cpufreq_ondemand.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. /*
  21. * dbs is used in this file as a shortform for demandbased switching
  22. * It helps to keep variable names smaller, simpler
  23. */
  24. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  25. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  26. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  27. /*
  28. * The polling frequency of this governor depends on the capability of
  29. * the processor. Default polling frequency is 1000 times the transition
  30. * latency of the processor. The governor will work on any processor with
  31. * transition latency <= 10mS, using appropriate sampling
  32. * rate.
  33. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  34. * this governor will not work.
  35. * All times here are in uS.
  36. */
  37. static unsigned int def_sampling_rate;
  38. #define MIN_SAMPLING_RATE_RATIO (2)
  39. /* for correct statistics, we need at least 10 ticks between each measure */
  40. #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
  41. #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
  42. #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
  43. #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
  44. #define TRANSITION_LATENCY_LIMIT (10 * 1000)
  45. static void do_dbs_timer(struct work_struct *work);
  46. /* Sampling types */
  47. enum dbs_sample {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  48. struct cpu_dbs_info_s {
  49. cputime64_t prev_cpu_idle;
  50. cputime64_t prev_cpu_wall;
  51. struct cpufreq_policy *cur_policy;
  52. struct delayed_work work;
  53. enum dbs_sample sample_type;
  54. unsigned int enable;
  55. struct cpufreq_frequency_table *freq_table;
  56. unsigned int freq_lo;
  57. unsigned int freq_lo_jiffies;
  58. unsigned int freq_hi_jiffies;
  59. };
  60. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  61. static unsigned int dbs_enable; /* number of CPUs using this policy */
  62. /*
  63. * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
  64. * lock and dbs_mutex. cpu_hotplug lock should always be held before
  65. * dbs_mutex. If any function that can potentially take cpu_hotplug lock
  66. * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
  67. * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
  68. * is recursive for the same process. -Venki
  69. */
  70. static DEFINE_MUTEX(dbs_mutex);
  71. static struct workqueue_struct *kondemand_wq;
  72. static struct dbs_tuners {
  73. unsigned int sampling_rate;
  74. unsigned int up_threshold;
  75. unsigned int ignore_nice;
  76. unsigned int powersave_bias;
  77. } dbs_tuners_ins = {
  78. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  79. .ignore_nice = 0,
  80. .powersave_bias = 0,
  81. };
  82. static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
  83. {
  84. cputime64_t retval;
  85. retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
  86. kstat_cpu(cpu).cpustat.iowait);
  87. if (dbs_tuners_ins.ignore_nice)
  88. retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
  89. return retval;
  90. }
  91. /*
  92. * Find right freq to be set now with powersave_bias on.
  93. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  94. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  95. */
  96. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  97. unsigned int freq_next,
  98. unsigned int relation)
  99. {
  100. unsigned int freq_req, freq_reduc, freq_avg;
  101. unsigned int freq_hi, freq_lo;
  102. unsigned int index = 0;
  103. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  104. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
  105. if (!dbs_info->freq_table) {
  106. dbs_info->freq_lo = 0;
  107. dbs_info->freq_lo_jiffies = 0;
  108. return freq_next;
  109. }
  110. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  111. relation, &index);
  112. freq_req = dbs_info->freq_table[index].frequency;
  113. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  114. freq_avg = freq_req - freq_reduc;
  115. /* Find freq bounds for freq_avg in freq_table */
  116. index = 0;
  117. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  118. CPUFREQ_RELATION_H, &index);
  119. freq_lo = dbs_info->freq_table[index].frequency;
  120. index = 0;
  121. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  122. CPUFREQ_RELATION_L, &index);
  123. freq_hi = dbs_info->freq_table[index].frequency;
  124. /* Find out how long we have to be in hi and lo freqs */
  125. if (freq_hi == freq_lo) {
  126. dbs_info->freq_lo = 0;
  127. dbs_info->freq_lo_jiffies = 0;
  128. return freq_lo;
  129. }
  130. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  131. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  132. jiffies_hi += ((freq_hi - freq_lo) / 2);
  133. jiffies_hi /= (freq_hi - freq_lo);
  134. jiffies_lo = jiffies_total - jiffies_hi;
  135. dbs_info->freq_lo = freq_lo;
  136. dbs_info->freq_lo_jiffies = jiffies_lo;
  137. dbs_info->freq_hi_jiffies = jiffies_hi;
  138. return freq_hi;
  139. }
  140. static void ondemand_powersave_bias_init(void)
  141. {
  142. int i;
  143. for_each_online_cpu(i) {
  144. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
  145. dbs_info->freq_table = cpufreq_frequency_get_table(i);
  146. dbs_info->freq_lo = 0;
  147. }
  148. }
  149. /************************** sysfs interface ************************/
  150. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  151. {
  152. return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
  153. }
  154. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  155. {
  156. return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
  157. }
  158. #define define_one_ro(_name) \
  159. static struct freq_attr _name = \
  160. __ATTR(_name, 0444, show_##_name, NULL)
  161. define_one_ro(sampling_rate_max);
  162. define_one_ro(sampling_rate_min);
  163. /* cpufreq_ondemand Governor Tunables */
  164. #define show_one(file_name, object) \
  165. static ssize_t show_##file_name \
  166. (struct cpufreq_policy *unused, char *buf) \
  167. { \
  168. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  169. }
  170. show_one(sampling_rate, sampling_rate);
  171. show_one(up_threshold, up_threshold);
  172. show_one(ignore_nice_load, ignore_nice);
  173. show_one(powersave_bias, powersave_bias);
  174. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  175. const char *buf, size_t count)
  176. {
  177. unsigned int input;
  178. int ret;
  179. ret = sscanf(buf, "%u", &input);
  180. mutex_lock(&dbs_mutex);
  181. if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
  182. mutex_unlock(&dbs_mutex);
  183. return -EINVAL;
  184. }
  185. dbs_tuners_ins.sampling_rate = input;
  186. mutex_unlock(&dbs_mutex);
  187. return count;
  188. }
  189. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  190. const char *buf, size_t count)
  191. {
  192. unsigned int input;
  193. int ret;
  194. ret = sscanf(buf, "%u", &input);
  195. mutex_lock(&dbs_mutex);
  196. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  197. input < MIN_FREQUENCY_UP_THRESHOLD) {
  198. mutex_unlock(&dbs_mutex);
  199. return -EINVAL;
  200. }
  201. dbs_tuners_ins.up_threshold = input;
  202. mutex_unlock(&dbs_mutex);
  203. return count;
  204. }
  205. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  206. const char *buf, size_t count)
  207. {
  208. unsigned int input;
  209. int ret;
  210. unsigned int j;
  211. ret = sscanf(buf, "%u", &input);
  212. if ( ret != 1 )
  213. return -EINVAL;
  214. if ( input > 1 )
  215. input = 1;
  216. mutex_lock(&dbs_mutex);
  217. if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
  218. mutex_unlock(&dbs_mutex);
  219. return count;
  220. }
  221. dbs_tuners_ins.ignore_nice = input;
  222. /* we need to re-evaluate prev_cpu_idle */
  223. for_each_online_cpu(j) {
  224. struct cpu_dbs_info_s *dbs_info;
  225. dbs_info = &per_cpu(cpu_dbs_info, j);
  226. dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
  227. dbs_info->prev_cpu_wall = get_jiffies_64();
  228. }
  229. mutex_unlock(&dbs_mutex);
  230. return count;
  231. }
  232. static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
  233. const char *buf, size_t count)
  234. {
  235. unsigned int input;
  236. int ret;
  237. ret = sscanf(buf, "%u", &input);
  238. if (ret != 1)
  239. return -EINVAL;
  240. if (input > 1000)
  241. input = 1000;
  242. mutex_lock(&dbs_mutex);
  243. dbs_tuners_ins.powersave_bias = input;
  244. ondemand_powersave_bias_init();
  245. mutex_unlock(&dbs_mutex);
  246. return count;
  247. }
  248. #define define_one_rw(_name) \
  249. static struct freq_attr _name = \
  250. __ATTR(_name, 0644, show_##_name, store_##_name)
  251. define_one_rw(sampling_rate);
  252. define_one_rw(up_threshold);
  253. define_one_rw(ignore_nice_load);
  254. define_one_rw(powersave_bias);
  255. static struct attribute * dbs_attributes[] = {
  256. &sampling_rate_max.attr,
  257. &sampling_rate_min.attr,
  258. &sampling_rate.attr,
  259. &up_threshold.attr,
  260. &ignore_nice_load.attr,
  261. &powersave_bias.attr,
  262. NULL
  263. };
  264. static struct attribute_group dbs_attr_group = {
  265. .attrs = dbs_attributes,
  266. .name = "ondemand",
  267. };
  268. /************************** sysfs end ************************/
  269. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  270. {
  271. unsigned int idle_ticks, total_ticks;
  272. unsigned int load;
  273. cputime64_t cur_jiffies;
  274. struct cpufreq_policy *policy;
  275. unsigned int j;
  276. if (!this_dbs_info->enable)
  277. return;
  278. this_dbs_info->freq_lo = 0;
  279. policy = this_dbs_info->cur_policy;
  280. cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
  281. total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
  282. this_dbs_info->prev_cpu_wall);
  283. this_dbs_info->prev_cpu_wall = cur_jiffies;
  284. if (!total_ticks)
  285. return;
  286. /*
  287. * Every sampling_rate, we check, if current idle time is less
  288. * than 20% (default), then we try to increase frequency
  289. * Every sampling_rate, we look for a the lowest
  290. * frequency which can sustain the load while keeping idle time over
  291. * 30%. If such a frequency exist, we try to decrease to this frequency.
  292. *
  293. * Any frequency increase takes it to the maximum frequency.
  294. * Frequency reduction happens at minimum steps of
  295. * 5% (default) of current frequency
  296. */
  297. /* Get Idle Time */
  298. idle_ticks = UINT_MAX;
  299. for_each_cpu_mask(j, policy->cpus) {
  300. cputime64_t total_idle_ticks;
  301. unsigned int tmp_idle_ticks;
  302. struct cpu_dbs_info_s *j_dbs_info;
  303. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  304. total_idle_ticks = get_cpu_idle_time(j);
  305. tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
  306. j_dbs_info->prev_cpu_idle);
  307. j_dbs_info->prev_cpu_idle = total_idle_ticks;
  308. if (tmp_idle_ticks < idle_ticks)
  309. idle_ticks = tmp_idle_ticks;
  310. }
  311. load = (100 * (total_ticks - idle_ticks)) / total_ticks;
  312. /* Check for frequency increase */
  313. if (load > dbs_tuners_ins.up_threshold) {
  314. /* if we are already at full speed then break out early */
  315. if (!dbs_tuners_ins.powersave_bias) {
  316. if (policy->cur == policy->max)
  317. return;
  318. __cpufreq_driver_target(policy, policy->max,
  319. CPUFREQ_RELATION_H);
  320. } else {
  321. int freq = powersave_bias_target(policy, policy->max,
  322. CPUFREQ_RELATION_H);
  323. __cpufreq_driver_target(policy, freq,
  324. CPUFREQ_RELATION_L);
  325. }
  326. return;
  327. }
  328. /* Check for frequency decrease */
  329. /* if we cannot reduce the frequency anymore, break out early */
  330. if (policy->cur == policy->min)
  331. return;
  332. /*
  333. * The optimal frequency is the frequency that is the lowest that
  334. * can support the current CPU usage without triggering the up
  335. * policy. To be safe, we focus 10 points under the threshold.
  336. */
  337. if (load < (dbs_tuners_ins.up_threshold - 10)) {
  338. unsigned int freq_next = (policy->cur * load) /
  339. (dbs_tuners_ins.up_threshold - 10);
  340. if (!dbs_tuners_ins.powersave_bias) {
  341. __cpufreq_driver_target(policy, freq_next,
  342. CPUFREQ_RELATION_L);
  343. } else {
  344. int freq = powersave_bias_target(policy, freq_next,
  345. CPUFREQ_RELATION_L);
  346. __cpufreq_driver_target(policy, freq,
  347. CPUFREQ_RELATION_L);
  348. }
  349. }
  350. }
  351. static void do_dbs_timer(struct work_struct *work)
  352. {
  353. unsigned int cpu = smp_processor_id();
  354. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
  355. enum dbs_sample sample_type = dbs_info->sample_type;
  356. /* We want all CPUs to do sampling nearly on same jiffy */
  357. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  358. /* Permit rescheduling of this work item */
  359. work_release(work);
  360. delay -= jiffies % delay;
  361. if (!dbs_info->enable)
  362. return;
  363. /* Common NORMAL_SAMPLE setup */
  364. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  365. if (!dbs_tuners_ins.powersave_bias ||
  366. sample_type == DBS_NORMAL_SAMPLE) {
  367. lock_cpu_hotplug();
  368. dbs_check_cpu(dbs_info);
  369. unlock_cpu_hotplug();
  370. if (dbs_info->freq_lo) {
  371. /* Setup timer for SUB_SAMPLE */
  372. dbs_info->sample_type = DBS_SUB_SAMPLE;
  373. delay = dbs_info->freq_hi_jiffies;
  374. }
  375. } else {
  376. __cpufreq_driver_target(dbs_info->cur_policy,
  377. dbs_info->freq_lo,
  378. CPUFREQ_RELATION_H);
  379. }
  380. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  381. }
  382. static inline void dbs_timer_init(unsigned int cpu)
  383. {
  384. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
  385. /* We want all CPUs to do sampling nearly on same jiffy */
  386. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  387. delay -= jiffies % delay;
  388. ondemand_powersave_bias_init();
  389. INIT_DELAYED_WORK_NAR(&dbs_info->work, do_dbs_timer);
  390. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  391. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  392. }
  393. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  394. {
  395. dbs_info->enable = 0;
  396. cancel_delayed_work(&dbs_info->work);
  397. flush_workqueue(kondemand_wq);
  398. }
  399. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  400. unsigned int event)
  401. {
  402. unsigned int cpu = policy->cpu;
  403. struct cpu_dbs_info_s *this_dbs_info;
  404. unsigned int j;
  405. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  406. switch (event) {
  407. case CPUFREQ_GOV_START:
  408. if ((!cpu_online(cpu)) || (!policy->cur))
  409. return -EINVAL;
  410. if (policy->cpuinfo.transition_latency >
  411. (TRANSITION_LATENCY_LIMIT * 1000)) {
  412. printk(KERN_WARNING "ondemand governor failed to load "
  413. "due to too long transition latency\n");
  414. return -EINVAL;
  415. }
  416. if (this_dbs_info->enable) /* Already enabled */
  417. break;
  418. mutex_lock(&dbs_mutex);
  419. dbs_enable++;
  420. if (dbs_enable == 1) {
  421. kondemand_wq = create_workqueue("kondemand");
  422. if (!kondemand_wq) {
  423. printk(KERN_ERR "Creation of kondemand failed\n");
  424. dbs_enable--;
  425. mutex_unlock(&dbs_mutex);
  426. return -ENOSPC;
  427. }
  428. }
  429. for_each_cpu_mask(j, policy->cpus) {
  430. struct cpu_dbs_info_s *j_dbs_info;
  431. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  432. j_dbs_info->cur_policy = policy;
  433. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
  434. j_dbs_info->prev_cpu_wall = get_jiffies_64();
  435. }
  436. this_dbs_info->enable = 1;
  437. sysfs_create_group(&policy->kobj, &dbs_attr_group);
  438. /*
  439. * Start the timerschedule work, when this governor
  440. * is used for first time
  441. */
  442. if (dbs_enable == 1) {
  443. unsigned int latency;
  444. /* policy latency is in nS. Convert it to uS first */
  445. latency = policy->cpuinfo.transition_latency / 1000;
  446. if (latency == 0)
  447. latency = 1;
  448. def_sampling_rate = latency *
  449. DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
  450. if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
  451. def_sampling_rate = MIN_STAT_SAMPLING_RATE;
  452. dbs_tuners_ins.sampling_rate = def_sampling_rate;
  453. }
  454. dbs_timer_init(policy->cpu);
  455. mutex_unlock(&dbs_mutex);
  456. break;
  457. case CPUFREQ_GOV_STOP:
  458. mutex_lock(&dbs_mutex);
  459. dbs_timer_exit(this_dbs_info);
  460. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  461. dbs_enable--;
  462. if (dbs_enable == 0)
  463. destroy_workqueue(kondemand_wq);
  464. mutex_unlock(&dbs_mutex);
  465. break;
  466. case CPUFREQ_GOV_LIMITS:
  467. mutex_lock(&dbs_mutex);
  468. if (policy->max < this_dbs_info->cur_policy->cur)
  469. __cpufreq_driver_target(this_dbs_info->cur_policy,
  470. policy->max,
  471. CPUFREQ_RELATION_H);
  472. else if (policy->min > this_dbs_info->cur_policy->cur)
  473. __cpufreq_driver_target(this_dbs_info->cur_policy,
  474. policy->min,
  475. CPUFREQ_RELATION_L);
  476. mutex_unlock(&dbs_mutex);
  477. break;
  478. }
  479. return 0;
  480. }
  481. static struct cpufreq_governor cpufreq_gov_dbs = {
  482. .name = "ondemand",
  483. .governor = cpufreq_governor_dbs,
  484. .owner = THIS_MODULE,
  485. };
  486. static int __init cpufreq_gov_dbs_init(void)
  487. {
  488. return cpufreq_register_governor(&cpufreq_gov_dbs);
  489. }
  490. static void __exit cpufreq_gov_dbs_exit(void)
  491. {
  492. cpufreq_unregister_governor(&cpufreq_gov_dbs);
  493. }
  494. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  495. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  496. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  497. "Low Latency Frequency Transition capable processors");
  498. MODULE_LICENSE("GPL");
  499. module_init(cpufreq_gov_dbs_init);
  500. module_exit(cpufreq_gov_dbs_exit);