timer.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775
  1. /*
  2. * linux/kernel/timer.c
  3. *
  4. * Kernel internal timers, basic process system calls
  5. *
  6. * Copyright (C) 1991, 1992 Linus Torvalds
  7. *
  8. * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
  9. *
  10. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13. * serialize accesses to xtime/lost_ticks).
  14. * Copyright (C) 1998 Andrea Arcangeli
  15. * 1999-03-10 Improved NTP compatibility by Ulrich Windl
  16. * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
  17. * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
  18. * Copyright (C) 2000, 2001, 2002 Ingo Molnar
  19. * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20. */
  21. #include <linux/kernel_stat.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/percpu.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/swap.h>
  28. #include <linux/pid_namespace.h>
  29. #include <linux/notifier.h>
  30. #include <linux/thread_info.h>
  31. #include <linux/time.h>
  32. #include <linux/jiffies.h>
  33. #include <linux/posix-timers.h>
  34. #include <linux/cpu.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/delay.h>
  37. #include <linux/tick.h>
  38. #include <linux/kallsyms.h>
  39. #include <linux/perf_event.h>
  40. #include <linux/sched.h>
  41. #include <linux/slab.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/unistd.h>
  44. #include <asm/div64.h>
  45. #include <asm/timex.h>
  46. #include <asm/io.h>
  47. #define CREATE_TRACE_POINTS
  48. #include <trace/events/timer.h>
  49. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  50. EXPORT_SYMBOL(jiffies_64);
  51. /*
  52. * per-CPU timer vector definitions:
  53. */
  54. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  55. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  56. #define TVN_SIZE (1 << TVN_BITS)
  57. #define TVR_SIZE (1 << TVR_BITS)
  58. #define TVN_MASK (TVN_SIZE - 1)
  59. #define TVR_MASK (TVR_SIZE - 1)
  60. struct tvec {
  61. struct list_head vec[TVN_SIZE];
  62. };
  63. struct tvec_root {
  64. struct list_head vec[TVR_SIZE];
  65. };
  66. struct tvec_base {
  67. spinlock_t lock;
  68. struct timer_list *running_timer;
  69. unsigned long timer_jiffies;
  70. unsigned long next_timer;
  71. struct tvec_root tv1;
  72. struct tvec tv2;
  73. struct tvec tv3;
  74. struct tvec tv4;
  75. struct tvec tv5;
  76. } ____cacheline_aligned;
  77. struct tvec_base boot_tvec_bases;
  78. EXPORT_SYMBOL(boot_tvec_bases);
  79. static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
  80. /* Functions below help us manage 'deferrable' flag */
  81. static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
  82. {
  83. return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
  84. }
  85. static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
  86. {
  87. return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
  88. }
  89. static inline void timer_set_deferrable(struct timer_list *timer)
  90. {
  91. timer->base = TBASE_MAKE_DEFERRED(timer->base);
  92. }
  93. static inline void
  94. timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
  95. {
  96. timer->base = (struct tvec_base *)((unsigned long)(new_base) |
  97. tbase_get_deferrable(timer->base));
  98. }
  99. static unsigned long round_jiffies_common(unsigned long j, int cpu,
  100. bool force_up)
  101. {
  102. int rem;
  103. unsigned long original = j;
  104. /*
  105. * We don't want all cpus firing their timers at once hitting the
  106. * same lock or cachelines, so we skew each extra cpu with an extra
  107. * 3 jiffies. This 3 jiffies came originally from the mm/ code which
  108. * already did this.
  109. * The skew is done by adding 3*cpunr, then round, then subtract this
  110. * extra offset again.
  111. */
  112. j += cpu * 3;
  113. rem = j % HZ;
  114. /*
  115. * If the target jiffie is just after a whole second (which can happen
  116. * due to delays of the timer irq, long irq off times etc etc) then
  117. * we should round down to the whole second, not up. Use 1/4th second
  118. * as cutoff for this rounding as an extreme upper bound for this.
  119. * But never round down if @force_up is set.
  120. */
  121. if (rem < HZ/4 && !force_up) /* round down */
  122. j = j - rem;
  123. else /* round up */
  124. j = j - rem + HZ;
  125. /* now that we have rounded, subtract the extra skew again */
  126. j -= cpu * 3;
  127. if (j <= jiffies) /* rounding ate our timeout entirely; */
  128. return original;
  129. return j;
  130. }
  131. /**
  132. * __round_jiffies - function to round jiffies to a full second
  133. * @j: the time in (absolute) jiffies that should be rounded
  134. * @cpu: the processor number on which the timeout will happen
  135. *
  136. * __round_jiffies() rounds an absolute time in the future (in jiffies)
  137. * up or down to (approximately) full seconds. This is useful for timers
  138. * for which the exact time they fire does not matter too much, as long as
  139. * they fire approximately every X seconds.
  140. *
  141. * By rounding these timers to whole seconds, all such timers will fire
  142. * at the same time, rather than at various times spread out. The goal
  143. * of this is to have the CPU wake up less, which saves power.
  144. *
  145. * The exact rounding is skewed for each processor to avoid all
  146. * processors firing at the exact same time, which could lead
  147. * to lock contention or spurious cache line bouncing.
  148. *
  149. * The return value is the rounded version of the @j parameter.
  150. */
  151. unsigned long __round_jiffies(unsigned long j, int cpu)
  152. {
  153. return round_jiffies_common(j, cpu, false);
  154. }
  155. EXPORT_SYMBOL_GPL(__round_jiffies);
  156. /**
  157. * __round_jiffies_relative - function to round jiffies to a full second
  158. * @j: the time in (relative) jiffies that should be rounded
  159. * @cpu: the processor number on which the timeout will happen
  160. *
  161. * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
  162. * up or down to (approximately) full seconds. This is useful for timers
  163. * for which the exact time they fire does not matter too much, as long as
  164. * they fire approximately every X seconds.
  165. *
  166. * By rounding these timers to whole seconds, all such timers will fire
  167. * at the same time, rather than at various times spread out. The goal
  168. * of this is to have the CPU wake up less, which saves power.
  169. *
  170. * The exact rounding is skewed for each processor to avoid all
  171. * processors firing at the exact same time, which could lead
  172. * to lock contention or spurious cache line bouncing.
  173. *
  174. * The return value is the rounded version of the @j parameter.
  175. */
  176. unsigned long __round_jiffies_relative(unsigned long j, int cpu)
  177. {
  178. unsigned long j0 = jiffies;
  179. /* Use j0 because jiffies might change while we run */
  180. return round_jiffies_common(j + j0, cpu, false) - j0;
  181. }
  182. EXPORT_SYMBOL_GPL(__round_jiffies_relative);
  183. /**
  184. * round_jiffies - function to round jiffies to a full second
  185. * @j: the time in (absolute) jiffies that should be rounded
  186. *
  187. * round_jiffies() rounds an absolute time in the future (in jiffies)
  188. * up or down to (approximately) full seconds. This is useful for timers
  189. * for which the exact time they fire does not matter too much, as long as
  190. * they fire approximately every X seconds.
  191. *
  192. * By rounding these timers to whole seconds, all such timers will fire
  193. * at the same time, rather than at various times spread out. The goal
  194. * of this is to have the CPU wake up less, which saves power.
  195. *
  196. * The return value is the rounded version of the @j parameter.
  197. */
  198. unsigned long round_jiffies(unsigned long j)
  199. {
  200. return round_jiffies_common(j, raw_smp_processor_id(), false);
  201. }
  202. EXPORT_SYMBOL_GPL(round_jiffies);
  203. /**
  204. * round_jiffies_relative - function to round jiffies to a full second
  205. * @j: the time in (relative) jiffies that should be rounded
  206. *
  207. * round_jiffies_relative() rounds a time delta in the future (in jiffies)
  208. * up or down to (approximately) full seconds. This is useful for timers
  209. * for which the exact time they fire does not matter too much, as long as
  210. * they fire approximately every X seconds.
  211. *
  212. * By rounding these timers to whole seconds, all such timers will fire
  213. * at the same time, rather than at various times spread out. The goal
  214. * of this is to have the CPU wake up less, which saves power.
  215. *
  216. * The return value is the rounded version of the @j parameter.
  217. */
  218. unsigned long round_jiffies_relative(unsigned long j)
  219. {
  220. return __round_jiffies_relative(j, raw_smp_processor_id());
  221. }
  222. EXPORT_SYMBOL_GPL(round_jiffies_relative);
  223. /**
  224. * __round_jiffies_up - function to round jiffies up to a full second
  225. * @j: the time in (absolute) jiffies that should be rounded
  226. * @cpu: the processor number on which the timeout will happen
  227. *
  228. * This is the same as __round_jiffies() except that it will never
  229. * round down. This is useful for timeouts for which the exact time
  230. * of firing does not matter too much, as long as they don't fire too
  231. * early.
  232. */
  233. unsigned long __round_jiffies_up(unsigned long j, int cpu)
  234. {
  235. return round_jiffies_common(j, cpu, true);
  236. }
  237. EXPORT_SYMBOL_GPL(__round_jiffies_up);
  238. /**
  239. * __round_jiffies_up_relative - function to round jiffies up to a full second
  240. * @j: the time in (relative) jiffies that should be rounded
  241. * @cpu: the processor number on which the timeout will happen
  242. *
  243. * This is the same as __round_jiffies_relative() except that it will never
  244. * round down. This is useful for timeouts for which the exact time
  245. * of firing does not matter too much, as long as they don't fire too
  246. * early.
  247. */
  248. unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
  249. {
  250. unsigned long j0 = jiffies;
  251. /* Use j0 because jiffies might change while we run */
  252. return round_jiffies_common(j + j0, cpu, true) - j0;
  253. }
  254. EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
  255. /**
  256. * round_jiffies_up - function to round jiffies up to a full second
  257. * @j: the time in (absolute) jiffies that should be rounded
  258. *
  259. * This is the same as round_jiffies() except that it will never
  260. * round down. This is useful for timeouts for which the exact time
  261. * of firing does not matter too much, as long as they don't fire too
  262. * early.
  263. */
  264. unsigned long round_jiffies_up(unsigned long j)
  265. {
  266. return round_jiffies_common(j, raw_smp_processor_id(), true);
  267. }
  268. EXPORT_SYMBOL_GPL(round_jiffies_up);
  269. /**
  270. * round_jiffies_up_relative - function to round jiffies up to a full second
  271. * @j: the time in (relative) jiffies that should be rounded
  272. *
  273. * This is the same as round_jiffies_relative() except that it will never
  274. * round down. This is useful for timeouts for which the exact time
  275. * of firing does not matter too much, as long as they don't fire too
  276. * early.
  277. */
  278. unsigned long round_jiffies_up_relative(unsigned long j)
  279. {
  280. return __round_jiffies_up_relative(j, raw_smp_processor_id());
  281. }
  282. EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
  283. /**
  284. * set_timer_slack - set the allowed slack for a timer
  285. * @timer: the timer to be modified
  286. * @slack_hz: the amount of time (in jiffies) allowed for rounding
  287. *
  288. * Set the amount of time, in jiffies, that a certain timer has
  289. * in terms of slack. By setting this value, the timer subsystem
  290. * will schedule the actual timer somewhere between
  291. * the time mod_timer() asks for, and that time plus the slack.
  292. *
  293. * By setting the slack to -1, a percentage of the delay is used
  294. * instead.
  295. */
  296. void set_timer_slack(struct timer_list *timer, int slack_hz)
  297. {
  298. timer->slack = slack_hz;
  299. }
  300. EXPORT_SYMBOL_GPL(set_timer_slack);
  301. static inline void set_running_timer(struct tvec_base *base,
  302. struct timer_list *timer)
  303. {
  304. #ifdef CONFIG_SMP
  305. base->running_timer = timer;
  306. #endif
  307. }
  308. static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
  309. {
  310. unsigned long expires = timer->expires;
  311. unsigned long idx = expires - base->timer_jiffies;
  312. struct list_head *vec;
  313. if (idx < TVR_SIZE) {
  314. int i = expires & TVR_MASK;
  315. vec = base->tv1.vec + i;
  316. } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
  317. int i = (expires >> TVR_BITS) & TVN_MASK;
  318. vec = base->tv2.vec + i;
  319. } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
  320. int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
  321. vec = base->tv3.vec + i;
  322. } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
  323. int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
  324. vec = base->tv4.vec + i;
  325. } else if ((signed long) idx < 0) {
  326. /*
  327. * Can happen if you add a timer with expires == jiffies,
  328. * or you set a timer to go off in the past
  329. */
  330. vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
  331. } else {
  332. int i;
  333. /* If the timeout is larger than 0xffffffff on 64-bit
  334. * architectures then we use the maximum timeout:
  335. */
  336. if (idx > 0xffffffffUL) {
  337. idx = 0xffffffffUL;
  338. expires = idx + base->timer_jiffies;
  339. }
  340. i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
  341. vec = base->tv5.vec + i;
  342. }
  343. /*
  344. * Timers are FIFO:
  345. */
  346. list_add_tail(&timer->entry, vec);
  347. }
  348. #ifdef CONFIG_TIMER_STATS
  349. void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
  350. {
  351. if (timer->start_site)
  352. return;
  353. timer->start_site = addr;
  354. memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
  355. timer->start_pid = current->pid;
  356. }
  357. static void timer_stats_account_timer(struct timer_list *timer)
  358. {
  359. unsigned int flag = 0;
  360. if (likely(!timer->start_site))
  361. return;
  362. if (unlikely(tbase_get_deferrable(timer->base)))
  363. flag |= TIMER_STATS_FLAG_DEFERRABLE;
  364. timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
  365. timer->function, timer->start_comm, flag);
  366. }
  367. #else
  368. static void timer_stats_account_timer(struct timer_list *timer) {}
  369. #endif
  370. #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
  371. static struct debug_obj_descr timer_debug_descr;
  372. /*
  373. * fixup_init is called when:
  374. * - an active object is initialized
  375. */
  376. static int timer_fixup_init(void *addr, enum debug_obj_state state)
  377. {
  378. struct timer_list *timer = addr;
  379. switch (state) {
  380. case ODEBUG_STATE_ACTIVE:
  381. del_timer_sync(timer);
  382. debug_object_init(timer, &timer_debug_descr);
  383. return 1;
  384. default:
  385. return 0;
  386. }
  387. }
  388. /*
  389. * fixup_activate is called when:
  390. * - an active object is activated
  391. * - an unknown object is activated (might be a statically initialized object)
  392. */
  393. static int timer_fixup_activate(void *addr, enum debug_obj_state state)
  394. {
  395. struct timer_list *timer = addr;
  396. switch (state) {
  397. case ODEBUG_STATE_NOTAVAILABLE:
  398. /*
  399. * This is not really a fixup. The timer was
  400. * statically initialized. We just make sure that it
  401. * is tracked in the object tracker.
  402. */
  403. if (timer->entry.next == NULL &&
  404. timer->entry.prev == TIMER_ENTRY_STATIC) {
  405. debug_object_init(timer, &timer_debug_descr);
  406. debug_object_activate(timer, &timer_debug_descr);
  407. return 0;
  408. } else {
  409. WARN_ON_ONCE(1);
  410. }
  411. return 0;
  412. case ODEBUG_STATE_ACTIVE:
  413. WARN_ON(1);
  414. default:
  415. return 0;
  416. }
  417. }
  418. /*
  419. * fixup_free is called when:
  420. * - an active object is freed
  421. */
  422. static int timer_fixup_free(void *addr, enum debug_obj_state state)
  423. {
  424. struct timer_list *timer = addr;
  425. switch (state) {
  426. case ODEBUG_STATE_ACTIVE:
  427. del_timer_sync(timer);
  428. debug_object_free(timer, &timer_debug_descr);
  429. return 1;
  430. default:
  431. return 0;
  432. }
  433. }
  434. static struct debug_obj_descr timer_debug_descr = {
  435. .name = "timer_list",
  436. .fixup_init = timer_fixup_init,
  437. .fixup_activate = timer_fixup_activate,
  438. .fixup_free = timer_fixup_free,
  439. };
  440. static inline void debug_timer_init(struct timer_list *timer)
  441. {
  442. debug_object_init(timer, &timer_debug_descr);
  443. }
  444. static inline void debug_timer_activate(struct timer_list *timer)
  445. {
  446. debug_object_activate(timer, &timer_debug_descr);
  447. }
  448. static inline void debug_timer_deactivate(struct timer_list *timer)
  449. {
  450. debug_object_deactivate(timer, &timer_debug_descr);
  451. }
  452. static inline void debug_timer_free(struct timer_list *timer)
  453. {
  454. debug_object_free(timer, &timer_debug_descr);
  455. }
  456. static void __init_timer(struct timer_list *timer,
  457. const char *name,
  458. struct lock_class_key *key);
  459. void init_timer_on_stack_key(struct timer_list *timer,
  460. const char *name,
  461. struct lock_class_key *key)
  462. {
  463. debug_object_init_on_stack(timer, &timer_debug_descr);
  464. __init_timer(timer, name, key);
  465. }
  466. EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
  467. void destroy_timer_on_stack(struct timer_list *timer)
  468. {
  469. debug_object_free(timer, &timer_debug_descr);
  470. }
  471. EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
  472. #else
  473. static inline void debug_timer_init(struct timer_list *timer) { }
  474. static inline void debug_timer_activate(struct timer_list *timer) { }
  475. static inline void debug_timer_deactivate(struct timer_list *timer) { }
  476. #endif
  477. static inline void debug_init(struct timer_list *timer)
  478. {
  479. debug_timer_init(timer);
  480. trace_timer_init(timer);
  481. }
  482. static inline void
  483. debug_activate(struct timer_list *timer, unsigned long expires)
  484. {
  485. debug_timer_activate(timer);
  486. trace_timer_start(timer, expires);
  487. }
  488. static inline void debug_deactivate(struct timer_list *timer)
  489. {
  490. debug_timer_deactivate(timer);
  491. trace_timer_cancel(timer);
  492. }
  493. static void __init_timer(struct timer_list *timer,
  494. const char *name,
  495. struct lock_class_key *key)
  496. {
  497. timer->entry.next = NULL;
  498. timer->base = __raw_get_cpu_var(tvec_bases);
  499. timer->slack = -1;
  500. #ifdef CONFIG_TIMER_STATS
  501. timer->start_site = NULL;
  502. timer->start_pid = -1;
  503. memset(timer->start_comm, 0, TASK_COMM_LEN);
  504. #endif
  505. lockdep_init_map(&timer->lockdep_map, name, key, 0);
  506. }
  507. void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
  508. const char *name,
  509. struct lock_class_key *key,
  510. void (*function)(unsigned long),
  511. unsigned long data)
  512. {
  513. timer->function = function;
  514. timer->data = data;
  515. init_timer_on_stack_key(timer, name, key);
  516. timer_set_deferrable(timer);
  517. }
  518. EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
  519. /**
  520. * init_timer_key - initialize a timer
  521. * @timer: the timer to be initialized
  522. * @name: name of the timer
  523. * @key: lockdep class key of the fake lock used for tracking timer
  524. * sync lock dependencies
  525. *
  526. * init_timer_key() must be done to a timer prior calling *any* of the
  527. * other timer functions.
  528. */
  529. void init_timer_key(struct timer_list *timer,
  530. const char *name,
  531. struct lock_class_key *key)
  532. {
  533. debug_init(timer);
  534. __init_timer(timer, name, key);
  535. }
  536. EXPORT_SYMBOL(init_timer_key);
  537. void init_timer_deferrable_key(struct timer_list *timer,
  538. const char *name,
  539. struct lock_class_key *key)
  540. {
  541. init_timer_key(timer, name, key);
  542. timer_set_deferrable(timer);
  543. }
  544. EXPORT_SYMBOL(init_timer_deferrable_key);
  545. static inline void detach_timer(struct timer_list *timer,
  546. int clear_pending)
  547. {
  548. struct list_head *entry = &timer->entry;
  549. debug_deactivate(timer);
  550. __list_del(entry->prev, entry->next);
  551. if (clear_pending)
  552. entry->next = NULL;
  553. entry->prev = LIST_POISON2;
  554. }
  555. /*
  556. * We are using hashed locking: holding per_cpu(tvec_bases).lock
  557. * means that all timers which are tied to this base via timer->base are
  558. * locked, and the base itself is locked too.
  559. *
  560. * So __run_timers/migrate_timers can safely modify all timers which could
  561. * be found on ->tvX lists.
  562. *
  563. * When the timer's base is locked, and the timer removed from list, it is
  564. * possible to set timer->base = NULL and drop the lock: the timer remains
  565. * locked.
  566. */
  567. static struct tvec_base *lock_timer_base(struct timer_list *timer,
  568. unsigned long *flags)
  569. __acquires(timer->base->lock)
  570. {
  571. struct tvec_base *base;
  572. for (;;) {
  573. struct tvec_base *prelock_base = timer->base;
  574. base = tbase_get_base(prelock_base);
  575. if (likely(base != NULL)) {
  576. spin_lock_irqsave(&base->lock, *flags);
  577. if (likely(prelock_base == timer->base))
  578. return base;
  579. /* The timer has migrated to another CPU */
  580. spin_unlock_irqrestore(&base->lock, *flags);
  581. }
  582. cpu_relax();
  583. }
  584. }
  585. static inline int
  586. __mod_timer(struct timer_list *timer, unsigned long expires,
  587. bool pending_only, int pinned)
  588. {
  589. struct tvec_base *base, *new_base;
  590. unsigned long flags;
  591. int ret = 0 , cpu;
  592. timer_stats_timer_set_start_info(timer);
  593. BUG_ON(!timer->function);
  594. base = lock_timer_base(timer, &flags);
  595. if (timer_pending(timer)) {
  596. detach_timer(timer, 0);
  597. if (timer->expires == base->next_timer &&
  598. !tbase_get_deferrable(timer->base))
  599. base->next_timer = base->timer_jiffies;
  600. ret = 1;
  601. } else {
  602. if (pending_only)
  603. goto out_unlock;
  604. }
  605. debug_activate(timer, expires);
  606. cpu = smp_processor_id();
  607. #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
  608. if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
  609. cpu = get_nohz_timer_target();
  610. #endif
  611. new_base = per_cpu(tvec_bases, cpu);
  612. if (base != new_base) {
  613. /*
  614. * We are trying to schedule the timer on the local CPU.
  615. * However we can't change timer's base while it is running,
  616. * otherwise del_timer_sync() can't detect that the timer's
  617. * handler yet has not finished. This also guarantees that
  618. * the timer is serialized wrt itself.
  619. */
  620. if (likely(base->running_timer != timer)) {
  621. /* See the comment in lock_timer_base() */
  622. timer_set_base(timer, NULL);
  623. spin_unlock(&base->lock);
  624. base = new_base;
  625. spin_lock(&base->lock);
  626. timer_set_base(timer, base);
  627. }
  628. }
  629. timer->expires = expires;
  630. if (time_before(timer->expires, base->next_timer) &&
  631. !tbase_get_deferrable(timer->base))
  632. base->next_timer = timer->expires;
  633. internal_add_timer(base, timer);
  634. out_unlock:
  635. spin_unlock_irqrestore(&base->lock, flags);
  636. return ret;
  637. }
  638. /**
  639. * mod_timer_pending - modify a pending timer's timeout
  640. * @timer: the pending timer to be modified
  641. * @expires: new timeout in jiffies
  642. *
  643. * mod_timer_pending() is the same for pending timers as mod_timer(),
  644. * but will not re-activate and modify already deleted timers.
  645. *
  646. * It is useful for unserialized use of timers.
  647. */
  648. int mod_timer_pending(struct timer_list *timer, unsigned long expires)
  649. {
  650. return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
  651. }
  652. EXPORT_SYMBOL(mod_timer_pending);
  653. /*
  654. * Decide where to put the timer while taking the slack into account
  655. *
  656. * Algorithm:
  657. * 1) calculate the maximum (absolute) time
  658. * 2) calculate the highest bit where the expires and new max are different
  659. * 3) use this bit to make a mask
  660. * 4) use the bitmask to round down the maximum time, so that all last
  661. * bits are zeros
  662. */
  663. static inline
  664. unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
  665. {
  666. unsigned long expires_limit, mask;
  667. int bit;
  668. expires_limit = expires;
  669. if (timer->slack >= 0) {
  670. expires_limit = expires + timer->slack;
  671. } else {
  672. unsigned long now = jiffies;
  673. /* No slack, if already expired else auto slack 0.4% */
  674. if (time_after(expires, now))
  675. expires_limit = expires + (expires - now)/256;
  676. }
  677. mask = expires ^ expires_limit;
  678. if (mask == 0)
  679. return expires;
  680. bit = find_last_bit(&mask, BITS_PER_LONG);
  681. mask = (1 << bit) - 1;
  682. expires_limit = expires_limit & ~(mask);
  683. return expires_limit;
  684. }
  685. /**
  686. * mod_timer - modify a timer's timeout
  687. * @timer: the timer to be modified
  688. * @expires: new timeout in jiffies
  689. *
  690. * mod_timer() is a more efficient way to update the expire field of an
  691. * active timer (if the timer is inactive it will be activated)
  692. *
  693. * mod_timer(timer, expires) is equivalent to:
  694. *
  695. * del_timer(timer); timer->expires = expires; add_timer(timer);
  696. *
  697. * Note that if there are multiple unserialized concurrent users of the
  698. * same timer, then mod_timer() is the only safe way to modify the timeout,
  699. * since add_timer() cannot modify an already running timer.
  700. *
  701. * The function returns whether it has modified a pending timer or not.
  702. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
  703. * active timer returns 1.)
  704. */
  705. int mod_timer(struct timer_list *timer, unsigned long expires)
  706. {
  707. /*
  708. * This is a common optimization triggered by the
  709. * networking code - if the timer is re-modified
  710. * to be the same thing then just return:
  711. */
  712. if (timer_pending(timer) && timer->expires == expires)
  713. return 1;
  714. expires = apply_slack(timer, expires);
  715. return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
  716. }
  717. EXPORT_SYMBOL(mod_timer);
  718. /**
  719. * mod_timer_pinned - modify a timer's timeout
  720. * @timer: the timer to be modified
  721. * @expires: new timeout in jiffies
  722. *
  723. * mod_timer_pinned() is a way to update the expire field of an
  724. * active timer (if the timer is inactive it will be activated)
  725. * and not allow the timer to be migrated to a different CPU.
  726. *
  727. * mod_timer_pinned(timer, expires) is equivalent to:
  728. *
  729. * del_timer(timer); timer->expires = expires; add_timer(timer);
  730. */
  731. int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
  732. {
  733. if (timer->expires == expires && timer_pending(timer))
  734. return 1;
  735. return __mod_timer(timer, expires, false, TIMER_PINNED);
  736. }
  737. EXPORT_SYMBOL(mod_timer_pinned);
  738. /**
  739. * add_timer - start a timer
  740. * @timer: the timer to be added
  741. *
  742. * The kernel will do a ->function(->data) callback from the
  743. * timer interrupt at the ->expires point in the future. The
  744. * current time is 'jiffies'.
  745. *
  746. * The timer's ->expires, ->function (and if the handler uses it, ->data)
  747. * fields must be set prior calling this function.
  748. *
  749. * Timers with an ->expires field in the past will be executed in the next
  750. * timer tick.
  751. */
  752. void add_timer(struct timer_list *timer)
  753. {
  754. BUG_ON(timer_pending(timer));
  755. mod_timer(timer, timer->expires);
  756. }
  757. EXPORT_SYMBOL(add_timer);
  758. /**
  759. * add_timer_on - start a timer on a particular CPU
  760. * @timer: the timer to be added
  761. * @cpu: the CPU to start it on
  762. *
  763. * This is not very scalable on SMP. Double adds are not possible.
  764. */
  765. void add_timer_on(struct timer_list *timer, int cpu)
  766. {
  767. struct tvec_base *base = per_cpu(tvec_bases, cpu);
  768. unsigned long flags;
  769. timer_stats_timer_set_start_info(timer);
  770. BUG_ON(timer_pending(timer) || !timer->function);
  771. spin_lock_irqsave(&base->lock, flags);
  772. timer_set_base(timer, base);
  773. debug_activate(timer, timer->expires);
  774. if (time_before(timer->expires, base->next_timer) &&
  775. !tbase_get_deferrable(timer->base))
  776. base->next_timer = timer->expires;
  777. internal_add_timer(base, timer);
  778. /*
  779. * Check whether the other CPU is idle and needs to be
  780. * triggered to reevaluate the timer wheel when nohz is
  781. * active. We are protected against the other CPU fiddling
  782. * with the timer by holding the timer base lock. This also
  783. * makes sure that a CPU on the way to idle can not evaluate
  784. * the timer wheel.
  785. */
  786. wake_up_idle_cpu(cpu);
  787. spin_unlock_irqrestore(&base->lock, flags);
  788. }
  789. EXPORT_SYMBOL_GPL(add_timer_on);
  790. /**
  791. * del_timer - deactive a timer.
  792. * @timer: the timer to be deactivated
  793. *
  794. * del_timer() deactivates a timer - this works on both active and inactive
  795. * timers.
  796. *
  797. * The function returns whether it has deactivated a pending timer or not.
  798. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
  799. * active timer returns 1.)
  800. */
  801. int del_timer(struct timer_list *timer)
  802. {
  803. struct tvec_base *base;
  804. unsigned long flags;
  805. int ret = 0;
  806. timer_stats_timer_clear_start_info(timer);
  807. if (timer_pending(timer)) {
  808. base = lock_timer_base(timer, &flags);
  809. if (timer_pending(timer)) {
  810. detach_timer(timer, 1);
  811. if (timer->expires == base->next_timer &&
  812. !tbase_get_deferrable(timer->base))
  813. base->next_timer = base->timer_jiffies;
  814. ret = 1;
  815. }
  816. spin_unlock_irqrestore(&base->lock, flags);
  817. }
  818. return ret;
  819. }
  820. EXPORT_SYMBOL(del_timer);
  821. #ifdef CONFIG_SMP
  822. /**
  823. * try_to_del_timer_sync - Try to deactivate a timer
  824. * @timer: timer do del
  825. *
  826. * This function tries to deactivate a timer. Upon successful (ret >= 0)
  827. * exit the timer is not queued and the handler is not running on any CPU.
  828. *
  829. * It must not be called from interrupt contexts.
  830. */
  831. int try_to_del_timer_sync(struct timer_list *timer)
  832. {
  833. struct tvec_base *base;
  834. unsigned long flags;
  835. int ret = -1;
  836. base = lock_timer_base(timer, &flags);
  837. if (base->running_timer == timer)
  838. goto out;
  839. timer_stats_timer_clear_start_info(timer);
  840. ret = 0;
  841. if (timer_pending(timer)) {
  842. detach_timer(timer, 1);
  843. if (timer->expires == base->next_timer &&
  844. !tbase_get_deferrable(timer->base))
  845. base->next_timer = base->timer_jiffies;
  846. ret = 1;
  847. }
  848. out:
  849. spin_unlock_irqrestore(&base->lock, flags);
  850. return ret;
  851. }
  852. EXPORT_SYMBOL(try_to_del_timer_sync);
  853. /**
  854. * del_timer_sync - deactivate a timer and wait for the handler to finish.
  855. * @timer: the timer to be deactivated
  856. *
  857. * This function only differs from del_timer() on SMP: besides deactivating
  858. * the timer it also makes sure the handler has finished executing on other
  859. * CPUs.
  860. *
  861. * Synchronization rules: Callers must prevent restarting of the timer,
  862. * otherwise this function is meaningless. It must not be called from
  863. * interrupt contexts. The caller must not hold locks which would prevent
  864. * completion of the timer's handler. The timer's handler must not call
  865. * add_timer_on(). Upon exit the timer is not queued and the handler is
  866. * not running on any CPU.
  867. *
  868. * The function returns whether it has deactivated a pending timer or not.
  869. */
  870. int del_timer_sync(struct timer_list *timer)
  871. {
  872. #ifdef CONFIG_LOCKDEP
  873. unsigned long flags;
  874. local_irq_save(flags);
  875. lock_map_acquire(&timer->lockdep_map);
  876. lock_map_release(&timer->lockdep_map);
  877. local_irq_restore(flags);
  878. #endif
  879. for (;;) {
  880. int ret = try_to_del_timer_sync(timer);
  881. if (ret >= 0)
  882. return ret;
  883. cpu_relax();
  884. }
  885. }
  886. EXPORT_SYMBOL(del_timer_sync);
  887. #endif
  888. static int cascade(struct tvec_base *base, struct tvec *tv, int index)
  889. {
  890. /* cascade all the timers from tv up one level */
  891. struct timer_list *timer, *tmp;
  892. struct list_head tv_list;
  893. list_replace_init(tv->vec + index, &tv_list);
  894. /*
  895. * We are removing _all_ timers from the list, so we
  896. * don't have to detach them individually.
  897. */
  898. list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
  899. BUG_ON(tbase_get_base(timer->base) != base);
  900. internal_add_timer(base, timer);
  901. }
  902. return index;
  903. }
  904. static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
  905. unsigned long data)
  906. {
  907. int preempt_count = preempt_count();
  908. #ifdef CONFIG_LOCKDEP
  909. /*
  910. * It is permissible to free the timer from inside the
  911. * function that is called from it, this we need to take into
  912. * account for lockdep too. To avoid bogus "held lock freed"
  913. * warnings as well as problems when looking into
  914. * timer->lockdep_map, make a copy and use that here.
  915. */
  916. struct lockdep_map lockdep_map = timer->lockdep_map;
  917. #endif
  918. /*
  919. * Couple the lock chain with the lock chain at
  920. * del_timer_sync() by acquiring the lock_map around the fn()
  921. * call here and in del_timer_sync().
  922. */
  923. lock_map_acquire(&lockdep_map);
  924. trace_timer_expire_entry(timer);
  925. fn(data);
  926. trace_timer_expire_exit(timer);
  927. lock_map_release(&lockdep_map);
  928. if (preempt_count != preempt_count()) {
  929. WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
  930. fn, preempt_count, preempt_count());
  931. /*
  932. * Restore the preempt count. That gives us a decent
  933. * chance to survive and extract information. If the
  934. * callback kept a lock held, bad luck, but not worse
  935. * than the BUG() we had.
  936. */
  937. preempt_count() = preempt_count;
  938. }
  939. }
  940. #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
  941. /**
  942. * __run_timers - run all expired timers (if any) on this CPU.
  943. * @base: the timer vector to be processed.
  944. *
  945. * This function cascades all vectors and executes all expired timer
  946. * vectors.
  947. */
  948. static inline void __run_timers(struct tvec_base *base)
  949. {
  950. struct timer_list *timer;
  951. spin_lock_irq(&base->lock);
  952. while (time_after_eq(jiffies, base->timer_jiffies)) {
  953. struct list_head work_list;
  954. struct list_head *head = &work_list;
  955. int index = base->timer_jiffies & TVR_MASK;
  956. /*
  957. * Cascade timers:
  958. */
  959. if (!index &&
  960. (!cascade(base, &base->tv2, INDEX(0))) &&
  961. (!cascade(base, &base->tv3, INDEX(1))) &&
  962. !cascade(base, &base->tv4, INDEX(2)))
  963. cascade(base, &base->tv5, INDEX(3));
  964. ++base->timer_jiffies;
  965. list_replace_init(base->tv1.vec + index, &work_list);
  966. while (!list_empty(head)) {
  967. void (*fn)(unsigned long);
  968. unsigned long data;
  969. timer = list_first_entry(head, struct timer_list,entry);
  970. fn = timer->function;
  971. data = timer->data;
  972. timer_stats_account_timer(timer);
  973. set_running_timer(base, timer);
  974. detach_timer(timer, 1);
  975. spin_unlock_irq(&base->lock);
  976. call_timer_fn(timer, fn, data);
  977. spin_lock_irq(&base->lock);
  978. }
  979. }
  980. set_running_timer(base, NULL);
  981. spin_unlock_irq(&base->lock);
  982. }
  983. #ifdef CONFIG_NO_HZ
  984. /*
  985. * Find out when the next timer event is due to happen. This
  986. * is used on S/390 to stop all activity when a CPU is idle.
  987. * This function needs to be called with interrupts disabled.
  988. */
  989. static unsigned long __next_timer_interrupt(struct tvec_base *base)
  990. {
  991. unsigned long timer_jiffies = base->timer_jiffies;
  992. unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
  993. int index, slot, array, found = 0;
  994. struct timer_list *nte;
  995. struct tvec *varray[4];
  996. /* Look for timer events in tv1. */
  997. index = slot = timer_jiffies & TVR_MASK;
  998. do {
  999. list_for_each_entry(nte, base->tv1.vec + slot, entry) {
  1000. if (tbase_get_deferrable(nte->base))
  1001. continue;
  1002. found = 1;
  1003. expires = nte->expires;
  1004. /* Look at the cascade bucket(s)? */
  1005. if (!index || slot < index)
  1006. goto cascade;
  1007. return expires;
  1008. }
  1009. slot = (slot + 1) & TVR_MASK;
  1010. } while (slot != index);
  1011. cascade:
  1012. /* Calculate the next cascade event */
  1013. if (index)
  1014. timer_jiffies += TVR_SIZE - index;
  1015. timer_jiffies >>= TVR_BITS;
  1016. /* Check tv2-tv5. */
  1017. varray[0] = &base->tv2;
  1018. varray[1] = &base->tv3;
  1019. varray[2] = &base->tv4;
  1020. varray[3] = &base->tv5;
  1021. for (array = 0; array < 4; array++) {
  1022. struct tvec *varp = varray[array];
  1023. index = slot = timer_jiffies & TVN_MASK;
  1024. do {
  1025. list_for_each_entry(nte, varp->vec + slot, entry) {
  1026. if (tbase_get_deferrable(nte->base))
  1027. continue;
  1028. found = 1;
  1029. if (time_before(nte->expires, expires))
  1030. expires = nte->expires;
  1031. }
  1032. /*
  1033. * Do we still search for the first timer or are
  1034. * we looking up the cascade buckets ?
  1035. */
  1036. if (found) {
  1037. /* Look at the cascade bucket(s)? */
  1038. if (!index || slot < index)
  1039. break;
  1040. return expires;
  1041. }
  1042. slot = (slot + 1) & TVN_MASK;
  1043. } while (slot != index);
  1044. if (index)
  1045. timer_jiffies += TVN_SIZE - index;
  1046. timer_jiffies >>= TVN_BITS;
  1047. }
  1048. return expires;
  1049. }
  1050. /*
  1051. * Check, if the next hrtimer event is before the next timer wheel
  1052. * event:
  1053. */
  1054. static unsigned long cmp_next_hrtimer_event(unsigned long now,
  1055. unsigned long expires)
  1056. {
  1057. ktime_t hr_delta = hrtimer_get_next_event();
  1058. struct timespec tsdelta;
  1059. unsigned long delta;
  1060. if (hr_delta.tv64 == KTIME_MAX)
  1061. return expires;
  1062. /*
  1063. * Expired timer available, let it expire in the next tick
  1064. */
  1065. if (hr_delta.tv64 <= 0)
  1066. return now + 1;
  1067. tsdelta = ktime_to_timespec(hr_delta);
  1068. delta = timespec_to_jiffies(&tsdelta);
  1069. /*
  1070. * Limit the delta to the max value, which is checked in
  1071. * tick_nohz_stop_sched_tick():
  1072. */
  1073. if (delta > NEXT_TIMER_MAX_DELTA)
  1074. delta = NEXT_TIMER_MAX_DELTA;
  1075. /*
  1076. * Take rounding errors in to account and make sure, that it
  1077. * expires in the next tick. Otherwise we go into an endless
  1078. * ping pong due to tick_nohz_stop_sched_tick() retriggering
  1079. * the timer softirq
  1080. */
  1081. if (delta < 1)
  1082. delta = 1;
  1083. now += delta;
  1084. if (time_before(now, expires))
  1085. return now;
  1086. return expires;
  1087. }
  1088. /**
  1089. * get_next_timer_interrupt - return the jiffy of the next pending timer
  1090. * @now: current time (in jiffies)
  1091. */
  1092. unsigned long get_next_timer_interrupt(unsigned long now)
  1093. {
  1094. struct tvec_base *base = __get_cpu_var(tvec_bases);
  1095. unsigned long expires;
  1096. spin_lock(&base->lock);
  1097. if (time_before_eq(base->next_timer, base->timer_jiffies))
  1098. base->next_timer = __next_timer_interrupt(base);
  1099. expires = base->next_timer;
  1100. spin_unlock(&base->lock);
  1101. if (time_before_eq(expires, now))
  1102. return now;
  1103. return cmp_next_hrtimer_event(now, expires);
  1104. }
  1105. #endif
  1106. /*
  1107. * Called from the timer interrupt handler to charge one tick to the current
  1108. * process. user_tick is 1 if the tick is user time, 0 for system.
  1109. */
  1110. void update_process_times(int user_tick)
  1111. {
  1112. struct task_struct *p = current;
  1113. int cpu = smp_processor_id();
  1114. /* Note: this timer irq context must be accounted for as well. */
  1115. account_process_tick(p, user_tick);
  1116. run_local_timers();
  1117. rcu_check_callbacks(cpu, user_tick);
  1118. printk_tick();
  1119. perf_event_do_pending();
  1120. scheduler_tick();
  1121. run_posix_cpu_timers(p);
  1122. }
  1123. /*
  1124. * This function runs timers and the timer-tq in bottom half context.
  1125. */
  1126. static void run_timer_softirq(struct softirq_action *h)
  1127. {
  1128. struct tvec_base *base = __get_cpu_var(tvec_bases);
  1129. hrtimer_run_pending();
  1130. if (time_after_eq(jiffies, base->timer_jiffies))
  1131. __run_timers(base);
  1132. }
  1133. /*
  1134. * Called by the local, per-CPU timer interrupt on SMP.
  1135. */
  1136. void run_local_timers(void)
  1137. {
  1138. hrtimer_run_queues();
  1139. raise_softirq(TIMER_SOFTIRQ);
  1140. }
  1141. /*
  1142. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  1143. * without sampling the sequence number in xtime_lock.
  1144. * jiffies is defined in the linker script...
  1145. */
  1146. void do_timer(unsigned long ticks)
  1147. {
  1148. jiffies_64 += ticks;
  1149. update_wall_time();
  1150. calc_global_load();
  1151. }
  1152. #ifdef __ARCH_WANT_SYS_ALARM
  1153. /*
  1154. * For backwards compatibility? This can be done in libc so Alpha
  1155. * and all newer ports shouldn't need it.
  1156. */
  1157. SYSCALL_DEFINE1(alarm, unsigned int, seconds)
  1158. {
  1159. return alarm_setitimer(seconds);
  1160. }
  1161. #endif
  1162. #ifndef __alpha__
  1163. /*
  1164. * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
  1165. * should be moved into arch/i386 instead?
  1166. */
  1167. /**
  1168. * sys_getpid - return the thread group id of the current process
  1169. *
  1170. * Note, despite the name, this returns the tgid not the pid. The tgid and
  1171. * the pid are identical unless CLONE_THREAD was specified on clone() in
  1172. * which case the tgid is the same in all threads of the same group.
  1173. *
  1174. * This is SMP safe as current->tgid does not change.
  1175. */
  1176. SYSCALL_DEFINE0(getpid)
  1177. {
  1178. return task_tgid_vnr(current);
  1179. }
  1180. /*
  1181. * Accessing ->real_parent is not SMP-safe, it could
  1182. * change from under us. However, we can use a stale
  1183. * value of ->real_parent under rcu_read_lock(), see
  1184. * release_task()->call_rcu(delayed_put_task_struct).
  1185. */
  1186. SYSCALL_DEFINE0(getppid)
  1187. {
  1188. int pid;
  1189. rcu_read_lock();
  1190. pid = task_tgid_vnr(current->real_parent);
  1191. rcu_read_unlock();
  1192. return pid;
  1193. }
  1194. SYSCALL_DEFINE0(getuid)
  1195. {
  1196. /* Only we change this so SMP safe */
  1197. return current_uid();
  1198. }
  1199. SYSCALL_DEFINE0(geteuid)
  1200. {
  1201. /* Only we change this so SMP safe */
  1202. return current_euid();
  1203. }
  1204. SYSCALL_DEFINE0(getgid)
  1205. {
  1206. /* Only we change this so SMP safe */
  1207. return current_gid();
  1208. }
  1209. SYSCALL_DEFINE0(getegid)
  1210. {
  1211. /* Only we change this so SMP safe */
  1212. return current_egid();
  1213. }
  1214. #endif
  1215. static void process_timeout(unsigned long __data)
  1216. {
  1217. wake_up_process((struct task_struct *)__data);
  1218. }
  1219. /**
  1220. * schedule_timeout - sleep until timeout
  1221. * @timeout: timeout value in jiffies
  1222. *
  1223. * Make the current task sleep until @timeout jiffies have
  1224. * elapsed. The routine will return immediately unless
  1225. * the current task state has been set (see set_current_state()).
  1226. *
  1227. * You can set the task state as follows -
  1228. *
  1229. * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
  1230. * pass before the routine returns. The routine will return 0
  1231. *
  1232. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1233. * delivered to the current task. In this case the remaining time
  1234. * in jiffies will be returned, or 0 if the timer expired in time
  1235. *
  1236. * The current task state is guaranteed to be TASK_RUNNING when this
  1237. * routine returns.
  1238. *
  1239. * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
  1240. * the CPU away without a bound on the timeout. In this case the return
  1241. * value will be %MAX_SCHEDULE_TIMEOUT.
  1242. *
  1243. * In all cases the return value is guaranteed to be non-negative.
  1244. */
  1245. signed long __sched schedule_timeout(signed long timeout)
  1246. {
  1247. struct timer_list timer;
  1248. unsigned long expire;
  1249. switch (timeout)
  1250. {
  1251. case MAX_SCHEDULE_TIMEOUT:
  1252. /*
  1253. * These two special cases are useful to be comfortable
  1254. * in the caller. Nothing more. We could take
  1255. * MAX_SCHEDULE_TIMEOUT from one of the negative value
  1256. * but I' d like to return a valid offset (>=0) to allow
  1257. * the caller to do everything it want with the retval.
  1258. */
  1259. schedule();
  1260. goto out;
  1261. default:
  1262. /*
  1263. * Another bit of PARANOID. Note that the retval will be
  1264. * 0 since no piece of kernel is supposed to do a check
  1265. * for a negative retval of schedule_timeout() (since it
  1266. * should never happens anyway). You just have the printk()
  1267. * that will tell you if something is gone wrong and where.
  1268. */
  1269. if (timeout < 0) {
  1270. printk(KERN_ERR "schedule_timeout: wrong timeout "
  1271. "value %lx\n", timeout);
  1272. dump_stack();
  1273. current->state = TASK_RUNNING;
  1274. goto out;
  1275. }
  1276. }
  1277. expire = timeout + jiffies;
  1278. setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
  1279. __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
  1280. schedule();
  1281. del_singleshot_timer_sync(&timer);
  1282. /* Remove the timer from the object tracker */
  1283. destroy_timer_on_stack(&timer);
  1284. timeout = expire - jiffies;
  1285. out:
  1286. return timeout < 0 ? 0 : timeout;
  1287. }
  1288. EXPORT_SYMBOL(schedule_timeout);
  1289. /*
  1290. * We can use __set_current_state() here because schedule_timeout() calls
  1291. * schedule() unconditionally.
  1292. */
  1293. signed long __sched schedule_timeout_interruptible(signed long timeout)
  1294. {
  1295. __set_current_state(TASK_INTERRUPTIBLE);
  1296. return schedule_timeout(timeout);
  1297. }
  1298. EXPORT_SYMBOL(schedule_timeout_interruptible);
  1299. signed long __sched schedule_timeout_killable(signed long timeout)
  1300. {
  1301. __set_current_state(TASK_KILLABLE);
  1302. return schedule_timeout(timeout);
  1303. }
  1304. EXPORT_SYMBOL(schedule_timeout_killable);
  1305. signed long __sched schedule_timeout_uninterruptible(signed long timeout)
  1306. {
  1307. __set_current_state(TASK_UNINTERRUPTIBLE);
  1308. return schedule_timeout(timeout);
  1309. }
  1310. EXPORT_SYMBOL(schedule_timeout_uninterruptible);
  1311. /* Thread ID - the internal kernel "pid" */
  1312. SYSCALL_DEFINE0(gettid)
  1313. {
  1314. return task_pid_vnr(current);
  1315. }
  1316. /**
  1317. * do_sysinfo - fill in sysinfo struct
  1318. * @info: pointer to buffer to fill
  1319. */
  1320. int do_sysinfo(struct sysinfo *info)
  1321. {
  1322. unsigned long mem_total, sav_total;
  1323. unsigned int mem_unit, bitcount;
  1324. struct timespec tp;
  1325. memset(info, 0, sizeof(struct sysinfo));
  1326. ktime_get_ts(&tp);
  1327. monotonic_to_bootbased(&tp);
  1328. info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
  1329. get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
  1330. info->procs = nr_threads;
  1331. si_meminfo(info);
  1332. si_swapinfo(info);
  1333. /*
  1334. * If the sum of all the available memory (i.e. ram + swap)
  1335. * is less than can be stored in a 32 bit unsigned long then
  1336. * we can be binary compatible with 2.2.x kernels. If not,
  1337. * well, in that case 2.2.x was broken anyways...
  1338. *
  1339. * -Erik Andersen <andersee@debian.org>
  1340. */
  1341. mem_total = info->totalram + info->totalswap;
  1342. if (mem_total < info->totalram || mem_total < info->totalswap)
  1343. goto out;
  1344. bitcount = 0;
  1345. mem_unit = info->mem_unit;
  1346. while (mem_unit > 1) {
  1347. bitcount++;
  1348. mem_unit >>= 1;
  1349. sav_total = mem_total;
  1350. mem_total <<= 1;
  1351. if (mem_total < sav_total)
  1352. goto out;
  1353. }
  1354. /*
  1355. * If mem_total did not overflow, multiply all memory values by
  1356. * info->mem_unit and set it to 1. This leaves things compatible
  1357. * with 2.2.x, and also retains compatibility with earlier 2.4.x
  1358. * kernels...
  1359. */
  1360. info->mem_unit = 1;
  1361. info->totalram <<= bitcount;
  1362. info->freeram <<= bitcount;
  1363. info->sharedram <<= bitcount;
  1364. info->bufferram <<= bitcount;
  1365. info->totalswap <<= bitcount;
  1366. info->freeswap <<= bitcount;
  1367. info->totalhigh <<= bitcount;
  1368. info->freehigh <<= bitcount;
  1369. out:
  1370. return 0;
  1371. }
  1372. SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
  1373. {
  1374. struct sysinfo val;
  1375. do_sysinfo(&val);
  1376. if (copy_to_user(info, &val, sizeof(struct sysinfo)))
  1377. return -EFAULT;
  1378. return 0;
  1379. }
  1380. static int __cpuinit init_timers_cpu(int cpu)
  1381. {
  1382. int j;
  1383. struct tvec_base *base;
  1384. static char __cpuinitdata tvec_base_done[NR_CPUS];
  1385. if (!tvec_base_done[cpu]) {
  1386. static char boot_done;
  1387. if (boot_done) {
  1388. /*
  1389. * The APs use this path later in boot
  1390. */
  1391. base = kmalloc_node(sizeof(*base),
  1392. GFP_KERNEL | __GFP_ZERO,
  1393. cpu_to_node(cpu));
  1394. if (!base)
  1395. return -ENOMEM;
  1396. /* Make sure that tvec_base is 2 byte aligned */
  1397. if (tbase_get_deferrable(base)) {
  1398. WARN_ON(1);
  1399. kfree(base);
  1400. return -ENOMEM;
  1401. }
  1402. per_cpu(tvec_bases, cpu) = base;
  1403. } else {
  1404. /*
  1405. * This is for the boot CPU - we use compile-time
  1406. * static initialisation because per-cpu memory isn't
  1407. * ready yet and because the memory allocators are not
  1408. * initialised either.
  1409. */
  1410. boot_done = 1;
  1411. base = &boot_tvec_bases;
  1412. }
  1413. tvec_base_done[cpu] = 1;
  1414. } else {
  1415. base = per_cpu(tvec_bases, cpu);
  1416. }
  1417. spin_lock_init(&base->lock);
  1418. for (j = 0; j < TVN_SIZE; j++) {
  1419. INIT_LIST_HEAD(base->tv5.vec + j);
  1420. INIT_LIST_HEAD(base->tv4.vec + j);
  1421. INIT_LIST_HEAD(base->tv3.vec + j);
  1422. INIT_LIST_HEAD(base->tv2.vec + j);
  1423. }
  1424. for (j = 0; j < TVR_SIZE; j++)
  1425. INIT_LIST_HEAD(base->tv1.vec + j);
  1426. base->timer_jiffies = jiffies;
  1427. base->next_timer = base->timer_jiffies;
  1428. return 0;
  1429. }
  1430. #ifdef CONFIG_HOTPLUG_CPU
  1431. static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
  1432. {
  1433. struct timer_list *timer;
  1434. while (!list_empty(head)) {
  1435. timer = list_first_entry(head, struct timer_list, entry);
  1436. detach_timer(timer, 0);
  1437. timer_set_base(timer, new_base);
  1438. if (time_before(timer->expires, new_base->next_timer) &&
  1439. !tbase_get_deferrable(timer->base))
  1440. new_base->next_timer = timer->expires;
  1441. internal_add_timer(new_base, timer);
  1442. }
  1443. }
  1444. static void __cpuinit migrate_timers(int cpu)
  1445. {
  1446. struct tvec_base *old_base;
  1447. struct tvec_base *new_base;
  1448. int i;
  1449. BUG_ON(cpu_online(cpu));
  1450. old_base = per_cpu(tvec_bases, cpu);
  1451. new_base = get_cpu_var(tvec_bases);
  1452. /*
  1453. * The caller is globally serialized and nobody else
  1454. * takes two locks at once, deadlock is not possible.
  1455. */
  1456. spin_lock_irq(&new_base->lock);
  1457. spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
  1458. BUG_ON(old_base->running_timer);
  1459. for (i = 0; i < TVR_SIZE; i++)
  1460. migrate_timer_list(new_base, old_base->tv1.vec + i);
  1461. for (i = 0; i < TVN_SIZE; i++) {
  1462. migrate_timer_list(new_base, old_base->tv2.vec + i);
  1463. migrate_timer_list(new_base, old_base->tv3.vec + i);
  1464. migrate_timer_list(new_base, old_base->tv4.vec + i);
  1465. migrate_timer_list(new_base, old_base->tv5.vec + i);
  1466. }
  1467. spin_unlock(&old_base->lock);
  1468. spin_unlock_irq(&new_base->lock);
  1469. put_cpu_var(tvec_bases);
  1470. }
  1471. #endif /* CONFIG_HOTPLUG_CPU */
  1472. static int __cpuinit timer_cpu_notify(struct notifier_block *self,
  1473. unsigned long action, void *hcpu)
  1474. {
  1475. long cpu = (long)hcpu;
  1476. int err;
  1477. switch(action) {
  1478. case CPU_UP_PREPARE:
  1479. case CPU_UP_PREPARE_FROZEN:
  1480. err = init_timers_cpu(cpu);
  1481. if (err < 0)
  1482. return notifier_from_errno(err);
  1483. break;
  1484. #ifdef CONFIG_HOTPLUG_CPU
  1485. case CPU_DEAD:
  1486. case CPU_DEAD_FROZEN:
  1487. migrate_timers(cpu);
  1488. break;
  1489. #endif
  1490. default:
  1491. break;
  1492. }
  1493. return NOTIFY_OK;
  1494. }
  1495. static struct notifier_block __cpuinitdata timers_nb = {
  1496. .notifier_call = timer_cpu_notify,
  1497. };
  1498. void __init init_timers(void)
  1499. {
  1500. int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
  1501. (void *)(long)smp_processor_id());
  1502. init_timer_stats();
  1503. BUG_ON(err != NOTIFY_OK);
  1504. register_cpu_notifier(&timers_nb);
  1505. open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
  1506. }
  1507. /**
  1508. * msleep - sleep safely even with waitqueue interruptions
  1509. * @msecs: Time in milliseconds to sleep for
  1510. */
  1511. void msleep(unsigned int msecs)
  1512. {
  1513. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1514. while (timeout)
  1515. timeout = schedule_timeout_uninterruptible(timeout);
  1516. }
  1517. EXPORT_SYMBOL(msleep);
  1518. /**
  1519. * msleep_interruptible - sleep waiting for signals
  1520. * @msecs: Time in milliseconds to sleep for
  1521. */
  1522. unsigned long msleep_interruptible(unsigned int msecs)
  1523. {
  1524. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1525. while (timeout && !signal_pending(current))
  1526. timeout = schedule_timeout_interruptible(timeout);
  1527. return jiffies_to_msecs(timeout);
  1528. }
  1529. EXPORT_SYMBOL(msleep_interruptible);
  1530. static int __sched do_usleep_range(unsigned long min, unsigned long max)
  1531. {
  1532. ktime_t kmin;
  1533. unsigned long delta;
  1534. kmin = ktime_set(0, min * NSEC_PER_USEC);
  1535. delta = (max - min) * NSEC_PER_USEC;
  1536. return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
  1537. }
  1538. /**
  1539. * usleep_range - Drop in replacement for udelay where wakeup is flexible
  1540. * @min: Minimum time in usecs to sleep
  1541. * @max: Maximum time in usecs to sleep
  1542. */
  1543. void usleep_range(unsigned long min, unsigned long max)
  1544. {
  1545. __set_current_state(TASK_UNINTERRUPTIBLE);
  1546. do_usleep_range(min, max);
  1547. }
  1548. EXPORT_SYMBOL(usleep_range);