core.c 195 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_sched.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static ssize_t
  166. sched_feat_write(struct file *filp, const char __user *ubuf,
  167. size_t cnt, loff_t *ppos)
  168. {
  169. char buf[64];
  170. char *cmp;
  171. int neg = 0;
  172. int i;
  173. if (cnt > 63)
  174. cnt = 63;
  175. if (copy_from_user(&buf, ubuf, cnt))
  176. return -EFAULT;
  177. buf[cnt] = 0;
  178. cmp = strstrip(buf);
  179. if (strncmp(cmp, "NO_", 3) == 0) {
  180. neg = 1;
  181. cmp += 3;
  182. }
  183. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  184. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  185. if (neg) {
  186. sysctl_sched_features &= ~(1UL << i);
  187. sched_feat_disable(i);
  188. } else {
  189. sysctl_sched_features |= (1UL << i);
  190. sched_feat_enable(i);
  191. }
  192. break;
  193. }
  194. }
  195. if (i == __SCHED_FEAT_NR)
  196. return -EINVAL;
  197. *ppos += cnt;
  198. return cnt;
  199. }
  200. static int sched_feat_open(struct inode *inode, struct file *filp)
  201. {
  202. return single_open(filp, sched_feat_show, NULL);
  203. }
  204. static const struct file_operations sched_feat_fops = {
  205. .open = sched_feat_open,
  206. .write = sched_feat_write,
  207. .read = seq_read,
  208. .llseek = seq_lseek,
  209. .release = single_release,
  210. };
  211. static __init int sched_init_debug(void)
  212. {
  213. debugfs_create_file("sched_features", 0644, NULL, NULL,
  214. &sched_feat_fops);
  215. return 0;
  216. }
  217. late_initcall(sched_init_debug);
  218. #endif /* CONFIG_SCHED_DEBUG */
  219. /*
  220. * Number of tasks to iterate in a single balance run.
  221. * Limited because this is done with IRQs disabled.
  222. */
  223. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  224. /*
  225. * period over which we average the RT time consumption, measured
  226. * in ms.
  227. *
  228. * default: 1s
  229. */
  230. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  231. /*
  232. * period over which we measure -rt task cpu usage in us.
  233. * default: 1s
  234. */
  235. unsigned int sysctl_sched_rt_period = 1000000;
  236. __read_mostly int scheduler_running;
  237. /*
  238. * part of the period that we allow rt tasks to run in us.
  239. * default: 0.95s
  240. */
  241. int sysctl_sched_rt_runtime = 950000;
  242. /*
  243. * __task_rq_lock - lock the rq @p resides on.
  244. */
  245. static inline struct rq *__task_rq_lock(struct task_struct *p)
  246. __acquires(rq->lock)
  247. {
  248. struct rq *rq;
  249. lockdep_assert_held(&p->pi_lock);
  250. for (;;) {
  251. rq = task_rq(p);
  252. raw_spin_lock(&rq->lock);
  253. if (likely(rq == task_rq(p)))
  254. return rq;
  255. raw_spin_unlock(&rq->lock);
  256. }
  257. }
  258. /*
  259. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  260. */
  261. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  262. __acquires(p->pi_lock)
  263. __acquires(rq->lock)
  264. {
  265. struct rq *rq;
  266. for (;;) {
  267. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  268. rq = task_rq(p);
  269. raw_spin_lock(&rq->lock);
  270. if (likely(rq == task_rq(p)))
  271. return rq;
  272. raw_spin_unlock(&rq->lock);
  273. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  274. }
  275. }
  276. static void __task_rq_unlock(struct rq *rq)
  277. __releases(rq->lock)
  278. {
  279. raw_spin_unlock(&rq->lock);
  280. }
  281. static inline void
  282. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  283. __releases(rq->lock)
  284. __releases(p->pi_lock)
  285. {
  286. raw_spin_unlock(&rq->lock);
  287. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  288. }
  289. /*
  290. * this_rq_lock - lock this runqueue and disable interrupts.
  291. */
  292. static struct rq *this_rq_lock(void)
  293. __acquires(rq->lock)
  294. {
  295. struct rq *rq;
  296. local_irq_disable();
  297. rq = this_rq();
  298. raw_spin_lock(&rq->lock);
  299. return rq;
  300. }
  301. #ifdef CONFIG_SCHED_HRTICK
  302. /*
  303. * Use HR-timers to deliver accurate preemption points.
  304. *
  305. * Its all a bit involved since we cannot program an hrt while holding the
  306. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  307. * reschedule event.
  308. *
  309. * When we get rescheduled we reprogram the hrtick_timer outside of the
  310. * rq->lock.
  311. */
  312. static void hrtick_clear(struct rq *rq)
  313. {
  314. if (hrtimer_active(&rq->hrtick_timer))
  315. hrtimer_cancel(&rq->hrtick_timer);
  316. }
  317. /*
  318. * High-resolution timer tick.
  319. * Runs from hardirq context with interrupts disabled.
  320. */
  321. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  322. {
  323. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  324. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  325. raw_spin_lock(&rq->lock);
  326. update_rq_clock(rq);
  327. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  328. raw_spin_unlock(&rq->lock);
  329. return HRTIMER_NORESTART;
  330. }
  331. #ifdef CONFIG_SMP
  332. /*
  333. * called from hardirq (IPI) context
  334. */
  335. static void __hrtick_start(void *arg)
  336. {
  337. struct rq *rq = arg;
  338. raw_spin_lock(&rq->lock);
  339. hrtimer_restart(&rq->hrtick_timer);
  340. rq->hrtick_csd_pending = 0;
  341. raw_spin_unlock(&rq->lock);
  342. }
  343. /*
  344. * Called to set the hrtick timer state.
  345. *
  346. * called with rq->lock held and irqs disabled
  347. */
  348. void hrtick_start(struct rq *rq, u64 delay)
  349. {
  350. struct hrtimer *timer = &rq->hrtick_timer;
  351. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  352. hrtimer_set_expires(timer, time);
  353. if (rq == this_rq()) {
  354. hrtimer_restart(timer);
  355. } else if (!rq->hrtick_csd_pending) {
  356. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  357. rq->hrtick_csd_pending = 1;
  358. }
  359. }
  360. static int
  361. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  362. {
  363. int cpu = (int)(long)hcpu;
  364. switch (action) {
  365. case CPU_UP_CANCELED:
  366. case CPU_UP_CANCELED_FROZEN:
  367. case CPU_DOWN_PREPARE:
  368. case CPU_DOWN_PREPARE_FROZEN:
  369. case CPU_DEAD:
  370. case CPU_DEAD_FROZEN:
  371. hrtick_clear(cpu_rq(cpu));
  372. return NOTIFY_OK;
  373. }
  374. return NOTIFY_DONE;
  375. }
  376. static __init void init_hrtick(void)
  377. {
  378. hotcpu_notifier(hotplug_hrtick, 0);
  379. }
  380. #else
  381. /*
  382. * Called to set the hrtick timer state.
  383. *
  384. * called with rq->lock held and irqs disabled
  385. */
  386. void hrtick_start(struct rq *rq, u64 delay)
  387. {
  388. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  389. HRTIMER_MODE_REL_PINNED, 0);
  390. }
  391. static inline void init_hrtick(void)
  392. {
  393. }
  394. #endif /* CONFIG_SMP */
  395. static void init_rq_hrtick(struct rq *rq)
  396. {
  397. #ifdef CONFIG_SMP
  398. rq->hrtick_csd_pending = 0;
  399. rq->hrtick_csd.flags = 0;
  400. rq->hrtick_csd.func = __hrtick_start;
  401. rq->hrtick_csd.info = rq;
  402. #endif
  403. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  404. rq->hrtick_timer.function = hrtick;
  405. }
  406. #else /* CONFIG_SCHED_HRTICK */
  407. static inline void hrtick_clear(struct rq *rq)
  408. {
  409. }
  410. static inline void init_rq_hrtick(struct rq *rq)
  411. {
  412. }
  413. static inline void init_hrtick(void)
  414. {
  415. }
  416. #endif /* CONFIG_SCHED_HRTICK */
  417. /*
  418. * resched_task - mark a task 'to be rescheduled now'.
  419. *
  420. * On UP this means the setting of the need_resched flag, on SMP it
  421. * might also involve a cross-CPU call to trigger the scheduler on
  422. * the target CPU.
  423. */
  424. #ifdef CONFIG_SMP
  425. #ifndef tsk_is_polling
  426. #define tsk_is_polling(t) 0
  427. #endif
  428. void resched_task(struct task_struct *p)
  429. {
  430. int cpu;
  431. assert_raw_spin_locked(&task_rq(p)->lock);
  432. if (test_tsk_need_resched(p))
  433. return;
  434. set_tsk_need_resched(p);
  435. cpu = task_cpu(p);
  436. if (cpu == smp_processor_id())
  437. return;
  438. /* NEED_RESCHED must be visible before we test polling */
  439. smp_mb();
  440. if (!tsk_is_polling(p))
  441. smp_send_reschedule(cpu);
  442. }
  443. void resched_cpu(int cpu)
  444. {
  445. struct rq *rq = cpu_rq(cpu);
  446. unsigned long flags;
  447. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  448. return;
  449. resched_task(cpu_curr(cpu));
  450. raw_spin_unlock_irqrestore(&rq->lock, flags);
  451. }
  452. #ifdef CONFIG_NO_HZ
  453. /*
  454. * In the semi idle case, use the nearest busy cpu for migrating timers
  455. * from an idle cpu. This is good for power-savings.
  456. *
  457. * We don't do similar optimization for completely idle system, as
  458. * selecting an idle cpu will add more delays to the timers than intended
  459. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  460. */
  461. int get_nohz_timer_target(void)
  462. {
  463. int cpu = smp_processor_id();
  464. int i;
  465. struct sched_domain *sd;
  466. rcu_read_lock();
  467. for_each_domain(cpu, sd) {
  468. for_each_cpu(i, sched_domain_span(sd)) {
  469. if (!idle_cpu(i)) {
  470. cpu = i;
  471. goto unlock;
  472. }
  473. }
  474. }
  475. unlock:
  476. rcu_read_unlock();
  477. return cpu;
  478. }
  479. /*
  480. * When add_timer_on() enqueues a timer into the timer wheel of an
  481. * idle CPU then this timer might expire before the next timer event
  482. * which is scheduled to wake up that CPU. In case of a completely
  483. * idle system the next event might even be infinite time into the
  484. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  485. * leaves the inner idle loop so the newly added timer is taken into
  486. * account when the CPU goes back to idle and evaluates the timer
  487. * wheel for the next timer event.
  488. */
  489. void wake_up_idle_cpu(int cpu)
  490. {
  491. struct rq *rq = cpu_rq(cpu);
  492. if (cpu == smp_processor_id())
  493. return;
  494. /*
  495. * This is safe, as this function is called with the timer
  496. * wheel base lock of (cpu) held. When the CPU is on the way
  497. * to idle and has not yet set rq->curr to idle then it will
  498. * be serialized on the timer wheel base lock and take the new
  499. * timer into account automatically.
  500. */
  501. if (rq->curr != rq->idle)
  502. return;
  503. /*
  504. * We can set TIF_RESCHED on the idle task of the other CPU
  505. * lockless. The worst case is that the other CPU runs the
  506. * idle task through an additional NOOP schedule()
  507. */
  508. set_tsk_need_resched(rq->idle);
  509. /* NEED_RESCHED must be visible before we test polling */
  510. smp_mb();
  511. if (!tsk_is_polling(rq->idle))
  512. smp_send_reschedule(cpu);
  513. }
  514. static inline bool got_nohz_idle_kick(void)
  515. {
  516. int cpu = smp_processor_id();
  517. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  518. }
  519. #else /* CONFIG_NO_HZ */
  520. static inline bool got_nohz_idle_kick(void)
  521. {
  522. return false;
  523. }
  524. #endif /* CONFIG_NO_HZ */
  525. void sched_avg_update(struct rq *rq)
  526. {
  527. s64 period = sched_avg_period();
  528. while ((s64)(rq->clock - rq->age_stamp) > period) {
  529. /*
  530. * Inline assembly required to prevent the compiler
  531. * optimising this loop into a divmod call.
  532. * See __iter_div_u64_rem() for another example of this.
  533. */
  534. asm("" : "+rm" (rq->age_stamp));
  535. rq->age_stamp += period;
  536. rq->rt_avg /= 2;
  537. }
  538. }
  539. #else /* !CONFIG_SMP */
  540. void resched_task(struct task_struct *p)
  541. {
  542. assert_raw_spin_locked(&task_rq(p)->lock);
  543. set_tsk_need_resched(p);
  544. }
  545. #endif /* CONFIG_SMP */
  546. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  547. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  548. /*
  549. * Iterate task_group tree rooted at *from, calling @down when first entering a
  550. * node and @up when leaving it for the final time.
  551. *
  552. * Caller must hold rcu_lock or sufficient equivalent.
  553. */
  554. int walk_tg_tree_from(struct task_group *from,
  555. tg_visitor down, tg_visitor up, void *data)
  556. {
  557. struct task_group *parent, *child;
  558. int ret;
  559. parent = from;
  560. down:
  561. ret = (*down)(parent, data);
  562. if (ret)
  563. goto out;
  564. list_for_each_entry_rcu(child, &parent->children, siblings) {
  565. parent = child;
  566. goto down;
  567. up:
  568. continue;
  569. }
  570. ret = (*up)(parent, data);
  571. if (ret || parent == from)
  572. goto out;
  573. child = parent;
  574. parent = parent->parent;
  575. if (parent)
  576. goto up;
  577. out:
  578. return ret;
  579. }
  580. int tg_nop(struct task_group *tg, void *data)
  581. {
  582. return 0;
  583. }
  584. #endif
  585. static void set_load_weight(struct task_struct *p)
  586. {
  587. int prio = p->static_prio - MAX_RT_PRIO;
  588. struct load_weight *load = &p->se.load;
  589. /*
  590. * SCHED_IDLE tasks get minimal weight:
  591. */
  592. if (p->policy == SCHED_IDLE) {
  593. load->weight = scale_load(WEIGHT_IDLEPRIO);
  594. load->inv_weight = WMULT_IDLEPRIO;
  595. return;
  596. }
  597. load->weight = scale_load(prio_to_weight[prio]);
  598. load->inv_weight = prio_to_wmult[prio];
  599. }
  600. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  601. {
  602. update_rq_clock(rq);
  603. sched_info_queued(p);
  604. p->sched_class->enqueue_task(rq, p, flags);
  605. }
  606. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  607. {
  608. update_rq_clock(rq);
  609. sched_info_dequeued(p);
  610. p->sched_class->dequeue_task(rq, p, flags);
  611. }
  612. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. if (task_contributes_to_load(p))
  615. rq->nr_uninterruptible--;
  616. enqueue_task(rq, p, flags);
  617. }
  618. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  619. {
  620. if (task_contributes_to_load(p))
  621. rq->nr_uninterruptible++;
  622. dequeue_task(rq, p, flags);
  623. }
  624. static void update_rq_clock_task(struct rq *rq, s64 delta)
  625. {
  626. /*
  627. * In theory, the compile should just see 0 here, and optimize out the call
  628. * to sched_rt_avg_update. But I don't trust it...
  629. */
  630. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  631. s64 steal = 0, irq_delta = 0;
  632. #endif
  633. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  634. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  635. /*
  636. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  637. * this case when a previous update_rq_clock() happened inside a
  638. * {soft,}irq region.
  639. *
  640. * When this happens, we stop ->clock_task and only update the
  641. * prev_irq_time stamp to account for the part that fit, so that a next
  642. * update will consume the rest. This ensures ->clock_task is
  643. * monotonic.
  644. *
  645. * It does however cause some slight miss-attribution of {soft,}irq
  646. * time, a more accurate solution would be to update the irq_time using
  647. * the current rq->clock timestamp, except that would require using
  648. * atomic ops.
  649. */
  650. if (irq_delta > delta)
  651. irq_delta = delta;
  652. rq->prev_irq_time += irq_delta;
  653. delta -= irq_delta;
  654. #endif
  655. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  656. if (static_key_false((&paravirt_steal_rq_enabled))) {
  657. u64 st;
  658. steal = paravirt_steal_clock(cpu_of(rq));
  659. steal -= rq->prev_steal_time_rq;
  660. if (unlikely(steal > delta))
  661. steal = delta;
  662. st = steal_ticks(steal);
  663. steal = st * TICK_NSEC;
  664. rq->prev_steal_time_rq += steal;
  665. delta -= steal;
  666. }
  667. #endif
  668. rq->clock_task += delta;
  669. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  670. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  671. sched_rt_avg_update(rq, irq_delta + steal);
  672. #endif
  673. }
  674. void sched_set_stop_task(int cpu, struct task_struct *stop)
  675. {
  676. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  677. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  678. if (stop) {
  679. /*
  680. * Make it appear like a SCHED_FIFO task, its something
  681. * userspace knows about and won't get confused about.
  682. *
  683. * Also, it will make PI more or less work without too
  684. * much confusion -- but then, stop work should not
  685. * rely on PI working anyway.
  686. */
  687. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  688. stop->sched_class = &stop_sched_class;
  689. }
  690. cpu_rq(cpu)->stop = stop;
  691. if (old_stop) {
  692. /*
  693. * Reset it back to a normal scheduling class so that
  694. * it can die in pieces.
  695. */
  696. old_stop->sched_class = &rt_sched_class;
  697. }
  698. }
  699. /*
  700. * __normal_prio - return the priority that is based on the static prio
  701. */
  702. static inline int __normal_prio(struct task_struct *p)
  703. {
  704. return p->static_prio;
  705. }
  706. /*
  707. * Calculate the expected normal priority: i.e. priority
  708. * without taking RT-inheritance into account. Might be
  709. * boosted by interactivity modifiers. Changes upon fork,
  710. * setprio syscalls, and whenever the interactivity
  711. * estimator recalculates.
  712. */
  713. static inline int normal_prio(struct task_struct *p)
  714. {
  715. int prio;
  716. if (task_has_rt_policy(p))
  717. prio = MAX_RT_PRIO-1 - p->rt_priority;
  718. else
  719. prio = __normal_prio(p);
  720. return prio;
  721. }
  722. /*
  723. * Calculate the current priority, i.e. the priority
  724. * taken into account by the scheduler. This value might
  725. * be boosted by RT tasks, or might be boosted by
  726. * interactivity modifiers. Will be RT if the task got
  727. * RT-boosted. If not then it returns p->normal_prio.
  728. */
  729. static int effective_prio(struct task_struct *p)
  730. {
  731. p->normal_prio = normal_prio(p);
  732. /*
  733. * If we are RT tasks or we were boosted to RT priority,
  734. * keep the priority unchanged. Otherwise, update priority
  735. * to the normal priority:
  736. */
  737. if (!rt_prio(p->prio))
  738. return p->normal_prio;
  739. return p->prio;
  740. }
  741. /**
  742. * task_curr - is this task currently executing on a CPU?
  743. * @p: the task in question.
  744. */
  745. inline int task_curr(const struct task_struct *p)
  746. {
  747. return cpu_curr(task_cpu(p)) == p;
  748. }
  749. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  750. const struct sched_class *prev_class,
  751. int oldprio)
  752. {
  753. if (prev_class != p->sched_class) {
  754. if (prev_class->switched_from)
  755. prev_class->switched_from(rq, p);
  756. p->sched_class->switched_to(rq, p);
  757. } else if (oldprio != p->prio)
  758. p->sched_class->prio_changed(rq, p, oldprio);
  759. }
  760. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  761. {
  762. const struct sched_class *class;
  763. if (p->sched_class == rq->curr->sched_class) {
  764. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  765. } else {
  766. for_each_class(class) {
  767. if (class == rq->curr->sched_class)
  768. break;
  769. if (class == p->sched_class) {
  770. resched_task(rq->curr);
  771. break;
  772. }
  773. }
  774. }
  775. /*
  776. * A queue event has occurred, and we're going to schedule. In
  777. * this case, we can save a useless back to back clock update.
  778. */
  779. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  780. rq->skip_clock_update = 1;
  781. }
  782. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  783. void register_task_migration_notifier(struct notifier_block *n)
  784. {
  785. atomic_notifier_chain_register(&task_migration_notifier, n);
  786. }
  787. #ifdef CONFIG_SMP
  788. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  789. {
  790. #ifdef CONFIG_SCHED_DEBUG
  791. /*
  792. * We should never call set_task_cpu() on a blocked task,
  793. * ttwu() will sort out the placement.
  794. */
  795. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  796. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  797. #ifdef CONFIG_LOCKDEP
  798. /*
  799. * The caller should hold either p->pi_lock or rq->lock, when changing
  800. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  801. *
  802. * sched_move_task() holds both and thus holding either pins the cgroup,
  803. * see task_group().
  804. *
  805. * Furthermore, all task_rq users should acquire both locks, see
  806. * task_rq_lock().
  807. */
  808. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  809. lockdep_is_held(&task_rq(p)->lock)));
  810. #endif
  811. #endif
  812. trace_sched_migrate_task(p, new_cpu);
  813. if (task_cpu(p) != new_cpu) {
  814. struct task_migration_notifier tmn;
  815. if (p->sched_class->migrate_task_rq)
  816. p->sched_class->migrate_task_rq(p, new_cpu);
  817. p->se.nr_migrations++;
  818. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  819. tmn.task = p;
  820. tmn.from_cpu = task_cpu(p);
  821. tmn.to_cpu = new_cpu;
  822. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  823. }
  824. __set_task_cpu(p, new_cpu);
  825. }
  826. struct migration_arg {
  827. struct task_struct *task;
  828. int dest_cpu;
  829. };
  830. static int migration_cpu_stop(void *data);
  831. /*
  832. * wait_task_inactive - wait for a thread to unschedule.
  833. *
  834. * If @match_state is nonzero, it's the @p->state value just checked and
  835. * not expected to change. If it changes, i.e. @p might have woken up,
  836. * then return zero. When we succeed in waiting for @p to be off its CPU,
  837. * we return a positive number (its total switch count). If a second call
  838. * a short while later returns the same number, the caller can be sure that
  839. * @p has remained unscheduled the whole time.
  840. *
  841. * The caller must ensure that the task *will* unschedule sometime soon,
  842. * else this function might spin for a *long* time. This function can't
  843. * be called with interrupts off, or it may introduce deadlock with
  844. * smp_call_function() if an IPI is sent by the same process we are
  845. * waiting to become inactive.
  846. */
  847. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  848. {
  849. unsigned long flags;
  850. int running, on_rq;
  851. unsigned long ncsw;
  852. struct rq *rq;
  853. for (;;) {
  854. /*
  855. * We do the initial early heuristics without holding
  856. * any task-queue locks at all. We'll only try to get
  857. * the runqueue lock when things look like they will
  858. * work out!
  859. */
  860. rq = task_rq(p);
  861. /*
  862. * If the task is actively running on another CPU
  863. * still, just relax and busy-wait without holding
  864. * any locks.
  865. *
  866. * NOTE! Since we don't hold any locks, it's not
  867. * even sure that "rq" stays as the right runqueue!
  868. * But we don't care, since "task_running()" will
  869. * return false if the runqueue has changed and p
  870. * is actually now running somewhere else!
  871. */
  872. while (task_running(rq, p)) {
  873. if (match_state && unlikely(p->state != match_state))
  874. return 0;
  875. cpu_relax();
  876. }
  877. /*
  878. * Ok, time to look more closely! We need the rq
  879. * lock now, to be *sure*. If we're wrong, we'll
  880. * just go back and repeat.
  881. */
  882. rq = task_rq_lock(p, &flags);
  883. trace_sched_wait_task(p);
  884. running = task_running(rq, p);
  885. on_rq = p->on_rq;
  886. ncsw = 0;
  887. if (!match_state || p->state == match_state)
  888. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  889. task_rq_unlock(rq, p, &flags);
  890. /*
  891. * If it changed from the expected state, bail out now.
  892. */
  893. if (unlikely(!ncsw))
  894. break;
  895. /*
  896. * Was it really running after all now that we
  897. * checked with the proper locks actually held?
  898. *
  899. * Oops. Go back and try again..
  900. */
  901. if (unlikely(running)) {
  902. cpu_relax();
  903. continue;
  904. }
  905. /*
  906. * It's not enough that it's not actively running,
  907. * it must be off the runqueue _entirely_, and not
  908. * preempted!
  909. *
  910. * So if it was still runnable (but just not actively
  911. * running right now), it's preempted, and we should
  912. * yield - it could be a while.
  913. */
  914. if (unlikely(on_rq)) {
  915. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  916. set_current_state(TASK_UNINTERRUPTIBLE);
  917. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  918. continue;
  919. }
  920. /*
  921. * Ahh, all good. It wasn't running, and it wasn't
  922. * runnable, which means that it will never become
  923. * running in the future either. We're all done!
  924. */
  925. break;
  926. }
  927. return ncsw;
  928. }
  929. /***
  930. * kick_process - kick a running thread to enter/exit the kernel
  931. * @p: the to-be-kicked thread
  932. *
  933. * Cause a process which is running on another CPU to enter
  934. * kernel-mode, without any delay. (to get signals handled.)
  935. *
  936. * NOTE: this function doesn't have to take the runqueue lock,
  937. * because all it wants to ensure is that the remote task enters
  938. * the kernel. If the IPI races and the task has been migrated
  939. * to another CPU then no harm is done and the purpose has been
  940. * achieved as well.
  941. */
  942. void kick_process(struct task_struct *p)
  943. {
  944. int cpu;
  945. preempt_disable();
  946. cpu = task_cpu(p);
  947. if ((cpu != smp_processor_id()) && task_curr(p))
  948. smp_send_reschedule(cpu);
  949. preempt_enable();
  950. }
  951. EXPORT_SYMBOL_GPL(kick_process);
  952. #endif /* CONFIG_SMP */
  953. #ifdef CONFIG_SMP
  954. /*
  955. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  956. */
  957. static int select_fallback_rq(int cpu, struct task_struct *p)
  958. {
  959. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  960. enum { cpuset, possible, fail } state = cpuset;
  961. int dest_cpu;
  962. /* Look for allowed, online CPU in same node. */
  963. for_each_cpu(dest_cpu, nodemask) {
  964. if (!cpu_online(dest_cpu))
  965. continue;
  966. if (!cpu_active(dest_cpu))
  967. continue;
  968. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  969. return dest_cpu;
  970. }
  971. for (;;) {
  972. /* Any allowed, online CPU? */
  973. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  974. if (!cpu_online(dest_cpu))
  975. continue;
  976. if (!cpu_active(dest_cpu))
  977. continue;
  978. goto out;
  979. }
  980. switch (state) {
  981. case cpuset:
  982. /* No more Mr. Nice Guy. */
  983. cpuset_cpus_allowed_fallback(p);
  984. state = possible;
  985. break;
  986. case possible:
  987. do_set_cpus_allowed(p, cpu_possible_mask);
  988. state = fail;
  989. break;
  990. case fail:
  991. BUG();
  992. break;
  993. }
  994. }
  995. out:
  996. if (state != cpuset) {
  997. /*
  998. * Don't tell them about moving exiting tasks or
  999. * kernel threads (both mm NULL), since they never
  1000. * leave kernel.
  1001. */
  1002. if (p->mm && printk_ratelimit()) {
  1003. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1004. task_pid_nr(p), p->comm, cpu);
  1005. }
  1006. }
  1007. return dest_cpu;
  1008. }
  1009. /*
  1010. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1011. */
  1012. static inline
  1013. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1014. {
  1015. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1016. /*
  1017. * In order not to call set_task_cpu() on a blocking task we need
  1018. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1019. * cpu.
  1020. *
  1021. * Since this is common to all placement strategies, this lives here.
  1022. *
  1023. * [ this allows ->select_task() to simply return task_cpu(p) and
  1024. * not worry about this generic constraint ]
  1025. */
  1026. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1027. !cpu_online(cpu)))
  1028. cpu = select_fallback_rq(task_cpu(p), p);
  1029. return cpu;
  1030. }
  1031. static void update_avg(u64 *avg, u64 sample)
  1032. {
  1033. s64 diff = sample - *avg;
  1034. *avg += diff >> 3;
  1035. }
  1036. #endif
  1037. static void
  1038. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1039. {
  1040. #ifdef CONFIG_SCHEDSTATS
  1041. struct rq *rq = this_rq();
  1042. #ifdef CONFIG_SMP
  1043. int this_cpu = smp_processor_id();
  1044. if (cpu == this_cpu) {
  1045. schedstat_inc(rq, ttwu_local);
  1046. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1047. } else {
  1048. struct sched_domain *sd;
  1049. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1050. rcu_read_lock();
  1051. for_each_domain(this_cpu, sd) {
  1052. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1053. schedstat_inc(sd, ttwu_wake_remote);
  1054. break;
  1055. }
  1056. }
  1057. rcu_read_unlock();
  1058. }
  1059. if (wake_flags & WF_MIGRATED)
  1060. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1061. #endif /* CONFIG_SMP */
  1062. schedstat_inc(rq, ttwu_count);
  1063. schedstat_inc(p, se.statistics.nr_wakeups);
  1064. if (wake_flags & WF_SYNC)
  1065. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1066. #endif /* CONFIG_SCHEDSTATS */
  1067. }
  1068. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1069. {
  1070. activate_task(rq, p, en_flags);
  1071. p->on_rq = 1;
  1072. /* if a worker is waking up, notify workqueue */
  1073. if (p->flags & PF_WQ_WORKER)
  1074. wq_worker_waking_up(p, cpu_of(rq));
  1075. }
  1076. /*
  1077. * Mark the task runnable and perform wakeup-preemption.
  1078. */
  1079. static void
  1080. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1081. {
  1082. trace_sched_wakeup(p, true);
  1083. check_preempt_curr(rq, p, wake_flags);
  1084. p->state = TASK_RUNNING;
  1085. #ifdef CONFIG_SMP
  1086. if (p->sched_class->task_woken)
  1087. p->sched_class->task_woken(rq, p);
  1088. if (rq->idle_stamp) {
  1089. u64 delta = rq->clock - rq->idle_stamp;
  1090. u64 max = 2*sysctl_sched_migration_cost;
  1091. if (delta > max)
  1092. rq->avg_idle = max;
  1093. else
  1094. update_avg(&rq->avg_idle, delta);
  1095. rq->idle_stamp = 0;
  1096. }
  1097. #endif
  1098. }
  1099. static void
  1100. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1101. {
  1102. #ifdef CONFIG_SMP
  1103. if (p->sched_contributes_to_load)
  1104. rq->nr_uninterruptible--;
  1105. #endif
  1106. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1107. ttwu_do_wakeup(rq, p, wake_flags);
  1108. }
  1109. /*
  1110. * Called in case the task @p isn't fully descheduled from its runqueue,
  1111. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1112. * since all we need to do is flip p->state to TASK_RUNNING, since
  1113. * the task is still ->on_rq.
  1114. */
  1115. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1116. {
  1117. struct rq *rq;
  1118. int ret = 0;
  1119. rq = __task_rq_lock(p);
  1120. if (p->on_rq) {
  1121. ttwu_do_wakeup(rq, p, wake_flags);
  1122. ret = 1;
  1123. }
  1124. __task_rq_unlock(rq);
  1125. return ret;
  1126. }
  1127. #ifdef CONFIG_SMP
  1128. static void sched_ttwu_pending(void)
  1129. {
  1130. struct rq *rq = this_rq();
  1131. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1132. struct task_struct *p;
  1133. raw_spin_lock(&rq->lock);
  1134. while (llist) {
  1135. p = llist_entry(llist, struct task_struct, wake_entry);
  1136. llist = llist_next(llist);
  1137. ttwu_do_activate(rq, p, 0);
  1138. }
  1139. raw_spin_unlock(&rq->lock);
  1140. }
  1141. void scheduler_ipi(void)
  1142. {
  1143. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1144. return;
  1145. /*
  1146. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1147. * traditionally all their work was done from the interrupt return
  1148. * path. Now that we actually do some work, we need to make sure
  1149. * we do call them.
  1150. *
  1151. * Some archs already do call them, luckily irq_enter/exit nest
  1152. * properly.
  1153. *
  1154. * Arguably we should visit all archs and update all handlers,
  1155. * however a fair share of IPIs are still resched only so this would
  1156. * somewhat pessimize the simple resched case.
  1157. */
  1158. irq_enter();
  1159. sched_ttwu_pending();
  1160. /*
  1161. * Check if someone kicked us for doing the nohz idle load balance.
  1162. */
  1163. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1164. this_rq()->idle_balance = 1;
  1165. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1166. }
  1167. irq_exit();
  1168. }
  1169. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1170. {
  1171. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1172. smp_send_reschedule(cpu);
  1173. }
  1174. bool cpus_share_cache(int this_cpu, int that_cpu)
  1175. {
  1176. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1177. }
  1178. #endif /* CONFIG_SMP */
  1179. static void ttwu_queue(struct task_struct *p, int cpu)
  1180. {
  1181. struct rq *rq = cpu_rq(cpu);
  1182. #if defined(CONFIG_SMP)
  1183. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1184. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1185. ttwu_queue_remote(p, cpu);
  1186. return;
  1187. }
  1188. #endif
  1189. raw_spin_lock(&rq->lock);
  1190. ttwu_do_activate(rq, p, 0);
  1191. raw_spin_unlock(&rq->lock);
  1192. }
  1193. /**
  1194. * try_to_wake_up - wake up a thread
  1195. * @p: the thread to be awakened
  1196. * @state: the mask of task states that can be woken
  1197. * @wake_flags: wake modifier flags (WF_*)
  1198. *
  1199. * Put it on the run-queue if it's not already there. The "current"
  1200. * thread is always on the run-queue (except when the actual
  1201. * re-schedule is in progress), and as such you're allowed to do
  1202. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1203. * runnable without the overhead of this.
  1204. *
  1205. * Returns %true if @p was woken up, %false if it was already running
  1206. * or @state didn't match @p's state.
  1207. */
  1208. static int
  1209. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1210. {
  1211. unsigned long flags;
  1212. int cpu, success = 0;
  1213. smp_wmb();
  1214. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1215. if (!(p->state & state))
  1216. goto out;
  1217. success = 1; /* we're going to change ->state */
  1218. cpu = task_cpu(p);
  1219. if (p->on_rq && ttwu_remote(p, wake_flags))
  1220. goto stat;
  1221. #ifdef CONFIG_SMP
  1222. /*
  1223. * If the owning (remote) cpu is still in the middle of schedule() with
  1224. * this task as prev, wait until its done referencing the task.
  1225. */
  1226. while (p->on_cpu)
  1227. cpu_relax();
  1228. /*
  1229. * Pairs with the smp_wmb() in finish_lock_switch().
  1230. */
  1231. smp_rmb();
  1232. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1233. p->state = TASK_WAKING;
  1234. if (p->sched_class->task_waking)
  1235. p->sched_class->task_waking(p);
  1236. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1237. if (task_cpu(p) != cpu) {
  1238. wake_flags |= WF_MIGRATED;
  1239. set_task_cpu(p, cpu);
  1240. }
  1241. #endif /* CONFIG_SMP */
  1242. ttwu_queue(p, cpu);
  1243. stat:
  1244. ttwu_stat(p, cpu, wake_flags);
  1245. out:
  1246. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1247. return success;
  1248. }
  1249. /**
  1250. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1251. * @p: the thread to be awakened
  1252. *
  1253. * Put @p on the run-queue if it's not already there. The caller must
  1254. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1255. * the current task.
  1256. */
  1257. static void try_to_wake_up_local(struct task_struct *p)
  1258. {
  1259. struct rq *rq = task_rq(p);
  1260. BUG_ON(rq != this_rq());
  1261. BUG_ON(p == current);
  1262. lockdep_assert_held(&rq->lock);
  1263. if (!raw_spin_trylock(&p->pi_lock)) {
  1264. raw_spin_unlock(&rq->lock);
  1265. raw_spin_lock(&p->pi_lock);
  1266. raw_spin_lock(&rq->lock);
  1267. }
  1268. if (!(p->state & TASK_NORMAL))
  1269. goto out;
  1270. if (!p->on_rq)
  1271. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1272. ttwu_do_wakeup(rq, p, 0);
  1273. ttwu_stat(p, smp_processor_id(), 0);
  1274. out:
  1275. raw_spin_unlock(&p->pi_lock);
  1276. }
  1277. /**
  1278. * wake_up_process - Wake up a specific process
  1279. * @p: The process to be woken up.
  1280. *
  1281. * Attempt to wake up the nominated process and move it to the set of runnable
  1282. * processes. Returns 1 if the process was woken up, 0 if it was already
  1283. * running.
  1284. *
  1285. * It may be assumed that this function implies a write memory barrier before
  1286. * changing the task state if and only if any tasks are woken up.
  1287. */
  1288. int wake_up_process(struct task_struct *p)
  1289. {
  1290. return try_to_wake_up(p, TASK_ALL, 0);
  1291. }
  1292. EXPORT_SYMBOL(wake_up_process);
  1293. int wake_up_state(struct task_struct *p, unsigned int state)
  1294. {
  1295. return try_to_wake_up(p, state, 0);
  1296. }
  1297. /*
  1298. * Perform scheduler related setup for a newly forked process p.
  1299. * p is forked by current.
  1300. *
  1301. * __sched_fork() is basic setup used by init_idle() too:
  1302. */
  1303. static void __sched_fork(struct task_struct *p)
  1304. {
  1305. p->on_rq = 0;
  1306. p->se.on_rq = 0;
  1307. p->se.exec_start = 0;
  1308. p->se.sum_exec_runtime = 0;
  1309. p->se.prev_sum_exec_runtime = 0;
  1310. p->se.nr_migrations = 0;
  1311. p->se.vruntime = 0;
  1312. INIT_LIST_HEAD(&p->se.group_node);
  1313. /*
  1314. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  1315. * removed when useful for applications beyond shares distribution (e.g.
  1316. * load-balance).
  1317. */
  1318. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  1319. p->se.avg.runnable_avg_period = 0;
  1320. p->se.avg.runnable_avg_sum = 0;
  1321. #endif
  1322. #ifdef CONFIG_SCHEDSTATS
  1323. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1324. #endif
  1325. INIT_LIST_HEAD(&p->rt.run_list);
  1326. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1327. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1328. #endif
  1329. }
  1330. /*
  1331. * fork()/clone()-time setup:
  1332. */
  1333. void sched_fork(struct task_struct *p)
  1334. {
  1335. unsigned long flags;
  1336. int cpu = get_cpu();
  1337. __sched_fork(p);
  1338. /*
  1339. * We mark the process as running here. This guarantees that
  1340. * nobody will actually run it, and a signal or other external
  1341. * event cannot wake it up and insert it on the runqueue either.
  1342. */
  1343. p->state = TASK_RUNNING;
  1344. /*
  1345. * Make sure we do not leak PI boosting priority to the child.
  1346. */
  1347. p->prio = current->normal_prio;
  1348. /*
  1349. * Revert to default priority/policy on fork if requested.
  1350. */
  1351. if (unlikely(p->sched_reset_on_fork)) {
  1352. if (task_has_rt_policy(p)) {
  1353. p->policy = SCHED_NORMAL;
  1354. p->static_prio = NICE_TO_PRIO(0);
  1355. p->rt_priority = 0;
  1356. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1357. p->static_prio = NICE_TO_PRIO(0);
  1358. p->prio = p->normal_prio = __normal_prio(p);
  1359. set_load_weight(p);
  1360. /*
  1361. * We don't need the reset flag anymore after the fork. It has
  1362. * fulfilled its duty:
  1363. */
  1364. p->sched_reset_on_fork = 0;
  1365. }
  1366. if (!rt_prio(p->prio))
  1367. p->sched_class = &fair_sched_class;
  1368. if (p->sched_class->task_fork)
  1369. p->sched_class->task_fork(p);
  1370. /*
  1371. * The child is not yet in the pid-hash so no cgroup attach races,
  1372. * and the cgroup is pinned to this child due to cgroup_fork()
  1373. * is ran before sched_fork().
  1374. *
  1375. * Silence PROVE_RCU.
  1376. */
  1377. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1378. set_task_cpu(p, cpu);
  1379. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1380. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1381. if (likely(sched_info_on()))
  1382. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1383. #endif
  1384. #if defined(CONFIG_SMP)
  1385. p->on_cpu = 0;
  1386. #endif
  1387. #ifdef CONFIG_PREEMPT_COUNT
  1388. /* Want to start with kernel preemption disabled. */
  1389. task_thread_info(p)->preempt_count = 1;
  1390. #endif
  1391. #ifdef CONFIG_SMP
  1392. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1393. #endif
  1394. put_cpu();
  1395. }
  1396. /*
  1397. * wake_up_new_task - wake up a newly created task for the first time.
  1398. *
  1399. * This function will do some initial scheduler statistics housekeeping
  1400. * that must be done for every newly created context, then puts the task
  1401. * on the runqueue and wakes it.
  1402. */
  1403. void wake_up_new_task(struct task_struct *p)
  1404. {
  1405. unsigned long flags;
  1406. struct rq *rq;
  1407. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1408. #ifdef CONFIG_SMP
  1409. /*
  1410. * Fork balancing, do it here and not earlier because:
  1411. * - cpus_allowed can change in the fork path
  1412. * - any previously selected cpu might disappear through hotplug
  1413. */
  1414. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1415. #endif
  1416. rq = __task_rq_lock(p);
  1417. activate_task(rq, p, 0);
  1418. p->on_rq = 1;
  1419. trace_sched_wakeup_new(p, true);
  1420. check_preempt_curr(rq, p, WF_FORK);
  1421. #ifdef CONFIG_SMP
  1422. if (p->sched_class->task_woken)
  1423. p->sched_class->task_woken(rq, p);
  1424. #endif
  1425. task_rq_unlock(rq, p, &flags);
  1426. }
  1427. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1428. /**
  1429. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1430. * @notifier: notifier struct to register
  1431. */
  1432. void preempt_notifier_register(struct preempt_notifier *notifier)
  1433. {
  1434. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1435. }
  1436. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1437. /**
  1438. * preempt_notifier_unregister - no longer interested in preemption notifications
  1439. * @notifier: notifier struct to unregister
  1440. *
  1441. * This is safe to call from within a preemption notifier.
  1442. */
  1443. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1444. {
  1445. hlist_del(&notifier->link);
  1446. }
  1447. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1448. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1449. {
  1450. struct preempt_notifier *notifier;
  1451. struct hlist_node *node;
  1452. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1453. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1454. }
  1455. static void
  1456. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1457. struct task_struct *next)
  1458. {
  1459. struct preempt_notifier *notifier;
  1460. struct hlist_node *node;
  1461. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1462. notifier->ops->sched_out(notifier, next);
  1463. }
  1464. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1465. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1466. {
  1467. }
  1468. static void
  1469. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1470. struct task_struct *next)
  1471. {
  1472. }
  1473. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1474. /**
  1475. * prepare_task_switch - prepare to switch tasks
  1476. * @rq: the runqueue preparing to switch
  1477. * @prev: the current task that is being switched out
  1478. * @next: the task we are going to switch to.
  1479. *
  1480. * This is called with the rq lock held and interrupts off. It must
  1481. * be paired with a subsequent finish_task_switch after the context
  1482. * switch.
  1483. *
  1484. * prepare_task_switch sets up locking and calls architecture specific
  1485. * hooks.
  1486. */
  1487. static inline void
  1488. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1489. struct task_struct *next)
  1490. {
  1491. trace_sched_switch(prev, next);
  1492. sched_info_switch(prev, next);
  1493. perf_event_task_sched_out(prev, next);
  1494. fire_sched_out_preempt_notifiers(prev, next);
  1495. prepare_lock_switch(rq, next);
  1496. prepare_arch_switch(next);
  1497. }
  1498. /**
  1499. * finish_task_switch - clean up after a task-switch
  1500. * @rq: runqueue associated with task-switch
  1501. * @prev: the thread we just switched away from.
  1502. *
  1503. * finish_task_switch must be called after the context switch, paired
  1504. * with a prepare_task_switch call before the context switch.
  1505. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1506. * and do any other architecture-specific cleanup actions.
  1507. *
  1508. * Note that we may have delayed dropping an mm in context_switch(). If
  1509. * so, we finish that here outside of the runqueue lock. (Doing it
  1510. * with the lock held can cause deadlocks; see schedule() for
  1511. * details.)
  1512. */
  1513. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1514. __releases(rq->lock)
  1515. {
  1516. struct mm_struct *mm = rq->prev_mm;
  1517. long prev_state;
  1518. rq->prev_mm = NULL;
  1519. /*
  1520. * A task struct has one reference for the use as "current".
  1521. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1522. * schedule one last time. The schedule call will never return, and
  1523. * the scheduled task must drop that reference.
  1524. * The test for TASK_DEAD must occur while the runqueue locks are
  1525. * still held, otherwise prev could be scheduled on another cpu, die
  1526. * there before we look at prev->state, and then the reference would
  1527. * be dropped twice.
  1528. * Manfred Spraul <manfred@colorfullife.com>
  1529. */
  1530. prev_state = prev->state;
  1531. vtime_task_switch(prev);
  1532. finish_arch_switch(prev);
  1533. perf_event_task_sched_in(prev, current);
  1534. finish_lock_switch(rq, prev);
  1535. finish_arch_post_lock_switch();
  1536. fire_sched_in_preempt_notifiers(current);
  1537. if (mm)
  1538. mmdrop(mm);
  1539. if (unlikely(prev_state == TASK_DEAD)) {
  1540. /*
  1541. * Remove function-return probe instances associated with this
  1542. * task and put them back on the free list.
  1543. */
  1544. kprobe_flush_task(prev);
  1545. put_task_struct(prev);
  1546. }
  1547. }
  1548. #ifdef CONFIG_SMP
  1549. /* assumes rq->lock is held */
  1550. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1551. {
  1552. if (prev->sched_class->pre_schedule)
  1553. prev->sched_class->pre_schedule(rq, prev);
  1554. }
  1555. /* rq->lock is NOT held, but preemption is disabled */
  1556. static inline void post_schedule(struct rq *rq)
  1557. {
  1558. if (rq->post_schedule) {
  1559. unsigned long flags;
  1560. raw_spin_lock_irqsave(&rq->lock, flags);
  1561. if (rq->curr->sched_class->post_schedule)
  1562. rq->curr->sched_class->post_schedule(rq);
  1563. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1564. rq->post_schedule = 0;
  1565. }
  1566. }
  1567. #else
  1568. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1569. {
  1570. }
  1571. static inline void post_schedule(struct rq *rq)
  1572. {
  1573. }
  1574. #endif
  1575. /**
  1576. * schedule_tail - first thing a freshly forked thread must call.
  1577. * @prev: the thread we just switched away from.
  1578. */
  1579. asmlinkage void schedule_tail(struct task_struct *prev)
  1580. __releases(rq->lock)
  1581. {
  1582. struct rq *rq = this_rq();
  1583. finish_task_switch(rq, prev);
  1584. /*
  1585. * FIXME: do we need to worry about rq being invalidated by the
  1586. * task_switch?
  1587. */
  1588. post_schedule(rq);
  1589. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1590. /* In this case, finish_task_switch does not reenable preemption */
  1591. preempt_enable();
  1592. #endif
  1593. if (current->set_child_tid)
  1594. put_user(task_pid_vnr(current), current->set_child_tid);
  1595. }
  1596. /*
  1597. * context_switch - switch to the new MM and the new
  1598. * thread's register state.
  1599. */
  1600. static inline void
  1601. context_switch(struct rq *rq, struct task_struct *prev,
  1602. struct task_struct *next)
  1603. {
  1604. struct mm_struct *mm, *oldmm;
  1605. prepare_task_switch(rq, prev, next);
  1606. mm = next->mm;
  1607. oldmm = prev->active_mm;
  1608. /*
  1609. * For paravirt, this is coupled with an exit in switch_to to
  1610. * combine the page table reload and the switch backend into
  1611. * one hypercall.
  1612. */
  1613. arch_start_context_switch(prev);
  1614. if (!mm) {
  1615. next->active_mm = oldmm;
  1616. atomic_inc(&oldmm->mm_count);
  1617. enter_lazy_tlb(oldmm, next);
  1618. } else
  1619. switch_mm(oldmm, mm, next);
  1620. if (!prev->mm) {
  1621. prev->active_mm = NULL;
  1622. rq->prev_mm = oldmm;
  1623. }
  1624. /*
  1625. * Since the runqueue lock will be released by the next
  1626. * task (which is an invalid locking op but in the case
  1627. * of the scheduler it's an obvious special-case), so we
  1628. * do an early lockdep release here:
  1629. */
  1630. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1631. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1632. #endif
  1633. context_tracking_task_switch(prev, next);
  1634. /* Here we just switch the register state and the stack. */
  1635. switch_to(prev, next, prev);
  1636. barrier();
  1637. /*
  1638. * this_rq must be evaluated again because prev may have moved
  1639. * CPUs since it called schedule(), thus the 'rq' on its stack
  1640. * frame will be invalid.
  1641. */
  1642. finish_task_switch(this_rq(), prev);
  1643. }
  1644. /*
  1645. * nr_running, nr_uninterruptible and nr_context_switches:
  1646. *
  1647. * externally visible scheduler statistics: current number of runnable
  1648. * threads, current number of uninterruptible-sleeping threads, total
  1649. * number of context switches performed since bootup.
  1650. */
  1651. unsigned long nr_running(void)
  1652. {
  1653. unsigned long i, sum = 0;
  1654. for_each_online_cpu(i)
  1655. sum += cpu_rq(i)->nr_running;
  1656. return sum;
  1657. }
  1658. unsigned long nr_uninterruptible(void)
  1659. {
  1660. unsigned long i, sum = 0;
  1661. for_each_possible_cpu(i)
  1662. sum += cpu_rq(i)->nr_uninterruptible;
  1663. /*
  1664. * Since we read the counters lockless, it might be slightly
  1665. * inaccurate. Do not allow it to go below zero though:
  1666. */
  1667. if (unlikely((long)sum < 0))
  1668. sum = 0;
  1669. return sum;
  1670. }
  1671. unsigned long long nr_context_switches(void)
  1672. {
  1673. int i;
  1674. unsigned long long sum = 0;
  1675. for_each_possible_cpu(i)
  1676. sum += cpu_rq(i)->nr_switches;
  1677. return sum;
  1678. }
  1679. unsigned long nr_iowait(void)
  1680. {
  1681. unsigned long i, sum = 0;
  1682. for_each_possible_cpu(i)
  1683. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1684. return sum;
  1685. }
  1686. unsigned long nr_iowait_cpu(int cpu)
  1687. {
  1688. struct rq *this = cpu_rq(cpu);
  1689. return atomic_read(&this->nr_iowait);
  1690. }
  1691. unsigned long this_cpu_load(void)
  1692. {
  1693. struct rq *this = this_rq();
  1694. return this->cpu_load[0];
  1695. }
  1696. /*
  1697. * Global load-average calculations
  1698. *
  1699. * We take a distributed and async approach to calculating the global load-avg
  1700. * in order to minimize overhead.
  1701. *
  1702. * The global load average is an exponentially decaying average of nr_running +
  1703. * nr_uninterruptible.
  1704. *
  1705. * Once every LOAD_FREQ:
  1706. *
  1707. * nr_active = 0;
  1708. * for_each_possible_cpu(cpu)
  1709. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1710. *
  1711. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1712. *
  1713. * Due to a number of reasons the above turns in the mess below:
  1714. *
  1715. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1716. * serious number of cpus, therefore we need to take a distributed approach
  1717. * to calculating nr_active.
  1718. *
  1719. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1720. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1721. *
  1722. * So assuming nr_active := 0 when we start out -- true per definition, we
  1723. * can simply take per-cpu deltas and fold those into a global accumulate
  1724. * to obtain the same result. See calc_load_fold_active().
  1725. *
  1726. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1727. * across the machine, we assume 10 ticks is sufficient time for every
  1728. * cpu to have completed this task.
  1729. *
  1730. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1731. * again, being late doesn't loose the delta, just wrecks the sample.
  1732. *
  1733. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1734. * this would add another cross-cpu cacheline miss and atomic operation
  1735. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1736. * when it went into uninterruptible state and decrement on whatever cpu
  1737. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1738. * all cpus yields the correct result.
  1739. *
  1740. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1741. */
  1742. /* Variables and functions for calc_load */
  1743. static atomic_long_t calc_load_tasks;
  1744. static unsigned long calc_load_update;
  1745. unsigned long avenrun[3];
  1746. EXPORT_SYMBOL(avenrun); /* should be removed */
  1747. /**
  1748. * get_avenrun - get the load average array
  1749. * @loads: pointer to dest load array
  1750. * @offset: offset to add
  1751. * @shift: shift count to shift the result left
  1752. *
  1753. * These values are estimates at best, so no need for locking.
  1754. */
  1755. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1756. {
  1757. loads[0] = (avenrun[0] + offset) << shift;
  1758. loads[1] = (avenrun[1] + offset) << shift;
  1759. loads[2] = (avenrun[2] + offset) << shift;
  1760. }
  1761. static long calc_load_fold_active(struct rq *this_rq)
  1762. {
  1763. long nr_active, delta = 0;
  1764. nr_active = this_rq->nr_running;
  1765. nr_active += (long) this_rq->nr_uninterruptible;
  1766. if (nr_active != this_rq->calc_load_active) {
  1767. delta = nr_active - this_rq->calc_load_active;
  1768. this_rq->calc_load_active = nr_active;
  1769. }
  1770. return delta;
  1771. }
  1772. /*
  1773. * a1 = a0 * e + a * (1 - e)
  1774. */
  1775. static unsigned long
  1776. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1777. {
  1778. load *= exp;
  1779. load += active * (FIXED_1 - exp);
  1780. load += 1UL << (FSHIFT - 1);
  1781. return load >> FSHIFT;
  1782. }
  1783. #ifdef CONFIG_NO_HZ
  1784. /*
  1785. * Handle NO_HZ for the global load-average.
  1786. *
  1787. * Since the above described distributed algorithm to compute the global
  1788. * load-average relies on per-cpu sampling from the tick, it is affected by
  1789. * NO_HZ.
  1790. *
  1791. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1792. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1793. * when we read the global state.
  1794. *
  1795. * Obviously reality has to ruin such a delightfully simple scheme:
  1796. *
  1797. * - When we go NO_HZ idle during the window, we can negate our sample
  1798. * contribution, causing under-accounting.
  1799. *
  1800. * We avoid this by keeping two idle-delta counters and flipping them
  1801. * when the window starts, thus separating old and new NO_HZ load.
  1802. *
  1803. * The only trick is the slight shift in index flip for read vs write.
  1804. *
  1805. * 0s 5s 10s 15s
  1806. * +10 +10 +10 +10
  1807. * |-|-----------|-|-----------|-|-----------|-|
  1808. * r:0 0 1 1 0 0 1 1 0
  1809. * w:0 1 1 0 0 1 1 0 0
  1810. *
  1811. * This ensures we'll fold the old idle contribution in this window while
  1812. * accumlating the new one.
  1813. *
  1814. * - When we wake up from NO_HZ idle during the window, we push up our
  1815. * contribution, since we effectively move our sample point to a known
  1816. * busy state.
  1817. *
  1818. * This is solved by pushing the window forward, and thus skipping the
  1819. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1820. * was in effect at the time the window opened). This also solves the issue
  1821. * of having to deal with a cpu having been in NOHZ idle for multiple
  1822. * LOAD_FREQ intervals.
  1823. *
  1824. * When making the ILB scale, we should try to pull this in as well.
  1825. */
  1826. static atomic_long_t calc_load_idle[2];
  1827. static int calc_load_idx;
  1828. static inline int calc_load_write_idx(void)
  1829. {
  1830. int idx = calc_load_idx;
  1831. /*
  1832. * See calc_global_nohz(), if we observe the new index, we also
  1833. * need to observe the new update time.
  1834. */
  1835. smp_rmb();
  1836. /*
  1837. * If the folding window started, make sure we start writing in the
  1838. * next idle-delta.
  1839. */
  1840. if (!time_before(jiffies, calc_load_update))
  1841. idx++;
  1842. return idx & 1;
  1843. }
  1844. static inline int calc_load_read_idx(void)
  1845. {
  1846. return calc_load_idx & 1;
  1847. }
  1848. void calc_load_enter_idle(void)
  1849. {
  1850. struct rq *this_rq = this_rq();
  1851. long delta;
  1852. /*
  1853. * We're going into NOHZ mode, if there's any pending delta, fold it
  1854. * into the pending idle delta.
  1855. */
  1856. delta = calc_load_fold_active(this_rq);
  1857. if (delta) {
  1858. int idx = calc_load_write_idx();
  1859. atomic_long_add(delta, &calc_load_idle[idx]);
  1860. }
  1861. }
  1862. void calc_load_exit_idle(void)
  1863. {
  1864. struct rq *this_rq = this_rq();
  1865. /*
  1866. * If we're still before the sample window, we're done.
  1867. */
  1868. if (time_before(jiffies, this_rq->calc_load_update))
  1869. return;
  1870. /*
  1871. * We woke inside or after the sample window, this means we're already
  1872. * accounted through the nohz accounting, so skip the entire deal and
  1873. * sync up for the next window.
  1874. */
  1875. this_rq->calc_load_update = calc_load_update;
  1876. if (time_before(jiffies, this_rq->calc_load_update + 10))
  1877. this_rq->calc_load_update += LOAD_FREQ;
  1878. }
  1879. static long calc_load_fold_idle(void)
  1880. {
  1881. int idx = calc_load_read_idx();
  1882. long delta = 0;
  1883. if (atomic_long_read(&calc_load_idle[idx]))
  1884. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  1885. return delta;
  1886. }
  1887. /**
  1888. * fixed_power_int - compute: x^n, in O(log n) time
  1889. *
  1890. * @x: base of the power
  1891. * @frac_bits: fractional bits of @x
  1892. * @n: power to raise @x to.
  1893. *
  1894. * By exploiting the relation between the definition of the natural power
  1895. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1896. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1897. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1898. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1899. * of course trivially computable in O(log_2 n), the length of our binary
  1900. * vector.
  1901. */
  1902. static unsigned long
  1903. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1904. {
  1905. unsigned long result = 1UL << frac_bits;
  1906. if (n) for (;;) {
  1907. if (n & 1) {
  1908. result *= x;
  1909. result += 1UL << (frac_bits - 1);
  1910. result >>= frac_bits;
  1911. }
  1912. n >>= 1;
  1913. if (!n)
  1914. break;
  1915. x *= x;
  1916. x += 1UL << (frac_bits - 1);
  1917. x >>= frac_bits;
  1918. }
  1919. return result;
  1920. }
  1921. /*
  1922. * a1 = a0 * e + a * (1 - e)
  1923. *
  1924. * a2 = a1 * e + a * (1 - e)
  1925. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1926. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1927. *
  1928. * a3 = a2 * e + a * (1 - e)
  1929. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1930. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1931. *
  1932. * ...
  1933. *
  1934. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1935. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1936. * = a0 * e^n + a * (1 - e^n)
  1937. *
  1938. * [1] application of the geometric series:
  1939. *
  1940. * n 1 - x^(n+1)
  1941. * S_n := \Sum x^i = -------------
  1942. * i=0 1 - x
  1943. */
  1944. static unsigned long
  1945. calc_load_n(unsigned long load, unsigned long exp,
  1946. unsigned long active, unsigned int n)
  1947. {
  1948. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1949. }
  1950. /*
  1951. * NO_HZ can leave us missing all per-cpu ticks calling
  1952. * calc_load_account_active(), but since an idle CPU folds its delta into
  1953. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1954. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1955. *
  1956. * Once we've updated the global active value, we need to apply the exponential
  1957. * weights adjusted to the number of cycles missed.
  1958. */
  1959. static void calc_global_nohz(void)
  1960. {
  1961. long delta, active, n;
  1962. if (!time_before(jiffies, calc_load_update + 10)) {
  1963. /*
  1964. * Catch-up, fold however many we are behind still
  1965. */
  1966. delta = jiffies - calc_load_update - 10;
  1967. n = 1 + (delta / LOAD_FREQ);
  1968. active = atomic_long_read(&calc_load_tasks);
  1969. active = active > 0 ? active * FIXED_1 : 0;
  1970. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1971. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1972. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1973. calc_load_update += n * LOAD_FREQ;
  1974. }
  1975. /*
  1976. * Flip the idle index...
  1977. *
  1978. * Make sure we first write the new time then flip the index, so that
  1979. * calc_load_write_idx() will see the new time when it reads the new
  1980. * index, this avoids a double flip messing things up.
  1981. */
  1982. smp_wmb();
  1983. calc_load_idx++;
  1984. }
  1985. #else /* !CONFIG_NO_HZ */
  1986. static inline long calc_load_fold_idle(void) { return 0; }
  1987. static inline void calc_global_nohz(void) { }
  1988. #endif /* CONFIG_NO_HZ */
  1989. /*
  1990. * calc_load - update the avenrun load estimates 10 ticks after the
  1991. * CPUs have updated calc_load_tasks.
  1992. */
  1993. void calc_global_load(unsigned long ticks)
  1994. {
  1995. long active, delta;
  1996. if (time_before(jiffies, calc_load_update + 10))
  1997. return;
  1998. /*
  1999. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  2000. */
  2001. delta = calc_load_fold_idle();
  2002. if (delta)
  2003. atomic_long_add(delta, &calc_load_tasks);
  2004. active = atomic_long_read(&calc_load_tasks);
  2005. active = active > 0 ? active * FIXED_1 : 0;
  2006. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2007. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2008. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2009. calc_load_update += LOAD_FREQ;
  2010. /*
  2011. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2012. */
  2013. calc_global_nohz();
  2014. }
  2015. /*
  2016. * Called from update_cpu_load() to periodically update this CPU's
  2017. * active count.
  2018. */
  2019. static void calc_load_account_active(struct rq *this_rq)
  2020. {
  2021. long delta;
  2022. if (time_before(jiffies, this_rq->calc_load_update))
  2023. return;
  2024. delta = calc_load_fold_active(this_rq);
  2025. if (delta)
  2026. atomic_long_add(delta, &calc_load_tasks);
  2027. this_rq->calc_load_update += LOAD_FREQ;
  2028. }
  2029. /*
  2030. * End of global load-average stuff
  2031. */
  2032. /*
  2033. * The exact cpuload at various idx values, calculated at every tick would be
  2034. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2035. *
  2036. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2037. * on nth tick when cpu may be busy, then we have:
  2038. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2039. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2040. *
  2041. * decay_load_missed() below does efficient calculation of
  2042. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2043. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2044. *
  2045. * The calculation is approximated on a 128 point scale.
  2046. * degrade_zero_ticks is the number of ticks after which load at any
  2047. * particular idx is approximated to be zero.
  2048. * degrade_factor is a precomputed table, a row for each load idx.
  2049. * Each column corresponds to degradation factor for a power of two ticks,
  2050. * based on 128 point scale.
  2051. * Example:
  2052. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2053. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2054. *
  2055. * With this power of 2 load factors, we can degrade the load n times
  2056. * by looking at 1 bits in n and doing as many mult/shift instead of
  2057. * n mult/shifts needed by the exact degradation.
  2058. */
  2059. #define DEGRADE_SHIFT 7
  2060. static const unsigned char
  2061. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2062. static const unsigned char
  2063. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2064. {0, 0, 0, 0, 0, 0, 0, 0},
  2065. {64, 32, 8, 0, 0, 0, 0, 0},
  2066. {96, 72, 40, 12, 1, 0, 0},
  2067. {112, 98, 75, 43, 15, 1, 0},
  2068. {120, 112, 98, 76, 45, 16, 2} };
  2069. /*
  2070. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2071. * would be when CPU is idle and so we just decay the old load without
  2072. * adding any new load.
  2073. */
  2074. static unsigned long
  2075. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2076. {
  2077. int j = 0;
  2078. if (!missed_updates)
  2079. return load;
  2080. if (missed_updates >= degrade_zero_ticks[idx])
  2081. return 0;
  2082. if (idx == 1)
  2083. return load >> missed_updates;
  2084. while (missed_updates) {
  2085. if (missed_updates % 2)
  2086. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2087. missed_updates >>= 1;
  2088. j++;
  2089. }
  2090. return load;
  2091. }
  2092. /*
  2093. * Update rq->cpu_load[] statistics. This function is usually called every
  2094. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2095. * every tick. We fix it up based on jiffies.
  2096. */
  2097. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2098. unsigned long pending_updates)
  2099. {
  2100. int i, scale;
  2101. this_rq->nr_load_updates++;
  2102. /* Update our load: */
  2103. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2104. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2105. unsigned long old_load, new_load;
  2106. /* scale is effectively 1 << i now, and >> i divides by scale */
  2107. old_load = this_rq->cpu_load[i];
  2108. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2109. new_load = this_load;
  2110. /*
  2111. * Round up the averaging division if load is increasing. This
  2112. * prevents us from getting stuck on 9 if the load is 10, for
  2113. * example.
  2114. */
  2115. if (new_load > old_load)
  2116. new_load += scale - 1;
  2117. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2118. }
  2119. sched_avg_update(this_rq);
  2120. }
  2121. #ifdef CONFIG_NO_HZ
  2122. /*
  2123. * There is no sane way to deal with nohz on smp when using jiffies because the
  2124. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2125. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2126. *
  2127. * Therefore we cannot use the delta approach from the regular tick since that
  2128. * would seriously skew the load calculation. However we'll make do for those
  2129. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2130. * (tick_nohz_idle_exit).
  2131. *
  2132. * This means we might still be one tick off for nohz periods.
  2133. */
  2134. /*
  2135. * Called from nohz_idle_balance() to update the load ratings before doing the
  2136. * idle balance.
  2137. */
  2138. void update_idle_cpu_load(struct rq *this_rq)
  2139. {
  2140. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2141. unsigned long load = this_rq->load.weight;
  2142. unsigned long pending_updates;
  2143. /*
  2144. * bail if there's load or we're actually up-to-date.
  2145. */
  2146. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2147. return;
  2148. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2149. this_rq->last_load_update_tick = curr_jiffies;
  2150. __update_cpu_load(this_rq, load, pending_updates);
  2151. }
  2152. /*
  2153. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2154. */
  2155. void update_cpu_load_nohz(void)
  2156. {
  2157. struct rq *this_rq = this_rq();
  2158. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2159. unsigned long pending_updates;
  2160. if (curr_jiffies == this_rq->last_load_update_tick)
  2161. return;
  2162. raw_spin_lock(&this_rq->lock);
  2163. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2164. if (pending_updates) {
  2165. this_rq->last_load_update_tick = curr_jiffies;
  2166. /*
  2167. * We were idle, this means load 0, the current load might be
  2168. * !0 due to remote wakeups and the sort.
  2169. */
  2170. __update_cpu_load(this_rq, 0, pending_updates);
  2171. }
  2172. raw_spin_unlock(&this_rq->lock);
  2173. }
  2174. #endif /* CONFIG_NO_HZ */
  2175. /*
  2176. * Called from scheduler_tick()
  2177. */
  2178. static void update_cpu_load_active(struct rq *this_rq)
  2179. {
  2180. /*
  2181. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2182. */
  2183. this_rq->last_load_update_tick = jiffies;
  2184. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2185. calc_load_account_active(this_rq);
  2186. }
  2187. #ifdef CONFIG_SMP
  2188. /*
  2189. * sched_exec - execve() is a valuable balancing opportunity, because at
  2190. * this point the task has the smallest effective memory and cache footprint.
  2191. */
  2192. void sched_exec(void)
  2193. {
  2194. struct task_struct *p = current;
  2195. unsigned long flags;
  2196. int dest_cpu;
  2197. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2198. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2199. if (dest_cpu == smp_processor_id())
  2200. goto unlock;
  2201. if (likely(cpu_active(dest_cpu))) {
  2202. struct migration_arg arg = { p, dest_cpu };
  2203. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2204. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2205. return;
  2206. }
  2207. unlock:
  2208. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2209. }
  2210. #endif
  2211. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2212. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2213. EXPORT_PER_CPU_SYMBOL(kstat);
  2214. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2215. /*
  2216. * Return any ns on the sched_clock that have not yet been accounted in
  2217. * @p in case that task is currently running.
  2218. *
  2219. * Called with task_rq_lock() held on @rq.
  2220. */
  2221. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2222. {
  2223. u64 ns = 0;
  2224. if (task_current(rq, p)) {
  2225. update_rq_clock(rq);
  2226. ns = rq->clock_task - p->se.exec_start;
  2227. if ((s64)ns < 0)
  2228. ns = 0;
  2229. }
  2230. return ns;
  2231. }
  2232. unsigned long long task_delta_exec(struct task_struct *p)
  2233. {
  2234. unsigned long flags;
  2235. struct rq *rq;
  2236. u64 ns = 0;
  2237. rq = task_rq_lock(p, &flags);
  2238. ns = do_task_delta_exec(p, rq);
  2239. task_rq_unlock(rq, p, &flags);
  2240. return ns;
  2241. }
  2242. /*
  2243. * Return accounted runtime for the task.
  2244. * In case the task is currently running, return the runtime plus current's
  2245. * pending runtime that have not been accounted yet.
  2246. */
  2247. unsigned long long task_sched_runtime(struct task_struct *p)
  2248. {
  2249. unsigned long flags;
  2250. struct rq *rq;
  2251. u64 ns = 0;
  2252. rq = task_rq_lock(p, &flags);
  2253. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2254. task_rq_unlock(rq, p, &flags);
  2255. return ns;
  2256. }
  2257. /*
  2258. * This function gets called by the timer code, with HZ frequency.
  2259. * We call it with interrupts disabled.
  2260. */
  2261. void scheduler_tick(void)
  2262. {
  2263. int cpu = smp_processor_id();
  2264. struct rq *rq = cpu_rq(cpu);
  2265. struct task_struct *curr = rq->curr;
  2266. sched_clock_tick();
  2267. raw_spin_lock(&rq->lock);
  2268. update_rq_clock(rq);
  2269. update_cpu_load_active(rq);
  2270. curr->sched_class->task_tick(rq, curr, 0);
  2271. raw_spin_unlock(&rq->lock);
  2272. perf_event_task_tick();
  2273. #ifdef CONFIG_SMP
  2274. rq->idle_balance = idle_cpu(cpu);
  2275. trigger_load_balance(rq, cpu);
  2276. #endif
  2277. }
  2278. notrace unsigned long get_parent_ip(unsigned long addr)
  2279. {
  2280. if (in_lock_functions(addr)) {
  2281. addr = CALLER_ADDR2;
  2282. if (in_lock_functions(addr))
  2283. addr = CALLER_ADDR3;
  2284. }
  2285. return addr;
  2286. }
  2287. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2288. defined(CONFIG_PREEMPT_TRACER))
  2289. void __kprobes add_preempt_count(int val)
  2290. {
  2291. #ifdef CONFIG_DEBUG_PREEMPT
  2292. /*
  2293. * Underflow?
  2294. */
  2295. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2296. return;
  2297. #endif
  2298. preempt_count() += val;
  2299. #ifdef CONFIG_DEBUG_PREEMPT
  2300. /*
  2301. * Spinlock count overflowing soon?
  2302. */
  2303. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2304. PREEMPT_MASK - 10);
  2305. #endif
  2306. if (preempt_count() == val)
  2307. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2308. }
  2309. EXPORT_SYMBOL(add_preempt_count);
  2310. void __kprobes sub_preempt_count(int val)
  2311. {
  2312. #ifdef CONFIG_DEBUG_PREEMPT
  2313. /*
  2314. * Underflow?
  2315. */
  2316. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2317. return;
  2318. /*
  2319. * Is the spinlock portion underflowing?
  2320. */
  2321. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2322. !(preempt_count() & PREEMPT_MASK)))
  2323. return;
  2324. #endif
  2325. if (preempt_count() == val)
  2326. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2327. preempt_count() -= val;
  2328. }
  2329. EXPORT_SYMBOL(sub_preempt_count);
  2330. #endif
  2331. /*
  2332. * Print scheduling while atomic bug:
  2333. */
  2334. static noinline void __schedule_bug(struct task_struct *prev)
  2335. {
  2336. if (oops_in_progress)
  2337. return;
  2338. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2339. prev->comm, prev->pid, preempt_count());
  2340. debug_show_held_locks(prev);
  2341. print_modules();
  2342. if (irqs_disabled())
  2343. print_irqtrace_events(prev);
  2344. dump_stack();
  2345. add_taint(TAINT_WARN);
  2346. }
  2347. /*
  2348. * Various schedule()-time debugging checks and statistics:
  2349. */
  2350. static inline void schedule_debug(struct task_struct *prev)
  2351. {
  2352. /*
  2353. * Test if we are atomic. Since do_exit() needs to call into
  2354. * schedule() atomically, we ignore that path for now.
  2355. * Otherwise, whine if we are scheduling when we should not be.
  2356. */
  2357. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2358. __schedule_bug(prev);
  2359. rcu_sleep_check();
  2360. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2361. schedstat_inc(this_rq(), sched_count);
  2362. }
  2363. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2364. {
  2365. if (prev->on_rq || rq->skip_clock_update < 0)
  2366. update_rq_clock(rq);
  2367. prev->sched_class->put_prev_task(rq, prev);
  2368. }
  2369. /*
  2370. * Pick up the highest-prio task:
  2371. */
  2372. static inline struct task_struct *
  2373. pick_next_task(struct rq *rq)
  2374. {
  2375. const struct sched_class *class;
  2376. struct task_struct *p;
  2377. /*
  2378. * Optimization: we know that if all tasks are in
  2379. * the fair class we can call that function directly:
  2380. */
  2381. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2382. p = fair_sched_class.pick_next_task(rq);
  2383. if (likely(p))
  2384. return p;
  2385. }
  2386. for_each_class(class) {
  2387. p = class->pick_next_task(rq);
  2388. if (p)
  2389. return p;
  2390. }
  2391. BUG(); /* the idle class will always have a runnable task */
  2392. }
  2393. /*
  2394. * __schedule() is the main scheduler function.
  2395. *
  2396. * The main means of driving the scheduler and thus entering this function are:
  2397. *
  2398. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2399. *
  2400. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2401. * paths. For example, see arch/x86/entry_64.S.
  2402. *
  2403. * To drive preemption between tasks, the scheduler sets the flag in timer
  2404. * interrupt handler scheduler_tick().
  2405. *
  2406. * 3. Wakeups don't really cause entry into schedule(). They add a
  2407. * task to the run-queue and that's it.
  2408. *
  2409. * Now, if the new task added to the run-queue preempts the current
  2410. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2411. * called on the nearest possible occasion:
  2412. *
  2413. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2414. *
  2415. * - in syscall or exception context, at the next outmost
  2416. * preempt_enable(). (this might be as soon as the wake_up()'s
  2417. * spin_unlock()!)
  2418. *
  2419. * - in IRQ context, return from interrupt-handler to
  2420. * preemptible context
  2421. *
  2422. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2423. * then at the next:
  2424. *
  2425. * - cond_resched() call
  2426. * - explicit schedule() call
  2427. * - return from syscall or exception to user-space
  2428. * - return from interrupt-handler to user-space
  2429. */
  2430. static void __sched __schedule(void)
  2431. {
  2432. struct task_struct *prev, *next;
  2433. unsigned long *switch_count;
  2434. struct rq *rq;
  2435. int cpu;
  2436. need_resched:
  2437. preempt_disable();
  2438. cpu = smp_processor_id();
  2439. rq = cpu_rq(cpu);
  2440. rcu_note_context_switch(cpu);
  2441. prev = rq->curr;
  2442. schedule_debug(prev);
  2443. if (sched_feat(HRTICK))
  2444. hrtick_clear(rq);
  2445. raw_spin_lock_irq(&rq->lock);
  2446. switch_count = &prev->nivcsw;
  2447. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2448. if (unlikely(signal_pending_state(prev->state, prev))) {
  2449. prev->state = TASK_RUNNING;
  2450. } else {
  2451. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2452. prev->on_rq = 0;
  2453. /*
  2454. * If a worker went to sleep, notify and ask workqueue
  2455. * whether it wants to wake up a task to maintain
  2456. * concurrency.
  2457. */
  2458. if (prev->flags & PF_WQ_WORKER) {
  2459. struct task_struct *to_wakeup;
  2460. to_wakeup = wq_worker_sleeping(prev, cpu);
  2461. if (to_wakeup)
  2462. try_to_wake_up_local(to_wakeup);
  2463. }
  2464. }
  2465. switch_count = &prev->nvcsw;
  2466. }
  2467. pre_schedule(rq, prev);
  2468. if (unlikely(!rq->nr_running))
  2469. idle_balance(cpu, rq);
  2470. put_prev_task(rq, prev);
  2471. next = pick_next_task(rq);
  2472. clear_tsk_need_resched(prev);
  2473. rq->skip_clock_update = 0;
  2474. if (likely(prev != next)) {
  2475. rq->nr_switches++;
  2476. rq->curr = next;
  2477. ++*switch_count;
  2478. context_switch(rq, prev, next); /* unlocks the rq */
  2479. /*
  2480. * The context switch have flipped the stack from under us
  2481. * and restored the local variables which were saved when
  2482. * this task called schedule() in the past. prev == current
  2483. * is still correct, but it can be moved to another cpu/rq.
  2484. */
  2485. cpu = smp_processor_id();
  2486. rq = cpu_rq(cpu);
  2487. } else
  2488. raw_spin_unlock_irq(&rq->lock);
  2489. post_schedule(rq);
  2490. sched_preempt_enable_no_resched();
  2491. if (need_resched())
  2492. goto need_resched;
  2493. }
  2494. static inline void sched_submit_work(struct task_struct *tsk)
  2495. {
  2496. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2497. return;
  2498. /*
  2499. * If we are going to sleep and we have plugged IO queued,
  2500. * make sure to submit it to avoid deadlocks.
  2501. */
  2502. if (blk_needs_flush_plug(tsk))
  2503. blk_schedule_flush_plug(tsk);
  2504. }
  2505. asmlinkage void __sched schedule(void)
  2506. {
  2507. struct task_struct *tsk = current;
  2508. sched_submit_work(tsk);
  2509. __schedule();
  2510. }
  2511. EXPORT_SYMBOL(schedule);
  2512. #ifdef CONFIG_CONTEXT_TRACKING
  2513. asmlinkage void __sched schedule_user(void)
  2514. {
  2515. /*
  2516. * If we come here after a random call to set_need_resched(),
  2517. * or we have been woken up remotely but the IPI has not yet arrived,
  2518. * we haven't yet exited the RCU idle mode. Do it here manually until
  2519. * we find a better solution.
  2520. */
  2521. user_exit();
  2522. schedule();
  2523. user_enter();
  2524. }
  2525. #endif
  2526. /**
  2527. * schedule_preempt_disabled - called with preemption disabled
  2528. *
  2529. * Returns with preemption disabled. Note: preempt_count must be 1
  2530. */
  2531. void __sched schedule_preempt_disabled(void)
  2532. {
  2533. sched_preempt_enable_no_resched();
  2534. schedule();
  2535. preempt_disable();
  2536. }
  2537. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2538. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2539. {
  2540. if (lock->owner != owner)
  2541. return false;
  2542. /*
  2543. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2544. * lock->owner still matches owner, if that fails, owner might
  2545. * point to free()d memory, if it still matches, the rcu_read_lock()
  2546. * ensures the memory stays valid.
  2547. */
  2548. barrier();
  2549. return owner->on_cpu;
  2550. }
  2551. /*
  2552. * Look out! "owner" is an entirely speculative pointer
  2553. * access and not reliable.
  2554. */
  2555. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2556. {
  2557. if (!sched_feat(OWNER_SPIN))
  2558. return 0;
  2559. rcu_read_lock();
  2560. while (owner_running(lock, owner)) {
  2561. if (need_resched())
  2562. break;
  2563. arch_mutex_cpu_relax();
  2564. }
  2565. rcu_read_unlock();
  2566. /*
  2567. * We break out the loop above on need_resched() and when the
  2568. * owner changed, which is a sign for heavy contention. Return
  2569. * success only when lock->owner is NULL.
  2570. */
  2571. return lock->owner == NULL;
  2572. }
  2573. #endif
  2574. #ifdef CONFIG_PREEMPT
  2575. /*
  2576. * this is the entry point to schedule() from in-kernel preemption
  2577. * off of preempt_enable. Kernel preemptions off return from interrupt
  2578. * occur there and call schedule directly.
  2579. */
  2580. asmlinkage void __sched notrace preempt_schedule(void)
  2581. {
  2582. struct thread_info *ti = current_thread_info();
  2583. /*
  2584. * If there is a non-zero preempt_count or interrupts are disabled,
  2585. * we do not want to preempt the current task. Just return..
  2586. */
  2587. if (likely(ti->preempt_count || irqs_disabled()))
  2588. return;
  2589. do {
  2590. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2591. __schedule();
  2592. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2593. /*
  2594. * Check again in case we missed a preemption opportunity
  2595. * between schedule and now.
  2596. */
  2597. barrier();
  2598. } while (need_resched());
  2599. }
  2600. EXPORT_SYMBOL(preempt_schedule);
  2601. /*
  2602. * this is the entry point to schedule() from kernel preemption
  2603. * off of irq context.
  2604. * Note, that this is called and return with irqs disabled. This will
  2605. * protect us against recursive calling from irq.
  2606. */
  2607. asmlinkage void __sched preempt_schedule_irq(void)
  2608. {
  2609. struct thread_info *ti = current_thread_info();
  2610. /* Catch callers which need to be fixed */
  2611. BUG_ON(ti->preempt_count || !irqs_disabled());
  2612. user_exit();
  2613. do {
  2614. add_preempt_count(PREEMPT_ACTIVE);
  2615. local_irq_enable();
  2616. __schedule();
  2617. local_irq_disable();
  2618. sub_preempt_count(PREEMPT_ACTIVE);
  2619. /*
  2620. * Check again in case we missed a preemption opportunity
  2621. * between schedule and now.
  2622. */
  2623. barrier();
  2624. } while (need_resched());
  2625. }
  2626. #endif /* CONFIG_PREEMPT */
  2627. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2628. void *key)
  2629. {
  2630. return try_to_wake_up(curr->private, mode, wake_flags);
  2631. }
  2632. EXPORT_SYMBOL(default_wake_function);
  2633. /*
  2634. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2635. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2636. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2637. *
  2638. * There are circumstances in which we can try to wake a task which has already
  2639. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2640. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2641. */
  2642. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2643. int nr_exclusive, int wake_flags, void *key)
  2644. {
  2645. wait_queue_t *curr, *next;
  2646. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2647. unsigned flags = curr->flags;
  2648. if (curr->func(curr, mode, wake_flags, key) &&
  2649. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2650. break;
  2651. }
  2652. }
  2653. /**
  2654. * __wake_up - wake up threads blocked on a waitqueue.
  2655. * @q: the waitqueue
  2656. * @mode: which threads
  2657. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2658. * @key: is directly passed to the wakeup function
  2659. *
  2660. * It may be assumed that this function implies a write memory barrier before
  2661. * changing the task state if and only if any tasks are woken up.
  2662. */
  2663. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2664. int nr_exclusive, void *key)
  2665. {
  2666. unsigned long flags;
  2667. spin_lock_irqsave(&q->lock, flags);
  2668. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2669. spin_unlock_irqrestore(&q->lock, flags);
  2670. }
  2671. EXPORT_SYMBOL(__wake_up);
  2672. /*
  2673. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2674. */
  2675. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2676. {
  2677. __wake_up_common(q, mode, nr, 0, NULL);
  2678. }
  2679. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2680. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2681. {
  2682. __wake_up_common(q, mode, 1, 0, key);
  2683. }
  2684. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2685. /**
  2686. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2687. * @q: the waitqueue
  2688. * @mode: which threads
  2689. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2690. * @key: opaque value to be passed to wakeup targets
  2691. *
  2692. * The sync wakeup differs that the waker knows that it will schedule
  2693. * away soon, so while the target thread will be woken up, it will not
  2694. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2695. * with each other. This can prevent needless bouncing between CPUs.
  2696. *
  2697. * On UP it can prevent extra preemption.
  2698. *
  2699. * It may be assumed that this function implies a write memory barrier before
  2700. * changing the task state if and only if any tasks are woken up.
  2701. */
  2702. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2703. int nr_exclusive, void *key)
  2704. {
  2705. unsigned long flags;
  2706. int wake_flags = WF_SYNC;
  2707. if (unlikely(!q))
  2708. return;
  2709. if (unlikely(!nr_exclusive))
  2710. wake_flags = 0;
  2711. spin_lock_irqsave(&q->lock, flags);
  2712. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2713. spin_unlock_irqrestore(&q->lock, flags);
  2714. }
  2715. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2716. /*
  2717. * __wake_up_sync - see __wake_up_sync_key()
  2718. */
  2719. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2720. {
  2721. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2722. }
  2723. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2724. /**
  2725. * complete: - signals a single thread waiting on this completion
  2726. * @x: holds the state of this particular completion
  2727. *
  2728. * This will wake up a single thread waiting on this completion. Threads will be
  2729. * awakened in the same order in which they were queued.
  2730. *
  2731. * See also complete_all(), wait_for_completion() and related routines.
  2732. *
  2733. * It may be assumed that this function implies a write memory barrier before
  2734. * changing the task state if and only if any tasks are woken up.
  2735. */
  2736. void complete(struct completion *x)
  2737. {
  2738. unsigned long flags;
  2739. spin_lock_irqsave(&x->wait.lock, flags);
  2740. x->done++;
  2741. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2742. spin_unlock_irqrestore(&x->wait.lock, flags);
  2743. }
  2744. EXPORT_SYMBOL(complete);
  2745. /**
  2746. * complete_all: - signals all threads waiting on this completion
  2747. * @x: holds the state of this particular completion
  2748. *
  2749. * This will wake up all threads waiting on this particular completion event.
  2750. *
  2751. * It may be assumed that this function implies a write memory barrier before
  2752. * changing the task state if and only if any tasks are woken up.
  2753. */
  2754. void complete_all(struct completion *x)
  2755. {
  2756. unsigned long flags;
  2757. spin_lock_irqsave(&x->wait.lock, flags);
  2758. x->done += UINT_MAX/2;
  2759. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2760. spin_unlock_irqrestore(&x->wait.lock, flags);
  2761. }
  2762. EXPORT_SYMBOL(complete_all);
  2763. static inline long __sched
  2764. do_wait_for_common(struct completion *x, long timeout, int state)
  2765. {
  2766. if (!x->done) {
  2767. DECLARE_WAITQUEUE(wait, current);
  2768. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2769. do {
  2770. if (signal_pending_state(state, current)) {
  2771. timeout = -ERESTARTSYS;
  2772. break;
  2773. }
  2774. __set_current_state(state);
  2775. spin_unlock_irq(&x->wait.lock);
  2776. timeout = schedule_timeout(timeout);
  2777. spin_lock_irq(&x->wait.lock);
  2778. } while (!x->done && timeout);
  2779. __remove_wait_queue(&x->wait, &wait);
  2780. if (!x->done)
  2781. return timeout;
  2782. }
  2783. x->done--;
  2784. return timeout ?: 1;
  2785. }
  2786. static long __sched
  2787. wait_for_common(struct completion *x, long timeout, int state)
  2788. {
  2789. might_sleep();
  2790. spin_lock_irq(&x->wait.lock);
  2791. timeout = do_wait_for_common(x, timeout, state);
  2792. spin_unlock_irq(&x->wait.lock);
  2793. return timeout;
  2794. }
  2795. /**
  2796. * wait_for_completion: - waits for completion of a task
  2797. * @x: holds the state of this particular completion
  2798. *
  2799. * This waits to be signaled for completion of a specific task. It is NOT
  2800. * interruptible and there is no timeout.
  2801. *
  2802. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2803. * and interrupt capability. Also see complete().
  2804. */
  2805. void __sched wait_for_completion(struct completion *x)
  2806. {
  2807. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2808. }
  2809. EXPORT_SYMBOL(wait_for_completion);
  2810. /**
  2811. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2812. * @x: holds the state of this particular completion
  2813. * @timeout: timeout value in jiffies
  2814. *
  2815. * This waits for either a completion of a specific task to be signaled or for a
  2816. * specified timeout to expire. The timeout is in jiffies. It is not
  2817. * interruptible.
  2818. *
  2819. * The return value is 0 if timed out, and positive (at least 1, or number of
  2820. * jiffies left till timeout) if completed.
  2821. */
  2822. unsigned long __sched
  2823. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2824. {
  2825. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2826. }
  2827. EXPORT_SYMBOL(wait_for_completion_timeout);
  2828. /**
  2829. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2830. * @x: holds the state of this particular completion
  2831. *
  2832. * This waits for completion of a specific task to be signaled. It is
  2833. * interruptible.
  2834. *
  2835. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2836. */
  2837. int __sched wait_for_completion_interruptible(struct completion *x)
  2838. {
  2839. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2840. if (t == -ERESTARTSYS)
  2841. return t;
  2842. return 0;
  2843. }
  2844. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2845. /**
  2846. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2847. * @x: holds the state of this particular completion
  2848. * @timeout: timeout value in jiffies
  2849. *
  2850. * This waits for either a completion of a specific task to be signaled or for a
  2851. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2852. *
  2853. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2854. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2855. */
  2856. long __sched
  2857. wait_for_completion_interruptible_timeout(struct completion *x,
  2858. unsigned long timeout)
  2859. {
  2860. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2861. }
  2862. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2863. /**
  2864. * wait_for_completion_killable: - waits for completion of a task (killable)
  2865. * @x: holds the state of this particular completion
  2866. *
  2867. * This waits to be signaled for completion of a specific task. It can be
  2868. * interrupted by a kill signal.
  2869. *
  2870. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2871. */
  2872. int __sched wait_for_completion_killable(struct completion *x)
  2873. {
  2874. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2875. if (t == -ERESTARTSYS)
  2876. return t;
  2877. return 0;
  2878. }
  2879. EXPORT_SYMBOL(wait_for_completion_killable);
  2880. /**
  2881. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2882. * @x: holds the state of this particular completion
  2883. * @timeout: timeout value in jiffies
  2884. *
  2885. * This waits for either a completion of a specific task to be
  2886. * signaled or for a specified timeout to expire. It can be
  2887. * interrupted by a kill signal. The timeout is in jiffies.
  2888. *
  2889. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2890. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2891. */
  2892. long __sched
  2893. wait_for_completion_killable_timeout(struct completion *x,
  2894. unsigned long timeout)
  2895. {
  2896. return wait_for_common(x, timeout, TASK_KILLABLE);
  2897. }
  2898. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2899. /**
  2900. * try_wait_for_completion - try to decrement a completion without blocking
  2901. * @x: completion structure
  2902. *
  2903. * Returns: 0 if a decrement cannot be done without blocking
  2904. * 1 if a decrement succeeded.
  2905. *
  2906. * If a completion is being used as a counting completion,
  2907. * attempt to decrement the counter without blocking. This
  2908. * enables us to avoid waiting if the resource the completion
  2909. * is protecting is not available.
  2910. */
  2911. bool try_wait_for_completion(struct completion *x)
  2912. {
  2913. unsigned long flags;
  2914. int ret = 1;
  2915. spin_lock_irqsave(&x->wait.lock, flags);
  2916. if (!x->done)
  2917. ret = 0;
  2918. else
  2919. x->done--;
  2920. spin_unlock_irqrestore(&x->wait.lock, flags);
  2921. return ret;
  2922. }
  2923. EXPORT_SYMBOL(try_wait_for_completion);
  2924. /**
  2925. * completion_done - Test to see if a completion has any waiters
  2926. * @x: completion structure
  2927. *
  2928. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  2929. * 1 if there are no waiters.
  2930. *
  2931. */
  2932. bool completion_done(struct completion *x)
  2933. {
  2934. unsigned long flags;
  2935. int ret = 1;
  2936. spin_lock_irqsave(&x->wait.lock, flags);
  2937. if (!x->done)
  2938. ret = 0;
  2939. spin_unlock_irqrestore(&x->wait.lock, flags);
  2940. return ret;
  2941. }
  2942. EXPORT_SYMBOL(completion_done);
  2943. static long __sched
  2944. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2945. {
  2946. unsigned long flags;
  2947. wait_queue_t wait;
  2948. init_waitqueue_entry(&wait, current);
  2949. __set_current_state(state);
  2950. spin_lock_irqsave(&q->lock, flags);
  2951. __add_wait_queue(q, &wait);
  2952. spin_unlock(&q->lock);
  2953. timeout = schedule_timeout(timeout);
  2954. spin_lock_irq(&q->lock);
  2955. __remove_wait_queue(q, &wait);
  2956. spin_unlock_irqrestore(&q->lock, flags);
  2957. return timeout;
  2958. }
  2959. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2960. {
  2961. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2962. }
  2963. EXPORT_SYMBOL(interruptible_sleep_on);
  2964. long __sched
  2965. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2966. {
  2967. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2968. }
  2969. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2970. void __sched sleep_on(wait_queue_head_t *q)
  2971. {
  2972. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2973. }
  2974. EXPORT_SYMBOL(sleep_on);
  2975. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2976. {
  2977. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2978. }
  2979. EXPORT_SYMBOL(sleep_on_timeout);
  2980. #ifdef CONFIG_RT_MUTEXES
  2981. /*
  2982. * rt_mutex_setprio - set the current priority of a task
  2983. * @p: task
  2984. * @prio: prio value (kernel-internal form)
  2985. *
  2986. * This function changes the 'effective' priority of a task. It does
  2987. * not touch ->normal_prio like __setscheduler().
  2988. *
  2989. * Used by the rt_mutex code to implement priority inheritance logic.
  2990. */
  2991. void rt_mutex_setprio(struct task_struct *p, int prio)
  2992. {
  2993. int oldprio, on_rq, running;
  2994. struct rq *rq;
  2995. const struct sched_class *prev_class;
  2996. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2997. rq = __task_rq_lock(p);
  2998. /*
  2999. * Idle task boosting is a nono in general. There is one
  3000. * exception, when PREEMPT_RT and NOHZ is active:
  3001. *
  3002. * The idle task calls get_next_timer_interrupt() and holds
  3003. * the timer wheel base->lock on the CPU and another CPU wants
  3004. * to access the timer (probably to cancel it). We can safely
  3005. * ignore the boosting request, as the idle CPU runs this code
  3006. * with interrupts disabled and will complete the lock
  3007. * protected section without being interrupted. So there is no
  3008. * real need to boost.
  3009. */
  3010. if (unlikely(p == rq->idle)) {
  3011. WARN_ON(p != rq->curr);
  3012. WARN_ON(p->pi_blocked_on);
  3013. goto out_unlock;
  3014. }
  3015. trace_sched_pi_setprio(p, prio);
  3016. oldprio = p->prio;
  3017. prev_class = p->sched_class;
  3018. on_rq = p->on_rq;
  3019. running = task_current(rq, p);
  3020. if (on_rq)
  3021. dequeue_task(rq, p, 0);
  3022. if (running)
  3023. p->sched_class->put_prev_task(rq, p);
  3024. if (rt_prio(prio))
  3025. p->sched_class = &rt_sched_class;
  3026. else
  3027. p->sched_class = &fair_sched_class;
  3028. p->prio = prio;
  3029. if (running)
  3030. p->sched_class->set_curr_task(rq);
  3031. if (on_rq)
  3032. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3033. check_class_changed(rq, p, prev_class, oldprio);
  3034. out_unlock:
  3035. __task_rq_unlock(rq);
  3036. }
  3037. #endif
  3038. void set_user_nice(struct task_struct *p, long nice)
  3039. {
  3040. int old_prio, delta, on_rq;
  3041. unsigned long flags;
  3042. struct rq *rq;
  3043. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3044. return;
  3045. /*
  3046. * We have to be careful, if called from sys_setpriority(),
  3047. * the task might be in the middle of scheduling on another CPU.
  3048. */
  3049. rq = task_rq_lock(p, &flags);
  3050. /*
  3051. * The RT priorities are set via sched_setscheduler(), but we still
  3052. * allow the 'normal' nice value to be set - but as expected
  3053. * it wont have any effect on scheduling until the task is
  3054. * SCHED_FIFO/SCHED_RR:
  3055. */
  3056. if (task_has_rt_policy(p)) {
  3057. p->static_prio = NICE_TO_PRIO(nice);
  3058. goto out_unlock;
  3059. }
  3060. on_rq = p->on_rq;
  3061. if (on_rq)
  3062. dequeue_task(rq, p, 0);
  3063. p->static_prio = NICE_TO_PRIO(nice);
  3064. set_load_weight(p);
  3065. old_prio = p->prio;
  3066. p->prio = effective_prio(p);
  3067. delta = p->prio - old_prio;
  3068. if (on_rq) {
  3069. enqueue_task(rq, p, 0);
  3070. /*
  3071. * If the task increased its priority or is running and
  3072. * lowered its priority, then reschedule its CPU:
  3073. */
  3074. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3075. resched_task(rq->curr);
  3076. }
  3077. out_unlock:
  3078. task_rq_unlock(rq, p, &flags);
  3079. }
  3080. EXPORT_SYMBOL(set_user_nice);
  3081. /*
  3082. * can_nice - check if a task can reduce its nice value
  3083. * @p: task
  3084. * @nice: nice value
  3085. */
  3086. int can_nice(const struct task_struct *p, const int nice)
  3087. {
  3088. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3089. int nice_rlim = 20 - nice;
  3090. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3091. capable(CAP_SYS_NICE));
  3092. }
  3093. #ifdef __ARCH_WANT_SYS_NICE
  3094. /*
  3095. * sys_nice - change the priority of the current process.
  3096. * @increment: priority increment
  3097. *
  3098. * sys_setpriority is a more generic, but much slower function that
  3099. * does similar things.
  3100. */
  3101. SYSCALL_DEFINE1(nice, int, increment)
  3102. {
  3103. long nice, retval;
  3104. /*
  3105. * Setpriority might change our priority at the same moment.
  3106. * We don't have to worry. Conceptually one call occurs first
  3107. * and we have a single winner.
  3108. */
  3109. if (increment < -40)
  3110. increment = -40;
  3111. if (increment > 40)
  3112. increment = 40;
  3113. nice = TASK_NICE(current) + increment;
  3114. if (nice < -20)
  3115. nice = -20;
  3116. if (nice > 19)
  3117. nice = 19;
  3118. if (increment < 0 && !can_nice(current, nice))
  3119. return -EPERM;
  3120. retval = security_task_setnice(current, nice);
  3121. if (retval)
  3122. return retval;
  3123. set_user_nice(current, nice);
  3124. return 0;
  3125. }
  3126. #endif
  3127. /**
  3128. * task_prio - return the priority value of a given task.
  3129. * @p: the task in question.
  3130. *
  3131. * This is the priority value as seen by users in /proc.
  3132. * RT tasks are offset by -200. Normal tasks are centered
  3133. * around 0, value goes from -16 to +15.
  3134. */
  3135. int task_prio(const struct task_struct *p)
  3136. {
  3137. return p->prio - MAX_RT_PRIO;
  3138. }
  3139. /**
  3140. * task_nice - return the nice value of a given task.
  3141. * @p: the task in question.
  3142. */
  3143. int task_nice(const struct task_struct *p)
  3144. {
  3145. return TASK_NICE(p);
  3146. }
  3147. EXPORT_SYMBOL(task_nice);
  3148. /**
  3149. * idle_cpu - is a given cpu idle currently?
  3150. * @cpu: the processor in question.
  3151. */
  3152. int idle_cpu(int cpu)
  3153. {
  3154. struct rq *rq = cpu_rq(cpu);
  3155. if (rq->curr != rq->idle)
  3156. return 0;
  3157. if (rq->nr_running)
  3158. return 0;
  3159. #ifdef CONFIG_SMP
  3160. if (!llist_empty(&rq->wake_list))
  3161. return 0;
  3162. #endif
  3163. return 1;
  3164. }
  3165. /**
  3166. * idle_task - return the idle task for a given cpu.
  3167. * @cpu: the processor in question.
  3168. */
  3169. struct task_struct *idle_task(int cpu)
  3170. {
  3171. return cpu_rq(cpu)->idle;
  3172. }
  3173. /**
  3174. * find_process_by_pid - find a process with a matching PID value.
  3175. * @pid: the pid in question.
  3176. */
  3177. static struct task_struct *find_process_by_pid(pid_t pid)
  3178. {
  3179. return pid ? find_task_by_vpid(pid) : current;
  3180. }
  3181. /* Actually do priority change: must hold rq lock. */
  3182. static void
  3183. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3184. {
  3185. p->policy = policy;
  3186. p->rt_priority = prio;
  3187. p->normal_prio = normal_prio(p);
  3188. /* we are holding p->pi_lock already */
  3189. p->prio = rt_mutex_getprio(p);
  3190. if (rt_prio(p->prio))
  3191. p->sched_class = &rt_sched_class;
  3192. else
  3193. p->sched_class = &fair_sched_class;
  3194. set_load_weight(p);
  3195. }
  3196. /*
  3197. * check the target process has a UID that matches the current process's
  3198. */
  3199. static bool check_same_owner(struct task_struct *p)
  3200. {
  3201. const struct cred *cred = current_cred(), *pcred;
  3202. bool match;
  3203. rcu_read_lock();
  3204. pcred = __task_cred(p);
  3205. match = (uid_eq(cred->euid, pcred->euid) ||
  3206. uid_eq(cred->euid, pcred->uid));
  3207. rcu_read_unlock();
  3208. return match;
  3209. }
  3210. static int __sched_setscheduler(struct task_struct *p, int policy,
  3211. const struct sched_param *param, bool user)
  3212. {
  3213. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3214. unsigned long flags;
  3215. const struct sched_class *prev_class;
  3216. struct rq *rq;
  3217. int reset_on_fork;
  3218. /* may grab non-irq protected spin_locks */
  3219. BUG_ON(in_interrupt());
  3220. recheck:
  3221. /* double check policy once rq lock held */
  3222. if (policy < 0) {
  3223. reset_on_fork = p->sched_reset_on_fork;
  3224. policy = oldpolicy = p->policy;
  3225. } else {
  3226. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3227. policy &= ~SCHED_RESET_ON_FORK;
  3228. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3229. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3230. policy != SCHED_IDLE)
  3231. return -EINVAL;
  3232. }
  3233. /*
  3234. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3235. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3236. * SCHED_BATCH and SCHED_IDLE is 0.
  3237. */
  3238. if (param->sched_priority < 0 ||
  3239. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3240. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3241. return -EINVAL;
  3242. if (rt_policy(policy) != (param->sched_priority != 0))
  3243. return -EINVAL;
  3244. /*
  3245. * Allow unprivileged RT tasks to decrease priority:
  3246. */
  3247. if (user && !capable(CAP_SYS_NICE)) {
  3248. if (rt_policy(policy)) {
  3249. unsigned long rlim_rtprio =
  3250. task_rlimit(p, RLIMIT_RTPRIO);
  3251. /* can't set/change the rt policy */
  3252. if (policy != p->policy && !rlim_rtprio)
  3253. return -EPERM;
  3254. /* can't increase priority */
  3255. if (param->sched_priority > p->rt_priority &&
  3256. param->sched_priority > rlim_rtprio)
  3257. return -EPERM;
  3258. }
  3259. /*
  3260. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3261. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3262. */
  3263. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3264. if (!can_nice(p, TASK_NICE(p)))
  3265. return -EPERM;
  3266. }
  3267. /* can't change other user's priorities */
  3268. if (!check_same_owner(p))
  3269. return -EPERM;
  3270. /* Normal users shall not reset the sched_reset_on_fork flag */
  3271. if (p->sched_reset_on_fork && !reset_on_fork)
  3272. return -EPERM;
  3273. }
  3274. if (user) {
  3275. retval = security_task_setscheduler(p);
  3276. if (retval)
  3277. return retval;
  3278. }
  3279. /*
  3280. * make sure no PI-waiters arrive (or leave) while we are
  3281. * changing the priority of the task:
  3282. *
  3283. * To be able to change p->policy safely, the appropriate
  3284. * runqueue lock must be held.
  3285. */
  3286. rq = task_rq_lock(p, &flags);
  3287. /*
  3288. * Changing the policy of the stop threads its a very bad idea
  3289. */
  3290. if (p == rq->stop) {
  3291. task_rq_unlock(rq, p, &flags);
  3292. return -EINVAL;
  3293. }
  3294. /*
  3295. * If not changing anything there's no need to proceed further:
  3296. */
  3297. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3298. param->sched_priority == p->rt_priority))) {
  3299. task_rq_unlock(rq, p, &flags);
  3300. return 0;
  3301. }
  3302. #ifdef CONFIG_RT_GROUP_SCHED
  3303. if (user) {
  3304. /*
  3305. * Do not allow realtime tasks into groups that have no runtime
  3306. * assigned.
  3307. */
  3308. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3309. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3310. !task_group_is_autogroup(task_group(p))) {
  3311. task_rq_unlock(rq, p, &flags);
  3312. return -EPERM;
  3313. }
  3314. }
  3315. #endif
  3316. /* recheck policy now with rq lock held */
  3317. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3318. policy = oldpolicy = -1;
  3319. task_rq_unlock(rq, p, &flags);
  3320. goto recheck;
  3321. }
  3322. on_rq = p->on_rq;
  3323. running = task_current(rq, p);
  3324. if (on_rq)
  3325. dequeue_task(rq, p, 0);
  3326. if (running)
  3327. p->sched_class->put_prev_task(rq, p);
  3328. p->sched_reset_on_fork = reset_on_fork;
  3329. oldprio = p->prio;
  3330. prev_class = p->sched_class;
  3331. __setscheduler(rq, p, policy, param->sched_priority);
  3332. if (running)
  3333. p->sched_class->set_curr_task(rq);
  3334. if (on_rq)
  3335. enqueue_task(rq, p, 0);
  3336. check_class_changed(rq, p, prev_class, oldprio);
  3337. task_rq_unlock(rq, p, &flags);
  3338. rt_mutex_adjust_pi(p);
  3339. return 0;
  3340. }
  3341. /**
  3342. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3343. * @p: the task in question.
  3344. * @policy: new policy.
  3345. * @param: structure containing the new RT priority.
  3346. *
  3347. * NOTE that the task may be already dead.
  3348. */
  3349. int sched_setscheduler(struct task_struct *p, int policy,
  3350. const struct sched_param *param)
  3351. {
  3352. return __sched_setscheduler(p, policy, param, true);
  3353. }
  3354. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3355. /**
  3356. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3357. * @p: the task in question.
  3358. * @policy: new policy.
  3359. * @param: structure containing the new RT priority.
  3360. *
  3361. * Just like sched_setscheduler, only don't bother checking if the
  3362. * current context has permission. For example, this is needed in
  3363. * stop_machine(): we create temporary high priority worker threads,
  3364. * but our caller might not have that capability.
  3365. */
  3366. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3367. const struct sched_param *param)
  3368. {
  3369. return __sched_setscheduler(p, policy, param, false);
  3370. }
  3371. static int
  3372. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3373. {
  3374. struct sched_param lparam;
  3375. struct task_struct *p;
  3376. int retval;
  3377. if (!param || pid < 0)
  3378. return -EINVAL;
  3379. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3380. return -EFAULT;
  3381. rcu_read_lock();
  3382. retval = -ESRCH;
  3383. p = find_process_by_pid(pid);
  3384. if (p != NULL)
  3385. retval = sched_setscheduler(p, policy, &lparam);
  3386. rcu_read_unlock();
  3387. return retval;
  3388. }
  3389. /**
  3390. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3391. * @pid: the pid in question.
  3392. * @policy: new policy.
  3393. * @param: structure containing the new RT priority.
  3394. */
  3395. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3396. struct sched_param __user *, param)
  3397. {
  3398. /* negative values for policy are not valid */
  3399. if (policy < 0)
  3400. return -EINVAL;
  3401. return do_sched_setscheduler(pid, policy, param);
  3402. }
  3403. /**
  3404. * sys_sched_setparam - set/change the RT priority of a thread
  3405. * @pid: the pid in question.
  3406. * @param: structure containing the new RT priority.
  3407. */
  3408. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3409. {
  3410. return do_sched_setscheduler(pid, -1, param);
  3411. }
  3412. /**
  3413. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3414. * @pid: the pid in question.
  3415. */
  3416. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3417. {
  3418. struct task_struct *p;
  3419. int retval;
  3420. if (pid < 0)
  3421. return -EINVAL;
  3422. retval = -ESRCH;
  3423. rcu_read_lock();
  3424. p = find_process_by_pid(pid);
  3425. if (p) {
  3426. retval = security_task_getscheduler(p);
  3427. if (!retval)
  3428. retval = p->policy
  3429. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3430. }
  3431. rcu_read_unlock();
  3432. return retval;
  3433. }
  3434. /**
  3435. * sys_sched_getparam - get the RT priority of a thread
  3436. * @pid: the pid in question.
  3437. * @param: structure containing the RT priority.
  3438. */
  3439. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3440. {
  3441. struct sched_param lp;
  3442. struct task_struct *p;
  3443. int retval;
  3444. if (!param || pid < 0)
  3445. return -EINVAL;
  3446. rcu_read_lock();
  3447. p = find_process_by_pid(pid);
  3448. retval = -ESRCH;
  3449. if (!p)
  3450. goto out_unlock;
  3451. retval = security_task_getscheduler(p);
  3452. if (retval)
  3453. goto out_unlock;
  3454. lp.sched_priority = p->rt_priority;
  3455. rcu_read_unlock();
  3456. /*
  3457. * This one might sleep, we cannot do it with a spinlock held ...
  3458. */
  3459. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3460. return retval;
  3461. out_unlock:
  3462. rcu_read_unlock();
  3463. return retval;
  3464. }
  3465. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3466. {
  3467. cpumask_var_t cpus_allowed, new_mask;
  3468. struct task_struct *p;
  3469. int retval;
  3470. get_online_cpus();
  3471. rcu_read_lock();
  3472. p = find_process_by_pid(pid);
  3473. if (!p) {
  3474. rcu_read_unlock();
  3475. put_online_cpus();
  3476. return -ESRCH;
  3477. }
  3478. /* Prevent p going away */
  3479. get_task_struct(p);
  3480. rcu_read_unlock();
  3481. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3482. retval = -ENOMEM;
  3483. goto out_put_task;
  3484. }
  3485. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3486. retval = -ENOMEM;
  3487. goto out_free_cpus_allowed;
  3488. }
  3489. retval = -EPERM;
  3490. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3491. goto out_unlock;
  3492. retval = security_task_setscheduler(p);
  3493. if (retval)
  3494. goto out_unlock;
  3495. cpuset_cpus_allowed(p, cpus_allowed);
  3496. cpumask_and(new_mask, in_mask, cpus_allowed);
  3497. again:
  3498. retval = set_cpus_allowed_ptr(p, new_mask);
  3499. if (!retval) {
  3500. cpuset_cpus_allowed(p, cpus_allowed);
  3501. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3502. /*
  3503. * We must have raced with a concurrent cpuset
  3504. * update. Just reset the cpus_allowed to the
  3505. * cpuset's cpus_allowed
  3506. */
  3507. cpumask_copy(new_mask, cpus_allowed);
  3508. goto again;
  3509. }
  3510. }
  3511. out_unlock:
  3512. free_cpumask_var(new_mask);
  3513. out_free_cpus_allowed:
  3514. free_cpumask_var(cpus_allowed);
  3515. out_put_task:
  3516. put_task_struct(p);
  3517. put_online_cpus();
  3518. return retval;
  3519. }
  3520. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3521. struct cpumask *new_mask)
  3522. {
  3523. if (len < cpumask_size())
  3524. cpumask_clear(new_mask);
  3525. else if (len > cpumask_size())
  3526. len = cpumask_size();
  3527. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3528. }
  3529. /**
  3530. * sys_sched_setaffinity - set the cpu affinity of a process
  3531. * @pid: pid of the process
  3532. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3533. * @user_mask_ptr: user-space pointer to the new cpu mask
  3534. */
  3535. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3536. unsigned long __user *, user_mask_ptr)
  3537. {
  3538. cpumask_var_t new_mask;
  3539. int retval;
  3540. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3541. return -ENOMEM;
  3542. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3543. if (retval == 0)
  3544. retval = sched_setaffinity(pid, new_mask);
  3545. free_cpumask_var(new_mask);
  3546. return retval;
  3547. }
  3548. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3549. {
  3550. struct task_struct *p;
  3551. unsigned long flags;
  3552. int retval;
  3553. get_online_cpus();
  3554. rcu_read_lock();
  3555. retval = -ESRCH;
  3556. p = find_process_by_pid(pid);
  3557. if (!p)
  3558. goto out_unlock;
  3559. retval = security_task_getscheduler(p);
  3560. if (retval)
  3561. goto out_unlock;
  3562. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3563. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3564. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3565. out_unlock:
  3566. rcu_read_unlock();
  3567. put_online_cpus();
  3568. return retval;
  3569. }
  3570. /**
  3571. * sys_sched_getaffinity - get the cpu affinity of a process
  3572. * @pid: pid of the process
  3573. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3574. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3575. */
  3576. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3577. unsigned long __user *, user_mask_ptr)
  3578. {
  3579. int ret;
  3580. cpumask_var_t mask;
  3581. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3582. return -EINVAL;
  3583. if (len & (sizeof(unsigned long)-1))
  3584. return -EINVAL;
  3585. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3586. return -ENOMEM;
  3587. ret = sched_getaffinity(pid, mask);
  3588. if (ret == 0) {
  3589. size_t retlen = min_t(size_t, len, cpumask_size());
  3590. if (copy_to_user(user_mask_ptr, mask, retlen))
  3591. ret = -EFAULT;
  3592. else
  3593. ret = retlen;
  3594. }
  3595. free_cpumask_var(mask);
  3596. return ret;
  3597. }
  3598. /**
  3599. * sys_sched_yield - yield the current processor to other threads.
  3600. *
  3601. * This function yields the current CPU to other tasks. If there are no
  3602. * other threads running on this CPU then this function will return.
  3603. */
  3604. SYSCALL_DEFINE0(sched_yield)
  3605. {
  3606. struct rq *rq = this_rq_lock();
  3607. schedstat_inc(rq, yld_count);
  3608. current->sched_class->yield_task(rq);
  3609. /*
  3610. * Since we are going to call schedule() anyway, there's
  3611. * no need to preempt or enable interrupts:
  3612. */
  3613. __release(rq->lock);
  3614. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3615. do_raw_spin_unlock(&rq->lock);
  3616. sched_preempt_enable_no_resched();
  3617. schedule();
  3618. return 0;
  3619. }
  3620. static inline int should_resched(void)
  3621. {
  3622. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3623. }
  3624. static void __cond_resched(void)
  3625. {
  3626. add_preempt_count(PREEMPT_ACTIVE);
  3627. __schedule();
  3628. sub_preempt_count(PREEMPT_ACTIVE);
  3629. }
  3630. int __sched _cond_resched(void)
  3631. {
  3632. if (should_resched()) {
  3633. __cond_resched();
  3634. return 1;
  3635. }
  3636. return 0;
  3637. }
  3638. EXPORT_SYMBOL(_cond_resched);
  3639. /*
  3640. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3641. * call schedule, and on return reacquire the lock.
  3642. *
  3643. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3644. * operations here to prevent schedule() from being called twice (once via
  3645. * spin_unlock(), once by hand).
  3646. */
  3647. int __cond_resched_lock(spinlock_t *lock)
  3648. {
  3649. int resched = should_resched();
  3650. int ret = 0;
  3651. lockdep_assert_held(lock);
  3652. if (spin_needbreak(lock) || resched) {
  3653. spin_unlock(lock);
  3654. if (resched)
  3655. __cond_resched();
  3656. else
  3657. cpu_relax();
  3658. ret = 1;
  3659. spin_lock(lock);
  3660. }
  3661. return ret;
  3662. }
  3663. EXPORT_SYMBOL(__cond_resched_lock);
  3664. int __sched __cond_resched_softirq(void)
  3665. {
  3666. BUG_ON(!in_softirq());
  3667. if (should_resched()) {
  3668. local_bh_enable();
  3669. __cond_resched();
  3670. local_bh_disable();
  3671. return 1;
  3672. }
  3673. return 0;
  3674. }
  3675. EXPORT_SYMBOL(__cond_resched_softirq);
  3676. /**
  3677. * yield - yield the current processor to other threads.
  3678. *
  3679. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3680. *
  3681. * The scheduler is at all times free to pick the calling task as the most
  3682. * eligible task to run, if removing the yield() call from your code breaks
  3683. * it, its already broken.
  3684. *
  3685. * Typical broken usage is:
  3686. *
  3687. * while (!event)
  3688. * yield();
  3689. *
  3690. * where one assumes that yield() will let 'the other' process run that will
  3691. * make event true. If the current task is a SCHED_FIFO task that will never
  3692. * happen. Never use yield() as a progress guarantee!!
  3693. *
  3694. * If you want to use yield() to wait for something, use wait_event().
  3695. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3696. * If you still want to use yield(), do not!
  3697. */
  3698. void __sched yield(void)
  3699. {
  3700. set_current_state(TASK_RUNNING);
  3701. sys_sched_yield();
  3702. }
  3703. EXPORT_SYMBOL(yield);
  3704. /**
  3705. * yield_to - yield the current processor to another thread in
  3706. * your thread group, or accelerate that thread toward the
  3707. * processor it's on.
  3708. * @p: target task
  3709. * @preempt: whether task preemption is allowed or not
  3710. *
  3711. * It's the caller's job to ensure that the target task struct
  3712. * can't go away on us before we can do any checks.
  3713. *
  3714. * Returns:
  3715. * true (>0) if we indeed boosted the target task.
  3716. * false (0) if we failed to boost the target.
  3717. * -ESRCH if there's no task to yield to.
  3718. */
  3719. bool __sched yield_to(struct task_struct *p, bool preempt)
  3720. {
  3721. struct task_struct *curr = current;
  3722. struct rq *rq, *p_rq;
  3723. unsigned long flags;
  3724. bool yielded = 0;
  3725. local_irq_save(flags);
  3726. rq = this_rq();
  3727. again:
  3728. p_rq = task_rq(p);
  3729. /*
  3730. * If we're the only runnable task on the rq and target rq also
  3731. * has only one task, there's absolutely no point in yielding.
  3732. */
  3733. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3734. yielded = -ESRCH;
  3735. goto out_irq;
  3736. }
  3737. double_rq_lock(rq, p_rq);
  3738. while (task_rq(p) != p_rq) {
  3739. double_rq_unlock(rq, p_rq);
  3740. goto again;
  3741. }
  3742. if (!curr->sched_class->yield_to_task)
  3743. goto out_unlock;
  3744. if (curr->sched_class != p->sched_class)
  3745. goto out_unlock;
  3746. if (task_running(p_rq, p) || p->state)
  3747. goto out_unlock;
  3748. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3749. if (yielded) {
  3750. schedstat_inc(rq, yld_count);
  3751. /*
  3752. * Make p's CPU reschedule; pick_next_entity takes care of
  3753. * fairness.
  3754. */
  3755. if (preempt && rq != p_rq)
  3756. resched_task(p_rq->curr);
  3757. }
  3758. out_unlock:
  3759. double_rq_unlock(rq, p_rq);
  3760. out_irq:
  3761. local_irq_restore(flags);
  3762. if (yielded > 0)
  3763. schedule();
  3764. return yielded;
  3765. }
  3766. EXPORT_SYMBOL_GPL(yield_to);
  3767. /*
  3768. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3769. * that process accounting knows that this is a task in IO wait state.
  3770. */
  3771. void __sched io_schedule(void)
  3772. {
  3773. struct rq *rq = raw_rq();
  3774. delayacct_blkio_start();
  3775. atomic_inc(&rq->nr_iowait);
  3776. blk_flush_plug(current);
  3777. current->in_iowait = 1;
  3778. schedule();
  3779. current->in_iowait = 0;
  3780. atomic_dec(&rq->nr_iowait);
  3781. delayacct_blkio_end();
  3782. }
  3783. EXPORT_SYMBOL(io_schedule);
  3784. long __sched io_schedule_timeout(long timeout)
  3785. {
  3786. struct rq *rq = raw_rq();
  3787. long ret;
  3788. delayacct_blkio_start();
  3789. atomic_inc(&rq->nr_iowait);
  3790. blk_flush_plug(current);
  3791. current->in_iowait = 1;
  3792. ret = schedule_timeout(timeout);
  3793. current->in_iowait = 0;
  3794. atomic_dec(&rq->nr_iowait);
  3795. delayacct_blkio_end();
  3796. return ret;
  3797. }
  3798. /**
  3799. * sys_sched_get_priority_max - return maximum RT priority.
  3800. * @policy: scheduling class.
  3801. *
  3802. * this syscall returns the maximum rt_priority that can be used
  3803. * by a given scheduling class.
  3804. */
  3805. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3806. {
  3807. int ret = -EINVAL;
  3808. switch (policy) {
  3809. case SCHED_FIFO:
  3810. case SCHED_RR:
  3811. ret = MAX_USER_RT_PRIO-1;
  3812. break;
  3813. case SCHED_NORMAL:
  3814. case SCHED_BATCH:
  3815. case SCHED_IDLE:
  3816. ret = 0;
  3817. break;
  3818. }
  3819. return ret;
  3820. }
  3821. /**
  3822. * sys_sched_get_priority_min - return minimum RT priority.
  3823. * @policy: scheduling class.
  3824. *
  3825. * this syscall returns the minimum rt_priority that can be used
  3826. * by a given scheduling class.
  3827. */
  3828. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3829. {
  3830. int ret = -EINVAL;
  3831. switch (policy) {
  3832. case SCHED_FIFO:
  3833. case SCHED_RR:
  3834. ret = 1;
  3835. break;
  3836. case SCHED_NORMAL:
  3837. case SCHED_BATCH:
  3838. case SCHED_IDLE:
  3839. ret = 0;
  3840. }
  3841. return ret;
  3842. }
  3843. /**
  3844. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3845. * @pid: pid of the process.
  3846. * @interval: userspace pointer to the timeslice value.
  3847. *
  3848. * this syscall writes the default timeslice value of a given process
  3849. * into the user-space timespec buffer. A value of '0' means infinity.
  3850. */
  3851. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3852. struct timespec __user *, interval)
  3853. {
  3854. struct task_struct *p;
  3855. unsigned int time_slice;
  3856. unsigned long flags;
  3857. struct rq *rq;
  3858. int retval;
  3859. struct timespec t;
  3860. if (pid < 0)
  3861. return -EINVAL;
  3862. retval = -ESRCH;
  3863. rcu_read_lock();
  3864. p = find_process_by_pid(pid);
  3865. if (!p)
  3866. goto out_unlock;
  3867. retval = security_task_getscheduler(p);
  3868. if (retval)
  3869. goto out_unlock;
  3870. rq = task_rq_lock(p, &flags);
  3871. time_slice = p->sched_class->get_rr_interval(rq, p);
  3872. task_rq_unlock(rq, p, &flags);
  3873. rcu_read_unlock();
  3874. jiffies_to_timespec(time_slice, &t);
  3875. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3876. return retval;
  3877. out_unlock:
  3878. rcu_read_unlock();
  3879. return retval;
  3880. }
  3881. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3882. void sched_show_task(struct task_struct *p)
  3883. {
  3884. unsigned long free = 0;
  3885. int ppid;
  3886. unsigned state;
  3887. state = p->state ? __ffs(p->state) + 1 : 0;
  3888. printk(KERN_INFO "%-15.15s %c", p->comm,
  3889. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3890. #if BITS_PER_LONG == 32
  3891. if (state == TASK_RUNNING)
  3892. printk(KERN_CONT " running ");
  3893. else
  3894. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3895. #else
  3896. if (state == TASK_RUNNING)
  3897. printk(KERN_CONT " running task ");
  3898. else
  3899. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3900. #endif
  3901. #ifdef CONFIG_DEBUG_STACK_USAGE
  3902. free = stack_not_used(p);
  3903. #endif
  3904. rcu_read_lock();
  3905. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3906. rcu_read_unlock();
  3907. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3908. task_pid_nr(p), ppid,
  3909. (unsigned long)task_thread_info(p)->flags);
  3910. show_stack(p, NULL);
  3911. }
  3912. void show_state_filter(unsigned long state_filter)
  3913. {
  3914. struct task_struct *g, *p;
  3915. #if BITS_PER_LONG == 32
  3916. printk(KERN_INFO
  3917. " task PC stack pid father\n");
  3918. #else
  3919. printk(KERN_INFO
  3920. " task PC stack pid father\n");
  3921. #endif
  3922. rcu_read_lock();
  3923. do_each_thread(g, p) {
  3924. /*
  3925. * reset the NMI-timeout, listing all files on a slow
  3926. * console might take a lot of time:
  3927. */
  3928. touch_nmi_watchdog();
  3929. if (!state_filter || (p->state & state_filter))
  3930. sched_show_task(p);
  3931. } while_each_thread(g, p);
  3932. touch_all_softlockup_watchdogs();
  3933. #ifdef CONFIG_SCHED_DEBUG
  3934. sysrq_sched_debug_show();
  3935. #endif
  3936. rcu_read_unlock();
  3937. /*
  3938. * Only show locks if all tasks are dumped:
  3939. */
  3940. if (!state_filter)
  3941. debug_show_all_locks();
  3942. }
  3943. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  3944. {
  3945. idle->sched_class = &idle_sched_class;
  3946. }
  3947. /**
  3948. * init_idle - set up an idle thread for a given CPU
  3949. * @idle: task in question
  3950. * @cpu: cpu the idle task belongs to
  3951. *
  3952. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3953. * flag, to make booting more robust.
  3954. */
  3955. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  3956. {
  3957. struct rq *rq = cpu_rq(cpu);
  3958. unsigned long flags;
  3959. raw_spin_lock_irqsave(&rq->lock, flags);
  3960. __sched_fork(idle);
  3961. idle->state = TASK_RUNNING;
  3962. idle->se.exec_start = sched_clock();
  3963. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3964. /*
  3965. * We're having a chicken and egg problem, even though we are
  3966. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3967. * lockdep check in task_group() will fail.
  3968. *
  3969. * Similar case to sched_fork(). / Alternatively we could
  3970. * use task_rq_lock() here and obtain the other rq->lock.
  3971. *
  3972. * Silence PROVE_RCU
  3973. */
  3974. rcu_read_lock();
  3975. __set_task_cpu(idle, cpu);
  3976. rcu_read_unlock();
  3977. rq->curr = rq->idle = idle;
  3978. #if defined(CONFIG_SMP)
  3979. idle->on_cpu = 1;
  3980. #endif
  3981. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3982. /* Set the preempt count _outside_ the spinlocks! */
  3983. task_thread_info(idle)->preempt_count = 0;
  3984. /*
  3985. * The idle tasks have their own, simple scheduling class:
  3986. */
  3987. idle->sched_class = &idle_sched_class;
  3988. ftrace_graph_init_idle_task(idle, cpu);
  3989. #if defined(CONFIG_SMP)
  3990. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3991. #endif
  3992. }
  3993. #ifdef CONFIG_SMP
  3994. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3995. {
  3996. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3997. p->sched_class->set_cpus_allowed(p, new_mask);
  3998. cpumask_copy(&p->cpus_allowed, new_mask);
  3999. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4000. }
  4001. /*
  4002. * This is how migration works:
  4003. *
  4004. * 1) we invoke migration_cpu_stop() on the target CPU using
  4005. * stop_one_cpu().
  4006. * 2) stopper starts to run (implicitly forcing the migrated thread
  4007. * off the CPU)
  4008. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4009. * 4) if it's in the wrong runqueue then the migration thread removes
  4010. * it and puts it into the right queue.
  4011. * 5) stopper completes and stop_one_cpu() returns and the migration
  4012. * is done.
  4013. */
  4014. /*
  4015. * Change a given task's CPU affinity. Migrate the thread to a
  4016. * proper CPU and schedule it away if the CPU it's executing on
  4017. * is removed from the allowed bitmask.
  4018. *
  4019. * NOTE: the caller must have a valid reference to the task, the
  4020. * task must not exit() & deallocate itself prematurely. The
  4021. * call is not atomic; no spinlocks may be held.
  4022. */
  4023. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4024. {
  4025. unsigned long flags;
  4026. struct rq *rq;
  4027. unsigned int dest_cpu;
  4028. int ret = 0;
  4029. rq = task_rq_lock(p, &flags);
  4030. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4031. goto out;
  4032. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4033. ret = -EINVAL;
  4034. goto out;
  4035. }
  4036. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4037. ret = -EINVAL;
  4038. goto out;
  4039. }
  4040. do_set_cpus_allowed(p, new_mask);
  4041. /* Can the task run on the task's current CPU? If so, we're done */
  4042. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4043. goto out;
  4044. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4045. if (p->on_rq) {
  4046. struct migration_arg arg = { p, dest_cpu };
  4047. /* Need help from migration thread: drop lock and wait. */
  4048. task_rq_unlock(rq, p, &flags);
  4049. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4050. tlb_migrate_finish(p->mm);
  4051. return 0;
  4052. }
  4053. out:
  4054. task_rq_unlock(rq, p, &flags);
  4055. return ret;
  4056. }
  4057. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4058. /*
  4059. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4060. * this because either it can't run here any more (set_cpus_allowed()
  4061. * away from this CPU, or CPU going down), or because we're
  4062. * attempting to rebalance this task on exec (sched_exec).
  4063. *
  4064. * So we race with normal scheduler movements, but that's OK, as long
  4065. * as the task is no longer on this CPU.
  4066. *
  4067. * Returns non-zero if task was successfully migrated.
  4068. */
  4069. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4070. {
  4071. struct rq *rq_dest, *rq_src;
  4072. int ret = 0;
  4073. if (unlikely(!cpu_active(dest_cpu)))
  4074. return ret;
  4075. rq_src = cpu_rq(src_cpu);
  4076. rq_dest = cpu_rq(dest_cpu);
  4077. raw_spin_lock(&p->pi_lock);
  4078. double_rq_lock(rq_src, rq_dest);
  4079. /* Already moved. */
  4080. if (task_cpu(p) != src_cpu)
  4081. goto done;
  4082. /* Affinity changed (again). */
  4083. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4084. goto fail;
  4085. /*
  4086. * If we're not on a rq, the next wake-up will ensure we're
  4087. * placed properly.
  4088. */
  4089. if (p->on_rq) {
  4090. dequeue_task(rq_src, p, 0);
  4091. set_task_cpu(p, dest_cpu);
  4092. enqueue_task(rq_dest, p, 0);
  4093. check_preempt_curr(rq_dest, p, 0);
  4094. }
  4095. done:
  4096. ret = 1;
  4097. fail:
  4098. double_rq_unlock(rq_src, rq_dest);
  4099. raw_spin_unlock(&p->pi_lock);
  4100. return ret;
  4101. }
  4102. /*
  4103. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4104. * and performs thread migration by bumping thread off CPU then
  4105. * 'pushing' onto another runqueue.
  4106. */
  4107. static int migration_cpu_stop(void *data)
  4108. {
  4109. struct migration_arg *arg = data;
  4110. /*
  4111. * The original target cpu might have gone down and we might
  4112. * be on another cpu but it doesn't matter.
  4113. */
  4114. local_irq_disable();
  4115. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4116. local_irq_enable();
  4117. return 0;
  4118. }
  4119. #ifdef CONFIG_HOTPLUG_CPU
  4120. /*
  4121. * Ensures that the idle task is using init_mm right before its cpu goes
  4122. * offline.
  4123. */
  4124. void idle_task_exit(void)
  4125. {
  4126. struct mm_struct *mm = current->active_mm;
  4127. BUG_ON(cpu_online(smp_processor_id()));
  4128. if (mm != &init_mm)
  4129. switch_mm(mm, &init_mm, current);
  4130. mmdrop(mm);
  4131. }
  4132. /*
  4133. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4134. * we might have. Assumes we're called after migrate_tasks() so that the
  4135. * nr_active count is stable.
  4136. *
  4137. * Also see the comment "Global load-average calculations".
  4138. */
  4139. static void calc_load_migrate(struct rq *rq)
  4140. {
  4141. long delta = calc_load_fold_active(rq);
  4142. if (delta)
  4143. atomic_long_add(delta, &calc_load_tasks);
  4144. }
  4145. /*
  4146. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4147. * try_to_wake_up()->select_task_rq().
  4148. *
  4149. * Called with rq->lock held even though we'er in stop_machine() and
  4150. * there's no concurrency possible, we hold the required locks anyway
  4151. * because of lock validation efforts.
  4152. */
  4153. static void migrate_tasks(unsigned int dead_cpu)
  4154. {
  4155. struct rq *rq = cpu_rq(dead_cpu);
  4156. struct task_struct *next, *stop = rq->stop;
  4157. int dest_cpu;
  4158. /*
  4159. * Fudge the rq selection such that the below task selection loop
  4160. * doesn't get stuck on the currently eligible stop task.
  4161. *
  4162. * We're currently inside stop_machine() and the rq is either stuck
  4163. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4164. * either way we should never end up calling schedule() until we're
  4165. * done here.
  4166. */
  4167. rq->stop = NULL;
  4168. for ( ; ; ) {
  4169. /*
  4170. * There's this thread running, bail when that's the only
  4171. * remaining thread.
  4172. */
  4173. if (rq->nr_running == 1)
  4174. break;
  4175. next = pick_next_task(rq);
  4176. BUG_ON(!next);
  4177. next->sched_class->put_prev_task(rq, next);
  4178. /* Find suitable destination for @next, with force if needed. */
  4179. dest_cpu = select_fallback_rq(dead_cpu, next);
  4180. raw_spin_unlock(&rq->lock);
  4181. __migrate_task(next, dead_cpu, dest_cpu);
  4182. raw_spin_lock(&rq->lock);
  4183. }
  4184. rq->stop = stop;
  4185. }
  4186. #endif /* CONFIG_HOTPLUG_CPU */
  4187. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4188. static struct ctl_table sd_ctl_dir[] = {
  4189. {
  4190. .procname = "sched_domain",
  4191. .mode = 0555,
  4192. },
  4193. {}
  4194. };
  4195. static struct ctl_table sd_ctl_root[] = {
  4196. {
  4197. .procname = "kernel",
  4198. .mode = 0555,
  4199. .child = sd_ctl_dir,
  4200. },
  4201. {}
  4202. };
  4203. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4204. {
  4205. struct ctl_table *entry =
  4206. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4207. return entry;
  4208. }
  4209. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4210. {
  4211. struct ctl_table *entry;
  4212. /*
  4213. * In the intermediate directories, both the child directory and
  4214. * procname are dynamically allocated and could fail but the mode
  4215. * will always be set. In the lowest directory the names are
  4216. * static strings and all have proc handlers.
  4217. */
  4218. for (entry = *tablep; entry->mode; entry++) {
  4219. if (entry->child)
  4220. sd_free_ctl_entry(&entry->child);
  4221. if (entry->proc_handler == NULL)
  4222. kfree(entry->procname);
  4223. }
  4224. kfree(*tablep);
  4225. *tablep = NULL;
  4226. }
  4227. static int min_load_idx = 0;
  4228. static int max_load_idx = CPU_LOAD_IDX_MAX;
  4229. static void
  4230. set_table_entry(struct ctl_table *entry,
  4231. const char *procname, void *data, int maxlen,
  4232. umode_t mode, proc_handler *proc_handler,
  4233. bool load_idx)
  4234. {
  4235. entry->procname = procname;
  4236. entry->data = data;
  4237. entry->maxlen = maxlen;
  4238. entry->mode = mode;
  4239. entry->proc_handler = proc_handler;
  4240. if (load_idx) {
  4241. entry->extra1 = &min_load_idx;
  4242. entry->extra2 = &max_load_idx;
  4243. }
  4244. }
  4245. static struct ctl_table *
  4246. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4247. {
  4248. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4249. if (table == NULL)
  4250. return NULL;
  4251. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4252. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4253. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4254. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4255. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4256. sizeof(int), 0644, proc_dointvec_minmax, true);
  4257. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4258. sizeof(int), 0644, proc_dointvec_minmax, true);
  4259. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4260. sizeof(int), 0644, proc_dointvec_minmax, true);
  4261. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4262. sizeof(int), 0644, proc_dointvec_minmax, true);
  4263. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4264. sizeof(int), 0644, proc_dointvec_minmax, true);
  4265. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4266. sizeof(int), 0644, proc_dointvec_minmax, false);
  4267. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4268. sizeof(int), 0644, proc_dointvec_minmax, false);
  4269. set_table_entry(&table[9], "cache_nice_tries",
  4270. &sd->cache_nice_tries,
  4271. sizeof(int), 0644, proc_dointvec_minmax, false);
  4272. set_table_entry(&table[10], "flags", &sd->flags,
  4273. sizeof(int), 0644, proc_dointvec_minmax, false);
  4274. set_table_entry(&table[11], "name", sd->name,
  4275. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4276. /* &table[12] is terminator */
  4277. return table;
  4278. }
  4279. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4280. {
  4281. struct ctl_table *entry, *table;
  4282. struct sched_domain *sd;
  4283. int domain_num = 0, i;
  4284. char buf[32];
  4285. for_each_domain(cpu, sd)
  4286. domain_num++;
  4287. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4288. if (table == NULL)
  4289. return NULL;
  4290. i = 0;
  4291. for_each_domain(cpu, sd) {
  4292. snprintf(buf, 32, "domain%d", i);
  4293. entry->procname = kstrdup(buf, GFP_KERNEL);
  4294. entry->mode = 0555;
  4295. entry->child = sd_alloc_ctl_domain_table(sd);
  4296. entry++;
  4297. i++;
  4298. }
  4299. return table;
  4300. }
  4301. static struct ctl_table_header *sd_sysctl_header;
  4302. static void register_sched_domain_sysctl(void)
  4303. {
  4304. int i, cpu_num = num_possible_cpus();
  4305. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4306. char buf[32];
  4307. WARN_ON(sd_ctl_dir[0].child);
  4308. sd_ctl_dir[0].child = entry;
  4309. if (entry == NULL)
  4310. return;
  4311. for_each_possible_cpu(i) {
  4312. snprintf(buf, 32, "cpu%d", i);
  4313. entry->procname = kstrdup(buf, GFP_KERNEL);
  4314. entry->mode = 0555;
  4315. entry->child = sd_alloc_ctl_cpu_table(i);
  4316. entry++;
  4317. }
  4318. WARN_ON(sd_sysctl_header);
  4319. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4320. }
  4321. /* may be called multiple times per register */
  4322. static void unregister_sched_domain_sysctl(void)
  4323. {
  4324. if (sd_sysctl_header)
  4325. unregister_sysctl_table(sd_sysctl_header);
  4326. sd_sysctl_header = NULL;
  4327. if (sd_ctl_dir[0].child)
  4328. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4329. }
  4330. #else
  4331. static void register_sched_domain_sysctl(void)
  4332. {
  4333. }
  4334. static void unregister_sched_domain_sysctl(void)
  4335. {
  4336. }
  4337. #endif
  4338. static void set_rq_online(struct rq *rq)
  4339. {
  4340. if (!rq->online) {
  4341. const struct sched_class *class;
  4342. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4343. rq->online = 1;
  4344. for_each_class(class) {
  4345. if (class->rq_online)
  4346. class->rq_online(rq);
  4347. }
  4348. }
  4349. }
  4350. static void set_rq_offline(struct rq *rq)
  4351. {
  4352. if (rq->online) {
  4353. const struct sched_class *class;
  4354. for_each_class(class) {
  4355. if (class->rq_offline)
  4356. class->rq_offline(rq);
  4357. }
  4358. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4359. rq->online = 0;
  4360. }
  4361. }
  4362. /*
  4363. * migration_call - callback that gets triggered when a CPU is added.
  4364. * Here we can start up the necessary migration thread for the new CPU.
  4365. */
  4366. static int __cpuinit
  4367. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4368. {
  4369. int cpu = (long)hcpu;
  4370. unsigned long flags;
  4371. struct rq *rq = cpu_rq(cpu);
  4372. switch (action & ~CPU_TASKS_FROZEN) {
  4373. case CPU_UP_PREPARE:
  4374. rq->calc_load_update = calc_load_update;
  4375. break;
  4376. case CPU_ONLINE:
  4377. /* Update our root-domain */
  4378. raw_spin_lock_irqsave(&rq->lock, flags);
  4379. if (rq->rd) {
  4380. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4381. set_rq_online(rq);
  4382. }
  4383. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4384. break;
  4385. #ifdef CONFIG_HOTPLUG_CPU
  4386. case CPU_DYING:
  4387. sched_ttwu_pending();
  4388. /* Update our root-domain */
  4389. raw_spin_lock_irqsave(&rq->lock, flags);
  4390. if (rq->rd) {
  4391. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4392. set_rq_offline(rq);
  4393. }
  4394. migrate_tasks(cpu);
  4395. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4396. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4397. break;
  4398. case CPU_DEAD:
  4399. calc_load_migrate(rq);
  4400. break;
  4401. #endif
  4402. }
  4403. update_max_interval();
  4404. return NOTIFY_OK;
  4405. }
  4406. /*
  4407. * Register at high priority so that task migration (migrate_all_tasks)
  4408. * happens before everything else. This has to be lower priority than
  4409. * the notifier in the perf_event subsystem, though.
  4410. */
  4411. static struct notifier_block __cpuinitdata migration_notifier = {
  4412. .notifier_call = migration_call,
  4413. .priority = CPU_PRI_MIGRATION,
  4414. };
  4415. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4416. unsigned long action, void *hcpu)
  4417. {
  4418. switch (action & ~CPU_TASKS_FROZEN) {
  4419. case CPU_STARTING:
  4420. case CPU_DOWN_FAILED:
  4421. set_cpu_active((long)hcpu, true);
  4422. return NOTIFY_OK;
  4423. default:
  4424. return NOTIFY_DONE;
  4425. }
  4426. }
  4427. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4428. unsigned long action, void *hcpu)
  4429. {
  4430. switch (action & ~CPU_TASKS_FROZEN) {
  4431. case CPU_DOWN_PREPARE:
  4432. set_cpu_active((long)hcpu, false);
  4433. return NOTIFY_OK;
  4434. default:
  4435. return NOTIFY_DONE;
  4436. }
  4437. }
  4438. static int __init migration_init(void)
  4439. {
  4440. void *cpu = (void *)(long)smp_processor_id();
  4441. int err;
  4442. /* Initialize migration for the boot CPU */
  4443. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4444. BUG_ON(err == NOTIFY_BAD);
  4445. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4446. register_cpu_notifier(&migration_notifier);
  4447. /* Register cpu active notifiers */
  4448. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4449. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4450. return 0;
  4451. }
  4452. early_initcall(migration_init);
  4453. #endif
  4454. #ifdef CONFIG_SMP
  4455. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4456. #ifdef CONFIG_SCHED_DEBUG
  4457. static __read_mostly int sched_debug_enabled;
  4458. static int __init sched_debug_setup(char *str)
  4459. {
  4460. sched_debug_enabled = 1;
  4461. return 0;
  4462. }
  4463. early_param("sched_debug", sched_debug_setup);
  4464. static inline bool sched_debug(void)
  4465. {
  4466. return sched_debug_enabled;
  4467. }
  4468. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4469. struct cpumask *groupmask)
  4470. {
  4471. struct sched_group *group = sd->groups;
  4472. char str[256];
  4473. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4474. cpumask_clear(groupmask);
  4475. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4476. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4477. printk("does not load-balance\n");
  4478. if (sd->parent)
  4479. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4480. " has parent");
  4481. return -1;
  4482. }
  4483. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4484. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4485. printk(KERN_ERR "ERROR: domain->span does not contain "
  4486. "CPU%d\n", cpu);
  4487. }
  4488. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4489. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4490. " CPU%d\n", cpu);
  4491. }
  4492. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4493. do {
  4494. if (!group) {
  4495. printk("\n");
  4496. printk(KERN_ERR "ERROR: group is NULL\n");
  4497. break;
  4498. }
  4499. /*
  4500. * Even though we initialize ->power to something semi-sane,
  4501. * we leave power_orig unset. This allows us to detect if
  4502. * domain iteration is still funny without causing /0 traps.
  4503. */
  4504. if (!group->sgp->power_orig) {
  4505. printk(KERN_CONT "\n");
  4506. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4507. "set\n");
  4508. break;
  4509. }
  4510. if (!cpumask_weight(sched_group_cpus(group))) {
  4511. printk(KERN_CONT "\n");
  4512. printk(KERN_ERR "ERROR: empty group\n");
  4513. break;
  4514. }
  4515. if (!(sd->flags & SD_OVERLAP) &&
  4516. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4517. printk(KERN_CONT "\n");
  4518. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4519. break;
  4520. }
  4521. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4522. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4523. printk(KERN_CONT " %s", str);
  4524. if (group->sgp->power != SCHED_POWER_SCALE) {
  4525. printk(KERN_CONT " (cpu_power = %d)",
  4526. group->sgp->power);
  4527. }
  4528. group = group->next;
  4529. } while (group != sd->groups);
  4530. printk(KERN_CONT "\n");
  4531. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4532. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4533. if (sd->parent &&
  4534. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4535. printk(KERN_ERR "ERROR: parent span is not a superset "
  4536. "of domain->span\n");
  4537. return 0;
  4538. }
  4539. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4540. {
  4541. int level = 0;
  4542. if (!sched_debug_enabled)
  4543. return;
  4544. if (!sd) {
  4545. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4546. return;
  4547. }
  4548. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4549. for (;;) {
  4550. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4551. break;
  4552. level++;
  4553. sd = sd->parent;
  4554. if (!sd)
  4555. break;
  4556. }
  4557. }
  4558. #else /* !CONFIG_SCHED_DEBUG */
  4559. # define sched_domain_debug(sd, cpu) do { } while (0)
  4560. static inline bool sched_debug(void)
  4561. {
  4562. return false;
  4563. }
  4564. #endif /* CONFIG_SCHED_DEBUG */
  4565. static int sd_degenerate(struct sched_domain *sd)
  4566. {
  4567. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4568. return 1;
  4569. /* Following flags need at least 2 groups */
  4570. if (sd->flags & (SD_LOAD_BALANCE |
  4571. SD_BALANCE_NEWIDLE |
  4572. SD_BALANCE_FORK |
  4573. SD_BALANCE_EXEC |
  4574. SD_SHARE_CPUPOWER |
  4575. SD_SHARE_PKG_RESOURCES)) {
  4576. if (sd->groups != sd->groups->next)
  4577. return 0;
  4578. }
  4579. /* Following flags don't use groups */
  4580. if (sd->flags & (SD_WAKE_AFFINE))
  4581. return 0;
  4582. return 1;
  4583. }
  4584. static int
  4585. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4586. {
  4587. unsigned long cflags = sd->flags, pflags = parent->flags;
  4588. if (sd_degenerate(parent))
  4589. return 1;
  4590. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4591. return 0;
  4592. /* Flags needing groups don't count if only 1 group in parent */
  4593. if (parent->groups == parent->groups->next) {
  4594. pflags &= ~(SD_LOAD_BALANCE |
  4595. SD_BALANCE_NEWIDLE |
  4596. SD_BALANCE_FORK |
  4597. SD_BALANCE_EXEC |
  4598. SD_SHARE_CPUPOWER |
  4599. SD_SHARE_PKG_RESOURCES);
  4600. if (nr_node_ids == 1)
  4601. pflags &= ~SD_SERIALIZE;
  4602. }
  4603. if (~cflags & pflags)
  4604. return 0;
  4605. return 1;
  4606. }
  4607. static void free_rootdomain(struct rcu_head *rcu)
  4608. {
  4609. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4610. cpupri_cleanup(&rd->cpupri);
  4611. free_cpumask_var(rd->rto_mask);
  4612. free_cpumask_var(rd->online);
  4613. free_cpumask_var(rd->span);
  4614. kfree(rd);
  4615. }
  4616. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4617. {
  4618. struct root_domain *old_rd = NULL;
  4619. unsigned long flags;
  4620. raw_spin_lock_irqsave(&rq->lock, flags);
  4621. if (rq->rd) {
  4622. old_rd = rq->rd;
  4623. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4624. set_rq_offline(rq);
  4625. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4626. /*
  4627. * If we dont want to free the old_rt yet then
  4628. * set old_rd to NULL to skip the freeing later
  4629. * in this function:
  4630. */
  4631. if (!atomic_dec_and_test(&old_rd->refcount))
  4632. old_rd = NULL;
  4633. }
  4634. atomic_inc(&rd->refcount);
  4635. rq->rd = rd;
  4636. cpumask_set_cpu(rq->cpu, rd->span);
  4637. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4638. set_rq_online(rq);
  4639. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4640. if (old_rd)
  4641. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4642. }
  4643. static int init_rootdomain(struct root_domain *rd)
  4644. {
  4645. memset(rd, 0, sizeof(*rd));
  4646. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4647. goto out;
  4648. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4649. goto free_span;
  4650. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4651. goto free_online;
  4652. if (cpupri_init(&rd->cpupri) != 0)
  4653. goto free_rto_mask;
  4654. return 0;
  4655. free_rto_mask:
  4656. free_cpumask_var(rd->rto_mask);
  4657. free_online:
  4658. free_cpumask_var(rd->online);
  4659. free_span:
  4660. free_cpumask_var(rd->span);
  4661. out:
  4662. return -ENOMEM;
  4663. }
  4664. /*
  4665. * By default the system creates a single root-domain with all cpus as
  4666. * members (mimicking the global state we have today).
  4667. */
  4668. struct root_domain def_root_domain;
  4669. static void init_defrootdomain(void)
  4670. {
  4671. init_rootdomain(&def_root_domain);
  4672. atomic_set(&def_root_domain.refcount, 1);
  4673. }
  4674. static struct root_domain *alloc_rootdomain(void)
  4675. {
  4676. struct root_domain *rd;
  4677. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4678. if (!rd)
  4679. return NULL;
  4680. if (init_rootdomain(rd) != 0) {
  4681. kfree(rd);
  4682. return NULL;
  4683. }
  4684. return rd;
  4685. }
  4686. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4687. {
  4688. struct sched_group *tmp, *first;
  4689. if (!sg)
  4690. return;
  4691. first = sg;
  4692. do {
  4693. tmp = sg->next;
  4694. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4695. kfree(sg->sgp);
  4696. kfree(sg);
  4697. sg = tmp;
  4698. } while (sg != first);
  4699. }
  4700. static void free_sched_domain(struct rcu_head *rcu)
  4701. {
  4702. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4703. /*
  4704. * If its an overlapping domain it has private groups, iterate and
  4705. * nuke them all.
  4706. */
  4707. if (sd->flags & SD_OVERLAP) {
  4708. free_sched_groups(sd->groups, 1);
  4709. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4710. kfree(sd->groups->sgp);
  4711. kfree(sd->groups);
  4712. }
  4713. kfree(sd);
  4714. }
  4715. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4716. {
  4717. call_rcu(&sd->rcu, free_sched_domain);
  4718. }
  4719. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4720. {
  4721. for (; sd; sd = sd->parent)
  4722. destroy_sched_domain(sd, cpu);
  4723. }
  4724. /*
  4725. * Keep a special pointer to the highest sched_domain that has
  4726. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4727. * allows us to avoid some pointer chasing select_idle_sibling().
  4728. *
  4729. * Also keep a unique ID per domain (we use the first cpu number in
  4730. * the cpumask of the domain), this allows us to quickly tell if
  4731. * two cpus are in the same cache domain, see cpus_share_cache().
  4732. */
  4733. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4734. DEFINE_PER_CPU(int, sd_llc_id);
  4735. static void update_top_cache_domain(int cpu)
  4736. {
  4737. struct sched_domain *sd;
  4738. int id = cpu;
  4739. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4740. if (sd)
  4741. id = cpumask_first(sched_domain_span(sd));
  4742. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4743. per_cpu(sd_llc_id, cpu) = id;
  4744. }
  4745. /*
  4746. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4747. * hold the hotplug lock.
  4748. */
  4749. static void
  4750. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4751. {
  4752. struct rq *rq = cpu_rq(cpu);
  4753. struct sched_domain *tmp;
  4754. /* Remove the sched domains which do not contribute to scheduling. */
  4755. for (tmp = sd; tmp; ) {
  4756. struct sched_domain *parent = tmp->parent;
  4757. if (!parent)
  4758. break;
  4759. if (sd_parent_degenerate(tmp, parent)) {
  4760. tmp->parent = parent->parent;
  4761. if (parent->parent)
  4762. parent->parent->child = tmp;
  4763. destroy_sched_domain(parent, cpu);
  4764. } else
  4765. tmp = tmp->parent;
  4766. }
  4767. if (sd && sd_degenerate(sd)) {
  4768. tmp = sd;
  4769. sd = sd->parent;
  4770. destroy_sched_domain(tmp, cpu);
  4771. if (sd)
  4772. sd->child = NULL;
  4773. }
  4774. sched_domain_debug(sd, cpu);
  4775. rq_attach_root(rq, rd);
  4776. tmp = rq->sd;
  4777. rcu_assign_pointer(rq->sd, sd);
  4778. destroy_sched_domains(tmp, cpu);
  4779. update_top_cache_domain(cpu);
  4780. }
  4781. /* cpus with isolated domains */
  4782. static cpumask_var_t cpu_isolated_map;
  4783. /* Setup the mask of cpus configured for isolated domains */
  4784. static int __init isolated_cpu_setup(char *str)
  4785. {
  4786. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4787. cpulist_parse(str, cpu_isolated_map);
  4788. return 1;
  4789. }
  4790. __setup("isolcpus=", isolated_cpu_setup);
  4791. static const struct cpumask *cpu_cpu_mask(int cpu)
  4792. {
  4793. return cpumask_of_node(cpu_to_node(cpu));
  4794. }
  4795. struct sd_data {
  4796. struct sched_domain **__percpu sd;
  4797. struct sched_group **__percpu sg;
  4798. struct sched_group_power **__percpu sgp;
  4799. };
  4800. struct s_data {
  4801. struct sched_domain ** __percpu sd;
  4802. struct root_domain *rd;
  4803. };
  4804. enum s_alloc {
  4805. sa_rootdomain,
  4806. sa_sd,
  4807. sa_sd_storage,
  4808. sa_none,
  4809. };
  4810. struct sched_domain_topology_level;
  4811. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4812. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4813. #define SDTL_OVERLAP 0x01
  4814. struct sched_domain_topology_level {
  4815. sched_domain_init_f init;
  4816. sched_domain_mask_f mask;
  4817. int flags;
  4818. int numa_level;
  4819. struct sd_data data;
  4820. };
  4821. /*
  4822. * Build an iteration mask that can exclude certain CPUs from the upwards
  4823. * domain traversal.
  4824. *
  4825. * Asymmetric node setups can result in situations where the domain tree is of
  4826. * unequal depth, make sure to skip domains that already cover the entire
  4827. * range.
  4828. *
  4829. * In that case build_sched_domains() will have terminated the iteration early
  4830. * and our sibling sd spans will be empty. Domains should always include the
  4831. * cpu they're built on, so check that.
  4832. *
  4833. */
  4834. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4835. {
  4836. const struct cpumask *span = sched_domain_span(sd);
  4837. struct sd_data *sdd = sd->private;
  4838. struct sched_domain *sibling;
  4839. int i;
  4840. for_each_cpu(i, span) {
  4841. sibling = *per_cpu_ptr(sdd->sd, i);
  4842. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4843. continue;
  4844. cpumask_set_cpu(i, sched_group_mask(sg));
  4845. }
  4846. }
  4847. /*
  4848. * Return the canonical balance cpu for this group, this is the first cpu
  4849. * of this group that's also in the iteration mask.
  4850. */
  4851. int group_balance_cpu(struct sched_group *sg)
  4852. {
  4853. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4854. }
  4855. static int
  4856. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4857. {
  4858. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4859. const struct cpumask *span = sched_domain_span(sd);
  4860. struct cpumask *covered = sched_domains_tmpmask;
  4861. struct sd_data *sdd = sd->private;
  4862. struct sched_domain *child;
  4863. int i;
  4864. cpumask_clear(covered);
  4865. for_each_cpu(i, span) {
  4866. struct cpumask *sg_span;
  4867. if (cpumask_test_cpu(i, covered))
  4868. continue;
  4869. child = *per_cpu_ptr(sdd->sd, i);
  4870. /* See the comment near build_group_mask(). */
  4871. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4872. continue;
  4873. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4874. GFP_KERNEL, cpu_to_node(cpu));
  4875. if (!sg)
  4876. goto fail;
  4877. sg_span = sched_group_cpus(sg);
  4878. if (child->child) {
  4879. child = child->child;
  4880. cpumask_copy(sg_span, sched_domain_span(child));
  4881. } else
  4882. cpumask_set_cpu(i, sg_span);
  4883. cpumask_or(covered, covered, sg_span);
  4884. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4885. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4886. build_group_mask(sd, sg);
  4887. /*
  4888. * Initialize sgp->power such that even if we mess up the
  4889. * domains and no possible iteration will get us here, we won't
  4890. * die on a /0 trap.
  4891. */
  4892. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4893. /*
  4894. * Make sure the first group of this domain contains the
  4895. * canonical balance cpu. Otherwise the sched_domain iteration
  4896. * breaks. See update_sg_lb_stats().
  4897. */
  4898. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4899. group_balance_cpu(sg) == cpu)
  4900. groups = sg;
  4901. if (!first)
  4902. first = sg;
  4903. if (last)
  4904. last->next = sg;
  4905. last = sg;
  4906. last->next = first;
  4907. }
  4908. sd->groups = groups;
  4909. return 0;
  4910. fail:
  4911. free_sched_groups(first, 0);
  4912. return -ENOMEM;
  4913. }
  4914. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4915. {
  4916. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4917. struct sched_domain *child = sd->child;
  4918. if (child)
  4919. cpu = cpumask_first(sched_domain_span(child));
  4920. if (sg) {
  4921. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4922. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4923. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4924. }
  4925. return cpu;
  4926. }
  4927. /*
  4928. * build_sched_groups will build a circular linked list of the groups
  4929. * covered by the given span, and will set each group's ->cpumask correctly,
  4930. * and ->cpu_power to 0.
  4931. *
  4932. * Assumes the sched_domain tree is fully constructed
  4933. */
  4934. static int
  4935. build_sched_groups(struct sched_domain *sd, int cpu)
  4936. {
  4937. struct sched_group *first = NULL, *last = NULL;
  4938. struct sd_data *sdd = sd->private;
  4939. const struct cpumask *span = sched_domain_span(sd);
  4940. struct cpumask *covered;
  4941. int i;
  4942. get_group(cpu, sdd, &sd->groups);
  4943. atomic_inc(&sd->groups->ref);
  4944. if (cpu != cpumask_first(sched_domain_span(sd)))
  4945. return 0;
  4946. lockdep_assert_held(&sched_domains_mutex);
  4947. covered = sched_domains_tmpmask;
  4948. cpumask_clear(covered);
  4949. for_each_cpu(i, span) {
  4950. struct sched_group *sg;
  4951. int group = get_group(i, sdd, &sg);
  4952. int j;
  4953. if (cpumask_test_cpu(i, covered))
  4954. continue;
  4955. cpumask_clear(sched_group_cpus(sg));
  4956. sg->sgp->power = 0;
  4957. cpumask_setall(sched_group_mask(sg));
  4958. for_each_cpu(j, span) {
  4959. if (get_group(j, sdd, NULL) != group)
  4960. continue;
  4961. cpumask_set_cpu(j, covered);
  4962. cpumask_set_cpu(j, sched_group_cpus(sg));
  4963. }
  4964. if (!first)
  4965. first = sg;
  4966. if (last)
  4967. last->next = sg;
  4968. last = sg;
  4969. }
  4970. last->next = first;
  4971. return 0;
  4972. }
  4973. /*
  4974. * Initialize sched groups cpu_power.
  4975. *
  4976. * cpu_power indicates the capacity of sched group, which is used while
  4977. * distributing the load between different sched groups in a sched domain.
  4978. * Typically cpu_power for all the groups in a sched domain will be same unless
  4979. * there are asymmetries in the topology. If there are asymmetries, group
  4980. * having more cpu_power will pickup more load compared to the group having
  4981. * less cpu_power.
  4982. */
  4983. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4984. {
  4985. struct sched_group *sg = sd->groups;
  4986. WARN_ON(!sd || !sg);
  4987. do {
  4988. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4989. sg = sg->next;
  4990. } while (sg != sd->groups);
  4991. if (cpu != group_balance_cpu(sg))
  4992. return;
  4993. update_group_power(sd, cpu);
  4994. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4995. }
  4996. int __weak arch_sd_sibling_asym_packing(void)
  4997. {
  4998. return 0*SD_ASYM_PACKING;
  4999. }
  5000. /*
  5001. * Initializers for schedule domains
  5002. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5003. */
  5004. #ifdef CONFIG_SCHED_DEBUG
  5005. # define SD_INIT_NAME(sd, type) sd->name = #type
  5006. #else
  5007. # define SD_INIT_NAME(sd, type) do { } while (0)
  5008. #endif
  5009. #define SD_INIT_FUNC(type) \
  5010. static noinline struct sched_domain * \
  5011. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5012. { \
  5013. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5014. *sd = SD_##type##_INIT; \
  5015. SD_INIT_NAME(sd, type); \
  5016. sd->private = &tl->data; \
  5017. return sd; \
  5018. }
  5019. SD_INIT_FUNC(CPU)
  5020. #ifdef CONFIG_SCHED_SMT
  5021. SD_INIT_FUNC(SIBLING)
  5022. #endif
  5023. #ifdef CONFIG_SCHED_MC
  5024. SD_INIT_FUNC(MC)
  5025. #endif
  5026. #ifdef CONFIG_SCHED_BOOK
  5027. SD_INIT_FUNC(BOOK)
  5028. #endif
  5029. static int default_relax_domain_level = -1;
  5030. int sched_domain_level_max;
  5031. static int __init setup_relax_domain_level(char *str)
  5032. {
  5033. if (kstrtoint(str, 0, &default_relax_domain_level))
  5034. pr_warn("Unable to set relax_domain_level\n");
  5035. return 1;
  5036. }
  5037. __setup("relax_domain_level=", setup_relax_domain_level);
  5038. static void set_domain_attribute(struct sched_domain *sd,
  5039. struct sched_domain_attr *attr)
  5040. {
  5041. int request;
  5042. if (!attr || attr->relax_domain_level < 0) {
  5043. if (default_relax_domain_level < 0)
  5044. return;
  5045. else
  5046. request = default_relax_domain_level;
  5047. } else
  5048. request = attr->relax_domain_level;
  5049. if (request < sd->level) {
  5050. /* turn off idle balance on this domain */
  5051. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5052. } else {
  5053. /* turn on idle balance on this domain */
  5054. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5055. }
  5056. }
  5057. static void __sdt_free(const struct cpumask *cpu_map);
  5058. static int __sdt_alloc(const struct cpumask *cpu_map);
  5059. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5060. const struct cpumask *cpu_map)
  5061. {
  5062. switch (what) {
  5063. case sa_rootdomain:
  5064. if (!atomic_read(&d->rd->refcount))
  5065. free_rootdomain(&d->rd->rcu); /* fall through */
  5066. case sa_sd:
  5067. free_percpu(d->sd); /* fall through */
  5068. case sa_sd_storage:
  5069. __sdt_free(cpu_map); /* fall through */
  5070. case sa_none:
  5071. break;
  5072. }
  5073. }
  5074. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5075. const struct cpumask *cpu_map)
  5076. {
  5077. memset(d, 0, sizeof(*d));
  5078. if (__sdt_alloc(cpu_map))
  5079. return sa_sd_storage;
  5080. d->sd = alloc_percpu(struct sched_domain *);
  5081. if (!d->sd)
  5082. return sa_sd_storage;
  5083. d->rd = alloc_rootdomain();
  5084. if (!d->rd)
  5085. return sa_sd;
  5086. return sa_rootdomain;
  5087. }
  5088. /*
  5089. * NULL the sd_data elements we've used to build the sched_domain and
  5090. * sched_group structure so that the subsequent __free_domain_allocs()
  5091. * will not free the data we're using.
  5092. */
  5093. static void claim_allocations(int cpu, struct sched_domain *sd)
  5094. {
  5095. struct sd_data *sdd = sd->private;
  5096. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5097. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5098. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5099. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5100. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5101. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5102. }
  5103. #ifdef CONFIG_SCHED_SMT
  5104. static const struct cpumask *cpu_smt_mask(int cpu)
  5105. {
  5106. return topology_thread_cpumask(cpu);
  5107. }
  5108. #endif
  5109. /*
  5110. * Topology list, bottom-up.
  5111. */
  5112. static struct sched_domain_topology_level default_topology[] = {
  5113. #ifdef CONFIG_SCHED_SMT
  5114. { sd_init_SIBLING, cpu_smt_mask, },
  5115. #endif
  5116. #ifdef CONFIG_SCHED_MC
  5117. { sd_init_MC, cpu_coregroup_mask, },
  5118. #endif
  5119. #ifdef CONFIG_SCHED_BOOK
  5120. { sd_init_BOOK, cpu_book_mask, },
  5121. #endif
  5122. { sd_init_CPU, cpu_cpu_mask, },
  5123. { NULL, },
  5124. };
  5125. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5126. #ifdef CONFIG_NUMA
  5127. static int sched_domains_numa_levels;
  5128. static int *sched_domains_numa_distance;
  5129. static struct cpumask ***sched_domains_numa_masks;
  5130. static int sched_domains_curr_level;
  5131. static inline int sd_local_flags(int level)
  5132. {
  5133. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5134. return 0;
  5135. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5136. }
  5137. static struct sched_domain *
  5138. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5139. {
  5140. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5141. int level = tl->numa_level;
  5142. int sd_weight = cpumask_weight(
  5143. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5144. *sd = (struct sched_domain){
  5145. .min_interval = sd_weight,
  5146. .max_interval = 2*sd_weight,
  5147. .busy_factor = 32,
  5148. .imbalance_pct = 125,
  5149. .cache_nice_tries = 2,
  5150. .busy_idx = 3,
  5151. .idle_idx = 2,
  5152. .newidle_idx = 0,
  5153. .wake_idx = 0,
  5154. .forkexec_idx = 0,
  5155. .flags = 1*SD_LOAD_BALANCE
  5156. | 1*SD_BALANCE_NEWIDLE
  5157. | 0*SD_BALANCE_EXEC
  5158. | 0*SD_BALANCE_FORK
  5159. | 0*SD_BALANCE_WAKE
  5160. | 0*SD_WAKE_AFFINE
  5161. | 0*SD_SHARE_CPUPOWER
  5162. | 0*SD_SHARE_PKG_RESOURCES
  5163. | 1*SD_SERIALIZE
  5164. | 0*SD_PREFER_SIBLING
  5165. | sd_local_flags(level)
  5166. ,
  5167. .last_balance = jiffies,
  5168. .balance_interval = sd_weight,
  5169. };
  5170. SD_INIT_NAME(sd, NUMA);
  5171. sd->private = &tl->data;
  5172. /*
  5173. * Ugly hack to pass state to sd_numa_mask()...
  5174. */
  5175. sched_domains_curr_level = tl->numa_level;
  5176. return sd;
  5177. }
  5178. static const struct cpumask *sd_numa_mask(int cpu)
  5179. {
  5180. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5181. }
  5182. static void sched_numa_warn(const char *str)
  5183. {
  5184. static int done = false;
  5185. int i,j;
  5186. if (done)
  5187. return;
  5188. done = true;
  5189. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5190. for (i = 0; i < nr_node_ids; i++) {
  5191. printk(KERN_WARNING " ");
  5192. for (j = 0; j < nr_node_ids; j++)
  5193. printk(KERN_CONT "%02d ", node_distance(i,j));
  5194. printk(KERN_CONT "\n");
  5195. }
  5196. printk(KERN_WARNING "\n");
  5197. }
  5198. static bool find_numa_distance(int distance)
  5199. {
  5200. int i;
  5201. if (distance == node_distance(0, 0))
  5202. return true;
  5203. for (i = 0; i < sched_domains_numa_levels; i++) {
  5204. if (sched_domains_numa_distance[i] == distance)
  5205. return true;
  5206. }
  5207. return false;
  5208. }
  5209. static void sched_init_numa(void)
  5210. {
  5211. int next_distance, curr_distance = node_distance(0, 0);
  5212. struct sched_domain_topology_level *tl;
  5213. int level = 0;
  5214. int i, j, k;
  5215. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5216. if (!sched_domains_numa_distance)
  5217. return;
  5218. /*
  5219. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5220. * unique distances in the node_distance() table.
  5221. *
  5222. * Assumes node_distance(0,j) includes all distances in
  5223. * node_distance(i,j) in order to avoid cubic time.
  5224. */
  5225. next_distance = curr_distance;
  5226. for (i = 0; i < nr_node_ids; i++) {
  5227. for (j = 0; j < nr_node_ids; j++) {
  5228. for (k = 0; k < nr_node_ids; k++) {
  5229. int distance = node_distance(i, k);
  5230. if (distance > curr_distance &&
  5231. (distance < next_distance ||
  5232. next_distance == curr_distance))
  5233. next_distance = distance;
  5234. /*
  5235. * While not a strong assumption it would be nice to know
  5236. * about cases where if node A is connected to B, B is not
  5237. * equally connected to A.
  5238. */
  5239. if (sched_debug() && node_distance(k, i) != distance)
  5240. sched_numa_warn("Node-distance not symmetric");
  5241. if (sched_debug() && i && !find_numa_distance(distance))
  5242. sched_numa_warn("Node-0 not representative");
  5243. }
  5244. if (next_distance != curr_distance) {
  5245. sched_domains_numa_distance[level++] = next_distance;
  5246. sched_domains_numa_levels = level;
  5247. curr_distance = next_distance;
  5248. } else break;
  5249. }
  5250. /*
  5251. * In case of sched_debug() we verify the above assumption.
  5252. */
  5253. if (!sched_debug())
  5254. break;
  5255. }
  5256. /*
  5257. * 'level' contains the number of unique distances, excluding the
  5258. * identity distance node_distance(i,i).
  5259. *
  5260. * The sched_domains_nume_distance[] array includes the actual distance
  5261. * numbers.
  5262. */
  5263. /*
  5264. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5265. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5266. * the array will contain less then 'level' members. This could be
  5267. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5268. * in other functions.
  5269. *
  5270. * We reset it to 'level' at the end of this function.
  5271. */
  5272. sched_domains_numa_levels = 0;
  5273. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5274. if (!sched_domains_numa_masks)
  5275. return;
  5276. /*
  5277. * Now for each level, construct a mask per node which contains all
  5278. * cpus of nodes that are that many hops away from us.
  5279. */
  5280. for (i = 0; i < level; i++) {
  5281. sched_domains_numa_masks[i] =
  5282. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5283. if (!sched_domains_numa_masks[i])
  5284. return;
  5285. for (j = 0; j < nr_node_ids; j++) {
  5286. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5287. if (!mask)
  5288. return;
  5289. sched_domains_numa_masks[i][j] = mask;
  5290. for (k = 0; k < nr_node_ids; k++) {
  5291. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5292. continue;
  5293. cpumask_or(mask, mask, cpumask_of_node(k));
  5294. }
  5295. }
  5296. }
  5297. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5298. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5299. if (!tl)
  5300. return;
  5301. /*
  5302. * Copy the default topology bits..
  5303. */
  5304. for (i = 0; default_topology[i].init; i++)
  5305. tl[i] = default_topology[i];
  5306. /*
  5307. * .. and append 'j' levels of NUMA goodness.
  5308. */
  5309. for (j = 0; j < level; i++, j++) {
  5310. tl[i] = (struct sched_domain_topology_level){
  5311. .init = sd_numa_init,
  5312. .mask = sd_numa_mask,
  5313. .flags = SDTL_OVERLAP,
  5314. .numa_level = j,
  5315. };
  5316. }
  5317. sched_domain_topology = tl;
  5318. sched_domains_numa_levels = level;
  5319. }
  5320. static void sched_domains_numa_masks_set(int cpu)
  5321. {
  5322. int i, j;
  5323. int node = cpu_to_node(cpu);
  5324. for (i = 0; i < sched_domains_numa_levels; i++) {
  5325. for (j = 0; j < nr_node_ids; j++) {
  5326. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5327. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5328. }
  5329. }
  5330. }
  5331. static void sched_domains_numa_masks_clear(int cpu)
  5332. {
  5333. int i, j;
  5334. for (i = 0; i < sched_domains_numa_levels; i++) {
  5335. for (j = 0; j < nr_node_ids; j++)
  5336. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5337. }
  5338. }
  5339. /*
  5340. * Update sched_domains_numa_masks[level][node] array when new cpus
  5341. * are onlined.
  5342. */
  5343. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5344. unsigned long action,
  5345. void *hcpu)
  5346. {
  5347. int cpu = (long)hcpu;
  5348. switch (action & ~CPU_TASKS_FROZEN) {
  5349. case CPU_ONLINE:
  5350. sched_domains_numa_masks_set(cpu);
  5351. break;
  5352. case CPU_DEAD:
  5353. sched_domains_numa_masks_clear(cpu);
  5354. break;
  5355. default:
  5356. return NOTIFY_DONE;
  5357. }
  5358. return NOTIFY_OK;
  5359. }
  5360. #else
  5361. static inline void sched_init_numa(void)
  5362. {
  5363. }
  5364. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5365. unsigned long action,
  5366. void *hcpu)
  5367. {
  5368. return 0;
  5369. }
  5370. #endif /* CONFIG_NUMA */
  5371. static int __sdt_alloc(const struct cpumask *cpu_map)
  5372. {
  5373. struct sched_domain_topology_level *tl;
  5374. int j;
  5375. for (tl = sched_domain_topology; tl->init; tl++) {
  5376. struct sd_data *sdd = &tl->data;
  5377. sdd->sd = alloc_percpu(struct sched_domain *);
  5378. if (!sdd->sd)
  5379. return -ENOMEM;
  5380. sdd->sg = alloc_percpu(struct sched_group *);
  5381. if (!sdd->sg)
  5382. return -ENOMEM;
  5383. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5384. if (!sdd->sgp)
  5385. return -ENOMEM;
  5386. for_each_cpu(j, cpu_map) {
  5387. struct sched_domain *sd;
  5388. struct sched_group *sg;
  5389. struct sched_group_power *sgp;
  5390. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5391. GFP_KERNEL, cpu_to_node(j));
  5392. if (!sd)
  5393. return -ENOMEM;
  5394. *per_cpu_ptr(sdd->sd, j) = sd;
  5395. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5396. GFP_KERNEL, cpu_to_node(j));
  5397. if (!sg)
  5398. return -ENOMEM;
  5399. sg->next = sg;
  5400. *per_cpu_ptr(sdd->sg, j) = sg;
  5401. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5402. GFP_KERNEL, cpu_to_node(j));
  5403. if (!sgp)
  5404. return -ENOMEM;
  5405. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5406. }
  5407. }
  5408. return 0;
  5409. }
  5410. static void __sdt_free(const struct cpumask *cpu_map)
  5411. {
  5412. struct sched_domain_topology_level *tl;
  5413. int j;
  5414. for (tl = sched_domain_topology; tl->init; tl++) {
  5415. struct sd_data *sdd = &tl->data;
  5416. for_each_cpu(j, cpu_map) {
  5417. struct sched_domain *sd;
  5418. if (sdd->sd) {
  5419. sd = *per_cpu_ptr(sdd->sd, j);
  5420. if (sd && (sd->flags & SD_OVERLAP))
  5421. free_sched_groups(sd->groups, 0);
  5422. kfree(*per_cpu_ptr(sdd->sd, j));
  5423. }
  5424. if (sdd->sg)
  5425. kfree(*per_cpu_ptr(sdd->sg, j));
  5426. if (sdd->sgp)
  5427. kfree(*per_cpu_ptr(sdd->sgp, j));
  5428. }
  5429. free_percpu(sdd->sd);
  5430. sdd->sd = NULL;
  5431. free_percpu(sdd->sg);
  5432. sdd->sg = NULL;
  5433. free_percpu(sdd->sgp);
  5434. sdd->sgp = NULL;
  5435. }
  5436. }
  5437. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5438. struct s_data *d, const struct cpumask *cpu_map,
  5439. struct sched_domain_attr *attr, struct sched_domain *child,
  5440. int cpu)
  5441. {
  5442. struct sched_domain *sd = tl->init(tl, cpu);
  5443. if (!sd)
  5444. return child;
  5445. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5446. if (child) {
  5447. sd->level = child->level + 1;
  5448. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5449. child->parent = sd;
  5450. }
  5451. sd->child = child;
  5452. set_domain_attribute(sd, attr);
  5453. return sd;
  5454. }
  5455. /*
  5456. * Build sched domains for a given set of cpus and attach the sched domains
  5457. * to the individual cpus
  5458. */
  5459. static int build_sched_domains(const struct cpumask *cpu_map,
  5460. struct sched_domain_attr *attr)
  5461. {
  5462. enum s_alloc alloc_state = sa_none;
  5463. struct sched_domain *sd;
  5464. struct s_data d;
  5465. int i, ret = -ENOMEM;
  5466. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5467. if (alloc_state != sa_rootdomain)
  5468. goto error;
  5469. /* Set up domains for cpus specified by the cpu_map. */
  5470. for_each_cpu(i, cpu_map) {
  5471. struct sched_domain_topology_level *tl;
  5472. sd = NULL;
  5473. for (tl = sched_domain_topology; tl->init; tl++) {
  5474. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5475. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5476. sd->flags |= SD_OVERLAP;
  5477. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5478. break;
  5479. }
  5480. while (sd->child)
  5481. sd = sd->child;
  5482. *per_cpu_ptr(d.sd, i) = sd;
  5483. }
  5484. /* Build the groups for the domains */
  5485. for_each_cpu(i, cpu_map) {
  5486. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5487. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5488. if (sd->flags & SD_OVERLAP) {
  5489. if (build_overlap_sched_groups(sd, i))
  5490. goto error;
  5491. } else {
  5492. if (build_sched_groups(sd, i))
  5493. goto error;
  5494. }
  5495. }
  5496. }
  5497. /* Calculate CPU power for physical packages and nodes */
  5498. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5499. if (!cpumask_test_cpu(i, cpu_map))
  5500. continue;
  5501. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5502. claim_allocations(i, sd);
  5503. init_sched_groups_power(i, sd);
  5504. }
  5505. }
  5506. /* Attach the domains */
  5507. rcu_read_lock();
  5508. for_each_cpu(i, cpu_map) {
  5509. sd = *per_cpu_ptr(d.sd, i);
  5510. cpu_attach_domain(sd, d.rd, i);
  5511. }
  5512. rcu_read_unlock();
  5513. ret = 0;
  5514. error:
  5515. __free_domain_allocs(&d, alloc_state, cpu_map);
  5516. return ret;
  5517. }
  5518. static cpumask_var_t *doms_cur; /* current sched domains */
  5519. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5520. static struct sched_domain_attr *dattr_cur;
  5521. /* attribues of custom domains in 'doms_cur' */
  5522. /*
  5523. * Special case: If a kmalloc of a doms_cur partition (array of
  5524. * cpumask) fails, then fallback to a single sched domain,
  5525. * as determined by the single cpumask fallback_doms.
  5526. */
  5527. static cpumask_var_t fallback_doms;
  5528. /*
  5529. * arch_update_cpu_topology lets virtualized architectures update the
  5530. * cpu core maps. It is supposed to return 1 if the topology changed
  5531. * or 0 if it stayed the same.
  5532. */
  5533. int __attribute__((weak)) arch_update_cpu_topology(void)
  5534. {
  5535. return 0;
  5536. }
  5537. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5538. {
  5539. int i;
  5540. cpumask_var_t *doms;
  5541. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5542. if (!doms)
  5543. return NULL;
  5544. for (i = 0; i < ndoms; i++) {
  5545. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5546. free_sched_domains(doms, i);
  5547. return NULL;
  5548. }
  5549. }
  5550. return doms;
  5551. }
  5552. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5553. {
  5554. unsigned int i;
  5555. for (i = 0; i < ndoms; i++)
  5556. free_cpumask_var(doms[i]);
  5557. kfree(doms);
  5558. }
  5559. /*
  5560. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5561. * For now this just excludes isolated cpus, but could be used to
  5562. * exclude other special cases in the future.
  5563. */
  5564. static int init_sched_domains(const struct cpumask *cpu_map)
  5565. {
  5566. int err;
  5567. arch_update_cpu_topology();
  5568. ndoms_cur = 1;
  5569. doms_cur = alloc_sched_domains(ndoms_cur);
  5570. if (!doms_cur)
  5571. doms_cur = &fallback_doms;
  5572. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5573. err = build_sched_domains(doms_cur[0], NULL);
  5574. register_sched_domain_sysctl();
  5575. return err;
  5576. }
  5577. /*
  5578. * Detach sched domains from a group of cpus specified in cpu_map
  5579. * These cpus will now be attached to the NULL domain
  5580. */
  5581. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5582. {
  5583. int i;
  5584. rcu_read_lock();
  5585. for_each_cpu(i, cpu_map)
  5586. cpu_attach_domain(NULL, &def_root_domain, i);
  5587. rcu_read_unlock();
  5588. }
  5589. /* handle null as "default" */
  5590. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5591. struct sched_domain_attr *new, int idx_new)
  5592. {
  5593. struct sched_domain_attr tmp;
  5594. /* fast path */
  5595. if (!new && !cur)
  5596. return 1;
  5597. tmp = SD_ATTR_INIT;
  5598. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5599. new ? (new + idx_new) : &tmp,
  5600. sizeof(struct sched_domain_attr));
  5601. }
  5602. /*
  5603. * Partition sched domains as specified by the 'ndoms_new'
  5604. * cpumasks in the array doms_new[] of cpumasks. This compares
  5605. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5606. * It destroys each deleted domain and builds each new domain.
  5607. *
  5608. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5609. * The masks don't intersect (don't overlap.) We should setup one
  5610. * sched domain for each mask. CPUs not in any of the cpumasks will
  5611. * not be load balanced. If the same cpumask appears both in the
  5612. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5613. * it as it is.
  5614. *
  5615. * The passed in 'doms_new' should be allocated using
  5616. * alloc_sched_domains. This routine takes ownership of it and will
  5617. * free_sched_domains it when done with it. If the caller failed the
  5618. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5619. * and partition_sched_domains() will fallback to the single partition
  5620. * 'fallback_doms', it also forces the domains to be rebuilt.
  5621. *
  5622. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5623. * ndoms_new == 0 is a special case for destroying existing domains,
  5624. * and it will not create the default domain.
  5625. *
  5626. * Call with hotplug lock held
  5627. */
  5628. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5629. struct sched_domain_attr *dattr_new)
  5630. {
  5631. int i, j, n;
  5632. int new_topology;
  5633. mutex_lock(&sched_domains_mutex);
  5634. /* always unregister in case we don't destroy any domains */
  5635. unregister_sched_domain_sysctl();
  5636. /* Let architecture update cpu core mappings. */
  5637. new_topology = arch_update_cpu_topology();
  5638. n = doms_new ? ndoms_new : 0;
  5639. /* Destroy deleted domains */
  5640. for (i = 0; i < ndoms_cur; i++) {
  5641. for (j = 0; j < n && !new_topology; j++) {
  5642. if (cpumask_equal(doms_cur[i], doms_new[j])
  5643. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5644. goto match1;
  5645. }
  5646. /* no match - a current sched domain not in new doms_new[] */
  5647. detach_destroy_domains(doms_cur[i]);
  5648. match1:
  5649. ;
  5650. }
  5651. if (doms_new == NULL) {
  5652. ndoms_cur = 0;
  5653. doms_new = &fallback_doms;
  5654. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5655. WARN_ON_ONCE(dattr_new);
  5656. }
  5657. /* Build new domains */
  5658. for (i = 0; i < ndoms_new; i++) {
  5659. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5660. if (cpumask_equal(doms_new[i], doms_cur[j])
  5661. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5662. goto match2;
  5663. }
  5664. /* no match - add a new doms_new */
  5665. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5666. match2:
  5667. ;
  5668. }
  5669. /* Remember the new sched domains */
  5670. if (doms_cur != &fallback_doms)
  5671. free_sched_domains(doms_cur, ndoms_cur);
  5672. kfree(dattr_cur); /* kfree(NULL) is safe */
  5673. doms_cur = doms_new;
  5674. dattr_cur = dattr_new;
  5675. ndoms_cur = ndoms_new;
  5676. register_sched_domain_sysctl();
  5677. mutex_unlock(&sched_domains_mutex);
  5678. }
  5679. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5680. /*
  5681. * Update cpusets according to cpu_active mask. If cpusets are
  5682. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5683. * around partition_sched_domains().
  5684. *
  5685. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5686. * want to restore it back to its original state upon resume anyway.
  5687. */
  5688. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5689. void *hcpu)
  5690. {
  5691. switch (action) {
  5692. case CPU_ONLINE_FROZEN:
  5693. case CPU_DOWN_FAILED_FROZEN:
  5694. /*
  5695. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5696. * resume sequence. As long as this is not the last online
  5697. * operation in the resume sequence, just build a single sched
  5698. * domain, ignoring cpusets.
  5699. */
  5700. num_cpus_frozen--;
  5701. if (likely(num_cpus_frozen)) {
  5702. partition_sched_domains(1, NULL, NULL);
  5703. break;
  5704. }
  5705. /*
  5706. * This is the last CPU online operation. So fall through and
  5707. * restore the original sched domains by considering the
  5708. * cpuset configurations.
  5709. */
  5710. case CPU_ONLINE:
  5711. case CPU_DOWN_FAILED:
  5712. cpuset_update_active_cpus(true);
  5713. break;
  5714. default:
  5715. return NOTIFY_DONE;
  5716. }
  5717. return NOTIFY_OK;
  5718. }
  5719. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5720. void *hcpu)
  5721. {
  5722. switch (action) {
  5723. case CPU_DOWN_PREPARE:
  5724. cpuset_update_active_cpus(false);
  5725. break;
  5726. case CPU_DOWN_PREPARE_FROZEN:
  5727. num_cpus_frozen++;
  5728. partition_sched_domains(1, NULL, NULL);
  5729. break;
  5730. default:
  5731. return NOTIFY_DONE;
  5732. }
  5733. return NOTIFY_OK;
  5734. }
  5735. void __init sched_init_smp(void)
  5736. {
  5737. cpumask_var_t non_isolated_cpus;
  5738. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5739. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5740. sched_init_numa();
  5741. get_online_cpus();
  5742. mutex_lock(&sched_domains_mutex);
  5743. init_sched_domains(cpu_active_mask);
  5744. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5745. if (cpumask_empty(non_isolated_cpus))
  5746. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5747. mutex_unlock(&sched_domains_mutex);
  5748. put_online_cpus();
  5749. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5750. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5751. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5752. /* RT runtime code needs to handle some hotplug events */
  5753. hotcpu_notifier(update_runtime, 0);
  5754. init_hrtick();
  5755. /* Move init over to a non-isolated CPU */
  5756. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5757. BUG();
  5758. sched_init_granularity();
  5759. free_cpumask_var(non_isolated_cpus);
  5760. init_sched_rt_class();
  5761. }
  5762. #else
  5763. void __init sched_init_smp(void)
  5764. {
  5765. sched_init_granularity();
  5766. }
  5767. #endif /* CONFIG_SMP */
  5768. const_debug unsigned int sysctl_timer_migration = 1;
  5769. int in_sched_functions(unsigned long addr)
  5770. {
  5771. return in_lock_functions(addr) ||
  5772. (addr >= (unsigned long)__sched_text_start
  5773. && addr < (unsigned long)__sched_text_end);
  5774. }
  5775. #ifdef CONFIG_CGROUP_SCHED
  5776. struct task_group root_task_group;
  5777. LIST_HEAD(task_groups);
  5778. #endif
  5779. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5780. void __init sched_init(void)
  5781. {
  5782. int i, j;
  5783. unsigned long alloc_size = 0, ptr;
  5784. #ifdef CONFIG_FAIR_GROUP_SCHED
  5785. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5786. #endif
  5787. #ifdef CONFIG_RT_GROUP_SCHED
  5788. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5789. #endif
  5790. #ifdef CONFIG_CPUMASK_OFFSTACK
  5791. alloc_size += num_possible_cpus() * cpumask_size();
  5792. #endif
  5793. if (alloc_size) {
  5794. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5795. #ifdef CONFIG_FAIR_GROUP_SCHED
  5796. root_task_group.se = (struct sched_entity **)ptr;
  5797. ptr += nr_cpu_ids * sizeof(void **);
  5798. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5799. ptr += nr_cpu_ids * sizeof(void **);
  5800. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5801. #ifdef CONFIG_RT_GROUP_SCHED
  5802. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5803. ptr += nr_cpu_ids * sizeof(void **);
  5804. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5805. ptr += nr_cpu_ids * sizeof(void **);
  5806. #endif /* CONFIG_RT_GROUP_SCHED */
  5807. #ifdef CONFIG_CPUMASK_OFFSTACK
  5808. for_each_possible_cpu(i) {
  5809. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5810. ptr += cpumask_size();
  5811. }
  5812. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5813. }
  5814. #ifdef CONFIG_SMP
  5815. init_defrootdomain();
  5816. #endif
  5817. init_rt_bandwidth(&def_rt_bandwidth,
  5818. global_rt_period(), global_rt_runtime());
  5819. #ifdef CONFIG_RT_GROUP_SCHED
  5820. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5821. global_rt_period(), global_rt_runtime());
  5822. #endif /* CONFIG_RT_GROUP_SCHED */
  5823. #ifdef CONFIG_CGROUP_SCHED
  5824. list_add(&root_task_group.list, &task_groups);
  5825. INIT_LIST_HEAD(&root_task_group.children);
  5826. INIT_LIST_HEAD(&root_task_group.siblings);
  5827. autogroup_init(&init_task);
  5828. #endif /* CONFIG_CGROUP_SCHED */
  5829. #ifdef CONFIG_CGROUP_CPUACCT
  5830. root_cpuacct.cpustat = &kernel_cpustat;
  5831. root_cpuacct.cpuusage = alloc_percpu(u64);
  5832. /* Too early, not expected to fail */
  5833. BUG_ON(!root_cpuacct.cpuusage);
  5834. #endif
  5835. for_each_possible_cpu(i) {
  5836. struct rq *rq;
  5837. rq = cpu_rq(i);
  5838. raw_spin_lock_init(&rq->lock);
  5839. rq->nr_running = 0;
  5840. rq->calc_load_active = 0;
  5841. rq->calc_load_update = jiffies + LOAD_FREQ;
  5842. init_cfs_rq(&rq->cfs);
  5843. init_rt_rq(&rq->rt, rq);
  5844. #ifdef CONFIG_FAIR_GROUP_SCHED
  5845. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5846. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5847. /*
  5848. * How much cpu bandwidth does root_task_group get?
  5849. *
  5850. * In case of task-groups formed thr' the cgroup filesystem, it
  5851. * gets 100% of the cpu resources in the system. This overall
  5852. * system cpu resource is divided among the tasks of
  5853. * root_task_group and its child task-groups in a fair manner,
  5854. * based on each entity's (task or task-group's) weight
  5855. * (se->load.weight).
  5856. *
  5857. * In other words, if root_task_group has 10 tasks of weight
  5858. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5859. * then A0's share of the cpu resource is:
  5860. *
  5861. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5862. *
  5863. * We achieve this by letting root_task_group's tasks sit
  5864. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5865. */
  5866. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5867. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5868. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5869. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5870. #ifdef CONFIG_RT_GROUP_SCHED
  5871. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5872. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5873. #endif
  5874. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5875. rq->cpu_load[j] = 0;
  5876. rq->last_load_update_tick = jiffies;
  5877. #ifdef CONFIG_SMP
  5878. rq->sd = NULL;
  5879. rq->rd = NULL;
  5880. rq->cpu_power = SCHED_POWER_SCALE;
  5881. rq->post_schedule = 0;
  5882. rq->active_balance = 0;
  5883. rq->next_balance = jiffies;
  5884. rq->push_cpu = 0;
  5885. rq->cpu = i;
  5886. rq->online = 0;
  5887. rq->idle_stamp = 0;
  5888. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5889. INIT_LIST_HEAD(&rq->cfs_tasks);
  5890. rq_attach_root(rq, &def_root_domain);
  5891. #ifdef CONFIG_NO_HZ
  5892. rq->nohz_flags = 0;
  5893. #endif
  5894. #endif
  5895. init_rq_hrtick(rq);
  5896. atomic_set(&rq->nr_iowait, 0);
  5897. }
  5898. set_load_weight(&init_task);
  5899. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5900. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5901. #endif
  5902. #ifdef CONFIG_RT_MUTEXES
  5903. plist_head_init(&init_task.pi_waiters);
  5904. #endif
  5905. /*
  5906. * The boot idle thread does lazy MMU switching as well:
  5907. */
  5908. atomic_inc(&init_mm.mm_count);
  5909. enter_lazy_tlb(&init_mm, current);
  5910. /*
  5911. * Make us the idle thread. Technically, schedule() should not be
  5912. * called from this thread, however somewhere below it might be,
  5913. * but because we are the idle thread, we just pick up running again
  5914. * when this runqueue becomes "idle".
  5915. */
  5916. init_idle(current, smp_processor_id());
  5917. calc_load_update = jiffies + LOAD_FREQ;
  5918. /*
  5919. * During early bootup we pretend to be a normal task:
  5920. */
  5921. current->sched_class = &fair_sched_class;
  5922. #ifdef CONFIG_SMP
  5923. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5924. /* May be allocated at isolcpus cmdline parse time */
  5925. if (cpu_isolated_map == NULL)
  5926. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5927. idle_thread_set_boot_cpu();
  5928. #endif
  5929. init_sched_fair_class();
  5930. scheduler_running = 1;
  5931. }
  5932. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5933. static inline int preempt_count_equals(int preempt_offset)
  5934. {
  5935. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5936. return (nested == preempt_offset);
  5937. }
  5938. void __might_sleep(const char *file, int line, int preempt_offset)
  5939. {
  5940. static unsigned long prev_jiffy; /* ratelimiting */
  5941. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5942. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5943. system_state != SYSTEM_RUNNING || oops_in_progress)
  5944. return;
  5945. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5946. return;
  5947. prev_jiffy = jiffies;
  5948. printk(KERN_ERR
  5949. "BUG: sleeping function called from invalid context at %s:%d\n",
  5950. file, line);
  5951. printk(KERN_ERR
  5952. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5953. in_atomic(), irqs_disabled(),
  5954. current->pid, current->comm);
  5955. debug_show_held_locks(current);
  5956. if (irqs_disabled())
  5957. print_irqtrace_events(current);
  5958. dump_stack();
  5959. }
  5960. EXPORT_SYMBOL(__might_sleep);
  5961. #endif
  5962. #ifdef CONFIG_MAGIC_SYSRQ
  5963. static void normalize_task(struct rq *rq, struct task_struct *p)
  5964. {
  5965. const struct sched_class *prev_class = p->sched_class;
  5966. int old_prio = p->prio;
  5967. int on_rq;
  5968. on_rq = p->on_rq;
  5969. if (on_rq)
  5970. dequeue_task(rq, p, 0);
  5971. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5972. if (on_rq) {
  5973. enqueue_task(rq, p, 0);
  5974. resched_task(rq->curr);
  5975. }
  5976. check_class_changed(rq, p, prev_class, old_prio);
  5977. }
  5978. void normalize_rt_tasks(void)
  5979. {
  5980. struct task_struct *g, *p;
  5981. unsigned long flags;
  5982. struct rq *rq;
  5983. read_lock_irqsave(&tasklist_lock, flags);
  5984. do_each_thread(g, p) {
  5985. /*
  5986. * Only normalize user tasks:
  5987. */
  5988. if (!p->mm)
  5989. continue;
  5990. p->se.exec_start = 0;
  5991. #ifdef CONFIG_SCHEDSTATS
  5992. p->se.statistics.wait_start = 0;
  5993. p->se.statistics.sleep_start = 0;
  5994. p->se.statistics.block_start = 0;
  5995. #endif
  5996. if (!rt_task(p)) {
  5997. /*
  5998. * Renice negative nice level userspace
  5999. * tasks back to 0:
  6000. */
  6001. if (TASK_NICE(p) < 0 && p->mm)
  6002. set_user_nice(p, 0);
  6003. continue;
  6004. }
  6005. raw_spin_lock(&p->pi_lock);
  6006. rq = __task_rq_lock(p);
  6007. normalize_task(rq, p);
  6008. __task_rq_unlock(rq);
  6009. raw_spin_unlock(&p->pi_lock);
  6010. } while_each_thread(g, p);
  6011. read_unlock_irqrestore(&tasklist_lock, flags);
  6012. }
  6013. #endif /* CONFIG_MAGIC_SYSRQ */
  6014. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6015. /*
  6016. * These functions are only useful for the IA64 MCA handling, or kdb.
  6017. *
  6018. * They can only be called when the whole system has been
  6019. * stopped - every CPU needs to be quiescent, and no scheduling
  6020. * activity can take place. Using them for anything else would
  6021. * be a serious bug, and as a result, they aren't even visible
  6022. * under any other configuration.
  6023. */
  6024. /**
  6025. * curr_task - return the current task for a given cpu.
  6026. * @cpu: the processor in question.
  6027. *
  6028. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6029. */
  6030. struct task_struct *curr_task(int cpu)
  6031. {
  6032. return cpu_curr(cpu);
  6033. }
  6034. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6035. #ifdef CONFIG_IA64
  6036. /**
  6037. * set_curr_task - set the current task for a given cpu.
  6038. * @cpu: the processor in question.
  6039. * @p: the task pointer to set.
  6040. *
  6041. * Description: This function must only be used when non-maskable interrupts
  6042. * are serviced on a separate stack. It allows the architecture to switch the
  6043. * notion of the current task on a cpu in a non-blocking manner. This function
  6044. * must be called with all CPU's synchronized, and interrupts disabled, the
  6045. * and caller must save the original value of the current task (see
  6046. * curr_task() above) and restore that value before reenabling interrupts and
  6047. * re-starting the system.
  6048. *
  6049. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6050. */
  6051. void set_curr_task(int cpu, struct task_struct *p)
  6052. {
  6053. cpu_curr(cpu) = p;
  6054. }
  6055. #endif
  6056. #ifdef CONFIG_CGROUP_SCHED
  6057. /* task_group_lock serializes the addition/removal of task groups */
  6058. static DEFINE_SPINLOCK(task_group_lock);
  6059. static void free_sched_group(struct task_group *tg)
  6060. {
  6061. free_fair_sched_group(tg);
  6062. free_rt_sched_group(tg);
  6063. autogroup_free(tg);
  6064. kfree(tg);
  6065. }
  6066. /* allocate runqueue etc for a new task group */
  6067. struct task_group *sched_create_group(struct task_group *parent)
  6068. {
  6069. struct task_group *tg;
  6070. unsigned long flags;
  6071. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6072. if (!tg)
  6073. return ERR_PTR(-ENOMEM);
  6074. if (!alloc_fair_sched_group(tg, parent))
  6075. goto err;
  6076. if (!alloc_rt_sched_group(tg, parent))
  6077. goto err;
  6078. spin_lock_irqsave(&task_group_lock, flags);
  6079. list_add_rcu(&tg->list, &task_groups);
  6080. WARN_ON(!parent); /* root should already exist */
  6081. tg->parent = parent;
  6082. INIT_LIST_HEAD(&tg->children);
  6083. list_add_rcu(&tg->siblings, &parent->children);
  6084. spin_unlock_irqrestore(&task_group_lock, flags);
  6085. return tg;
  6086. err:
  6087. free_sched_group(tg);
  6088. return ERR_PTR(-ENOMEM);
  6089. }
  6090. /* rcu callback to free various structures associated with a task group */
  6091. static void free_sched_group_rcu(struct rcu_head *rhp)
  6092. {
  6093. /* now it should be safe to free those cfs_rqs */
  6094. free_sched_group(container_of(rhp, struct task_group, rcu));
  6095. }
  6096. /* Destroy runqueue etc associated with a task group */
  6097. void sched_destroy_group(struct task_group *tg)
  6098. {
  6099. unsigned long flags;
  6100. int i;
  6101. /* end participation in shares distribution */
  6102. for_each_possible_cpu(i)
  6103. unregister_fair_sched_group(tg, i);
  6104. spin_lock_irqsave(&task_group_lock, flags);
  6105. list_del_rcu(&tg->list);
  6106. list_del_rcu(&tg->siblings);
  6107. spin_unlock_irqrestore(&task_group_lock, flags);
  6108. /* wait for possible concurrent references to cfs_rqs complete */
  6109. call_rcu(&tg->rcu, free_sched_group_rcu);
  6110. }
  6111. /* change task's runqueue when it moves between groups.
  6112. * The caller of this function should have put the task in its new group
  6113. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6114. * reflect its new group.
  6115. */
  6116. void sched_move_task(struct task_struct *tsk)
  6117. {
  6118. struct task_group *tg;
  6119. int on_rq, running;
  6120. unsigned long flags;
  6121. struct rq *rq;
  6122. rq = task_rq_lock(tsk, &flags);
  6123. running = task_current(rq, tsk);
  6124. on_rq = tsk->on_rq;
  6125. if (on_rq)
  6126. dequeue_task(rq, tsk, 0);
  6127. if (unlikely(running))
  6128. tsk->sched_class->put_prev_task(rq, tsk);
  6129. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6130. lockdep_is_held(&tsk->sighand->siglock)),
  6131. struct task_group, css);
  6132. tg = autogroup_task_group(tsk, tg);
  6133. tsk->sched_task_group = tg;
  6134. #ifdef CONFIG_FAIR_GROUP_SCHED
  6135. if (tsk->sched_class->task_move_group)
  6136. tsk->sched_class->task_move_group(tsk, on_rq);
  6137. else
  6138. #endif
  6139. set_task_rq(tsk, task_cpu(tsk));
  6140. if (unlikely(running))
  6141. tsk->sched_class->set_curr_task(rq);
  6142. if (on_rq)
  6143. enqueue_task(rq, tsk, 0);
  6144. task_rq_unlock(rq, tsk, &flags);
  6145. }
  6146. #endif /* CONFIG_CGROUP_SCHED */
  6147. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6148. static unsigned long to_ratio(u64 period, u64 runtime)
  6149. {
  6150. if (runtime == RUNTIME_INF)
  6151. return 1ULL << 20;
  6152. return div64_u64(runtime << 20, period);
  6153. }
  6154. #endif
  6155. #ifdef CONFIG_RT_GROUP_SCHED
  6156. /*
  6157. * Ensure that the real time constraints are schedulable.
  6158. */
  6159. static DEFINE_MUTEX(rt_constraints_mutex);
  6160. /* Must be called with tasklist_lock held */
  6161. static inline int tg_has_rt_tasks(struct task_group *tg)
  6162. {
  6163. struct task_struct *g, *p;
  6164. do_each_thread(g, p) {
  6165. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6166. return 1;
  6167. } while_each_thread(g, p);
  6168. return 0;
  6169. }
  6170. struct rt_schedulable_data {
  6171. struct task_group *tg;
  6172. u64 rt_period;
  6173. u64 rt_runtime;
  6174. };
  6175. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6176. {
  6177. struct rt_schedulable_data *d = data;
  6178. struct task_group *child;
  6179. unsigned long total, sum = 0;
  6180. u64 period, runtime;
  6181. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6182. runtime = tg->rt_bandwidth.rt_runtime;
  6183. if (tg == d->tg) {
  6184. period = d->rt_period;
  6185. runtime = d->rt_runtime;
  6186. }
  6187. /*
  6188. * Cannot have more runtime than the period.
  6189. */
  6190. if (runtime > period && runtime != RUNTIME_INF)
  6191. return -EINVAL;
  6192. /*
  6193. * Ensure we don't starve existing RT tasks.
  6194. */
  6195. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6196. return -EBUSY;
  6197. total = to_ratio(period, runtime);
  6198. /*
  6199. * Nobody can have more than the global setting allows.
  6200. */
  6201. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6202. return -EINVAL;
  6203. /*
  6204. * The sum of our children's runtime should not exceed our own.
  6205. */
  6206. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6207. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6208. runtime = child->rt_bandwidth.rt_runtime;
  6209. if (child == d->tg) {
  6210. period = d->rt_period;
  6211. runtime = d->rt_runtime;
  6212. }
  6213. sum += to_ratio(period, runtime);
  6214. }
  6215. if (sum > total)
  6216. return -EINVAL;
  6217. return 0;
  6218. }
  6219. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6220. {
  6221. int ret;
  6222. struct rt_schedulable_data data = {
  6223. .tg = tg,
  6224. .rt_period = period,
  6225. .rt_runtime = runtime,
  6226. };
  6227. rcu_read_lock();
  6228. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6229. rcu_read_unlock();
  6230. return ret;
  6231. }
  6232. static int tg_set_rt_bandwidth(struct task_group *tg,
  6233. u64 rt_period, u64 rt_runtime)
  6234. {
  6235. int i, err = 0;
  6236. mutex_lock(&rt_constraints_mutex);
  6237. read_lock(&tasklist_lock);
  6238. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6239. if (err)
  6240. goto unlock;
  6241. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6242. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6243. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6244. for_each_possible_cpu(i) {
  6245. struct rt_rq *rt_rq = tg->rt_rq[i];
  6246. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6247. rt_rq->rt_runtime = rt_runtime;
  6248. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6249. }
  6250. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6251. unlock:
  6252. read_unlock(&tasklist_lock);
  6253. mutex_unlock(&rt_constraints_mutex);
  6254. return err;
  6255. }
  6256. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6257. {
  6258. u64 rt_runtime, rt_period;
  6259. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6260. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6261. if (rt_runtime_us < 0)
  6262. rt_runtime = RUNTIME_INF;
  6263. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6264. }
  6265. long sched_group_rt_runtime(struct task_group *tg)
  6266. {
  6267. u64 rt_runtime_us;
  6268. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6269. return -1;
  6270. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6271. do_div(rt_runtime_us, NSEC_PER_USEC);
  6272. return rt_runtime_us;
  6273. }
  6274. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6275. {
  6276. u64 rt_runtime, rt_period;
  6277. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6278. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6279. if (rt_period == 0)
  6280. return -EINVAL;
  6281. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6282. }
  6283. long sched_group_rt_period(struct task_group *tg)
  6284. {
  6285. u64 rt_period_us;
  6286. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6287. do_div(rt_period_us, NSEC_PER_USEC);
  6288. return rt_period_us;
  6289. }
  6290. static int sched_rt_global_constraints(void)
  6291. {
  6292. u64 runtime, period;
  6293. int ret = 0;
  6294. if (sysctl_sched_rt_period <= 0)
  6295. return -EINVAL;
  6296. runtime = global_rt_runtime();
  6297. period = global_rt_period();
  6298. /*
  6299. * Sanity check on the sysctl variables.
  6300. */
  6301. if (runtime > period && runtime != RUNTIME_INF)
  6302. return -EINVAL;
  6303. mutex_lock(&rt_constraints_mutex);
  6304. read_lock(&tasklist_lock);
  6305. ret = __rt_schedulable(NULL, 0, 0);
  6306. read_unlock(&tasklist_lock);
  6307. mutex_unlock(&rt_constraints_mutex);
  6308. return ret;
  6309. }
  6310. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6311. {
  6312. /* Don't accept realtime tasks when there is no way for them to run */
  6313. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6314. return 0;
  6315. return 1;
  6316. }
  6317. #else /* !CONFIG_RT_GROUP_SCHED */
  6318. static int sched_rt_global_constraints(void)
  6319. {
  6320. unsigned long flags;
  6321. int i;
  6322. if (sysctl_sched_rt_period <= 0)
  6323. return -EINVAL;
  6324. /*
  6325. * There's always some RT tasks in the root group
  6326. * -- migration, kstopmachine etc..
  6327. */
  6328. if (sysctl_sched_rt_runtime == 0)
  6329. return -EBUSY;
  6330. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6331. for_each_possible_cpu(i) {
  6332. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6333. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6334. rt_rq->rt_runtime = global_rt_runtime();
  6335. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6336. }
  6337. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6338. return 0;
  6339. }
  6340. #endif /* CONFIG_RT_GROUP_SCHED */
  6341. int sched_rt_handler(struct ctl_table *table, int write,
  6342. void __user *buffer, size_t *lenp,
  6343. loff_t *ppos)
  6344. {
  6345. int ret;
  6346. int old_period, old_runtime;
  6347. static DEFINE_MUTEX(mutex);
  6348. mutex_lock(&mutex);
  6349. old_period = sysctl_sched_rt_period;
  6350. old_runtime = sysctl_sched_rt_runtime;
  6351. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6352. if (!ret && write) {
  6353. ret = sched_rt_global_constraints();
  6354. if (ret) {
  6355. sysctl_sched_rt_period = old_period;
  6356. sysctl_sched_rt_runtime = old_runtime;
  6357. } else {
  6358. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6359. def_rt_bandwidth.rt_period =
  6360. ns_to_ktime(global_rt_period());
  6361. }
  6362. }
  6363. mutex_unlock(&mutex);
  6364. return ret;
  6365. }
  6366. #ifdef CONFIG_CGROUP_SCHED
  6367. /* return corresponding task_group object of a cgroup */
  6368. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6369. {
  6370. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6371. struct task_group, css);
  6372. }
  6373. static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
  6374. {
  6375. struct task_group *tg, *parent;
  6376. if (!cgrp->parent) {
  6377. /* This is early initialization for the top cgroup */
  6378. return &root_task_group.css;
  6379. }
  6380. parent = cgroup_tg(cgrp->parent);
  6381. tg = sched_create_group(parent);
  6382. if (IS_ERR(tg))
  6383. return ERR_PTR(-ENOMEM);
  6384. return &tg->css;
  6385. }
  6386. static void cpu_cgroup_css_free(struct cgroup *cgrp)
  6387. {
  6388. struct task_group *tg = cgroup_tg(cgrp);
  6389. sched_destroy_group(tg);
  6390. }
  6391. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6392. struct cgroup_taskset *tset)
  6393. {
  6394. struct task_struct *task;
  6395. cgroup_taskset_for_each(task, cgrp, tset) {
  6396. #ifdef CONFIG_RT_GROUP_SCHED
  6397. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6398. return -EINVAL;
  6399. #else
  6400. /* We don't support RT-tasks being in separate groups */
  6401. if (task->sched_class != &fair_sched_class)
  6402. return -EINVAL;
  6403. #endif
  6404. }
  6405. return 0;
  6406. }
  6407. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6408. struct cgroup_taskset *tset)
  6409. {
  6410. struct task_struct *task;
  6411. cgroup_taskset_for_each(task, cgrp, tset)
  6412. sched_move_task(task);
  6413. }
  6414. static void
  6415. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6416. struct task_struct *task)
  6417. {
  6418. /*
  6419. * cgroup_exit() is called in the copy_process() failure path.
  6420. * Ignore this case since the task hasn't ran yet, this avoids
  6421. * trying to poke a half freed task state from generic code.
  6422. */
  6423. if (!(task->flags & PF_EXITING))
  6424. return;
  6425. sched_move_task(task);
  6426. }
  6427. #ifdef CONFIG_FAIR_GROUP_SCHED
  6428. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6429. u64 shareval)
  6430. {
  6431. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6432. }
  6433. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6434. {
  6435. struct task_group *tg = cgroup_tg(cgrp);
  6436. return (u64) scale_load_down(tg->shares);
  6437. }
  6438. #ifdef CONFIG_CFS_BANDWIDTH
  6439. static DEFINE_MUTEX(cfs_constraints_mutex);
  6440. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6441. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6442. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6443. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6444. {
  6445. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6446. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6447. if (tg == &root_task_group)
  6448. return -EINVAL;
  6449. /*
  6450. * Ensure we have at some amount of bandwidth every period. This is
  6451. * to prevent reaching a state of large arrears when throttled via
  6452. * entity_tick() resulting in prolonged exit starvation.
  6453. */
  6454. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6455. return -EINVAL;
  6456. /*
  6457. * Likewise, bound things on the otherside by preventing insane quota
  6458. * periods. This also allows us to normalize in computing quota
  6459. * feasibility.
  6460. */
  6461. if (period > max_cfs_quota_period)
  6462. return -EINVAL;
  6463. mutex_lock(&cfs_constraints_mutex);
  6464. ret = __cfs_schedulable(tg, period, quota);
  6465. if (ret)
  6466. goto out_unlock;
  6467. runtime_enabled = quota != RUNTIME_INF;
  6468. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6469. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6470. raw_spin_lock_irq(&cfs_b->lock);
  6471. cfs_b->period = ns_to_ktime(period);
  6472. cfs_b->quota = quota;
  6473. __refill_cfs_bandwidth_runtime(cfs_b);
  6474. /* restart the period timer (if active) to handle new period expiry */
  6475. if (runtime_enabled && cfs_b->timer_active) {
  6476. /* force a reprogram */
  6477. cfs_b->timer_active = 0;
  6478. __start_cfs_bandwidth(cfs_b);
  6479. }
  6480. raw_spin_unlock_irq(&cfs_b->lock);
  6481. for_each_possible_cpu(i) {
  6482. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6483. struct rq *rq = cfs_rq->rq;
  6484. raw_spin_lock_irq(&rq->lock);
  6485. cfs_rq->runtime_enabled = runtime_enabled;
  6486. cfs_rq->runtime_remaining = 0;
  6487. if (cfs_rq->throttled)
  6488. unthrottle_cfs_rq(cfs_rq);
  6489. raw_spin_unlock_irq(&rq->lock);
  6490. }
  6491. out_unlock:
  6492. mutex_unlock(&cfs_constraints_mutex);
  6493. return ret;
  6494. }
  6495. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6496. {
  6497. u64 quota, period;
  6498. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6499. if (cfs_quota_us < 0)
  6500. quota = RUNTIME_INF;
  6501. else
  6502. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6503. return tg_set_cfs_bandwidth(tg, period, quota);
  6504. }
  6505. long tg_get_cfs_quota(struct task_group *tg)
  6506. {
  6507. u64 quota_us;
  6508. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6509. return -1;
  6510. quota_us = tg->cfs_bandwidth.quota;
  6511. do_div(quota_us, NSEC_PER_USEC);
  6512. return quota_us;
  6513. }
  6514. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6515. {
  6516. u64 quota, period;
  6517. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6518. quota = tg->cfs_bandwidth.quota;
  6519. return tg_set_cfs_bandwidth(tg, period, quota);
  6520. }
  6521. long tg_get_cfs_period(struct task_group *tg)
  6522. {
  6523. u64 cfs_period_us;
  6524. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6525. do_div(cfs_period_us, NSEC_PER_USEC);
  6526. return cfs_period_us;
  6527. }
  6528. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6529. {
  6530. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6531. }
  6532. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6533. s64 cfs_quota_us)
  6534. {
  6535. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6536. }
  6537. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6538. {
  6539. return tg_get_cfs_period(cgroup_tg(cgrp));
  6540. }
  6541. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6542. u64 cfs_period_us)
  6543. {
  6544. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6545. }
  6546. struct cfs_schedulable_data {
  6547. struct task_group *tg;
  6548. u64 period, quota;
  6549. };
  6550. /*
  6551. * normalize group quota/period to be quota/max_period
  6552. * note: units are usecs
  6553. */
  6554. static u64 normalize_cfs_quota(struct task_group *tg,
  6555. struct cfs_schedulable_data *d)
  6556. {
  6557. u64 quota, period;
  6558. if (tg == d->tg) {
  6559. period = d->period;
  6560. quota = d->quota;
  6561. } else {
  6562. period = tg_get_cfs_period(tg);
  6563. quota = tg_get_cfs_quota(tg);
  6564. }
  6565. /* note: these should typically be equivalent */
  6566. if (quota == RUNTIME_INF || quota == -1)
  6567. return RUNTIME_INF;
  6568. return to_ratio(period, quota);
  6569. }
  6570. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6571. {
  6572. struct cfs_schedulable_data *d = data;
  6573. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6574. s64 quota = 0, parent_quota = -1;
  6575. if (!tg->parent) {
  6576. quota = RUNTIME_INF;
  6577. } else {
  6578. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6579. quota = normalize_cfs_quota(tg, d);
  6580. parent_quota = parent_b->hierarchal_quota;
  6581. /*
  6582. * ensure max(child_quota) <= parent_quota, inherit when no
  6583. * limit is set
  6584. */
  6585. if (quota == RUNTIME_INF)
  6586. quota = parent_quota;
  6587. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6588. return -EINVAL;
  6589. }
  6590. cfs_b->hierarchal_quota = quota;
  6591. return 0;
  6592. }
  6593. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6594. {
  6595. int ret;
  6596. struct cfs_schedulable_data data = {
  6597. .tg = tg,
  6598. .period = period,
  6599. .quota = quota,
  6600. };
  6601. if (quota != RUNTIME_INF) {
  6602. do_div(data.period, NSEC_PER_USEC);
  6603. do_div(data.quota, NSEC_PER_USEC);
  6604. }
  6605. rcu_read_lock();
  6606. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6607. rcu_read_unlock();
  6608. return ret;
  6609. }
  6610. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6611. struct cgroup_map_cb *cb)
  6612. {
  6613. struct task_group *tg = cgroup_tg(cgrp);
  6614. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6615. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6616. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6617. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6618. return 0;
  6619. }
  6620. #endif /* CONFIG_CFS_BANDWIDTH */
  6621. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6622. #ifdef CONFIG_RT_GROUP_SCHED
  6623. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6624. s64 val)
  6625. {
  6626. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6627. }
  6628. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6629. {
  6630. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6631. }
  6632. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6633. u64 rt_period_us)
  6634. {
  6635. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6636. }
  6637. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6638. {
  6639. return sched_group_rt_period(cgroup_tg(cgrp));
  6640. }
  6641. #endif /* CONFIG_RT_GROUP_SCHED */
  6642. static struct cftype cpu_files[] = {
  6643. #ifdef CONFIG_FAIR_GROUP_SCHED
  6644. {
  6645. .name = "shares",
  6646. .read_u64 = cpu_shares_read_u64,
  6647. .write_u64 = cpu_shares_write_u64,
  6648. },
  6649. #endif
  6650. #ifdef CONFIG_CFS_BANDWIDTH
  6651. {
  6652. .name = "cfs_quota_us",
  6653. .read_s64 = cpu_cfs_quota_read_s64,
  6654. .write_s64 = cpu_cfs_quota_write_s64,
  6655. },
  6656. {
  6657. .name = "cfs_period_us",
  6658. .read_u64 = cpu_cfs_period_read_u64,
  6659. .write_u64 = cpu_cfs_period_write_u64,
  6660. },
  6661. {
  6662. .name = "stat",
  6663. .read_map = cpu_stats_show,
  6664. },
  6665. #endif
  6666. #ifdef CONFIG_RT_GROUP_SCHED
  6667. {
  6668. .name = "rt_runtime_us",
  6669. .read_s64 = cpu_rt_runtime_read,
  6670. .write_s64 = cpu_rt_runtime_write,
  6671. },
  6672. {
  6673. .name = "rt_period_us",
  6674. .read_u64 = cpu_rt_period_read_uint,
  6675. .write_u64 = cpu_rt_period_write_uint,
  6676. },
  6677. #endif
  6678. { } /* terminate */
  6679. };
  6680. struct cgroup_subsys cpu_cgroup_subsys = {
  6681. .name = "cpu",
  6682. .css_alloc = cpu_cgroup_css_alloc,
  6683. .css_free = cpu_cgroup_css_free,
  6684. .can_attach = cpu_cgroup_can_attach,
  6685. .attach = cpu_cgroup_attach,
  6686. .exit = cpu_cgroup_exit,
  6687. .subsys_id = cpu_cgroup_subsys_id,
  6688. .base_cftypes = cpu_files,
  6689. .early_init = 1,
  6690. };
  6691. #endif /* CONFIG_CGROUP_SCHED */
  6692. #ifdef CONFIG_CGROUP_CPUACCT
  6693. /*
  6694. * CPU accounting code for task groups.
  6695. *
  6696. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6697. * (balbir@in.ibm.com).
  6698. */
  6699. struct cpuacct root_cpuacct;
  6700. /* create a new cpu accounting group */
  6701. static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
  6702. {
  6703. struct cpuacct *ca;
  6704. if (!cgrp->parent)
  6705. return &root_cpuacct.css;
  6706. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6707. if (!ca)
  6708. goto out;
  6709. ca->cpuusage = alloc_percpu(u64);
  6710. if (!ca->cpuusage)
  6711. goto out_free_ca;
  6712. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6713. if (!ca->cpustat)
  6714. goto out_free_cpuusage;
  6715. return &ca->css;
  6716. out_free_cpuusage:
  6717. free_percpu(ca->cpuusage);
  6718. out_free_ca:
  6719. kfree(ca);
  6720. out:
  6721. return ERR_PTR(-ENOMEM);
  6722. }
  6723. /* destroy an existing cpu accounting group */
  6724. static void cpuacct_css_free(struct cgroup *cgrp)
  6725. {
  6726. struct cpuacct *ca = cgroup_ca(cgrp);
  6727. free_percpu(ca->cpustat);
  6728. free_percpu(ca->cpuusage);
  6729. kfree(ca);
  6730. }
  6731. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6732. {
  6733. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6734. u64 data;
  6735. #ifndef CONFIG_64BIT
  6736. /*
  6737. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6738. */
  6739. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6740. data = *cpuusage;
  6741. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6742. #else
  6743. data = *cpuusage;
  6744. #endif
  6745. return data;
  6746. }
  6747. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6748. {
  6749. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6750. #ifndef CONFIG_64BIT
  6751. /*
  6752. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6753. */
  6754. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6755. *cpuusage = val;
  6756. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6757. #else
  6758. *cpuusage = val;
  6759. #endif
  6760. }
  6761. /* return total cpu usage (in nanoseconds) of a group */
  6762. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6763. {
  6764. struct cpuacct *ca = cgroup_ca(cgrp);
  6765. u64 totalcpuusage = 0;
  6766. int i;
  6767. for_each_present_cpu(i)
  6768. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6769. return totalcpuusage;
  6770. }
  6771. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6772. u64 reset)
  6773. {
  6774. struct cpuacct *ca = cgroup_ca(cgrp);
  6775. int err = 0;
  6776. int i;
  6777. if (reset) {
  6778. err = -EINVAL;
  6779. goto out;
  6780. }
  6781. for_each_present_cpu(i)
  6782. cpuacct_cpuusage_write(ca, i, 0);
  6783. out:
  6784. return err;
  6785. }
  6786. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6787. struct seq_file *m)
  6788. {
  6789. struct cpuacct *ca = cgroup_ca(cgroup);
  6790. u64 percpu;
  6791. int i;
  6792. for_each_present_cpu(i) {
  6793. percpu = cpuacct_cpuusage_read(ca, i);
  6794. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6795. }
  6796. seq_printf(m, "\n");
  6797. return 0;
  6798. }
  6799. static const char *cpuacct_stat_desc[] = {
  6800. [CPUACCT_STAT_USER] = "user",
  6801. [CPUACCT_STAT_SYSTEM] = "system",
  6802. };
  6803. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6804. struct cgroup_map_cb *cb)
  6805. {
  6806. struct cpuacct *ca = cgroup_ca(cgrp);
  6807. int cpu;
  6808. s64 val = 0;
  6809. for_each_online_cpu(cpu) {
  6810. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6811. val += kcpustat->cpustat[CPUTIME_USER];
  6812. val += kcpustat->cpustat[CPUTIME_NICE];
  6813. }
  6814. val = cputime64_to_clock_t(val);
  6815. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6816. val = 0;
  6817. for_each_online_cpu(cpu) {
  6818. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6819. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6820. val += kcpustat->cpustat[CPUTIME_IRQ];
  6821. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6822. }
  6823. val = cputime64_to_clock_t(val);
  6824. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6825. return 0;
  6826. }
  6827. static struct cftype files[] = {
  6828. {
  6829. .name = "usage",
  6830. .read_u64 = cpuusage_read,
  6831. .write_u64 = cpuusage_write,
  6832. },
  6833. {
  6834. .name = "usage_percpu",
  6835. .read_seq_string = cpuacct_percpu_seq_read,
  6836. },
  6837. {
  6838. .name = "stat",
  6839. .read_map = cpuacct_stats_show,
  6840. },
  6841. { } /* terminate */
  6842. };
  6843. /*
  6844. * charge this task's execution time to its accounting group.
  6845. *
  6846. * called with rq->lock held.
  6847. */
  6848. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6849. {
  6850. struct cpuacct *ca;
  6851. int cpu;
  6852. if (unlikely(!cpuacct_subsys.active))
  6853. return;
  6854. cpu = task_cpu(tsk);
  6855. rcu_read_lock();
  6856. ca = task_ca(tsk);
  6857. for (; ca; ca = parent_ca(ca)) {
  6858. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6859. *cpuusage += cputime;
  6860. }
  6861. rcu_read_unlock();
  6862. }
  6863. struct cgroup_subsys cpuacct_subsys = {
  6864. .name = "cpuacct",
  6865. .css_alloc = cpuacct_css_alloc,
  6866. .css_free = cpuacct_css_free,
  6867. .subsys_id = cpuacct_subsys_id,
  6868. .base_cftypes = files,
  6869. };
  6870. #endif /* CONFIG_CGROUP_CPUACCT */
  6871. void dump_cpu_task(int cpu)
  6872. {
  6873. pr_info("Task dump for CPU %d:\n", cpu);
  6874. sched_show_task(cpu_curr(cpu));
  6875. }