540. /*
  541. * Delay read_unlock() till we have the task_lock()
  542. * to ensure that c does not slip away underneath us
  543. */
  544. read_unlock(&tasklist_lock);
  545. if (c->mm != mm) {
  546. task_unlock(c);
  547. put_task_struct(c);
  548. goto retry;
  549. }
  550. mm->owner = c;
  551. task_unlock(c);
  552. put_task_struct(c);
  553. }
  554. #endif /* CONFIG_MM_OWNER */
  555. /*
  556. * Turn us into a lazy TLB process if we
  557. * aren't already..
  558. */
  559. static void exit_mm(struct task_struct * tsk)
  560. {
  561. struct mm_struct *mm = tsk->mm;
  562. struct core_state *core_state;
  563. mm_release(tsk, mm);
  564. if (!mm)
  565. return;
  566. /*
  567. * Serialize with any possible pending coredump.
  568. * We must hold mmap_sem around checking core_state
  569. * and clearing tsk->mm. The core-inducing thread
  570. * will increment ->nr_threads for each thread in the
  571. * group with ->mm != NULL.
  572. */
  573. down_read(&mm->mmap_sem);
  574. core_state = mm->core_state;
  575. if (core_state) {
  576. struct core_thread self;
  577. up_read(&mm->mmap_sem);
  578. self.task = tsk;
  579. self.next = xchg(&core_state->dumper.next, &self);
  580. /*
  581. * Implies mb(), the result of xchg() must be visible
  582. * to core_state->dumper.
  583. */
  584. if (atomic_dec_and_test(&core_state->nr_threads))
  585. complete(&core_state->startup);
  586. for (;;) {
  587. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  588. if (!self.task) /* see coredump_finish() */
  589. break;
  590. schedule();
  591. }
  592. __set_task_state(tsk, TASK_RUNNING);
  593. down_read(&mm->mmap_sem);
  594. }
  595. atomic_inc(&mm->mm_count);
  596. BUG_ON(mm != tsk->active_mm);
  597. /* more a memory barrier than a real lock */
  598. task_lock(tsk);
  599. tsk->mm = NULL;
  600. up_read(&mm->mmap_sem);
  601. enter_lazy_tlb(mm, current);
  602. /* We don't want this task to be frozen prematurely */
  603. clear_freeze_flag(tsk);
  604. task_unlock(tsk);
  605. mm_update_next_owner(mm);
  606. mmput(mm);
  607. }
  608. /*
  609. * When we die, we re-parent all our children.
  610. * Try to give them to another thread in our thread
  611. * group, and if no such member exists, give it to
  612. * the child reaper process (ie "init") in our pid
  613. * space.
  614. */
  615. static struct task_struct *find_new_reaper(struct task_struct *father)
  616. {
  617. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  618. struct task_struct *thread;
  619. thread = father;
  620. while_each_thread(father, thread) {
  621. if (thread->flags & PF_EXITING)
  622. continue;
  623. if (unlikely(pid_ns->child_reaper == father))
  624. pid_ns->child_reaper = thread;
  625. return thread;
  626. }
  627. if (unlikely(pid_ns->child_reaper == father)) {
  628. write_unlock_irq(&tasklist_lock);
  629. if (unlikely(pid_ns == &init_pid_ns))
  630. panic("Attempted to kill init!");
  631. zap_pid_ns_processes(pid_ns);
  632. write_lock_irq(&tasklist_lock);
  633. /*
  634. * We can not clear ->child_reaper or leave it alone.
  635. * There may by stealth EXIT_DEAD tasks on ->children,
  636. * forget_original_parent() must move them somewhere.
  637. */
  638. pid_ns->child_reaper = init_pid_ns.child_reaper;
  639. }
  640. return pid_ns->child_reaper;
  641. }
  642. /*
  643. * Any that need to be release_task'd are put on the @dead list.
  644. */
  645. static void reparent_thread(struct task_struct *father, struct task_struct *p,
  646. struct list_head *dead)
  647. {
  648. if (p->pdeath_signal)
  649. group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
  650. list_move_tail(&p->sibling, &p->real_parent->children);
  651. if (task_detached(p))
  652. return;
  653. /*
  654. * If this is a threaded reparent there is no need to
  655. * notify anyone anything has happened.
  656. */
  657. if (same_thread_group(p->real_parent, father))
  658. return;
  659. /* We don't want people slaying init. */
  660. p->exit_signal = SIGCHLD;
  661. /* If it has exited notify the new parent about this child's death. */
  662. if (!p->ptrace &&
  663. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  664. do_notify_parent(p, p->exit_signal);
  665. if (task_detached(p)) {
  666. p->exit_state = EXIT_DEAD;
  667. list_move_tail(&p->sibling, dead);
  668. }
  669. }
  670. kill_orphaned_pgrp(p, father);
  671. }
  672. static void forget_original_parent(struct task_struct *father)
  673. {
  674. struct task_struct *p, *n, *reaper;
  675. LIST_HEAD(dead_children);
  676. exit_ptrace(father);
  677. write_lock_irq(&tasklist_lock);
  678. reaper = find_new_reaper(father);
  679. list_for_each_entry_safe(p, n, &father->children, sibling) {
  680. p->real_parent = reaper;
  681. if (p->parent == father) {
  682. BUG_ON(p->ptrace);
  683. p->parent = p->real_parent;
  684. }
  685. reparent_thread(father, p, &dead_children);
  686. }
  687. write_unlock_irq(&tasklist_lock);
  688. BUG_ON(!list_empty(&father->children));
  689. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  690. list_del_init(&p->sibling);
  691. release_task(p);
  692. }
  693. }
  694. /*
  695. * Send signals to all our closest relatives so that they know
  696. * to properly mourn us..
  697. */
  698. static void exit_notify(struct task_struct *tsk, int group_dead)
  699. {
  700. int signal;
  701. void *cookie;
  702. /*
  703. * This does two things:
  704. *
  705. * A. Make init inherit all the child processes
  706. * B. Check to see if any process groups have become orphaned
  707. * as a result of our exiting, and if they have any stopped
  708. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  709. */
  710. forget_original_parent(tsk);
  711. exit_task_namespaces(tsk);
  712. write_lock_irq(&tasklist_lock);
  713. if (group_dead)
  714. kill_orphaned_pgrp(tsk->group_leader, NULL);
  715. /* Let father know we died
  716. *
  717. * Thread signals are configurable, but you aren't going to use
  718. * that to send signals to arbitary processes.
  719. * That stops right now.
  720. *
  721. * If the parent exec id doesn't match the exec id we saved
  722. * when we started then we know the parent has changed security
  723. * domain.
  724. *
  725. * If our self_exec id doesn't match our parent_exec_id then
  726. * we have changed execution domain as these two values started
  727. * the same after a fork.
  728. */
  729. if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
  730. (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
  731. tsk->self_exec_id != tsk->parent_exec_id) &&
  732. !capable(CAP_KILL))
  733. tsk->exit_signal = SIGCHLD;
  734. signal = tracehook_notify_death(tsk, &cookie, group_dead);
  735. if (signal >= 0)
  736. signal = do_notify_parent(tsk, signal);
  737. tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
  738. /* mt-exec, de_thread() is waiting for us */
  739. if (thread_group_leader(tsk) &&
  740. tsk->signal->group_exit_task &&
  741. tsk->signal->notify_count < 0)
  742. wake_up_process(tsk->signal->group_exit_task);
  743. write_unlock_irq(&tasklist_lock);
  744. tracehook_report_death(tsk, signal, cookie, group_dead);
  745. /* If the process is dead, release it - nobody will wait for it */
  746. if (signal == DEATH_REAP)
  747. release_task(tsk);
  748. }
  749. #ifdef CONFIG_DEBUG_STACK_USAGE
  750. static void check_stack_usage(void)
  751. {
  752. static DEFINE_SPINLOCK(low_water_lock);
  753. static int lowest_to_date = THREAD_SIZE;
  754. unsigned long free;
  755. free = stack_not_used(current);
  756. if (free >= lowest_to_date)
  757. return;
  758. spin_lock(&low_water_lock);
  759. if (free < lowest_to_date) {
  760. printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
  761. "left\n",
  762. current->comm, free);
  763. lowest_to_date = free;
  764. }
  765. spin_unlock(&low_water_lock);
  766. }
  767. #else
  768. static inline void check_stack_usage(void) {}
  769. #endif
  770. NORET_TYPE void do_exit(long code)
  771. {
  772. struct task_struct *tsk = current;
  773. int group_dead;
  774. profile_task_exit(tsk);
  775. WARN_ON(atomic_read(&tsk->fs_excl));
  776. if (unlikely(in_interrupt()))
  777. panic("Aiee, killing interrupt handler!");
  778. if (unlikely(!tsk->pid))
  779. panic("Attempted to kill the idle task!");
  780. tracehook_report_exit(&code);
  781. /*
  782. * We're taking recursive faults here in do_exit. Safest is to just
  783. * leave this task alone and wait for reboot.
  784. */
  785. if (unlikely(tsk->flags & PF_EXITING)) {
  786. printk(KERN_ALERT
  787. "Fixing recursive fault but reboot is needed!\n");
  788. /*
  789. * We can do this unlocked here. The futex code uses
  790. * this flag just to verify whether the pi state
  791. * cleanup has been done or not. In the worst case it
  792. * loops once more. We pretend that the cleanup was
  793. * done as there is no way to return. Either the
  794. * OWNER_DIED bit is set by now or we push the blocked
  795. * task into the wait for ever nirwana as well.
  796. */
  797. tsk->flags |= PF_EXITPIDONE;
  798. set_current_state(TASK_UNINTERRUPTIBLE);
  799. schedule();
  800. }
  801. exit_signals(tsk); /* sets PF_EXITING */
  802. /*
  803. * tsk->flags are checked in the futex code to protect against
  804. * an exiting task cleaning up the robust pi futexes.
  805. */
  806. smp_mb();
  807. spin_unlock_wait(&tsk->pi_lock);
  808. if (unlikely(in_atomic()))
  809. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  810. current->comm, task_pid_nr(current),
  811. preempt_count());
  812. acct_update_integrals(tsk);
  813. group_dead = atomic_dec_and_test(&tsk->signal->live);
  814. if (group_dead) {
  815. hrtimer_cancel(&tsk->signal->real_timer);
  816. exit_itimers(tsk->signal);
  817. }
  818. acct_collect(code, group_dead);
  819. if (group_dead)
  820. tty_audit_exit();
  821. if (unlikely(tsk->audit_context))
  822. audit_free(tsk);
  823. tsk->exit_code = code;
  824. taskstats_exit(tsk, group_dead);
  825. exit_mm(tsk);
  826. if (group_dead)
  827. acct_process();
  828. trace_sched_process_exit(tsk);
  829. exit_sem(tsk);
  830. exit_files(tsk);
  831. exit_fs(tsk);
  832. check_stack_usage();
  833. exit_thread();
  834. cgroup_exit(tsk, 1);
  835. if (group_dead && tsk->signal->leader)
  836. disassociate_ctty(1);
  837. module_put(task_thread_info(tsk)->exec_domain->module);
  838. if (tsk->binfmt)
  839. module_put(tsk->binfmt->module);
  840. proc_exit_connector(tsk);
  841. exit_notify(tsk, group_dead);
  842. #ifdef CONFIG_NUMA
  843. mpol_put(tsk->mempolicy);
  844. tsk->mempolicy = NULL;
  845. #endif
  846. #ifdef CONFIG_FUTEX
  847. /*
  848. * This must happen late, after the PID is not
  849. * hashed anymore:
  850. */
  851. if (unlikely(!list_empty(&tsk->pi_state_list)))
  852. exit_pi_state_list(tsk);
  853. if (unlikely(current->pi_state_cache))
  854. kfree(current->pi_state_cache);
  855. #endif
  856. /*
  857. * Make sure we are holding no locks:
  858. */
  859. debug_check_no_locks_held(tsk);
  860. /*
  861. * We can do this unlocked here. The futex code uses this flag
  862. * just to verify whether the pi state cleanup has been done
  863. * or not. In the worst case it loops once more.
  864. */
  865. tsk->flags |= PF_EXITPIDONE;
  866. if (tsk->io_context)
  867. exit_io_context();
  868. if (tsk->splice_pipe)
  869. __free_pipe_info(tsk->splice_pipe);
  870. preempt_disable();
  871. /* causes final put_task_struct in finish_task_switch(). */
  872. tsk->state = TASK_DEAD;
  873. schedule();
  874. BUG();
  875. /* Avoid "noreturn function does return". */
  876. for (;;)
  877. cpu_relax(); /* For when BUG is null */
  878. }
  879. EXPORT_SYMBOL_GPL(do_exit);
  880. NORET_TYPE void complete_and_exit(struct completion *comp, long code)
  881. {
  882. if (comp)
  883. complete(comp);
  884. do_exit(code);
  885. }
  886. EXPORT_SYMBOL(complete_and_exit);
  887. SYSCALL_DEFINE1(exit, int, error_code)
  888. {
  889. do_exit((error_code&0xff)<<8);
  890. }
  891. /*
  892. * Take down every thread in the group. This is called by fatal signals
  893. * as well as by sys_exit_group (below).
  894. */
  895. NORET_TYPE void
  896. do_group_exit(int exit_code)
  897. {
  898. struct signal_struct *sig = current->signal;
  899. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  900. if (signal_group_exit(sig))
  901. exit_code = sig->group_exit_code;
  902. else if (!thread_group_empty(current)) {
  903. struct sighand_struct *const sighand = current->sighand;
  904. spin_lock_irq(&sighand->siglock);
  905. if (signal_group_exit(sig))
  906. /* Another thread got here before we took the lock. */
  907. exit_code = sig->group_exit_code;
  908. else {
  909. sig->group_exit_code = exit_code;
  910. sig->flags = SIGNAL_GROUP_EXIT;
  911. zap_other_threads(current);
  912. }
  913. spin_unlock_irq(&sighand->siglock);
  914. }
  915. do_exit(exit_code);
  916. /* NOTREACHED */
  917. }
  918. /*
  919. * this kills every thread in the thread group. Note that any externally
  920. * wait4()-ing process will get the correct exit code - even if this
  921. * thread is not the thread group leader.
  922. */
  923. SYSCALL_DEFINE1(exit_group, int, error_code)
  924. {
  925. do_group_exit((error_code & 0xff) << 8);
  926. /* NOTREACHED */
  927. return 0;
  928. }
  929. static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  930. {
  931. struct pid *pid = NULL;
  932. if (type == PIDTYPE_PID)
  933. pid = task->pids[type].pid;
  934. else if (type < PIDTYPE_MAX)
  935. pid = task->group_leader->pids[type].pid;
  936. return pid;
  937. }
  938. static int eligible_child(enum pid_type type, struct pid *pid, int options,
  939. struct task_struct *p)
  940. {
  941. int err;
  942. if (type < PIDTYPE_MAX) {
  943. if (task_pid_type(p, type) != pid)
  944. return 0;
  945. }
  946. /* Wait for all children (clone and not) if __WALL is set;
  947. * otherwise, wait for clone children *only* if __WCLONE is
  948. * set; otherwise, wait for non-clone children *only*. (Note:
  949. * A "clone" child here is one that reports to its parent
  950. * using a signal other than SIGCHLD.) */
  951. if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
  952. && !(options & __WALL))
  953. return 0;
  954. err = security_task_wait(p);
  955. if (err)
  956. return err;
  957. return 1;
  958. }
  959. static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
  960. int why, int status,
  961. struct siginfo __user *infop,
  962. struct rusage __user *rusagep)
  963. {
  964. int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
  965. put_task_struct(p);
  966. if (!retval)
  967. retval = put_user(SIGCHLD, &infop->si_signo);
  968. if (!retval)
  969. retval = put_user(0, &infop->si_errno);
  970. if (!retval)
  971. retval = put_user((short)why, &infop->si_code);
  972. if (!retval)
  973. retval = put_user(pid, &infop->si_pid);
  974. if (!retval)
  975. retval = put_user(uid, &infop->si_uid);
  976. if (!retval)
  977. retval = put_user(status, &infop->si_status);
  978. if (!retval)
  979. retval = pid;
  980. return retval;
  981. }
  982. /*
  983. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  984. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  985. * the lock and this task is uninteresting. If we return nonzero, we have
  986. * released the lock and the system call should return.
  987. */
  988. static int wait_task_zombie(struct task_struct *p, int options,
  989. struct siginfo __user *infop,
  990. int __user *stat_addr, struct rusage __user *ru)
  991. {
  992. unsigned long state;
  993. int retval, status, traced;
  994. pid_t pid = task_pid_vnr(p);
  995. uid_t uid = __task_cred(p)->uid;
  996. if (!likely(options & WEXITED))
  997. return 0;
  998. if (unlikely(options & WNOWAIT)) {
  999. int exit_code = p->exit_code;
  1000. int why, status;
  1001. get_task_struct(p);
  1002. read_unlock(&tasklist_lock);
  1003. if ((exit_code & 0x7f) == 0) {
  1004. why = CLD_EXITED;
  1005. status = exit_code >> 8;
  1006. } else {
  1007. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1008. status = exit_code & 0x7f;
  1009. }
  1010. return wait_noreap_copyout(p, pid, uid, why,
  1011. status, infop, ru);
  1012. }
  1013. /*
  1014. * Try to move the task's state to DEAD
  1015. * only one thread is allowed to do this:
  1016. */
  1017. state = xchg(&p->exit_state, EXIT_DEAD);
  1018. if (state != EXIT_ZOMBIE) {
  1019. BUG_ON(state != EXIT_DEAD);
  1020. return 0;
  1021. }
  1022. traced = ptrace_reparented(p);
  1023. if (likely(!traced)) {
  1024. struct signal_struct *psig;
  1025. struct signal_struct *sig;
  1026. struct task_cputime cputime;
  1027. /*
  1028. * The resource counters for the group leader are in its
  1029. * own task_struct. Those for dead threads in the group
  1030. * are in its signal_struct, as are those for the child
  1031. * processes it has previously reaped. All these
  1032. * accumulate in the parent's signal_struct c* fields.
  1033. *
  1034. * We don't bother to take a lock here to protect these
  1035. * p->signal fields, because they are only touched by
  1036. * __exit_signal, which runs with tasklist_lock
  1037. * write-locked anyway, and so is excluded here. We do
  1038. * need to protect the access to p->parent->signal fields,
  1039. * as other threads in the parent group can be right
  1040. * here reaping other children at the same time.
  1041. *
  1042. * We use thread_group_cputime() to get times for the thread
  1043. * group, which consolidates times for all threads in the
  1044. * group including the group leader.
  1045. */
  1046. thread_group_cputime(p, &cputime);
  1047. spin_lock_irq(&p->parent->sighand->siglock);
  1048. psig = p->parent->signal;
  1049. sig = p->signal;
  1050. psig->cutime =
  1051. cputime_add(psig->cutime,
  1052. cputime_add(cputime.utime,
  1053. sig->cutime));
  1054. psig->cstime =
  1055. cputime_add(psig->cstime,
  1056. cputime_add(cputime.stime,
  1057. sig->cstime));
  1058. psig->cgtime =
  1059. cputime_add(psig->cgtime,
  1060. cputime_add(p->gtime,
  1061. cputime_add(sig->gtime,
  1062. sig->cgtime)));
  1063. psig->cmin_flt +=
  1064. p->min_flt + sig->min_flt + sig->cmin_flt;
  1065. psig->cmaj_flt +=
  1066. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1067. psig->cnvcsw +=
  1068. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1069. psig->cnivcsw +=
  1070. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1071. psig->cinblock +=
  1072. task_io_get_inblock(p) +
  1073. sig->inblock + sig->cinblock;
  1074. psig->coublock +=
  1075. task_io_get_oublock(p) +
  1076. sig->oublock + sig->coublock;
  1077. task_io_accounting_add(&psig->ioac, &p->ioac);
  1078. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1079. spin_unlock_irq(&p->parent->sighand->siglock);
  1080. }
  1081. /*
  1082. * Now we are sure this task is interesting, and no other
  1083. * thread can reap it because we set its state to EXIT_DEAD.
  1084. */
  1085. read_unlock(&tasklist_lock);
  1086. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1087. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1088. ? p->signal->group_exit_code : p->exit_code;
  1089. if (!retval && stat_addr)
  1090. retval = put_user(status, stat_addr);
  1091. if (!retval && infop)
  1092. retval = put_user(SIGCHLD, &infop->si_signo);
  1093. if (!retval && infop)
  1094. retval = put_user(0, &infop->si_errno);
  1095. if (!retval && infop) {
  1096. int why;
  1097. if ((status & 0x7f) == 0) {
  1098. why = CLD_EXITED;
  1099. status >>= 8;
  1100. } else {
  1101. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1102. status &= 0x7f;
  1103. }
  1104. retval = put_user((short)why, &infop->si_code);
  1105. if (!retval)
  1106. retval = put_user(status, &infop->si_status);
  1107. }
  1108. if (!retval && infop)
  1109. retval = put_user(pid, &infop->si_pid);
  1110. if (!retval && infop)
  1111. retval = put_user(uid, &infop->si_uid);
  1112. if (!retval)
  1113. retval = pid;
  1114. if (traced) {
  1115. write_lock_irq(&tasklist_lock);
  1116. /* We dropped tasklist, ptracer could die and untrace */
  1117. ptrace_unlink(p);
  1118. /*
  1119. * If this is not a detached task, notify the parent.
  1120. * If it's still not detached after that, don't release
  1121. * it now.
  1122. */
  1123. if (!task_detached(p)) {
  1124. do_notify_parent(p, p->exit_signal);
  1125. if (!task_detached(p)) {
  1126. p->exit_state = EXIT_ZOMBIE;
  1127. p = NULL;
  1128. }
  1129. }
  1130. write_unlock_irq(&tasklist_lock);
  1131. }
  1132. if (p != NULL)
  1133. release_task(p);
  1134. return retval;
  1135. }
  1136. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1137. {
  1138. if (ptrace) {
  1139. if (task_is_stopped_or_traced(p))
  1140. return &p->exit_code;
  1141. } else {
  1142. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1143. return &p->signal->group_exit_code;
  1144. }
  1145. return NULL;
  1146. }
  1147. /*
  1148. * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
  1149. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1150. * the lock and this task is uninteresting. If we return nonzero, we have
  1151. * released the lock and the system call should return.
  1152. */
  1153. static int wait_task_stopped(int ptrace, struct task_struct *p,
  1154. int options, struct siginfo __user *infop,
  1155. int __user *stat_addr, struct rusage __user *ru)
  1156. {
  1157. int retval, exit_code, *p_code, why;
  1158. uid_t uid = 0; /* unneeded, required by compiler */
  1159. pid_t pid;
  1160. if (!(options & WUNTRACED))
  1161. return 0;
  1162. exit_code = 0;
  1163. spin_lock_irq(&p->sighand->siglock);
  1164. p_code = task_stopped_code(p, ptrace);
  1165. if (unlikely(!p_code))
  1166. goto unlock_sig;
  1167. exit_code = *p_code;
  1168. if (!exit_code)
  1169. goto unlock_sig;
  1170. if (!unlikely(options & WNOWAIT))
  1171. *p_code = 0;
  1172. /* don't need the RCU readlock here as we're holding a spinlock */
  1173. uid = __task_cred(p)->uid;
  1174. unlock_sig:
  1175. spin_unlock_irq(&p->sighand->siglock);
  1176. if (!exit_code)
  1177. return 0;
  1178. /*
  1179. * Now we are pretty sure this task is interesting.
  1180. * Make sure it doesn't get reaped out from under us while we
  1181. * give up the lock and then examine it below. We don't want to
  1182. * keep holding onto the tasklist_lock while we call getrusage and
  1183. * possibly take page faults for user memory.
  1184. */
  1185. get_task_struct(p);
  1186. pid = task_pid_vnr(p);
  1187. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1188. read_unlock(&tasklist_lock);
  1189. if (unlikely(options & WNOWAIT))
  1190. return wait_noreap_copyout(p, pid, uid,
  1191. why, exit_code,
  1192. infop, ru);
  1193. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1194. if (!retval && stat_addr)
  1195. retval = put_user((exit_code << 8) | 0x7f, stat_addr);
  1196. if (!retval && infop)
  1197. retval = put_user(SIGCHLD, &infop->si_signo);
  1198. if (!retval && infop)
  1199. retval = put_user(0, &infop->si_errno);
  1200. if (!retval && infop)
  1201. retval = put_user((short)why, &infop->si_code);
  1202. if (!retval && infop)
  1203. retval = put_user(exit_code, &infop->si_status);
  1204. if (!retval && infop)
  1205. retval = put_user(pid, &infop->si_pid);
  1206. if (!retval && infop)
  1207. retval = put_user(uid, &infop->si_uid);
  1208. if (!retval)
  1209. retval = pid;
  1210. put_task_struct(p);
  1211. BUG_ON(!retval);
  1212. return retval;
  1213. }
  1214. /*
  1215. * Handle do_wait work for one task in a live, non-stopped state.
  1216. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1217. * the lock and this task is uninteresting. If we return nonzero, we have
  1218. * released the lock and the system call should return.
  1219. */
  1220. static int wait_task_continued(struct task_struct *p, int options,
  1221. struct siginfo __user *infop,
  1222. int __user *stat_addr, struct rusage __user *ru)
  1223. {
  1224. int retval;
  1225. pid_t pid;
  1226. uid_t uid;
  1227. if (!unlikely(options & WCONTINUED))
  1228. return 0;
  1229. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1230. return 0;
  1231. spin_lock_irq(&p->sighand->siglock);
  1232. /* Re-check with the lock held. */
  1233. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1234. spin_unlock_irq(&p->sighand->siglock);
  1235. return 0;
  1236. }
  1237. if (!unlikely(options & WNOWAIT))
  1238. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1239. uid = __task_cred(p)->uid;
  1240. spin_unlock_irq(&p->sighand->siglock);
  1241. pid = task_pid_vnr(p);
  1242. get_task_struct(p);
  1243. read_unlock(&tasklist_lock);
  1244. if (!infop) {
  1245. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1246. put_task_struct(p);
  1247. if (!retval && stat_addr)
  1248. retval = put_user(0xffff, stat_addr);
  1249. if (!retval)
  1250. retval = pid;
  1251. } else {
  1252. retval = wait_noreap_copyout(p, pid, uid,
  1253. CLD_CONTINUED, SIGCONT,
  1254. infop, ru);
  1255. BUG_ON(retval == 0);
  1256. }
  1257. return retval;
  1258. }
  1259. /*
  1260. * Consider @p for a wait by @parent.
  1261. *
  1262. * -ECHILD should be in *@notask_error before the first call.
  1263. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1264. * Returns zero if the search for a child should continue;
  1265. * then *@notask_error is 0 if @p is an eligible child,
  1266. * or another error from security_task_wait(), or still -ECHILD.
  1267. */
  1268. static int wait_consider_task(struct task_struct *parent, int ptrace,
  1269. struct task_struct *p, int *notask_error,
  1270. enum pid_type type, struct pid *pid, int options,
  1271. struct siginfo __user *infop,
  1272. int __user *stat_addr, struct rusage __user *ru)
  1273. {
  1274. int ret = eligible_child(type, pid, options, p);
  1275. if (!ret)
  1276. return ret;
  1277. if (unlikely(ret < 0)) {
  1278. /*
  1279. * If we have not yet seen any eligible child,
  1280. * then let this error code replace -ECHILD.
  1281. * A permission error will give the user a clue
  1282. * to look for security policy problems, rather
  1283. * than for mysterious wait bugs.
  1284. */
  1285. if (*notask_error)
  1286. *notask_error = ret;
  1287. }
  1288. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1289. /*
  1290. * This child is hidden by ptrace.
  1291. * We aren't allowed to see it now, but eventually we will.
  1292. */
  1293. *notask_error = 0;
  1294. return 0;
  1295. }
  1296. if (p->exit_state == EXIT_DEAD)
  1297. return 0;
  1298. /*
  1299. * We don't reap group leaders with subthreads.
  1300. */
  1301. if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
  1302. return wait_task_zombie(p, options, infop, stat_addr, ru);
  1303. /*
  1304. * It's stopped or running now, so it might
  1305. * later continue, exit, or stop again.
  1306. */
  1307. *notask_error = 0;
  1308. if (task_stopped_code(p, ptrace))
  1309. return wait_task_stopped(ptrace, p, options,
  1310. infop, stat_addr, ru);
  1311. return wait_task_continued(p, options, infop, stat_addr, ru);
  1312. }
  1313. /*
  1314. * Do the work of do_wait() for one thread in the group, @tsk.
  1315. *
  1316. * -ECHILD should be in *@notask_error before the first call.
  1317. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1318. * Returns zero if the search for a child should continue; then
  1319. * *@notask_error is 0 if there were any eligible children,
  1320. * or another error from security_task_wait(), or still -ECHILD.
  1321. */
  1322. static int do_wait_thread(struct task_struct *tsk, int *notask_error,
  1323. enum pid_type type, struct pid *pid, int options,
  1324. struct siginfo __user *infop, int __user *stat_addr,
  1325. struct rusage __user *ru)
  1326. {
  1327. struct task_struct *p;
  1328. list_for_each_entry(p, &tsk->children, sibling) {
  1329. /*
  1330. * Do not consider detached threads.
  1331. */
  1332. if (!task_detached(p)) {
  1333. int ret = wait_consider_task(tsk, 0, p, notask_error,
  1334. type, pid, options,
  1335. infop, stat_addr, ru);
  1336. if (ret)
  1337. return ret;
  1338. }
  1339. }
  1340. return 0;
  1341. }
  1342. static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
  1343. enum pid_type type, struct pid *pid, int options,
  1344. struct siginfo __user *infop, int __user *stat_addr,
  1345. struct rusage __user *ru)
  1346. {
  1347. struct task_struct *p;
  1348. /*
  1349. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1350. */
  1351. options |= WUNTRACED;
  1352. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1353. int ret = wait_consider_task(tsk, 1, p, notask_error,
  1354. type, pid, options,
  1355. infop, stat_addr, ru);
  1356. if (ret)
  1357. return ret;
  1358. }
  1359. return 0;
  1360. }
  1361. static long do_wait(enum pid_type type, struct pid *pid, int options,
  1362. struct siginfo __user *infop, int __user *stat_addr,
  1363. struct rusage __user *ru)
  1364. {
  1365. DECLARE_WAITQUEUE(wait, current);
  1366. struct task_struct *tsk;
  1367. int retval;
  1368. trace_sched_process_wait(pid);
  1369. add_wait_queue(&current->signal->wait_chldexit,&wait);
  1370. repeat:
  1371. /*
  1372. * If there is nothing that can match our critiera just get out.
  1373. * We will clear @retval to zero if we see any child that might later
  1374. * match our criteria, even if we are not able to reap it yet.
  1375. */
  1376. retval = -ECHILD;
  1377. if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
  1378. goto end;
  1379. current->state = TASK_INTERRUPTIBLE;
  1380. read_lock(&tasklist_lock);
  1381. tsk = current;
  1382. do {
  1383. int tsk_result = do_wait_thread(tsk, &retval,
  1384. type, pid, options,
  1385. infop, stat_addr, ru);
  1386. if (!tsk_result)
  1387. tsk_result = ptrace_do_wait(tsk, &retval,
  1388. type, pid, options,
  1389. infop, stat_addr, ru);
  1390. if (tsk_result) {
  1391. /*
  1392. * tasklist_lock is unlocked and we have a final result.
  1393. */
  1394. retval = tsk_result;
  1395. goto end;
  1396. }
  1397. if (options & __WNOTHREAD)
  1398. break;
  1399. tsk = next_thread(tsk);
  1400. BUG_ON(tsk->signal != current->signal);
  1401. } while (tsk != current);
  1402. read_unlock(&tasklist_lock);
  1403. if (!retval && !(options & WNOHANG)) {
  1404. retval = -ERESTARTSYS;
  1405. if (!signal_pending(current)) {
  1406. schedule();
  1407. goto repeat;
  1408. }
  1409. }
  1410. end:
  1411. current->state = TASK_RUNNING;
  1412. remove_wait_queue(&current->signal->wait_chldexit,&wait);
  1413. if (infop) {
  1414. if (retval > 0)
  1415. retval = 0;
  1416. else {
  1417. /*
  1418. * For a WNOHANG return, clear out all the fields
  1419. * we would set so the user can easily tell the
  1420. * difference.
  1421. */
  1422. if (!retval)
  1423. retval = put_user(0, &infop->si_signo);
  1424. if (!retval)
  1425. retval = put_user(0, &infop->si_errno);
  1426. if (!retval)
  1427. retval = put_user(0, &infop->si_code);
  1428. if (!retval)
  1429. retval = put_user(0, &infop->si_pid);
  1430. if (!retval)
  1431. retval = put_user(0, &infop->si_uid);
  1432. if (!retval)
  1433. retval = put_user(0, &infop->si_status);
  1434. }
  1435. }
  1436. return retval;
  1437. }
  1438. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1439. infop, int, options, struct rusage __user *, ru)
  1440. {
  1441. struct pid *pid = NULL;
  1442. enum pid_type type;
  1443. long ret;
  1444. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1445. return -EINVAL;
  1446. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1447. return -EINVAL;
  1448. switch (which) {
  1449. case P_ALL:
  1450. type = PIDTYPE_MAX;
  1451. break;
  1452. case P_PID:
  1453. type = PIDTYPE_PID;
  1454. if (upid <= 0)
  1455. return -EINVAL;
  1456. break;
  1457. case P_PGID:
  1458. type = PIDTYPE_PGID;
  1459. if (upid <= 0)
  1460. return -EINVAL;
  1461. break;
  1462. default:
  1463. return -EINVAL;
  1464. }
  1465. if (type < PIDTYPE_MAX)
  1466. pid = find_get_pid(upid);
  1467. ret = do_wait(type, pid, options, infop, NULL, ru);
  1468. put_pid(pid);
  1469. /* avoid REGPARM breakage on x86: */
  1470. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1471. return ret;
  1472. }
  1473. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1474. int, options, struct rusage __user *, ru)
  1475. {
  1476. struct pid *pid = NULL;
  1477. enum pid_type type;
  1478. long ret;
  1479. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1480. __WNOTHREAD|__WCLONE|__WALL))
  1481. return -EINVAL;
  1482. if (upid == -1)
  1483. type = PIDTYPE_MAX;
  1484. else if (upid < 0) {
  1485. type = PIDTYPE_PGID;
  1486. pid = find_get_pid(-upid);
  1487. } else if (upid == 0) {
  1488. type = PIDTYPE_PGID;
  1489. pid = get_task_pid(current, PIDTYPE_PGID);
  1490. } else /* upid > 0 */ {
  1491. type = PIDTYPE_PID;
  1492. pid = find_get_pid(upid);
  1493. }
  1494. ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
  1495. put_pid(pid);
  1496. /* avoid REGPARM breakage on x86: */
  1497. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1498. return ret;
  1499. }
  1500. #ifdef __ARCH_WANT_SYS_WAITPID
  1501. /*
  1502. * sys_waitpid() remains for compatibility. waitpid() should be
  1503. * implemented by calling sys_wait4() from libc.a.
  1504. */
  1505. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1506. {
  1507. return sys_wait4(pid, stat_addr, options, NULL);
  1508. }
  1509. #endif