mmu.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  359. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  360. }
  361. static bool spte_has_volatile_bits(u64 spte)
  362. {
  363. /*
  364. * Always atomicly update spte if it can be updated
  365. * out of mmu-lock, it can ensure dirty bit is not lost,
  366. * also, it can help us to get a stable is_writable_pte()
  367. * to ensure tlb flush is not missed.
  368. */
  369. if (spte_is_locklessly_modifiable(spte))
  370. return true;
  371. if (!shadow_accessed_mask)
  372. return false;
  373. if (!is_shadow_present_pte(spte))
  374. return false;
  375. if ((spte & shadow_accessed_mask) &&
  376. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  377. return false;
  378. return true;
  379. }
  380. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  381. {
  382. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  383. }
  384. /* Rules for using mmu_spte_set:
  385. * Set the sptep from nonpresent to present.
  386. * Note: the sptep being assigned *must* be either not present
  387. * or in a state where the hardware will not attempt to update
  388. * the spte.
  389. */
  390. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  391. {
  392. WARN_ON(is_shadow_present_pte(*sptep));
  393. __set_spte(sptep, new_spte);
  394. }
  395. /* Rules for using mmu_spte_update:
  396. * Update the state bits, it means the mapped pfn is not changged.
  397. *
  398. * Whenever we overwrite a writable spte with a read-only one we
  399. * should flush remote TLBs. Otherwise rmap_write_protect
  400. * will find a read-only spte, even though the writable spte
  401. * might be cached on a CPU's TLB, the return value indicates this
  402. * case.
  403. */
  404. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  405. {
  406. u64 old_spte = *sptep;
  407. bool ret = false;
  408. WARN_ON(!is_rmap_spte(new_spte));
  409. if (!is_shadow_present_pte(old_spte)) {
  410. mmu_spte_set(sptep, new_spte);
  411. return ret;
  412. }
  413. if (!spte_has_volatile_bits(old_spte))
  414. __update_clear_spte_fast(sptep, new_spte);
  415. else
  416. old_spte = __update_clear_spte_slow(sptep, new_spte);
  417. /*
  418. * For the spte updated out of mmu-lock is safe, since
  419. * we always atomicly update it, see the comments in
  420. * spte_has_volatile_bits().
  421. */
  422. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  423. ret = true;
  424. if (!shadow_accessed_mask)
  425. return ret;
  426. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  427. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  428. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  429. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  430. return ret;
  431. }
  432. /*
  433. * Rules for using mmu_spte_clear_track_bits:
  434. * It sets the sptep from present to nonpresent, and track the
  435. * state bits, it is used to clear the last level sptep.
  436. */
  437. static int mmu_spte_clear_track_bits(u64 *sptep)
  438. {
  439. pfn_t pfn;
  440. u64 old_spte = *sptep;
  441. if (!spte_has_volatile_bits(old_spte))
  442. __update_clear_spte_fast(sptep, 0ull);
  443. else
  444. old_spte = __update_clear_spte_slow(sptep, 0ull);
  445. if (!is_rmap_spte(old_spte))
  446. return 0;
  447. pfn = spte_to_pfn(old_spte);
  448. /*
  449. * KVM does not hold the refcount of the page used by
  450. * kvm mmu, before reclaiming the page, we should
  451. * unmap it from mmu first.
  452. */
  453. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  454. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  455. kvm_set_pfn_accessed(pfn);
  456. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  457. kvm_set_pfn_dirty(pfn);
  458. return 1;
  459. }
  460. /*
  461. * Rules for using mmu_spte_clear_no_track:
  462. * Directly clear spte without caring the state bits of sptep,
  463. * it is used to set the upper level spte.
  464. */
  465. static void mmu_spte_clear_no_track(u64 *sptep)
  466. {
  467. __update_clear_spte_fast(sptep, 0ull);
  468. }
  469. static u64 mmu_spte_get_lockless(u64 *sptep)
  470. {
  471. return __get_spte_lockless(sptep);
  472. }
  473. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  474. {
  475. /*
  476. * Prevent page table teardown by making any free-er wait during
  477. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  478. */
  479. local_irq_disable();
  480. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  481. /*
  482. * Make sure a following spte read is not reordered ahead of the write
  483. * to vcpu->mode.
  484. */
  485. smp_mb();
  486. }
  487. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  488. {
  489. /*
  490. * Make sure the write to vcpu->mode is not reordered in front of
  491. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  492. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  493. */
  494. smp_mb();
  495. vcpu->mode = OUTSIDE_GUEST_MODE;
  496. local_irq_enable();
  497. }
  498. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  499. struct kmem_cache *base_cache, int min)
  500. {
  501. void *obj;
  502. if (cache->nobjs >= min)
  503. return 0;
  504. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  505. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  506. if (!obj)
  507. return -ENOMEM;
  508. cache->objects[cache->nobjs++] = obj;
  509. }
  510. return 0;
  511. }
  512. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  513. {
  514. return cache->nobjs;
  515. }
  516. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  517. struct kmem_cache *cache)
  518. {
  519. while (mc->nobjs)
  520. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  521. }
  522. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  523. int min)
  524. {
  525. void *page;
  526. if (cache->nobjs >= min)
  527. return 0;
  528. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  529. page = (void *)__get_free_page(GFP_KERNEL);
  530. if (!page)
  531. return -ENOMEM;
  532. cache->objects[cache->nobjs++] = page;
  533. }
  534. return 0;
  535. }
  536. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  537. {
  538. while (mc->nobjs)
  539. free_page((unsigned long)mc->objects[--mc->nobjs]);
  540. }
  541. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  542. {
  543. int r;
  544. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  545. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  546. if (r)
  547. goto out;
  548. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  549. if (r)
  550. goto out;
  551. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  552. mmu_page_header_cache, 4);
  553. out:
  554. return r;
  555. }
  556. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  557. {
  558. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  559. pte_list_desc_cache);
  560. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  561. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  562. mmu_page_header_cache);
  563. }
  564. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  565. {
  566. void *p;
  567. BUG_ON(!mc->nobjs);
  568. p = mc->objects[--mc->nobjs];
  569. return p;
  570. }
  571. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  572. {
  573. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  574. }
  575. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  576. {
  577. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  578. }
  579. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  580. {
  581. if (!sp->role.direct)
  582. return sp->gfns[index];
  583. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  584. }
  585. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  586. {
  587. if (sp->role.direct)
  588. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  589. else
  590. sp->gfns[index] = gfn;
  591. }
  592. /*
  593. * Return the pointer to the large page information for a given gfn,
  594. * handling slots that are not large page aligned.
  595. */
  596. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  597. struct kvm_memory_slot *slot,
  598. int level)
  599. {
  600. unsigned long idx;
  601. idx = gfn_to_index(gfn, slot->base_gfn, level);
  602. return &slot->arch.lpage_info[level - 2][idx];
  603. }
  604. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  605. {
  606. struct kvm_memory_slot *slot;
  607. struct kvm_lpage_info *linfo;
  608. int i;
  609. slot = gfn_to_memslot(kvm, gfn);
  610. for (i = PT_DIRECTORY_LEVEL;
  611. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  612. linfo = lpage_info_slot(gfn, slot, i);
  613. linfo->write_count += 1;
  614. }
  615. kvm->arch.indirect_shadow_pages++;
  616. }
  617. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  618. {
  619. struct kvm_memory_slot *slot;
  620. struct kvm_lpage_info *linfo;
  621. int i;
  622. slot = gfn_to_memslot(kvm, gfn);
  623. for (i = PT_DIRECTORY_LEVEL;
  624. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  625. linfo = lpage_info_slot(gfn, slot, i);
  626. linfo->write_count -= 1;
  627. WARN_ON(linfo->write_count < 0);
  628. }
  629. kvm->arch.indirect_shadow_pages--;
  630. }
  631. static int has_wrprotected_page(struct kvm *kvm,
  632. gfn_t gfn,
  633. int level)
  634. {
  635. struct kvm_memory_slot *slot;
  636. struct kvm_lpage_info *linfo;
  637. slot = gfn_to_memslot(kvm, gfn);
  638. if (slot) {
  639. linfo = lpage_info_slot(gfn, slot, level);
  640. return linfo->write_count;
  641. }
  642. return 1;
  643. }
  644. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  645. {
  646. unsigned long page_size;
  647. int i, ret = 0;
  648. page_size = kvm_host_page_size(kvm, gfn);
  649. for (i = PT_PAGE_TABLE_LEVEL;
  650. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  651. if (page_size >= KVM_HPAGE_SIZE(i))
  652. ret = i;
  653. else
  654. break;
  655. }
  656. return ret;
  657. }
  658. static struct kvm_memory_slot *
  659. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  660. bool no_dirty_log)
  661. {
  662. struct kvm_memory_slot *slot;
  663. slot = gfn_to_memslot(vcpu->kvm, gfn);
  664. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  665. (no_dirty_log && slot->dirty_bitmap))
  666. slot = NULL;
  667. return slot;
  668. }
  669. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  670. {
  671. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  672. }
  673. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  674. {
  675. int host_level, level, max_level;
  676. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  677. if (host_level == PT_PAGE_TABLE_LEVEL)
  678. return host_level;
  679. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  680. kvm_x86_ops->get_lpage_level() : host_level;
  681. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  682. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  683. break;
  684. return level - 1;
  685. }
  686. /*
  687. * Pte mapping structures:
  688. *
  689. * If pte_list bit zero is zero, then pte_list point to the spte.
  690. *
  691. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  692. * pte_list_desc containing more mappings.
  693. *
  694. * Returns the number of pte entries before the spte was added or zero if
  695. * the spte was not added.
  696. *
  697. */
  698. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  699. unsigned long *pte_list)
  700. {
  701. struct pte_list_desc *desc;
  702. int i, count = 0;
  703. if (!*pte_list) {
  704. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  705. *pte_list = (unsigned long)spte;
  706. } else if (!(*pte_list & 1)) {
  707. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  708. desc = mmu_alloc_pte_list_desc(vcpu);
  709. desc->sptes[0] = (u64 *)*pte_list;
  710. desc->sptes[1] = spte;
  711. *pte_list = (unsigned long)desc | 1;
  712. ++count;
  713. } else {
  714. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  715. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  716. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  717. desc = desc->more;
  718. count += PTE_LIST_EXT;
  719. }
  720. if (desc->sptes[PTE_LIST_EXT-1]) {
  721. desc->more = mmu_alloc_pte_list_desc(vcpu);
  722. desc = desc->more;
  723. }
  724. for (i = 0; desc->sptes[i]; ++i)
  725. ++count;
  726. desc->sptes[i] = spte;
  727. }
  728. return count;
  729. }
  730. static void
  731. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  732. int i, struct pte_list_desc *prev_desc)
  733. {
  734. int j;
  735. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  736. ;
  737. desc->sptes[i] = desc->sptes[j];
  738. desc->sptes[j] = NULL;
  739. if (j != 0)
  740. return;
  741. if (!prev_desc && !desc->more)
  742. *pte_list = (unsigned long)desc->sptes[0];
  743. else
  744. if (prev_desc)
  745. prev_desc->more = desc->more;
  746. else
  747. *pte_list = (unsigned long)desc->more | 1;
  748. mmu_free_pte_list_desc(desc);
  749. }
  750. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  751. {
  752. struct pte_list_desc *desc;
  753. struct pte_list_desc *prev_desc;
  754. int i;
  755. if (!*pte_list) {
  756. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  757. BUG();
  758. } else if (!(*pte_list & 1)) {
  759. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  760. if ((u64 *)*pte_list != spte) {
  761. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  762. BUG();
  763. }
  764. *pte_list = 0;
  765. } else {
  766. rmap_printk("pte_list_remove: %p many->many\n", spte);
  767. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  768. prev_desc = NULL;
  769. while (desc) {
  770. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  771. if (desc->sptes[i] == spte) {
  772. pte_list_desc_remove_entry(pte_list,
  773. desc, i,
  774. prev_desc);
  775. return;
  776. }
  777. prev_desc = desc;
  778. desc = desc->more;
  779. }
  780. pr_err("pte_list_remove: %p many->many\n", spte);
  781. BUG();
  782. }
  783. }
  784. typedef void (*pte_list_walk_fn) (u64 *spte);
  785. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  786. {
  787. struct pte_list_desc *desc;
  788. int i;
  789. if (!*pte_list)
  790. return;
  791. if (!(*pte_list & 1))
  792. return fn((u64 *)*pte_list);
  793. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  794. while (desc) {
  795. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  796. fn(desc->sptes[i]);
  797. desc = desc->more;
  798. }
  799. }
  800. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  801. struct kvm_memory_slot *slot)
  802. {
  803. unsigned long idx;
  804. idx = gfn_to_index(gfn, slot->base_gfn, level);
  805. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  806. }
  807. /*
  808. * Take gfn and return the reverse mapping to it.
  809. */
  810. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  811. {
  812. struct kvm_memory_slot *slot;
  813. slot = gfn_to_memslot(kvm, gfn);
  814. return __gfn_to_rmap(gfn, level, slot);
  815. }
  816. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  817. {
  818. struct kvm_mmu_memory_cache *cache;
  819. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  820. return mmu_memory_cache_free_objects(cache);
  821. }
  822. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  823. {
  824. struct kvm_mmu_page *sp;
  825. unsigned long *rmapp;
  826. sp = page_header(__pa(spte));
  827. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  828. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  829. return pte_list_add(vcpu, spte, rmapp);
  830. }
  831. static void rmap_remove(struct kvm *kvm, u64 *spte)
  832. {
  833. struct kvm_mmu_page *sp;
  834. gfn_t gfn;
  835. unsigned long *rmapp;
  836. sp = page_header(__pa(spte));
  837. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  838. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  839. pte_list_remove(spte, rmapp);
  840. }
  841. /*
  842. * Used by the following functions to iterate through the sptes linked by a
  843. * rmap. All fields are private and not assumed to be used outside.
  844. */
  845. struct rmap_iterator {
  846. /* private fields */
  847. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  848. int pos; /* index of the sptep */
  849. };
  850. /*
  851. * Iteration must be started by this function. This should also be used after
  852. * removing/dropping sptes from the rmap link because in such cases the
  853. * information in the itererator may not be valid.
  854. *
  855. * Returns sptep if found, NULL otherwise.
  856. */
  857. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  858. {
  859. if (!rmap)
  860. return NULL;
  861. if (!(rmap & 1)) {
  862. iter->desc = NULL;
  863. return (u64 *)rmap;
  864. }
  865. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  866. iter->pos = 0;
  867. return iter->desc->sptes[iter->pos];
  868. }
  869. /*
  870. * Must be used with a valid iterator: e.g. after rmap_get_first().
  871. *
  872. * Returns sptep if found, NULL otherwise.
  873. */
  874. static u64 *rmap_get_next(struct rmap_iterator *iter)
  875. {
  876. if (iter->desc) {
  877. if (iter->pos < PTE_LIST_EXT - 1) {
  878. u64 *sptep;
  879. ++iter->pos;
  880. sptep = iter->desc->sptes[iter->pos];
  881. if (sptep)
  882. return sptep;
  883. }
  884. iter->desc = iter->desc->more;
  885. if (iter->desc) {
  886. iter->pos = 0;
  887. /* desc->sptes[0] cannot be NULL */
  888. return iter->desc->sptes[iter->pos];
  889. }
  890. }
  891. return NULL;
  892. }
  893. static void drop_spte(struct kvm *kvm, u64 *sptep)
  894. {
  895. if (mmu_spte_clear_track_bits(sptep))
  896. rmap_remove(kvm, sptep);
  897. }
  898. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  899. {
  900. if (is_large_pte(*sptep)) {
  901. WARN_ON(page_header(__pa(sptep))->role.level ==
  902. PT_PAGE_TABLE_LEVEL);
  903. drop_spte(kvm, sptep);
  904. --kvm->stat.lpages;
  905. return true;
  906. }
  907. return false;
  908. }
  909. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  910. {
  911. if (__drop_large_spte(vcpu->kvm, sptep))
  912. kvm_flush_remote_tlbs(vcpu->kvm);
  913. }
  914. /*
  915. * Write-protect on the specified @sptep, @pt_protect indicates whether
  916. * spte writ-protection is caused by protecting shadow page table.
  917. * @flush indicates whether tlb need be flushed.
  918. *
  919. * Note: write protection is difference between drity logging and spte
  920. * protection:
  921. * - for dirty logging, the spte can be set to writable at anytime if
  922. * its dirty bitmap is properly set.
  923. * - for spte protection, the spte can be writable only after unsync-ing
  924. * shadow page.
  925. *
  926. * Return true if the spte is dropped.
  927. */
  928. static bool
  929. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  930. {
  931. u64 spte = *sptep;
  932. if (!is_writable_pte(spte) &&
  933. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  934. return false;
  935. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  936. if (__drop_large_spte(kvm, sptep)) {
  937. *flush |= true;
  938. return true;
  939. }
  940. if (pt_protect)
  941. spte &= ~SPTE_MMU_WRITEABLE;
  942. spte = spte & ~PT_WRITABLE_MASK;
  943. *flush |= mmu_spte_update(sptep, spte);
  944. return false;
  945. }
  946. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  947. bool pt_protect)
  948. {
  949. u64 *sptep;
  950. struct rmap_iterator iter;
  951. bool flush = false;
  952. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  953. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  954. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  955. sptep = rmap_get_first(*rmapp, &iter);
  956. continue;
  957. }
  958. sptep = rmap_get_next(&iter);
  959. }
  960. return flush;
  961. }
  962. /**
  963. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  964. * @kvm: kvm instance
  965. * @slot: slot to protect
  966. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  967. * @mask: indicates which pages we should protect
  968. *
  969. * Used when we do not need to care about huge page mappings: e.g. during dirty
  970. * logging we do not have any such mappings.
  971. */
  972. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  973. struct kvm_memory_slot *slot,
  974. gfn_t gfn_offset, unsigned long mask)
  975. {
  976. unsigned long *rmapp;
  977. while (mask) {
  978. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  979. PT_PAGE_TABLE_LEVEL, slot);
  980. __rmap_write_protect(kvm, rmapp, false);
  981. /* clear the first set bit */
  982. mask &= mask - 1;
  983. }
  984. }
  985. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  986. {
  987. struct kvm_memory_slot *slot;
  988. unsigned long *rmapp;
  989. int i;
  990. bool write_protected = false;
  991. slot = gfn_to_memslot(kvm, gfn);
  992. for (i = PT_PAGE_TABLE_LEVEL;
  993. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  994. rmapp = __gfn_to_rmap(gfn, i, slot);
  995. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  996. }
  997. return write_protected;
  998. }
  999. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1000. struct kvm_memory_slot *slot, unsigned long data)
  1001. {
  1002. u64 *sptep;
  1003. struct rmap_iterator iter;
  1004. int need_tlb_flush = 0;
  1005. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1006. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1007. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1008. drop_spte(kvm, sptep);
  1009. need_tlb_flush = 1;
  1010. }
  1011. return need_tlb_flush;
  1012. }
  1013. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1014. struct kvm_memory_slot *slot, unsigned long data)
  1015. {
  1016. u64 *sptep;
  1017. struct rmap_iterator iter;
  1018. int need_flush = 0;
  1019. u64 new_spte;
  1020. pte_t *ptep = (pte_t *)data;
  1021. pfn_t new_pfn;
  1022. WARN_ON(pte_huge(*ptep));
  1023. new_pfn = pte_pfn(*ptep);
  1024. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1025. BUG_ON(!is_shadow_present_pte(*sptep));
  1026. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1027. need_flush = 1;
  1028. if (pte_write(*ptep)) {
  1029. drop_spte(kvm, sptep);
  1030. sptep = rmap_get_first(*rmapp, &iter);
  1031. } else {
  1032. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1033. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1034. new_spte &= ~PT_WRITABLE_MASK;
  1035. new_spte &= ~SPTE_HOST_WRITEABLE;
  1036. new_spte &= ~shadow_accessed_mask;
  1037. mmu_spte_clear_track_bits(sptep);
  1038. mmu_spte_set(sptep, new_spte);
  1039. sptep = rmap_get_next(&iter);
  1040. }
  1041. }
  1042. if (need_flush)
  1043. kvm_flush_remote_tlbs(kvm);
  1044. return 0;
  1045. }
  1046. static int kvm_handle_hva_range(struct kvm *kvm,
  1047. unsigned long start,
  1048. unsigned long end,
  1049. unsigned long data,
  1050. int (*handler)(struct kvm *kvm,
  1051. unsigned long *rmapp,
  1052. struct kvm_memory_slot *slot,
  1053. unsigned long data))
  1054. {
  1055. int j;
  1056. int ret = 0;
  1057. struct kvm_memslots *slots;
  1058. struct kvm_memory_slot *memslot;
  1059. slots = kvm_memslots(kvm);
  1060. kvm_for_each_memslot(memslot, slots) {
  1061. unsigned long hva_start, hva_end;
  1062. gfn_t gfn_start, gfn_end;
  1063. hva_start = max(start, memslot->userspace_addr);
  1064. hva_end = min(end, memslot->userspace_addr +
  1065. (memslot->npages << PAGE_SHIFT));
  1066. if (hva_start >= hva_end)
  1067. continue;
  1068. /*
  1069. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1070. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1071. */
  1072. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1073. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1074. for (j = PT_PAGE_TABLE_LEVEL;
  1075. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1076. unsigned long idx, idx_end;
  1077. unsigned long *rmapp;
  1078. /*
  1079. * {idx(page_j) | page_j intersects with
  1080. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1081. */
  1082. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1083. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1084. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1085. for (; idx <= idx_end; ++idx)
  1086. ret |= handler(kvm, rmapp++, memslot, data);
  1087. }
  1088. }
  1089. return ret;
  1090. }
  1091. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1092. unsigned long data,
  1093. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1094. struct kvm_memory_slot *slot,
  1095. unsigned long data))
  1096. {
  1097. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1098. }
  1099. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1100. {
  1101. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1102. }
  1103. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1104. {
  1105. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1106. }
  1107. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1108. {
  1109. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1110. }
  1111. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1112. struct kvm_memory_slot *slot, unsigned long data)
  1113. {
  1114. u64 *sptep;
  1115. struct rmap_iterator uninitialized_var(iter);
  1116. int young = 0;
  1117. /*
  1118. * In case of absence of EPT Access and Dirty Bits supports,
  1119. * emulate the accessed bit for EPT, by checking if this page has
  1120. * an EPT mapping, and clearing it if it does. On the next access,
  1121. * a new EPT mapping will be established.
  1122. * This has some overhead, but not as much as the cost of swapping
  1123. * out actively used pages or breaking up actively used hugepages.
  1124. */
  1125. if (!shadow_accessed_mask) {
  1126. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1127. goto out;
  1128. }
  1129. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1130. sptep = rmap_get_next(&iter)) {
  1131. BUG_ON(!is_shadow_present_pte(*sptep));
  1132. if (*sptep & shadow_accessed_mask) {
  1133. young = 1;
  1134. clear_bit((ffs(shadow_accessed_mask) - 1),
  1135. (unsigned long *)sptep);
  1136. }
  1137. }
  1138. out:
  1139. /* @data has hva passed to kvm_age_hva(). */
  1140. trace_kvm_age_page(data, slot, young);
  1141. return young;
  1142. }
  1143. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1144. struct kvm_memory_slot *slot, unsigned long data)
  1145. {
  1146. u64 *sptep;
  1147. struct rmap_iterator iter;
  1148. int young = 0;
  1149. /*
  1150. * If there's no access bit in the secondary pte set by the
  1151. * hardware it's up to gup-fast/gup to set the access bit in
  1152. * the primary pte or in the page structure.
  1153. */
  1154. if (!shadow_accessed_mask)
  1155. goto out;
  1156. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1157. sptep = rmap_get_next(&iter)) {
  1158. BUG_ON(!is_shadow_present_pte(*sptep));
  1159. if (*sptep & shadow_accessed_mask) {
  1160. young = 1;
  1161. break;
  1162. }
  1163. }
  1164. out:
  1165. return young;
  1166. }
  1167. #define RMAP_RECYCLE_THRESHOLD 1000
  1168. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1169. {
  1170. unsigned long *rmapp;
  1171. struct kvm_mmu_page *sp;
  1172. sp = page_header(__pa(spte));
  1173. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1174. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1175. kvm_flush_remote_tlbs(vcpu->kvm);
  1176. }
  1177. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1178. {
  1179. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1180. }
  1181. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1182. {
  1183. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1184. }
  1185. #ifdef MMU_DEBUG
  1186. static int is_empty_shadow_page(u64 *spt)
  1187. {
  1188. u64 *pos;
  1189. u64 *end;
  1190. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1191. if (is_shadow_present_pte(*pos)) {
  1192. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1193. pos, *pos);
  1194. return 0;
  1195. }
  1196. return 1;
  1197. }
  1198. #endif
  1199. /*
  1200. * This value is the sum of all of the kvm instances's
  1201. * kvm->arch.n_used_mmu_pages values. We need a global,
  1202. * aggregate version in order to make the slab shrinker
  1203. * faster
  1204. */
  1205. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1206. {
  1207. kvm->arch.n_used_mmu_pages += nr;
  1208. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1209. }
  1210. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1211. {
  1212. ASSERT(is_empty_shadow_page(sp->spt));
  1213. hlist_del(&sp->hash_link);
  1214. list_del(&sp->link);
  1215. free_page((unsigned long)sp->spt);
  1216. if (!sp->role.direct)
  1217. free_page((unsigned long)sp->gfns);
  1218. kmem_cache_free(mmu_page_header_cache, sp);
  1219. }
  1220. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1221. {
  1222. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1223. }
  1224. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1225. struct kvm_mmu_page *sp, u64 *parent_pte)
  1226. {
  1227. if (!parent_pte)
  1228. return;
  1229. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1230. }
  1231. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1232. u64 *parent_pte)
  1233. {
  1234. pte_list_remove(parent_pte, &sp->parent_ptes);
  1235. }
  1236. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1237. u64 *parent_pte)
  1238. {
  1239. mmu_page_remove_parent_pte(sp, parent_pte);
  1240. mmu_spte_clear_no_track(parent_pte);
  1241. }
  1242. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1243. u64 *parent_pte, int direct)
  1244. {
  1245. struct kvm_mmu_page *sp;
  1246. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1247. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1248. if (!direct)
  1249. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1250. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1251. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1252. sp->parent_ptes = 0;
  1253. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1254. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1255. return sp;
  1256. }
  1257. static void mark_unsync(u64 *spte);
  1258. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1259. {
  1260. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1261. }
  1262. static void mark_unsync(u64 *spte)
  1263. {
  1264. struct kvm_mmu_page *sp;
  1265. unsigned int index;
  1266. sp = page_header(__pa(spte));
  1267. index = spte - sp->spt;
  1268. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1269. return;
  1270. if (sp->unsync_children++)
  1271. return;
  1272. kvm_mmu_mark_parents_unsync(sp);
  1273. }
  1274. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1275. struct kvm_mmu_page *sp)
  1276. {
  1277. return 1;
  1278. }
  1279. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1280. {
  1281. }
  1282. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1283. struct kvm_mmu_page *sp, u64 *spte,
  1284. const void *pte)
  1285. {
  1286. WARN_ON(1);
  1287. }
  1288. #define KVM_PAGE_ARRAY_NR 16
  1289. struct kvm_mmu_pages {
  1290. struct mmu_page_and_offset {
  1291. struct kvm_mmu_page *sp;
  1292. unsigned int idx;
  1293. } page[KVM_PAGE_ARRAY_NR];
  1294. unsigned int nr;
  1295. };
  1296. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1297. int idx)
  1298. {
  1299. int i;
  1300. if (sp->unsync)
  1301. for (i=0; i < pvec->nr; i++)
  1302. if (pvec->page[i].sp == sp)
  1303. return 0;
  1304. pvec->page[pvec->nr].sp = sp;
  1305. pvec->page[pvec->nr].idx = idx;
  1306. pvec->nr++;
  1307. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1308. }
  1309. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1310. struct kvm_mmu_pages *pvec)
  1311. {
  1312. int i, ret, nr_unsync_leaf = 0;
  1313. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1314. struct kvm_mmu_page *child;
  1315. u64 ent = sp->spt[i];
  1316. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1317. goto clear_child_bitmap;
  1318. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1319. if (child->unsync_children) {
  1320. if (mmu_pages_add(pvec, child, i))
  1321. return -ENOSPC;
  1322. ret = __mmu_unsync_walk(child, pvec);
  1323. if (!ret)
  1324. goto clear_child_bitmap;
  1325. else if (ret > 0)
  1326. nr_unsync_leaf += ret;
  1327. else
  1328. return ret;
  1329. } else if (child->unsync) {
  1330. nr_unsync_leaf++;
  1331. if (mmu_pages_add(pvec, child, i))
  1332. return -ENOSPC;
  1333. } else
  1334. goto clear_child_bitmap;
  1335. continue;
  1336. clear_child_bitmap:
  1337. __clear_bit(i, sp->unsync_child_bitmap);
  1338. sp->unsync_children--;
  1339. WARN_ON((int)sp->unsync_children < 0);
  1340. }
  1341. return nr_unsync_leaf;
  1342. }
  1343. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1344. struct kvm_mmu_pages *pvec)
  1345. {
  1346. if (!sp->unsync_children)
  1347. return 0;
  1348. mmu_pages_add(pvec, sp, 0);
  1349. return __mmu_unsync_walk(sp, pvec);
  1350. }
  1351. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1352. {
  1353. WARN_ON(!sp->unsync);
  1354. trace_kvm_mmu_sync_page(sp);
  1355. sp->unsync = 0;
  1356. --kvm->stat.mmu_unsync;
  1357. }
  1358. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1359. struct list_head *invalid_list);
  1360. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1361. struct list_head *invalid_list);
  1362. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1363. hlist_for_each_entry(sp, pos, \
  1364. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1365. if ((sp)->gfn != (gfn)) {} else
  1366. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1367. hlist_for_each_entry(sp, pos, \
  1368. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1369. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1370. (sp)->role.invalid) {} else
  1371. /* @sp->gfn should be write-protected at the call site */
  1372. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1373. struct list_head *invalid_list, bool clear_unsync)
  1374. {
  1375. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1376. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1377. return 1;
  1378. }
  1379. if (clear_unsync)
  1380. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1381. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1382. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1383. return 1;
  1384. }
  1385. kvm_mmu_flush_tlb(vcpu);
  1386. return 0;
  1387. }
  1388. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1389. struct kvm_mmu_page *sp)
  1390. {
  1391. LIST_HEAD(invalid_list);
  1392. int ret;
  1393. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1394. if (ret)
  1395. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1396. return ret;
  1397. }
  1398. #ifdef CONFIG_KVM_MMU_AUDIT
  1399. #include "mmu_audit.c"
  1400. #else
  1401. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1402. static void mmu_audit_disable(void) { }
  1403. #endif
  1404. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1405. struct list_head *invalid_list)
  1406. {
  1407. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1408. }
  1409. /* @gfn should be write-protected at the call site */
  1410. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1411. {
  1412. struct kvm_mmu_page *s;
  1413. struct hlist_node *node;
  1414. LIST_HEAD(invalid_list);
  1415. bool flush = false;
  1416. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1417. if (!s->unsync)
  1418. continue;
  1419. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1420. kvm_unlink_unsync_page(vcpu->kvm, s);
  1421. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1422. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1423. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1424. continue;
  1425. }
  1426. flush = true;
  1427. }
  1428. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1429. if (flush)
  1430. kvm_mmu_flush_tlb(vcpu);
  1431. }
  1432. struct mmu_page_path {
  1433. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1434. unsigned int idx[PT64_ROOT_LEVEL-1];
  1435. };
  1436. #define for_each_sp(pvec, sp, parents, i) \
  1437. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1438. sp = pvec.page[i].sp; \
  1439. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1440. i = mmu_pages_next(&pvec, &parents, i))
  1441. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1442. struct mmu_page_path *parents,
  1443. int i)
  1444. {
  1445. int n;
  1446. for (n = i+1; n < pvec->nr; n++) {
  1447. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1448. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1449. parents->idx[0] = pvec->page[n].idx;
  1450. return n;
  1451. }
  1452. parents->parent[sp->role.level-2] = sp;
  1453. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1454. }
  1455. return n;
  1456. }
  1457. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1458. {
  1459. struct kvm_mmu_page *sp;
  1460. unsigned int level = 0;
  1461. do {
  1462. unsigned int idx = parents->idx[level];
  1463. sp = parents->parent[level];
  1464. if (!sp)
  1465. return;
  1466. --sp->unsync_children;
  1467. WARN_ON((int)sp->unsync_children < 0);
  1468. __clear_bit(idx, sp->unsync_child_bitmap);
  1469. level++;
  1470. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1471. }
  1472. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1473. struct mmu_page_path *parents,
  1474. struct kvm_mmu_pages *pvec)
  1475. {
  1476. parents->parent[parent->role.level-1] = NULL;
  1477. pvec->nr = 0;
  1478. }
  1479. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1480. struct kvm_mmu_page *parent)
  1481. {
  1482. int i;
  1483. struct kvm_mmu_page *sp;
  1484. struct mmu_page_path parents;
  1485. struct kvm_mmu_pages pages;
  1486. LIST_HEAD(invalid_list);
  1487. kvm_mmu_pages_init(parent, &parents, &pages);
  1488. while (mmu_unsync_walk(parent, &pages)) {
  1489. bool protected = false;
  1490. for_each_sp(pages, sp, parents, i)
  1491. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1492. if (protected)
  1493. kvm_flush_remote_tlbs(vcpu->kvm);
  1494. for_each_sp(pages, sp, parents, i) {
  1495. kvm_sync_page(vcpu, sp, &invalid_list);
  1496. mmu_pages_clear_parents(&parents);
  1497. }
  1498. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1499. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1500. kvm_mmu_pages_init(parent, &parents, &pages);
  1501. }
  1502. }
  1503. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1504. {
  1505. int i;
  1506. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1507. sp->spt[i] = 0ull;
  1508. }
  1509. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1510. {
  1511. sp->write_flooding_count = 0;
  1512. }
  1513. static void clear_sp_write_flooding_count(u64 *spte)
  1514. {
  1515. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1516. __clear_sp_write_flooding_count(sp);
  1517. }
  1518. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1519. gfn_t gfn,
  1520. gva_t gaddr,
  1521. unsigned level,
  1522. int direct,
  1523. unsigned access,
  1524. u64 *parent_pte)
  1525. {
  1526. union kvm_mmu_page_role role;
  1527. unsigned quadrant;
  1528. struct kvm_mmu_page *sp;
  1529. struct hlist_node *node;
  1530. bool need_sync = false;
  1531. role = vcpu->arch.mmu.base_role;
  1532. role.level = level;
  1533. role.direct = direct;
  1534. if (role.direct)
  1535. role.cr4_pae = 0;
  1536. role.access = access;
  1537. if (!vcpu->arch.mmu.direct_map
  1538. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1539. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1540. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1541. role.quadrant = quadrant;
  1542. }
  1543. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1544. if (!need_sync && sp->unsync)
  1545. need_sync = true;
  1546. if (sp->role.word != role.word)
  1547. continue;
  1548. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1549. break;
  1550. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1551. if (sp->unsync_children) {
  1552. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1553. kvm_mmu_mark_parents_unsync(sp);
  1554. } else if (sp->unsync)
  1555. kvm_mmu_mark_parents_unsync(sp);
  1556. __clear_sp_write_flooding_count(sp);
  1557. trace_kvm_mmu_get_page(sp, false);
  1558. return sp;
  1559. }
  1560. ++vcpu->kvm->stat.mmu_cache_miss;
  1561. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1562. if (!sp)
  1563. return sp;
  1564. sp->gfn = gfn;
  1565. sp->role = role;
  1566. hlist_add_head(&sp->hash_link,
  1567. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1568. if (!direct) {
  1569. if (rmap_write_protect(vcpu->kvm, gfn))
  1570. kvm_flush_remote_tlbs(vcpu->kvm);
  1571. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1572. kvm_sync_pages(vcpu, gfn);
  1573. account_shadowed(vcpu->kvm, gfn);
  1574. }
  1575. init_shadow_page_table(sp);
  1576. trace_kvm_mmu_get_page(sp, true);
  1577. return sp;
  1578. }
  1579. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1580. struct kvm_vcpu *vcpu, u64 addr)
  1581. {
  1582. iterator->addr = addr;
  1583. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1584. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1585. if (iterator->level == PT64_ROOT_LEVEL &&
  1586. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1587. !vcpu->arch.mmu.direct_map)
  1588. --iterator->level;
  1589. if (iterator->level == PT32E_ROOT_LEVEL) {
  1590. iterator->shadow_addr
  1591. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1592. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1593. --iterator->level;
  1594. if (!iterator->shadow_addr)
  1595. iterator->level = 0;
  1596. }
  1597. }
  1598. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1599. {
  1600. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1601. return false;
  1602. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1603. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1604. return true;
  1605. }
  1606. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1607. u64 spte)
  1608. {
  1609. if (is_last_spte(spte, iterator->level)) {
  1610. iterator->level = 0;
  1611. return;
  1612. }
  1613. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1614. --iterator->level;
  1615. }
  1616. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1617. {
  1618. return __shadow_walk_next(iterator, *iterator->sptep);
  1619. }
  1620. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1621. {
  1622. u64 spte;
  1623. spte = __pa(sp->spt)
  1624. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1625. | PT_WRITABLE_MASK | PT_USER_MASK;
  1626. mmu_spte_set(sptep, spte);
  1627. }
  1628. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1629. unsigned direct_access)
  1630. {
  1631. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1632. struct kvm_mmu_page *child;
  1633. /*
  1634. * For the direct sp, if the guest pte's dirty bit
  1635. * changed form clean to dirty, it will corrupt the
  1636. * sp's access: allow writable in the read-only sp,
  1637. * so we should update the spte at this point to get
  1638. * a new sp with the correct access.
  1639. */
  1640. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1641. if (child->role.access == direct_access)
  1642. return;
  1643. drop_parent_pte(child, sptep);
  1644. kvm_flush_remote_tlbs(vcpu->kvm);
  1645. }
  1646. }
  1647. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1648. u64 *spte)
  1649. {
  1650. u64 pte;
  1651. struct kvm_mmu_page *child;
  1652. pte = *spte;
  1653. if (is_shadow_present_pte(pte)) {
  1654. if (is_last_spte(pte, sp->role.level)) {
  1655. drop_spte(kvm, spte);
  1656. if (is_large_pte(pte))
  1657. --kvm->stat.lpages;
  1658. } else {
  1659. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1660. drop_parent_pte(child, spte);
  1661. }
  1662. return true;
  1663. }
  1664. if (is_mmio_spte(pte))
  1665. mmu_spte_clear_no_track(spte);
  1666. return false;
  1667. }
  1668. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1669. struct kvm_mmu_page *sp)
  1670. {
  1671. unsigned i;
  1672. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1673. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1674. }
  1675. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1676. {
  1677. mmu_page_remove_parent_pte(sp, parent_pte);
  1678. }
  1679. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1680. {
  1681. u64 *sptep;
  1682. struct rmap_iterator iter;
  1683. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1684. drop_parent_pte(sp, sptep);
  1685. }
  1686. static int mmu_zap_unsync_children(struct kvm *kvm,
  1687. struct kvm_mmu_page *parent,
  1688. struct list_head *invalid_list)
  1689. {
  1690. int i, zapped = 0;
  1691. struct mmu_page_path parents;
  1692. struct kvm_mmu_pages pages;
  1693. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1694. return 0;
  1695. kvm_mmu_pages_init(parent, &parents, &pages);
  1696. while (mmu_unsync_walk(parent, &pages)) {
  1697. struct kvm_mmu_page *sp;
  1698. for_each_sp(pages, sp, parents, i) {
  1699. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1700. mmu_pages_clear_parents(&parents);
  1701. zapped++;
  1702. }
  1703. kvm_mmu_pages_init(parent, &parents, &pages);
  1704. }
  1705. return zapped;
  1706. }
  1707. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1708. struct list_head *invalid_list)
  1709. {
  1710. int ret;
  1711. trace_kvm_mmu_prepare_zap_page(sp);
  1712. ++kvm->stat.mmu_shadow_zapped;
  1713. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1714. kvm_mmu_page_unlink_children(kvm, sp);
  1715. kvm_mmu_unlink_parents(kvm, sp);
  1716. if (!sp->role.invalid && !sp->role.direct)
  1717. unaccount_shadowed(kvm, sp->gfn);
  1718. if (sp->unsync)
  1719. kvm_unlink_unsync_page(kvm, sp);
  1720. if (!sp->root_count) {
  1721. /* Count self */
  1722. ret++;
  1723. list_move(&sp->link, invalid_list);
  1724. kvm_mod_used_mmu_pages(kvm, -1);
  1725. } else {
  1726. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1727. kvm_reload_remote_mmus(kvm);
  1728. }
  1729. sp->role.invalid = 1;
  1730. return ret;
  1731. }
  1732. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1733. struct list_head *invalid_list)
  1734. {
  1735. struct kvm_mmu_page *sp;
  1736. if (list_empty(invalid_list))
  1737. return;
  1738. /*
  1739. * wmb: make sure everyone sees our modifications to the page tables
  1740. * rmb: make sure we see changes to vcpu->mode
  1741. */
  1742. smp_mb();
  1743. /*
  1744. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1745. * page table walks.
  1746. */
  1747. kvm_flush_remote_tlbs(kvm);
  1748. do {
  1749. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1750. WARN_ON(!sp->role.invalid || sp->root_count);
  1751. kvm_mmu_free_page(sp);
  1752. } while (!list_empty(invalid_list));
  1753. }
  1754. /*
  1755. * Changing the number of mmu pages allocated to the vm
  1756. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1757. */
  1758. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1759. {
  1760. LIST_HEAD(invalid_list);
  1761. /*
  1762. * If we set the number of mmu pages to be smaller be than the
  1763. * number of actived pages , we must to free some mmu pages before we
  1764. * change the value
  1765. */
  1766. spin_lock(&kvm->mmu_lock);
  1767. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1768. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1769. !list_empty(&kvm->arch.active_mmu_pages)) {
  1770. struct kvm_mmu_page *page;
  1771. page = container_of(kvm->arch.active_mmu_pages.prev,
  1772. struct kvm_mmu_page, link);
  1773. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1774. }
  1775. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1776. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1777. }
  1778. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1779. spin_unlock(&kvm->mmu_lock);
  1780. }
  1781. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1782. {
  1783. struct kvm_mmu_page *sp;
  1784. struct hlist_node *node;
  1785. LIST_HEAD(invalid_list);
  1786. int r;
  1787. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1788. r = 0;
  1789. spin_lock(&kvm->mmu_lock);
  1790. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1791. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1792. sp->role.word);
  1793. r = 1;
  1794. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1795. }
  1796. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1797. spin_unlock(&kvm->mmu_lock);
  1798. return r;
  1799. }
  1800. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1801. /*
  1802. * The function is based on mtrr_type_lookup() in
  1803. * arch/x86/kernel/cpu/mtrr/generic.c
  1804. */
  1805. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1806. u64 start, u64 end)
  1807. {
  1808. int i;
  1809. u64 base, mask;
  1810. u8 prev_match, curr_match;
  1811. int num_var_ranges = KVM_NR_VAR_MTRR;
  1812. if (!mtrr_state->enabled)
  1813. return 0xFF;
  1814. /* Make end inclusive end, instead of exclusive */
  1815. end--;
  1816. /* Look in fixed ranges. Just return the type as per start */
  1817. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1818. int idx;
  1819. if (start < 0x80000) {
  1820. idx = 0;
  1821. idx += (start >> 16);
  1822. return mtrr_state->fixed_ranges[idx];
  1823. } else if (start < 0xC0000) {
  1824. idx = 1 * 8;
  1825. idx += ((start - 0x80000) >> 14);
  1826. return mtrr_state->fixed_ranges[idx];
  1827. } else if (start < 0x1000000) {
  1828. idx = 3 * 8;
  1829. idx += ((start - 0xC0000) >> 12);
  1830. return mtrr_state->fixed_ranges[idx];
  1831. }
  1832. }
  1833. /*
  1834. * Look in variable ranges
  1835. * Look of multiple ranges matching this address and pick type
  1836. * as per MTRR precedence
  1837. */
  1838. if (!(mtrr_state->enabled & 2))
  1839. return mtrr_state->def_type;
  1840. prev_match = 0xFF;
  1841. for (i = 0; i < num_var_ranges; ++i) {
  1842. unsigned short start_state, end_state;
  1843. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1844. continue;
  1845. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1846. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1847. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1848. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1849. start_state = ((start & mask) == (base & mask));
  1850. end_state = ((end & mask) == (base & mask));
  1851. if (start_state != end_state)
  1852. return 0xFE;
  1853. if ((start & mask) != (base & mask))
  1854. continue;
  1855. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1856. if (prev_match == 0xFF) {
  1857. prev_match = curr_match;
  1858. continue;
  1859. }
  1860. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1861. curr_match == MTRR_TYPE_UNCACHABLE)
  1862. return MTRR_TYPE_UNCACHABLE;
  1863. if ((prev_match == MTRR_TYPE_WRBACK &&
  1864. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1865. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1866. curr_match == MTRR_TYPE_WRBACK)) {
  1867. prev_match = MTRR_TYPE_WRTHROUGH;
  1868. curr_match = MTRR_TYPE_WRTHROUGH;
  1869. }
  1870. if (prev_match != curr_match)
  1871. return MTRR_TYPE_UNCACHABLE;
  1872. }
  1873. if (prev_match != 0xFF)
  1874. return prev_match;
  1875. return mtrr_state->def_type;
  1876. }
  1877. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1878. {
  1879. u8 mtrr;
  1880. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1881. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1882. if (mtrr == 0xfe || mtrr == 0xff)
  1883. mtrr = MTRR_TYPE_WRBACK;
  1884. return mtrr;
  1885. }
  1886. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1887. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1888. {
  1889. trace_kvm_mmu_unsync_page(sp);
  1890. ++vcpu->kvm->stat.mmu_unsync;
  1891. sp->unsync = 1;
  1892. kvm_mmu_mark_parents_unsync(sp);
  1893. }
  1894. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1895. {
  1896. struct kvm_mmu_page *s;
  1897. struct hlist_node *node;
  1898. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1899. if (s->unsync)
  1900. continue;
  1901. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1902. __kvm_unsync_page(vcpu, s);
  1903. }
  1904. }
  1905. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1906. bool can_unsync)
  1907. {
  1908. struct kvm_mmu_page *s;
  1909. struct hlist_node *node;
  1910. bool need_unsync = false;
  1911. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1912. if (!can_unsync)
  1913. return 1;
  1914. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1915. return 1;
  1916. if (!s->unsync)
  1917. need_unsync = true;
  1918. }
  1919. if (need_unsync)
  1920. kvm_unsync_pages(vcpu, gfn);
  1921. return 0;
  1922. }
  1923. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1924. unsigned pte_access, int level,
  1925. gfn_t gfn, pfn_t pfn, bool speculative,
  1926. bool can_unsync, bool host_writable)
  1927. {
  1928. u64 spte;
  1929. int ret = 0;
  1930. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1931. return 0;
  1932. spte = PT_PRESENT_MASK;
  1933. if (!speculative)
  1934. spte |= shadow_accessed_mask;
  1935. if (pte_access & ACC_EXEC_MASK)
  1936. spte |= shadow_x_mask;
  1937. else
  1938. spte |= shadow_nx_mask;
  1939. if (pte_access & ACC_USER_MASK)
  1940. spte |= shadow_user_mask;
  1941. if (level > PT_PAGE_TABLE_LEVEL)
  1942. spte |= PT_PAGE_SIZE_MASK;
  1943. if (tdp_enabled)
  1944. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1945. kvm_is_mmio_pfn(pfn));
  1946. if (host_writable)
  1947. spte |= SPTE_HOST_WRITEABLE;
  1948. else
  1949. pte_access &= ~ACC_WRITE_MASK;
  1950. spte |= (u64)pfn << PAGE_SHIFT;
  1951. if (pte_access & ACC_WRITE_MASK) {
  1952. /*
  1953. * Other vcpu creates new sp in the window between
  1954. * mapping_level() and acquiring mmu-lock. We can
  1955. * allow guest to retry the access, the mapping can
  1956. * be fixed if guest refault.
  1957. */
  1958. if (level > PT_PAGE_TABLE_LEVEL &&
  1959. has_wrprotected_page(vcpu->kvm, gfn, level))
  1960. goto done;
  1961. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1962. /*
  1963. * Optimization: for pte sync, if spte was writable the hash
  1964. * lookup is unnecessary (and expensive). Write protection
  1965. * is responsibility of mmu_get_page / kvm_sync_page.
  1966. * Same reasoning can be applied to dirty page accounting.
  1967. */
  1968. if (!can_unsync && is_writable_pte(*sptep))
  1969. goto set_pte;
  1970. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1971. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1972. __func__, gfn);
  1973. ret = 1;
  1974. pte_access &= ~ACC_WRITE_MASK;
  1975. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  1976. }
  1977. }
  1978. if (pte_access & ACC_WRITE_MASK)
  1979. mark_page_dirty(vcpu->kvm, gfn);
  1980. set_pte:
  1981. if (mmu_spte_update(sptep, spte))
  1982. kvm_flush_remote_tlbs(vcpu->kvm);
  1983. done:
  1984. return ret;
  1985. }
  1986. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1987. unsigned pt_access, unsigned pte_access,
  1988. int write_fault, int *emulate, int level, gfn_t gfn,
  1989. pfn_t pfn, bool speculative, bool host_writable)
  1990. {
  1991. int was_rmapped = 0;
  1992. int rmap_count;
  1993. pgprintk("%s: spte %llx access %x write_fault %d gfn %llx\n",
  1994. __func__, *sptep, pt_access,
  1995. write_fault, gfn);
  1996. if (is_rmap_spte(*sptep)) {
  1997. /*
  1998. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1999. * the parent of the now unreachable PTE.
  2000. */
  2001. if (level > PT_PAGE_TABLE_LEVEL &&
  2002. !is_large_pte(*sptep)) {
  2003. struct kvm_mmu_page *child;
  2004. u64 pte = *sptep;
  2005. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2006. drop_parent_pte(child, sptep);
  2007. kvm_flush_remote_tlbs(vcpu->kvm);
  2008. } else if (pfn != spte_to_pfn(*sptep)) {
  2009. pgprintk("hfn old %llx new %llx\n",
  2010. spte_to_pfn(*sptep), pfn);
  2011. drop_spte(vcpu->kvm, sptep);
  2012. kvm_flush_remote_tlbs(vcpu->kvm);
  2013. } else
  2014. was_rmapped = 1;
  2015. }
  2016. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2017. true, host_writable)) {
  2018. if (write_fault)
  2019. *emulate = 1;
  2020. kvm_mmu_flush_tlb(vcpu);
  2021. }
  2022. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2023. *emulate = 1;
  2024. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2025. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2026. is_large_pte(*sptep)? "2MB" : "4kB",
  2027. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2028. *sptep, sptep);
  2029. if (!was_rmapped && is_large_pte(*sptep))
  2030. ++vcpu->kvm->stat.lpages;
  2031. if (is_shadow_present_pte(*sptep)) {
  2032. if (!was_rmapped) {
  2033. rmap_count = rmap_add(vcpu, sptep, gfn);
  2034. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2035. rmap_recycle(vcpu, sptep, gfn);
  2036. }
  2037. }
  2038. kvm_release_pfn_clean(pfn);
  2039. }
  2040. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2041. {
  2042. mmu_free_roots(vcpu);
  2043. }
  2044. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2045. {
  2046. int bit7;
  2047. bit7 = (gpte >> 7) & 1;
  2048. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2049. }
  2050. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2051. bool no_dirty_log)
  2052. {
  2053. struct kvm_memory_slot *slot;
  2054. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2055. if (!slot)
  2056. return KVM_PFN_ERR_FAULT;
  2057. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2058. }
  2059. static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
  2060. struct kvm_mmu_page *sp, u64 *spte,
  2061. u64 gpte)
  2062. {
  2063. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  2064. goto no_present;
  2065. if (!is_present_gpte(gpte))
  2066. goto no_present;
  2067. if (!(gpte & PT_ACCESSED_MASK))
  2068. goto no_present;
  2069. return false;
  2070. no_present:
  2071. drop_spte(vcpu->kvm, spte);
  2072. return true;
  2073. }
  2074. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2075. struct kvm_mmu_page *sp,
  2076. u64 *start, u64 *end)
  2077. {
  2078. struct page *pages[PTE_PREFETCH_NUM];
  2079. unsigned access = sp->role.access;
  2080. int i, ret;
  2081. gfn_t gfn;
  2082. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2083. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2084. return -1;
  2085. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2086. if (ret <= 0)
  2087. return -1;
  2088. for (i = 0; i < ret; i++, gfn++, start++)
  2089. mmu_set_spte(vcpu, start, ACC_ALL, access, 0, NULL,
  2090. sp->role.level, gfn, page_to_pfn(pages[i]),
  2091. true, true);
  2092. return 0;
  2093. }
  2094. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2095. struct kvm_mmu_page *sp, u64 *sptep)
  2096. {
  2097. u64 *spte, *start = NULL;
  2098. int i;
  2099. WARN_ON(!sp->role.direct);
  2100. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2101. spte = sp->spt + i;
  2102. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2103. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2104. if (!start)
  2105. continue;
  2106. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2107. break;
  2108. start = NULL;
  2109. } else if (!start)
  2110. start = spte;
  2111. }
  2112. }
  2113. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2114. {
  2115. struct kvm_mmu_page *sp;
  2116. /*
  2117. * Since it's no accessed bit on EPT, it's no way to
  2118. * distinguish between actually accessed translations
  2119. * and prefetched, so disable pte prefetch if EPT is
  2120. * enabled.
  2121. */
  2122. if (!shadow_accessed_mask)
  2123. return;
  2124. sp = page_header(__pa(sptep));
  2125. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2126. return;
  2127. __direct_pte_prefetch(vcpu, sp, sptep);
  2128. }
  2129. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2130. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2131. bool prefault)
  2132. {
  2133. struct kvm_shadow_walk_iterator iterator;
  2134. struct kvm_mmu_page *sp;
  2135. int emulate = 0;
  2136. gfn_t pseudo_gfn;
  2137. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2138. if (iterator.level == level) {
  2139. unsigned pte_access = ACC_ALL;
  2140. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2141. write, &emulate, level, gfn, pfn,
  2142. prefault, map_writable);
  2143. direct_pte_prefetch(vcpu, iterator.sptep);
  2144. ++vcpu->stat.pf_fixed;
  2145. break;
  2146. }
  2147. if (!is_shadow_present_pte(*iterator.sptep)) {
  2148. u64 base_addr = iterator.addr;
  2149. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2150. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2151. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2152. iterator.level - 1,
  2153. 1, ACC_ALL, iterator.sptep);
  2154. mmu_spte_set(iterator.sptep,
  2155. __pa(sp->spt)
  2156. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2157. | shadow_user_mask | shadow_x_mask
  2158. | shadow_accessed_mask);
  2159. }
  2160. }
  2161. return emulate;
  2162. }
  2163. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2164. {
  2165. siginfo_t info;
  2166. info.si_signo = SIGBUS;
  2167. info.si_errno = 0;
  2168. info.si_code = BUS_MCEERR_AR;
  2169. info.si_addr = (void __user *)address;
  2170. info.si_addr_lsb = PAGE_SHIFT;
  2171. send_sig_info(SIGBUS, &info, tsk);
  2172. }
  2173. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2174. {
  2175. /*
  2176. * Do not cache the mmio info caused by writing the readonly gfn
  2177. * into the spte otherwise read access on readonly gfn also can
  2178. * caused mmio page fault and treat it as mmio access.
  2179. * Return 1 to tell kvm to emulate it.
  2180. */
  2181. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2182. return 1;
  2183. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2184. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2185. return 0;
  2186. }
  2187. return -EFAULT;
  2188. }
  2189. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2190. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2191. {
  2192. pfn_t pfn = *pfnp;
  2193. gfn_t gfn = *gfnp;
  2194. int level = *levelp;
  2195. /*
  2196. * Check if it's a transparent hugepage. If this would be an
  2197. * hugetlbfs page, level wouldn't be set to
  2198. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2199. * here.
  2200. */
  2201. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2202. level == PT_PAGE_TABLE_LEVEL &&
  2203. PageTransCompound(pfn_to_page(pfn)) &&
  2204. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2205. unsigned long mask;
  2206. /*
  2207. * mmu_notifier_retry was successful and we hold the
  2208. * mmu_lock here, so the pmd can't become splitting
  2209. * from under us, and in turn
  2210. * __split_huge_page_refcount() can't run from under
  2211. * us and we can safely transfer the refcount from
  2212. * PG_tail to PG_head as we switch the pfn to tail to
  2213. * head.
  2214. */
  2215. *levelp = level = PT_DIRECTORY_LEVEL;
  2216. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2217. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2218. if (pfn & mask) {
  2219. gfn &= ~mask;
  2220. *gfnp = gfn;
  2221. kvm_release_pfn_clean(pfn);
  2222. pfn &= ~mask;
  2223. kvm_get_pfn(pfn);
  2224. *pfnp = pfn;
  2225. }
  2226. }
  2227. }
  2228. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2229. pfn_t pfn, unsigned access, int *ret_val)
  2230. {
  2231. bool ret = true;
  2232. /* The pfn is invalid, report the error! */
  2233. if (unlikely(is_error_pfn(pfn))) {
  2234. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2235. goto exit;
  2236. }
  2237. if (unlikely(is_noslot_pfn(pfn)))
  2238. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2239. ret = false;
  2240. exit:
  2241. return ret;
  2242. }
  2243. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2244. {
  2245. /*
  2246. * #PF can be fast only if the shadow page table is present and it
  2247. * is caused by write-protect, that means we just need change the
  2248. * W bit of the spte which can be done out of mmu-lock.
  2249. */
  2250. if (!(error_code & PFERR_PRESENT_MASK) ||
  2251. !(error_code & PFERR_WRITE_MASK))
  2252. return false;
  2253. return true;
  2254. }
  2255. static bool
  2256. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2257. {
  2258. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2259. gfn_t gfn;
  2260. WARN_ON(!sp->role.direct);
  2261. /*
  2262. * The gfn of direct spte is stable since it is calculated
  2263. * by sp->gfn.
  2264. */
  2265. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2266. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2267. mark_page_dirty(vcpu->kvm, gfn);
  2268. return true;
  2269. }
  2270. /*
  2271. * Return value:
  2272. * - true: let the vcpu to access on the same address again.
  2273. * - false: let the real page fault path to fix it.
  2274. */
  2275. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2276. u32 error_code)
  2277. {
  2278. struct kvm_shadow_walk_iterator iterator;
  2279. bool ret = false;
  2280. u64 spte = 0ull;
  2281. if (!page_fault_can_be_fast(vcpu, error_code))
  2282. return false;
  2283. walk_shadow_page_lockless_begin(vcpu);
  2284. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2285. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2286. break;
  2287. /*
  2288. * If the mapping has been changed, let the vcpu fault on the
  2289. * same address again.
  2290. */
  2291. if (!is_rmap_spte(spte)) {
  2292. ret = true;
  2293. goto exit;
  2294. }
  2295. if (!is_last_spte(spte, level))
  2296. goto exit;
  2297. /*
  2298. * Check if it is a spurious fault caused by TLB lazily flushed.
  2299. *
  2300. * Need not check the access of upper level table entries since
  2301. * they are always ACC_ALL.
  2302. */
  2303. if (is_writable_pte(spte)) {
  2304. ret = true;
  2305. goto exit;
  2306. }
  2307. /*
  2308. * Currently, to simplify the code, only the spte write-protected
  2309. * by dirty-log can be fast fixed.
  2310. */
  2311. if (!spte_is_locklessly_modifiable(spte))
  2312. goto exit;
  2313. /*
  2314. * Currently, fast page fault only works for direct mapping since
  2315. * the gfn is not stable for indirect shadow page.
  2316. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2317. */
  2318. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2319. exit:
  2320. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2321. spte, ret);
  2322. walk_shadow_page_lockless_end(vcpu);
  2323. return ret;
  2324. }
  2325. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2326. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2327. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2328. gfn_t gfn, bool prefault)
  2329. {
  2330. int r;
  2331. int level;
  2332. int force_pt_level;
  2333. pfn_t pfn;
  2334. unsigned long mmu_seq;
  2335. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2336. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2337. if (likely(!force_pt_level)) {
  2338. level = mapping_level(vcpu, gfn);
  2339. /*
  2340. * This path builds a PAE pagetable - so we can map
  2341. * 2mb pages at maximum. Therefore check if the level
  2342. * is larger than that.
  2343. */
  2344. if (level > PT_DIRECTORY_LEVEL)
  2345. level = PT_DIRECTORY_LEVEL;
  2346. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2347. } else
  2348. level = PT_PAGE_TABLE_LEVEL;
  2349. if (fast_page_fault(vcpu, v, level, error_code))
  2350. return 0;
  2351. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2352. smp_rmb();
  2353. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2354. return 0;
  2355. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2356. return r;
  2357. spin_lock(&vcpu->kvm->mmu_lock);
  2358. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2359. goto out_unlock;
  2360. kvm_mmu_free_some_pages(vcpu);
  2361. if (likely(!force_pt_level))
  2362. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2363. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2364. prefault);
  2365. spin_unlock(&vcpu->kvm->mmu_lock);
  2366. return r;
  2367. out_unlock:
  2368. spin_unlock(&vcpu->kvm->mmu_lock);
  2369. kvm_release_pfn_clean(pfn);
  2370. return 0;
  2371. }
  2372. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2373. {
  2374. int i;
  2375. struct kvm_mmu_page *sp;
  2376. LIST_HEAD(invalid_list);
  2377. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2378. return;
  2379. spin_lock(&vcpu->kvm->mmu_lock);
  2380. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2381. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2382. vcpu->arch.mmu.direct_map)) {
  2383. hpa_t root = vcpu->arch.mmu.root_hpa;
  2384. sp = page_header(root);
  2385. --sp->root_count;
  2386. if (!sp->root_count && sp->role.invalid) {
  2387. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2388. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2389. }
  2390. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2391. spin_unlock(&vcpu->kvm->mmu_lock);
  2392. return;
  2393. }
  2394. for (i = 0; i < 4; ++i) {
  2395. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2396. if (root) {
  2397. root &= PT64_BASE_ADDR_MASK;
  2398. sp = page_header(root);
  2399. --sp->root_count;
  2400. if (!sp->root_count && sp->role.invalid)
  2401. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2402. &invalid_list);
  2403. }
  2404. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2405. }
  2406. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2407. spin_unlock(&vcpu->kvm->mmu_lock);
  2408. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2409. }
  2410. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2411. {
  2412. int ret = 0;
  2413. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2414. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2415. ret = 1;
  2416. }
  2417. return ret;
  2418. }
  2419. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2420. {
  2421. struct kvm_mmu_page *sp;
  2422. unsigned i;
  2423. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2424. spin_lock(&vcpu->kvm->mmu_lock);
  2425. kvm_mmu_free_some_pages(vcpu);
  2426. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2427. 1, ACC_ALL, NULL);
  2428. ++sp->root_count;
  2429. spin_unlock(&vcpu->kvm->mmu_lock);
  2430. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2431. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2432. for (i = 0; i < 4; ++i) {
  2433. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2434. ASSERT(!VALID_PAGE(root));
  2435. spin_lock(&vcpu->kvm->mmu_lock);
  2436. kvm_mmu_free_some_pages(vcpu);
  2437. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2438. i << 30,
  2439. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2440. NULL);
  2441. root = __pa(sp->spt);
  2442. ++sp->root_count;
  2443. spin_unlock(&vcpu->kvm->mmu_lock);
  2444. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2445. }
  2446. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2447. } else
  2448. BUG();
  2449. return 0;
  2450. }
  2451. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2452. {
  2453. struct kvm_mmu_page *sp;
  2454. u64 pdptr, pm_mask;
  2455. gfn_t root_gfn;
  2456. int i;
  2457. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2458. if (mmu_check_root(vcpu, root_gfn))
  2459. return 1;
  2460. /*
  2461. * Do we shadow a long mode page table? If so we need to
  2462. * write-protect the guests page table root.
  2463. */
  2464. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2465. hpa_t root = vcpu->arch.mmu.root_hpa;
  2466. ASSERT(!VALID_PAGE(root));
  2467. spin_lock(&vcpu->kvm->mmu_lock);
  2468. kvm_mmu_free_some_pages(vcpu);
  2469. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2470. 0, ACC_ALL, NULL);
  2471. root = __pa(sp->spt);
  2472. ++sp->root_count;
  2473. spin_unlock(&vcpu->kvm->mmu_lock);
  2474. vcpu->arch.mmu.root_hpa = root;
  2475. return 0;
  2476. }
  2477. /*
  2478. * We shadow a 32 bit page table. This may be a legacy 2-level
  2479. * or a PAE 3-level page table. In either case we need to be aware that
  2480. * the shadow page table may be a PAE or a long mode page table.
  2481. */
  2482. pm_mask = PT_PRESENT_MASK;
  2483. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2484. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2485. for (i = 0; i < 4; ++i) {
  2486. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2487. ASSERT(!VALID_PAGE(root));
  2488. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2489. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2490. if (!is_present_gpte(pdptr)) {
  2491. vcpu->arch.mmu.pae_root[i] = 0;
  2492. continue;
  2493. }
  2494. root_gfn = pdptr >> PAGE_SHIFT;
  2495. if (mmu_check_root(vcpu, root_gfn))
  2496. return 1;
  2497. }
  2498. spin_lock(&vcpu->kvm->mmu_lock);
  2499. kvm_mmu_free_some_pages(vcpu);
  2500. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2501. PT32_ROOT_LEVEL, 0,
  2502. ACC_ALL, NULL);
  2503. root = __pa(sp->spt);
  2504. ++sp->root_count;
  2505. spin_unlock(&vcpu->kvm->mmu_lock);
  2506. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2507. }
  2508. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2509. /*
  2510. * If we shadow a 32 bit page table with a long mode page
  2511. * table we enter this path.
  2512. */
  2513. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2514. if (vcpu->arch.mmu.lm_root == NULL) {
  2515. /*
  2516. * The additional page necessary for this is only
  2517. * allocated on demand.
  2518. */
  2519. u64 *lm_root;
  2520. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2521. if (lm_root == NULL)
  2522. return 1;
  2523. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2524. vcpu->arch.mmu.lm_root = lm_root;
  2525. }
  2526. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2527. }
  2528. return 0;
  2529. }
  2530. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2531. {
  2532. if (vcpu->arch.mmu.direct_map)
  2533. return mmu_alloc_direct_roots(vcpu);
  2534. else
  2535. return mmu_alloc_shadow_roots(vcpu);
  2536. }
  2537. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2538. {
  2539. int i;
  2540. struct kvm_mmu_page *sp;
  2541. if (vcpu->arch.mmu.direct_map)
  2542. return;
  2543. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2544. return;
  2545. vcpu_clear_mmio_info(vcpu, ~0ul);
  2546. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2547. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2548. hpa_t root = vcpu->arch.mmu.root_hpa;
  2549. sp = page_header(root);
  2550. mmu_sync_children(vcpu, sp);
  2551. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2552. return;
  2553. }
  2554. for (i = 0; i < 4; ++i) {
  2555. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2556. if (root && VALID_PAGE(root)) {
  2557. root &= PT64_BASE_ADDR_MASK;
  2558. sp = page_header(root);
  2559. mmu_sync_children(vcpu, sp);
  2560. }
  2561. }
  2562. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2563. }
  2564. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2565. {
  2566. spin_lock(&vcpu->kvm->mmu_lock);
  2567. mmu_sync_roots(vcpu);
  2568. spin_unlock(&vcpu->kvm->mmu_lock);
  2569. }
  2570. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2571. u32 access, struct x86_exception *exception)
  2572. {
  2573. if (exception)
  2574. exception->error_code = 0;
  2575. return vaddr;
  2576. }
  2577. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2578. u32 access,
  2579. struct x86_exception *exception)
  2580. {
  2581. if (exception)
  2582. exception->error_code = 0;
  2583. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2584. }
  2585. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2586. {
  2587. if (direct)
  2588. return vcpu_match_mmio_gpa(vcpu, addr);
  2589. return vcpu_match_mmio_gva(vcpu, addr);
  2590. }
  2591. /*
  2592. * On direct hosts, the last spte is only allows two states
  2593. * for mmio page fault:
  2594. * - It is the mmio spte
  2595. * - It is zapped or it is being zapped.
  2596. *
  2597. * This function completely checks the spte when the last spte
  2598. * is not the mmio spte.
  2599. */
  2600. static bool check_direct_spte_mmio_pf(u64 spte)
  2601. {
  2602. return __check_direct_spte_mmio_pf(spte);
  2603. }
  2604. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2605. {
  2606. struct kvm_shadow_walk_iterator iterator;
  2607. u64 spte = 0ull;
  2608. walk_shadow_page_lockless_begin(vcpu);
  2609. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2610. if (!is_shadow_present_pte(spte))
  2611. break;
  2612. walk_shadow_page_lockless_end(vcpu);
  2613. return spte;
  2614. }
  2615. /*
  2616. * If it is a real mmio page fault, return 1 and emulat the instruction
  2617. * directly, return 0 to let CPU fault again on the address, -1 is
  2618. * returned if bug is detected.
  2619. */
  2620. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2621. {
  2622. u64 spte;
  2623. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2624. return 1;
  2625. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2626. if (is_mmio_spte(spte)) {
  2627. gfn_t gfn = get_mmio_spte_gfn(spte);
  2628. unsigned access = get_mmio_spte_access(spte);
  2629. if (direct)
  2630. addr = 0;
  2631. trace_handle_mmio_page_fault(addr, gfn, access);
  2632. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2633. return 1;
  2634. }
  2635. /*
  2636. * It's ok if the gva is remapped by other cpus on shadow guest,
  2637. * it's a BUG if the gfn is not a mmio page.
  2638. */
  2639. if (direct && !check_direct_spte_mmio_pf(spte))
  2640. return -1;
  2641. /*
  2642. * If the page table is zapped by other cpus, let CPU fault again on
  2643. * the address.
  2644. */
  2645. return 0;
  2646. }
  2647. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2648. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2649. u32 error_code, bool direct)
  2650. {
  2651. int ret;
  2652. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2653. WARN_ON(ret < 0);
  2654. return ret;
  2655. }
  2656. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2657. u32 error_code, bool prefault)
  2658. {
  2659. gfn_t gfn;
  2660. int r;
  2661. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2662. if (unlikely(error_code & PFERR_RSVD_MASK))
  2663. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2664. r = mmu_topup_memory_caches(vcpu);
  2665. if (r)
  2666. return r;
  2667. ASSERT(vcpu);
  2668. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2669. gfn = gva >> PAGE_SHIFT;
  2670. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2671. error_code, gfn, prefault);
  2672. }
  2673. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2674. {
  2675. struct kvm_arch_async_pf arch;
  2676. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2677. arch.gfn = gfn;
  2678. arch.direct_map = vcpu->arch.mmu.direct_map;
  2679. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2680. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2681. }
  2682. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2683. {
  2684. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2685. kvm_event_needs_reinjection(vcpu)))
  2686. return false;
  2687. return kvm_x86_ops->interrupt_allowed(vcpu);
  2688. }
  2689. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2690. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2691. {
  2692. bool async;
  2693. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2694. if (!async)
  2695. return false; /* *pfn has correct page already */
  2696. if (!prefault && can_do_async_pf(vcpu)) {
  2697. trace_kvm_try_async_get_page(gva, gfn);
  2698. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2699. trace_kvm_async_pf_doublefault(gva, gfn);
  2700. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2701. return true;
  2702. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2703. return true;
  2704. }
  2705. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2706. return false;
  2707. }
  2708. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2709. bool prefault)
  2710. {
  2711. pfn_t pfn;
  2712. int r;
  2713. int level;
  2714. int force_pt_level;
  2715. gfn_t gfn = gpa >> PAGE_SHIFT;
  2716. unsigned long mmu_seq;
  2717. int write = error_code & PFERR_WRITE_MASK;
  2718. bool map_writable;
  2719. ASSERT(vcpu);
  2720. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2721. if (unlikely(error_code & PFERR_RSVD_MASK))
  2722. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2723. r = mmu_topup_memory_caches(vcpu);
  2724. if (r)
  2725. return r;
  2726. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2727. if (likely(!force_pt_level)) {
  2728. level = mapping_level(vcpu, gfn);
  2729. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2730. } else
  2731. level = PT_PAGE_TABLE_LEVEL;
  2732. if (fast_page_fault(vcpu, gpa, level, error_code))
  2733. return 0;
  2734. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2735. smp_rmb();
  2736. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2737. return 0;
  2738. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2739. return r;
  2740. spin_lock(&vcpu->kvm->mmu_lock);
  2741. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2742. goto out_unlock;
  2743. kvm_mmu_free_some_pages(vcpu);
  2744. if (likely(!force_pt_level))
  2745. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2746. r = __direct_map(vcpu, gpa, write, map_writable,
  2747. level, gfn, pfn, prefault);
  2748. spin_unlock(&vcpu->kvm->mmu_lock);
  2749. return r;
  2750. out_unlock:
  2751. spin_unlock(&vcpu->kvm->mmu_lock);
  2752. kvm_release_pfn_clean(pfn);
  2753. return 0;
  2754. }
  2755. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2756. {
  2757. mmu_free_roots(vcpu);
  2758. }
  2759. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2760. struct kvm_mmu *context)
  2761. {
  2762. context->new_cr3 = nonpaging_new_cr3;
  2763. context->page_fault = nonpaging_page_fault;
  2764. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2765. context->free = nonpaging_free;
  2766. context->sync_page = nonpaging_sync_page;
  2767. context->invlpg = nonpaging_invlpg;
  2768. context->update_pte = nonpaging_update_pte;
  2769. context->root_level = 0;
  2770. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2771. context->root_hpa = INVALID_PAGE;
  2772. context->direct_map = true;
  2773. context->nx = false;
  2774. return 0;
  2775. }
  2776. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2777. {
  2778. ++vcpu->stat.tlb_flush;
  2779. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2780. }
  2781. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2782. {
  2783. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2784. mmu_free_roots(vcpu);
  2785. }
  2786. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2787. {
  2788. return kvm_read_cr3(vcpu);
  2789. }
  2790. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2791. struct x86_exception *fault)
  2792. {
  2793. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2794. }
  2795. static void paging_free(struct kvm_vcpu *vcpu)
  2796. {
  2797. nonpaging_free(vcpu);
  2798. }
  2799. static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
  2800. {
  2801. unsigned mask;
  2802. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  2803. mask = (unsigned)~ACC_WRITE_MASK;
  2804. /* Allow write access to dirty gptes */
  2805. mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
  2806. *access &= mask;
  2807. }
  2808. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2809. int *nr_present)
  2810. {
  2811. if (unlikely(is_mmio_spte(*sptep))) {
  2812. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2813. mmu_spte_clear_no_track(sptep);
  2814. return true;
  2815. }
  2816. (*nr_present)++;
  2817. mark_mmio_spte(sptep, gfn, access);
  2818. return true;
  2819. }
  2820. return false;
  2821. }
  2822. static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
  2823. {
  2824. unsigned access;
  2825. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  2826. access &= ~(gpte >> PT64_NX_SHIFT);
  2827. return access;
  2828. }
  2829. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2830. {
  2831. unsigned index;
  2832. index = level - 1;
  2833. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2834. return mmu->last_pte_bitmap & (1 << index);
  2835. }
  2836. #define PTTYPE 64
  2837. #include "paging_tmpl.h"
  2838. #undef PTTYPE
  2839. #define PTTYPE 32
  2840. #include "paging_tmpl.h"
  2841. #undef PTTYPE
  2842. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2843. struct kvm_mmu *context)
  2844. {
  2845. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2846. u64 exb_bit_rsvd = 0;
  2847. if (!context->nx)
  2848. exb_bit_rsvd = rsvd_bits(63, 63);
  2849. switch (context->root_level) {
  2850. case PT32_ROOT_LEVEL:
  2851. /* no rsvd bits for 2 level 4K page table entries */
  2852. context->rsvd_bits_mask[0][1] = 0;
  2853. context->rsvd_bits_mask[0][0] = 0;
  2854. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2855. if (!is_pse(vcpu)) {
  2856. context->rsvd_bits_mask[1][1] = 0;
  2857. break;
  2858. }
  2859. if (is_cpuid_PSE36())
  2860. /* 36bits PSE 4MB page */
  2861. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2862. else
  2863. /* 32 bits PSE 4MB page */
  2864. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2865. break;
  2866. case PT32E_ROOT_LEVEL:
  2867. context->rsvd_bits_mask[0][2] =
  2868. rsvd_bits(maxphyaddr, 63) |
  2869. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2870. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2871. rsvd_bits(maxphyaddr, 62); /* PDE */
  2872. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2873. rsvd_bits(maxphyaddr, 62); /* PTE */
  2874. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2875. rsvd_bits(maxphyaddr, 62) |
  2876. rsvd_bits(13, 20); /* large page */
  2877. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2878. break;
  2879. case PT64_ROOT_LEVEL:
  2880. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2881. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2882. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2883. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2884. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2885. rsvd_bits(maxphyaddr, 51);
  2886. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2887. rsvd_bits(maxphyaddr, 51);
  2888. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2889. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2890. rsvd_bits(maxphyaddr, 51) |
  2891. rsvd_bits(13, 29);
  2892. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2893. rsvd_bits(maxphyaddr, 51) |
  2894. rsvd_bits(13, 20); /* large page */
  2895. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2896. break;
  2897. }
  2898. }
  2899. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2900. {
  2901. unsigned bit, byte, pfec;
  2902. u8 map;
  2903. bool fault, x, w, u, wf, uf, ff, smep;
  2904. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2905. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2906. pfec = byte << 1;
  2907. map = 0;
  2908. wf = pfec & PFERR_WRITE_MASK;
  2909. uf = pfec & PFERR_USER_MASK;
  2910. ff = pfec & PFERR_FETCH_MASK;
  2911. for (bit = 0; bit < 8; ++bit) {
  2912. x = bit & ACC_EXEC_MASK;
  2913. w = bit & ACC_WRITE_MASK;
  2914. u = bit & ACC_USER_MASK;
  2915. /* Not really needed: !nx will cause pte.nx to fault */
  2916. x |= !mmu->nx;
  2917. /* Allow supervisor writes if !cr0.wp */
  2918. w |= !is_write_protection(vcpu) && !uf;
  2919. /* Disallow supervisor fetches of user code if cr4.smep */
  2920. x &= !(smep && u && !uf);
  2921. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2922. map |= fault << bit;
  2923. }
  2924. mmu->permissions[byte] = map;
  2925. }
  2926. }
  2927. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2928. {
  2929. u8 map;
  2930. unsigned level, root_level = mmu->root_level;
  2931. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  2932. if (root_level == PT32E_ROOT_LEVEL)
  2933. --root_level;
  2934. /* PT_PAGE_TABLE_LEVEL always terminates */
  2935. map = 1 | (1 << ps_set_index);
  2936. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  2937. if (level <= PT_PDPE_LEVEL
  2938. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  2939. map |= 1 << (ps_set_index | (level - 1));
  2940. }
  2941. mmu->last_pte_bitmap = map;
  2942. }
  2943. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2944. struct kvm_mmu *context,
  2945. int level)
  2946. {
  2947. context->nx = is_nx(vcpu);
  2948. context->root_level = level;
  2949. reset_rsvds_bits_mask(vcpu, context);
  2950. update_permission_bitmask(vcpu, context);
  2951. update_last_pte_bitmap(vcpu, context);
  2952. ASSERT(is_pae(vcpu));
  2953. context->new_cr3 = paging_new_cr3;
  2954. context->page_fault = paging64_page_fault;
  2955. context->gva_to_gpa = paging64_gva_to_gpa;
  2956. context->sync_page = paging64_sync_page;
  2957. context->invlpg = paging64_invlpg;
  2958. context->update_pte = paging64_update_pte;
  2959. context->free = paging_free;
  2960. context->shadow_root_level = level;
  2961. context->root_hpa = INVALID_PAGE;
  2962. context->direct_map = false;
  2963. return 0;
  2964. }
  2965. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2966. struct kvm_mmu *context)
  2967. {
  2968. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2969. }
  2970. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2971. struct kvm_mmu *context)
  2972. {
  2973. context->nx = false;
  2974. context->root_level = PT32_ROOT_LEVEL;
  2975. reset_rsvds_bits_mask(vcpu, context);
  2976. update_permission_bitmask(vcpu, context);
  2977. update_last_pte_bitmap(vcpu, context);
  2978. context->new_cr3 = paging_new_cr3;
  2979. context->page_fault = paging32_page_fault;
  2980. context->gva_to_gpa = paging32_gva_to_gpa;
  2981. context->free = paging_free;
  2982. context->sync_page = paging32_sync_page;
  2983. context->invlpg = paging32_invlpg;
  2984. context->update_pte = paging32_update_pte;
  2985. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2986. context->root_hpa = INVALID_PAGE;
  2987. context->direct_map = false;
  2988. return 0;
  2989. }
  2990. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2991. struct kvm_mmu *context)
  2992. {
  2993. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2994. }
  2995. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2996. {
  2997. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2998. context->base_role.word = 0;
  2999. context->new_cr3 = nonpaging_new_cr3;
  3000. context->page_fault = tdp_page_fault;
  3001. context->free = nonpaging_free;
  3002. context->sync_page = nonpaging_sync_page;
  3003. context->invlpg = nonpaging_invlpg;
  3004. context->update_pte = nonpaging_update_pte;
  3005. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3006. context->root_hpa = INVALID_PAGE;
  3007. context->direct_map = true;
  3008. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3009. context->get_cr3 = get_cr3;
  3010. context->get_pdptr = kvm_pdptr_read;
  3011. context->inject_page_fault = kvm_inject_page_fault;
  3012. if (!is_paging(vcpu)) {
  3013. context->nx = false;
  3014. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3015. context->root_level = 0;
  3016. } else if (is_long_mode(vcpu)) {
  3017. context->nx = is_nx(vcpu);
  3018. context->root_level = PT64_ROOT_LEVEL;
  3019. reset_rsvds_bits_mask(vcpu, context);
  3020. context->gva_to_gpa = paging64_gva_to_gpa;
  3021. } else if (is_pae(vcpu)) {
  3022. context->nx = is_nx(vcpu);
  3023. context->root_level = PT32E_ROOT_LEVEL;
  3024. reset_rsvds_bits_mask(vcpu, context);
  3025. context->gva_to_gpa = paging64_gva_to_gpa;
  3026. } else {
  3027. context->nx = false;
  3028. context->root_level = PT32_ROOT_LEVEL;
  3029. reset_rsvds_bits_mask(vcpu, context);
  3030. context->gva_to_gpa = paging32_gva_to_gpa;
  3031. }
  3032. update_permission_bitmask(vcpu, context);
  3033. update_last_pte_bitmap(vcpu, context);
  3034. return 0;
  3035. }
  3036. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3037. {
  3038. int r;
  3039. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3040. ASSERT(vcpu);
  3041. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3042. if (!is_paging(vcpu))
  3043. r = nonpaging_init_context(vcpu, context);
  3044. else if (is_long_mode(vcpu))
  3045. r = paging64_init_context(vcpu, context);
  3046. else if (is_pae(vcpu))
  3047. r = paging32E_init_context(vcpu, context);
  3048. else
  3049. r = paging32_init_context(vcpu, context);
  3050. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3051. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3052. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3053. vcpu->arch.mmu.base_role.smep_andnot_wp
  3054. = smep && !is_write_protection(vcpu);
  3055. return r;
  3056. }
  3057. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3058. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3059. {
  3060. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3061. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3062. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3063. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3064. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3065. return r;
  3066. }
  3067. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3068. {
  3069. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3070. g_context->get_cr3 = get_cr3;
  3071. g_context->get_pdptr = kvm_pdptr_read;
  3072. g_context->inject_page_fault = kvm_inject_page_fault;
  3073. /*
  3074. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3075. * translation of l2_gpa to l1_gpa addresses is done using the
  3076. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3077. * functions between mmu and nested_mmu are swapped.
  3078. */
  3079. if (!is_paging(vcpu)) {
  3080. g_context->nx = false;
  3081. g_context->root_level = 0;
  3082. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3083. } else if (is_long_mode(vcpu)) {
  3084. g_context->nx = is_nx(vcpu);
  3085. g_context->root_level = PT64_ROOT_LEVEL;
  3086. reset_rsvds_bits_mask(vcpu, g_context);
  3087. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3088. } else if (is_pae(vcpu)) {
  3089. g_context->nx = is_nx(vcpu);
  3090. g_context->root_level = PT32E_ROOT_LEVEL;
  3091. reset_rsvds_bits_mask(vcpu, g_context);
  3092. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3093. } else {
  3094. g_context->nx = false;
  3095. g_context->root_level = PT32_ROOT_LEVEL;
  3096. reset_rsvds_bits_mask(vcpu, g_context);
  3097. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3098. }
  3099. update_permission_bitmask(vcpu, g_context);
  3100. update_last_pte_bitmap(vcpu, g_context);
  3101. return 0;
  3102. }
  3103. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3104. {
  3105. if (mmu_is_nested(vcpu))
  3106. return init_kvm_nested_mmu(vcpu);
  3107. else if (tdp_enabled)
  3108. return init_kvm_tdp_mmu(vcpu);
  3109. else
  3110. return init_kvm_softmmu(vcpu);
  3111. }
  3112. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3113. {
  3114. ASSERT(vcpu);
  3115. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3116. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3117. vcpu->arch.mmu.free(vcpu);
  3118. }
  3119. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3120. {
  3121. destroy_kvm_mmu(vcpu);
  3122. return init_kvm_mmu(vcpu);
  3123. }
  3124. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3125. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3126. {
  3127. int r;
  3128. r = mmu_topup_memory_caches(vcpu);
  3129. if (r)
  3130. goto out;
  3131. r = mmu_alloc_roots(vcpu);
  3132. spin_lock(&vcpu->kvm->mmu_lock);
  3133. mmu_sync_roots(vcpu);
  3134. spin_unlock(&vcpu->kvm->mmu_lock);
  3135. if (r)
  3136. goto out;
  3137. /* set_cr3() should ensure TLB has been flushed */
  3138. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3139. out:
  3140. return r;
  3141. }
  3142. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3143. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3144. {
  3145. mmu_free_roots(vcpu);
  3146. }
  3147. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3148. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3149. struct kvm_mmu_page *sp, u64 *spte,
  3150. const void *new)
  3151. {
  3152. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3153. ++vcpu->kvm->stat.mmu_pde_zapped;
  3154. return;
  3155. }
  3156. ++vcpu->kvm->stat.mmu_pte_updated;
  3157. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3158. }
  3159. static bool need_remote_flush(u64 old, u64 new)
  3160. {
  3161. if (!is_shadow_present_pte(old))
  3162. return false;
  3163. if (!is_shadow_present_pte(new))
  3164. return true;
  3165. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3166. return true;
  3167. old ^= PT64_NX_MASK;
  3168. new ^= PT64_NX_MASK;
  3169. return (old & ~new & PT64_PERM_MASK) != 0;
  3170. }
  3171. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3172. bool remote_flush, bool local_flush)
  3173. {
  3174. if (zap_page)
  3175. return;
  3176. if (remote_flush)
  3177. kvm_flush_remote_tlbs(vcpu->kvm);
  3178. else if (local_flush)
  3179. kvm_mmu_flush_tlb(vcpu);
  3180. }
  3181. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3182. const u8 *new, int *bytes)
  3183. {
  3184. u64 gentry;
  3185. int r;
  3186. /*
  3187. * Assume that the pte write on a page table of the same type
  3188. * as the current vcpu paging mode since we update the sptes only
  3189. * when they have the same mode.
  3190. */
  3191. if (is_pae(vcpu) && *bytes == 4) {
  3192. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3193. *gpa &= ~(gpa_t)7;
  3194. *bytes = 8;
  3195. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3196. if (r)
  3197. gentry = 0;
  3198. new = (const u8 *)&gentry;
  3199. }
  3200. switch (*bytes) {
  3201. case 4:
  3202. gentry = *(const u32 *)new;
  3203. break;
  3204. case 8:
  3205. gentry = *(const u64 *)new;
  3206. break;
  3207. default:
  3208. gentry = 0;
  3209. break;
  3210. }
  3211. return gentry;
  3212. }
  3213. /*
  3214. * If we're seeing too many writes to a page, it may no longer be a page table,
  3215. * or we may be forking, in which case it is better to unmap the page.
  3216. */
  3217. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3218. {
  3219. /*
  3220. * Skip write-flooding detected for the sp whose level is 1, because
  3221. * it can become unsync, then the guest page is not write-protected.
  3222. */
  3223. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3224. return false;
  3225. return ++sp->write_flooding_count >= 3;
  3226. }
  3227. /*
  3228. * Misaligned accesses are too much trouble to fix up; also, they usually
  3229. * indicate a page is not used as a page table.
  3230. */
  3231. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3232. int bytes)
  3233. {
  3234. unsigned offset, pte_size, misaligned;
  3235. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3236. gpa, bytes, sp->role.word);
  3237. offset = offset_in_page(gpa);
  3238. pte_size = sp->role.cr4_pae ? 8 : 4;
  3239. /*
  3240. * Sometimes, the OS only writes the last one bytes to update status
  3241. * bits, for example, in linux, andb instruction is used in clear_bit().
  3242. */
  3243. if (!(offset & (pte_size - 1)) && bytes == 1)
  3244. return false;
  3245. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3246. misaligned |= bytes < 4;
  3247. return misaligned;
  3248. }
  3249. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3250. {
  3251. unsigned page_offset, quadrant;
  3252. u64 *spte;
  3253. int level;
  3254. page_offset = offset_in_page(gpa);
  3255. level = sp->role.level;
  3256. *nspte = 1;
  3257. if (!sp->role.cr4_pae) {
  3258. page_offset <<= 1; /* 32->64 */
  3259. /*
  3260. * A 32-bit pde maps 4MB while the shadow pdes map
  3261. * only 2MB. So we need to double the offset again
  3262. * and zap two pdes instead of one.
  3263. */
  3264. if (level == PT32_ROOT_LEVEL) {
  3265. page_offset &= ~7; /* kill rounding error */
  3266. page_offset <<= 1;
  3267. *nspte = 2;
  3268. }
  3269. quadrant = page_offset >> PAGE_SHIFT;
  3270. page_offset &= ~PAGE_MASK;
  3271. if (quadrant != sp->role.quadrant)
  3272. return NULL;
  3273. }
  3274. spte = &sp->spt[page_offset / sizeof(*spte)];
  3275. return spte;
  3276. }
  3277. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3278. const u8 *new, int bytes)
  3279. {
  3280. gfn_t gfn = gpa >> PAGE_SHIFT;
  3281. union kvm_mmu_page_role mask = { .word = 0 };
  3282. struct kvm_mmu_page *sp;
  3283. struct hlist_node *node;
  3284. LIST_HEAD(invalid_list);
  3285. u64 entry, gentry, *spte;
  3286. int npte;
  3287. bool remote_flush, local_flush, zap_page;
  3288. /*
  3289. * If we don't have indirect shadow pages, it means no page is
  3290. * write-protected, so we can exit simply.
  3291. */
  3292. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3293. return;
  3294. zap_page = remote_flush = local_flush = false;
  3295. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3296. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3297. /*
  3298. * No need to care whether allocation memory is successful
  3299. * or not since pte prefetch is skiped if it does not have
  3300. * enough objects in the cache.
  3301. */
  3302. mmu_topup_memory_caches(vcpu);
  3303. spin_lock(&vcpu->kvm->mmu_lock);
  3304. ++vcpu->kvm->stat.mmu_pte_write;
  3305. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3306. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3307. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3308. if (detect_write_misaligned(sp, gpa, bytes) ||
  3309. detect_write_flooding(sp)) {
  3310. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3311. &invalid_list);
  3312. ++vcpu->kvm->stat.mmu_flooded;
  3313. continue;
  3314. }
  3315. spte = get_written_sptes(sp, gpa, &npte);
  3316. if (!spte)
  3317. continue;
  3318. local_flush = true;
  3319. while (npte--) {
  3320. entry = *spte;
  3321. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3322. if (gentry &&
  3323. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3324. & mask.word) && rmap_can_add(vcpu))
  3325. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3326. if (need_remote_flush(entry, *spte))
  3327. remote_flush = true;
  3328. ++spte;
  3329. }
  3330. }
  3331. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3332. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3333. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3334. spin_unlock(&vcpu->kvm->mmu_lock);
  3335. }
  3336. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3337. {
  3338. gpa_t gpa;
  3339. int r;
  3340. if (vcpu->arch.mmu.direct_map)
  3341. return 0;
  3342. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3343. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3344. return r;
  3345. }
  3346. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3347. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3348. {
  3349. LIST_HEAD(invalid_list);
  3350. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3351. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3352. struct kvm_mmu_page *sp;
  3353. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3354. struct kvm_mmu_page, link);
  3355. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3356. ++vcpu->kvm->stat.mmu_recycled;
  3357. }
  3358. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3359. }
  3360. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3361. {
  3362. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3363. return vcpu_match_mmio_gpa(vcpu, addr);
  3364. return vcpu_match_mmio_gva(vcpu, addr);
  3365. }
  3366. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3367. void *insn, int insn_len)
  3368. {
  3369. int r, emulation_type = EMULTYPE_RETRY;
  3370. enum emulation_result er;
  3371. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3372. if (r < 0)
  3373. goto out;
  3374. if (!r) {
  3375. r = 1;
  3376. goto out;
  3377. }
  3378. if (is_mmio_page_fault(vcpu, cr2))
  3379. emulation_type = 0;
  3380. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3381. switch (er) {
  3382. case EMULATE_DONE:
  3383. return 1;
  3384. case EMULATE_DO_MMIO:
  3385. ++vcpu->stat.mmio_exits;
  3386. /* fall through */
  3387. case EMULATE_FAIL:
  3388. return 0;
  3389. default:
  3390. BUG();
  3391. }
  3392. out:
  3393. return r;
  3394. }
  3395. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3396. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3397. {
  3398. vcpu->arch.mmu.invlpg(vcpu, gva);
  3399. kvm_mmu_flush_tlb(vcpu);
  3400. ++vcpu->stat.invlpg;
  3401. }
  3402. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3403. void kvm_enable_tdp(void)
  3404. {
  3405. tdp_enabled = true;
  3406. }
  3407. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3408. void kvm_disable_tdp(void)
  3409. {
  3410. tdp_enabled = false;
  3411. }
  3412. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3413. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3414. {
  3415. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3416. if (vcpu->arch.mmu.lm_root != NULL)
  3417. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3418. }
  3419. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3420. {
  3421. struct page *page;
  3422. int i;
  3423. ASSERT(vcpu);
  3424. /*
  3425. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3426. * Therefore we need to allocate shadow page tables in the first
  3427. * 4GB of memory, which happens to fit the DMA32 zone.
  3428. */
  3429. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3430. if (!page)
  3431. return -ENOMEM;
  3432. vcpu->arch.mmu.pae_root = page_address(page);
  3433. for (i = 0; i < 4; ++i)
  3434. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3435. return 0;
  3436. }
  3437. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3438. {
  3439. ASSERT(vcpu);
  3440. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3441. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3442. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3443. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3444. return alloc_mmu_pages(vcpu);
  3445. }
  3446. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3447. {
  3448. ASSERT(vcpu);
  3449. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3450. return init_kvm_mmu(vcpu);
  3451. }
  3452. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3453. {
  3454. struct kvm_memory_slot *memslot;
  3455. gfn_t last_gfn;
  3456. int i;
  3457. memslot = id_to_memslot(kvm->memslots, slot);
  3458. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3459. spin_lock(&kvm->mmu_lock);
  3460. for (i = PT_PAGE_TABLE_LEVEL;
  3461. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3462. unsigned long *rmapp;
  3463. unsigned long last_index, index;
  3464. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3465. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3466. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3467. if (*rmapp)
  3468. __rmap_write_protect(kvm, rmapp, false);
  3469. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3470. kvm_flush_remote_tlbs(kvm);
  3471. cond_resched_lock(&kvm->mmu_lock);
  3472. }
  3473. }
  3474. }
  3475. kvm_flush_remote_tlbs(kvm);
  3476. spin_unlock(&kvm->mmu_lock);
  3477. }
  3478. void kvm_mmu_zap_all(struct kvm *kvm)
  3479. {
  3480. struct kvm_mmu_page *sp, *node;
  3481. LIST_HEAD(invalid_list);
  3482. spin_lock(&kvm->mmu_lock);
  3483. restart:
  3484. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3485. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3486. goto restart;
  3487. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3488. spin_unlock(&kvm->mmu_lock);
  3489. }
  3490. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3491. struct list_head *invalid_list)
  3492. {
  3493. struct kvm_mmu_page *page;
  3494. if (list_empty(&kvm->arch.active_mmu_pages))
  3495. return;
  3496. page = container_of(kvm->arch.active_mmu_pages.prev,
  3497. struct kvm_mmu_page, link);
  3498. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3499. }
  3500. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3501. {
  3502. struct kvm *kvm;
  3503. int nr_to_scan = sc->nr_to_scan;
  3504. if (nr_to_scan == 0)
  3505. goto out;
  3506. raw_spin_lock(&kvm_lock);
  3507. list_for_each_entry(kvm, &vm_list, vm_list) {
  3508. int idx;
  3509. LIST_HEAD(invalid_list);
  3510. /*
  3511. * Never scan more than sc->nr_to_scan VM instances.
  3512. * Will not hit this condition practically since we do not try
  3513. * to shrink more than one VM and it is very unlikely to see
  3514. * !n_used_mmu_pages so many times.
  3515. */
  3516. if (!nr_to_scan--)
  3517. break;
  3518. /*
  3519. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3520. * here. We may skip a VM instance errorneosly, but we do not
  3521. * want to shrink a VM that only started to populate its MMU
  3522. * anyway.
  3523. */
  3524. if (!kvm->arch.n_used_mmu_pages)
  3525. continue;
  3526. idx = srcu_read_lock(&kvm->srcu);
  3527. spin_lock(&kvm->mmu_lock);
  3528. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3529. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3530. spin_unlock(&kvm->mmu_lock);
  3531. srcu_read_unlock(&kvm->srcu, idx);
  3532. list_move_tail(&kvm->vm_list, &vm_list);
  3533. break;
  3534. }
  3535. raw_spin_unlock(&kvm_lock);
  3536. out:
  3537. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3538. }
  3539. static struct shrinker mmu_shrinker = {
  3540. .shrink = mmu_shrink,
  3541. .seeks = DEFAULT_SEEKS * 10,
  3542. };
  3543. static void mmu_destroy_caches(void)
  3544. {
  3545. if (pte_list_desc_cache)
  3546. kmem_cache_destroy(pte_list_desc_cache);
  3547. if (mmu_page_header_cache)
  3548. kmem_cache_destroy(mmu_page_header_cache);
  3549. }
  3550. int kvm_mmu_module_init(void)
  3551. {
  3552. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3553. sizeof(struct pte_list_desc),
  3554. 0, 0, NULL);
  3555. if (!pte_list_desc_cache)
  3556. goto nomem;
  3557. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3558. sizeof(struct kvm_mmu_page),
  3559. 0, 0, NULL);
  3560. if (!mmu_page_header_cache)
  3561. goto nomem;
  3562. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3563. goto nomem;
  3564. register_shrinker(&mmu_shrinker);
  3565. return 0;
  3566. nomem:
  3567. mmu_destroy_caches();
  3568. return -ENOMEM;
  3569. }
  3570. /*
  3571. * Caculate mmu pages needed for kvm.
  3572. */
  3573. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3574. {
  3575. unsigned int nr_mmu_pages;
  3576. unsigned int nr_pages = 0;
  3577. struct kvm_memslots *slots;
  3578. struct kvm_memory_slot *memslot;
  3579. slots = kvm_memslots(kvm);
  3580. kvm_for_each_memslot(memslot, slots)
  3581. nr_pages += memslot->npages;
  3582. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3583. nr_mmu_pages = max(nr_mmu_pages,
  3584. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3585. return nr_mmu_pages;
  3586. }
  3587. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3588. {
  3589. struct kvm_shadow_walk_iterator iterator;
  3590. u64 spte;
  3591. int nr_sptes = 0;
  3592. walk_shadow_page_lockless_begin(vcpu);
  3593. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3594. sptes[iterator.level-1] = spte;
  3595. nr_sptes++;
  3596. if (!is_shadow_present_pte(spte))
  3597. break;
  3598. }
  3599. walk_shadow_page_lockless_end(vcpu);
  3600. return nr_sptes;
  3601. }
  3602. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3603. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3604. {
  3605. ASSERT(vcpu);
  3606. destroy_kvm_mmu(vcpu);
  3607. free_mmu_pages(vcpu);
  3608. mmu_free_memory_caches(vcpu);
  3609. }
  3610. void kvm_mmu_module_exit(void)
  3611. {
  3612. mmu_destroy_caches();
  3613. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3614. unregister_shrinker(&mmu_shrinker);
  3615. mmu_audit_disable();
  3616. }