page-writeback.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 akpm@zip.com.au
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. /*
  37. * The maximum number of pages to writeout in a single bdflush/kupdate
  38. * operation. We do this so we don't hold I_SYNC against an inode for
  39. * enormous amounts of time, which would block a userspace task which has
  40. * been forced to throttle against that inode. Also, the code reevaluates
  41. * the dirty each time it has written this many pages.
  42. */
  43. #define MAX_WRITEBACK_PAGES 1024
  44. /*
  45. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  46. * will look to see if it needs to force writeback or throttling.
  47. */
  48. static long ratelimit_pages = 32;
  49. /*
  50. * When balance_dirty_pages decides that the caller needs to perform some
  51. * non-background writeback, this is how many pages it will attempt to write.
  52. * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  53. * large amounts of I/O are submitted.
  54. */
  55. static inline long sync_writeback_pages(void)
  56. {
  57. return ratelimit_pages + ratelimit_pages / 2;
  58. }
  59. /* The following parameters are exported via /proc/sys/vm */
  60. /*
  61. * Start background writeback (via pdflush) at this percentage
  62. */
  63. int dirty_background_ratio = 5;
  64. /*
  65. * free highmem will not be subtracted from the total free memory
  66. * for calculating free ratios if vm_highmem_is_dirtyable is true
  67. */
  68. int vm_highmem_is_dirtyable;
  69. /*
  70. * The generator of dirty data starts writeback at this percentage
  71. */
  72. int vm_dirty_ratio = 10;
  73. /*
  74. * The interval between `kupdate'-style writebacks, in jiffies
  75. */
  76. int dirty_writeback_interval = 5 * HZ;
  77. /*
  78. * The longest number of jiffies for which data is allowed to remain dirty
  79. */
  80. int dirty_expire_interval = 30 * HZ;
  81. /*
  82. * Flag that makes the machine dump writes/reads and block dirtyings.
  83. */
  84. int block_dump;
  85. /*
  86. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  87. * a full sync is triggered after this time elapses without any disk activity.
  88. */
  89. int laptop_mode;
  90. EXPORT_SYMBOL(laptop_mode);
  91. /* End of sysctl-exported parameters */
  92. static void background_writeout(unsigned long _min_pages);
  93. /*
  94. * Scale the writeback cache size proportional to the relative writeout speeds.
  95. *
  96. * We do this by keeping a floating proportion between BDIs, based on page
  97. * writeback completions [end_page_writeback()]. Those devices that write out
  98. * pages fastest will get the larger share, while the slower will get a smaller
  99. * share.
  100. *
  101. * We use page writeout completions because we are interested in getting rid of
  102. * dirty pages. Having them written out is the primary goal.
  103. *
  104. * We introduce a concept of time, a period over which we measure these events,
  105. * because demand can/will vary over time. The length of this period itself is
  106. * measured in page writeback completions.
  107. *
  108. */
  109. static struct prop_descriptor vm_completions;
  110. static struct prop_descriptor vm_dirties;
  111. static unsigned long determine_dirtyable_memory(void);
  112. /*
  113. * couple the period to the dirty_ratio:
  114. *
  115. * period/2 ~ roundup_pow_of_two(dirty limit)
  116. */
  117. static int calc_period_shift(void)
  118. {
  119. unsigned long dirty_total;
  120. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
  121. return 2 + ilog2(dirty_total - 1);
  122. }
  123. /*
  124. * update the period when the dirty ratio changes.
  125. */
  126. int dirty_ratio_handler(struct ctl_table *table, int write,
  127. struct file *filp, void __user *buffer, size_t *lenp,
  128. loff_t *ppos)
  129. {
  130. int old_ratio = vm_dirty_ratio;
  131. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  132. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  133. int shift = calc_period_shift();
  134. prop_change_shift(&vm_completions, shift);
  135. prop_change_shift(&vm_dirties, shift);
  136. }
  137. return ret;
  138. }
  139. /*
  140. * Increment the BDI's writeout completion count and the global writeout
  141. * completion count. Called from test_clear_page_writeback().
  142. */
  143. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  144. {
  145. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  146. bdi->max_prop_frac);
  147. }
  148. void bdi_writeout_inc(struct backing_dev_info *bdi)
  149. {
  150. unsigned long flags;
  151. local_irq_save(flags);
  152. __bdi_writeout_inc(bdi);
  153. local_irq_restore(flags);
  154. }
  155. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  156. static inline void task_dirty_inc(struct task_struct *tsk)
  157. {
  158. prop_inc_single(&vm_dirties, &tsk->dirties);
  159. }
  160. /*
  161. * Obtain an accurate fraction of the BDI's portion.
  162. */
  163. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  164. long *numerator, long *denominator)
  165. {
  166. if (bdi_cap_writeback_dirty(bdi)) {
  167. prop_fraction_percpu(&vm_completions, &bdi->completions,
  168. numerator, denominator);
  169. } else {
  170. *numerator = 0;
  171. *denominator = 1;
  172. }
  173. }
  174. /*
  175. * Clip the earned share of dirty pages to that which is actually available.
  176. * This avoids exceeding the total dirty_limit when the floating averages
  177. * fluctuate too quickly.
  178. */
  179. static void
  180. clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
  181. {
  182. long avail_dirty;
  183. avail_dirty = dirty -
  184. (global_page_state(NR_FILE_DIRTY) +
  185. global_page_state(NR_WRITEBACK) +
  186. global_page_state(NR_UNSTABLE_NFS));
  187. if (avail_dirty < 0)
  188. avail_dirty = 0;
  189. avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
  190. bdi_stat(bdi, BDI_WRITEBACK);
  191. *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
  192. }
  193. static inline void task_dirties_fraction(struct task_struct *tsk,
  194. long *numerator, long *denominator)
  195. {
  196. prop_fraction_single(&vm_dirties, &tsk->dirties,
  197. numerator, denominator);
  198. }
  199. /*
  200. * scale the dirty limit
  201. *
  202. * task specific dirty limit:
  203. *
  204. * dirty -= (dirty/8) * p_{t}
  205. */
  206. static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
  207. {
  208. long numerator, denominator;
  209. long dirty = *pdirty;
  210. u64 inv = dirty >> 3;
  211. task_dirties_fraction(tsk, &numerator, &denominator);
  212. inv *= numerator;
  213. do_div(inv, denominator);
  214. dirty -= inv;
  215. if (dirty < *pdirty/2)
  216. dirty = *pdirty/2;
  217. *pdirty = dirty;
  218. }
  219. /*
  220. *
  221. */
  222. static DEFINE_SPINLOCK(bdi_lock);
  223. static unsigned int bdi_min_ratio;
  224. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  225. {
  226. int ret = 0;
  227. unsigned long flags;
  228. spin_lock_irqsave(&bdi_lock, flags);
  229. if (min_ratio > bdi->max_ratio) {
  230. ret = -EINVAL;
  231. } else {
  232. min_ratio -= bdi->min_ratio;
  233. if (bdi_min_ratio + min_ratio < 100) {
  234. bdi_min_ratio += min_ratio;
  235. bdi->min_ratio += min_ratio;
  236. } else {
  237. ret = -EINVAL;
  238. }
  239. }
  240. spin_unlock_irqrestore(&bdi_lock, flags);
  241. return ret;
  242. }
  243. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  244. {
  245. unsigned long flags;
  246. int ret = 0;
  247. if (max_ratio > 100)
  248. return -EINVAL;
  249. spin_lock_irqsave(&bdi_lock, flags);
  250. if (bdi->min_ratio > max_ratio) {
  251. ret = -EINVAL;
  252. } else {
  253. bdi->max_ratio = max_ratio;
  254. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  255. }
  256. spin_unlock_irqrestore(&bdi_lock, flags);
  257. return ret;
  258. }
  259. EXPORT_SYMBOL(bdi_set_max_ratio);
  260. /*
  261. * Work out the current dirty-memory clamping and background writeout
  262. * thresholds.
  263. *
  264. * The main aim here is to lower them aggressively if there is a lot of mapped
  265. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  266. * pages. It is better to clamp down on writers than to start swapping, and
  267. * performing lots of scanning.
  268. *
  269. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  270. *
  271. * We don't permit the clamping level to fall below 5% - that is getting rather
  272. * excessive.
  273. *
  274. * We make sure that the background writeout level is below the adjusted
  275. * clamping level.
  276. */
  277. static unsigned long highmem_dirtyable_memory(unsigned long total)
  278. {
  279. #ifdef CONFIG_HIGHMEM
  280. int node;
  281. unsigned long x = 0;
  282. for_each_node_state(node, N_HIGH_MEMORY) {
  283. struct zone *z =
  284. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  285. x += zone_page_state(z, NR_FREE_PAGES)
  286. + zone_page_state(z, NR_INACTIVE)
  287. + zone_page_state(z, NR_ACTIVE);
  288. }
  289. /*
  290. * Make sure that the number of highmem pages is never larger
  291. * than the number of the total dirtyable memory. This can only
  292. * occur in very strange VM situations but we want to make sure
  293. * that this does not occur.
  294. */
  295. return min(x, total);
  296. #else
  297. return 0;
  298. #endif
  299. }
  300. static unsigned long determine_dirtyable_memory(void)
  301. {
  302. unsigned long x;
  303. x = global_page_state(NR_FREE_PAGES)
  304. + global_page_state(NR_INACTIVE)
  305. + global_page_state(NR_ACTIVE);
  306. if (!vm_highmem_is_dirtyable)
  307. x -= highmem_dirtyable_memory(x);
  308. return x + 1; /* Ensure that we never return 0 */
  309. }
  310. void
  311. get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
  312. struct backing_dev_info *bdi)
  313. {
  314. int background_ratio; /* Percentages */
  315. int dirty_ratio;
  316. long background;
  317. long dirty;
  318. unsigned long available_memory = determine_dirtyable_memory();
  319. struct task_struct *tsk;
  320. dirty_ratio = vm_dirty_ratio;
  321. if (dirty_ratio < 5)
  322. dirty_ratio = 5;
  323. background_ratio = dirty_background_ratio;
  324. if (background_ratio >= dirty_ratio)
  325. background_ratio = dirty_ratio / 2;
  326. background = (background_ratio * available_memory) / 100;
  327. dirty = (dirty_ratio * available_memory) / 100;
  328. tsk = current;
  329. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  330. background += background / 4;
  331. dirty += dirty / 4;
  332. }
  333. *pbackground = background;
  334. *pdirty = dirty;
  335. if (bdi) {
  336. u64 bdi_dirty;
  337. long numerator, denominator;
  338. /*
  339. * Calculate this BDI's share of the dirty ratio.
  340. */
  341. bdi_writeout_fraction(bdi, &numerator, &denominator);
  342. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  343. bdi_dirty *= numerator;
  344. do_div(bdi_dirty, denominator);
  345. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  346. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  347. bdi_dirty = dirty * bdi->max_ratio / 100;
  348. *pbdi_dirty = bdi_dirty;
  349. clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
  350. task_dirty_limit(current, pbdi_dirty);
  351. }
  352. }
  353. /*
  354. * balance_dirty_pages() must be called by processes which are generating dirty
  355. * data. It looks at the number of dirty pages in the machine and will force
  356. * the caller to perform writeback if the system is over `vm_dirty_ratio'.
  357. * If we're over `background_thresh' then pdflush is woken to perform some
  358. * writeout.
  359. */
  360. static void balance_dirty_pages(struct address_space *mapping)
  361. {
  362. long nr_reclaimable, bdi_nr_reclaimable;
  363. long nr_writeback, bdi_nr_writeback;
  364. long background_thresh;
  365. long dirty_thresh;
  366. long bdi_thresh;
  367. unsigned long pages_written = 0;
  368. unsigned long write_chunk = sync_writeback_pages();
  369. struct backing_dev_info *bdi = mapping->backing_dev_info;
  370. for (;;) {
  371. struct writeback_control wbc = {
  372. .bdi = bdi,
  373. .sync_mode = WB_SYNC_NONE,
  374. .older_than_this = NULL,
  375. .nr_to_write = write_chunk,
  376. .range_cyclic = 1,
  377. };
  378. get_dirty_limits(&background_thresh, &dirty_thresh,
  379. &bdi_thresh, bdi);
  380. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  381. global_page_state(NR_UNSTABLE_NFS);
  382. nr_writeback = global_page_state(NR_WRITEBACK);
  383. bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  384. bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
  385. if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
  386. break;
  387. /*
  388. * Throttle it only when the background writeback cannot
  389. * catch-up. This avoids (excessively) small writeouts
  390. * when the bdi limits are ramping up.
  391. */
  392. if (nr_reclaimable + nr_writeback <
  393. (background_thresh + dirty_thresh) / 2)
  394. break;
  395. if (!bdi->dirty_exceeded)
  396. bdi->dirty_exceeded = 1;
  397. /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
  398. * Unstable writes are a feature of certain networked
  399. * filesystems (i.e. NFS) in which data may have been
  400. * written to the server's write cache, but has not yet
  401. * been flushed to permanent storage.
  402. */
  403. if (bdi_nr_reclaimable) {
  404. writeback_inodes(&wbc);
  405. pages_written += write_chunk - wbc.nr_to_write;
  406. get_dirty_limits(&background_thresh, &dirty_thresh,
  407. &bdi_thresh, bdi);
  408. }
  409. /*
  410. * In order to avoid the stacked BDI deadlock we need
  411. * to ensure we accurately count the 'dirty' pages when
  412. * the threshold is low.
  413. *
  414. * Otherwise it would be possible to get thresh+n pages
  415. * reported dirty, even though there are thresh-m pages
  416. * actually dirty; with m+n sitting in the percpu
  417. * deltas.
  418. */
  419. if (bdi_thresh < 2*bdi_stat_error(bdi)) {
  420. bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  421. bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
  422. } else if (bdi_nr_reclaimable) {
  423. bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  424. bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
  425. }
  426. if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
  427. break;
  428. if (pages_written >= write_chunk)
  429. break; /* We've done our duty */
  430. congestion_wait(WRITE, HZ/10);
  431. }
  432. if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
  433. bdi->dirty_exceeded)
  434. bdi->dirty_exceeded = 0;
  435. if (writeback_in_progress(bdi))
  436. return; /* pdflush is already working this queue */
  437. /*
  438. * In laptop mode, we wait until hitting the higher threshold before
  439. * starting background writeout, and then write out all the way down
  440. * to the lower threshold. So slow writers cause minimal disk activity.
  441. *
  442. * In normal mode, we start background writeout at the lower
  443. * background_thresh, to keep the amount of dirty memory low.
  444. */
  445. if ((laptop_mode && pages_written) ||
  446. (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
  447. + global_page_state(NR_UNSTABLE_NFS)
  448. > background_thresh)))
  449. pdflush_operation(background_writeout, 0);
  450. }
  451. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  452. {
  453. if (set_page_dirty(page) || page_mkwrite) {
  454. struct address_space *mapping = page_mapping(page);
  455. if (mapping)
  456. balance_dirty_pages_ratelimited(mapping);
  457. }
  458. }
  459. /**
  460. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  461. * @mapping: address_space which was dirtied
  462. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  463. *
  464. * Processes which are dirtying memory should call in here once for each page
  465. * which was newly dirtied. The function will periodically check the system's
  466. * dirty state and will initiate writeback if needed.
  467. *
  468. * On really big machines, get_writeback_state is expensive, so try to avoid
  469. * calling it too often (ratelimiting). But once we're over the dirty memory
  470. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  471. * from overshooting the limit by (ratelimit_pages) each.
  472. */
  473. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  474. unsigned long nr_pages_dirtied)
  475. {
  476. static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
  477. unsigned long ratelimit;
  478. unsigned long *p;
  479. ratelimit = ratelimit_pages;
  480. if (mapping->backing_dev_info->dirty_exceeded)
  481. ratelimit = 8;
  482. /*
  483. * Check the rate limiting. Also, we do not want to throttle real-time
  484. * tasks in balance_dirty_pages(). Period.
  485. */
  486. preempt_disable();
  487. p = &__get_cpu_var(ratelimits);
  488. *p += nr_pages_dirtied;
  489. if (unlikely(*p >= ratelimit)) {
  490. *p = 0;
  491. preempt_enable();
  492. balance_dirty_pages(mapping);
  493. return;
  494. }
  495. preempt_enable();
  496. }
  497. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  498. void throttle_vm_writeout(gfp_t gfp_mask)
  499. {
  500. long background_thresh;
  501. long dirty_thresh;
  502. for ( ; ; ) {
  503. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  504. /*
  505. * Boost the allowable dirty threshold a bit for page
  506. * allocators so they don't get DoS'ed by heavy writers
  507. */
  508. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  509. if (global_page_state(NR_UNSTABLE_NFS) +
  510. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  511. break;
  512. congestion_wait(WRITE, HZ/10);
  513. /*
  514. * The caller might hold locks which can prevent IO completion
  515. * or progress in the filesystem. So we cannot just sit here
  516. * waiting for IO to complete.
  517. */
  518. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  519. break;
  520. }
  521. }
  522. /*
  523. * writeback at least _min_pages, and keep writing until the amount of dirty
  524. * memory is less than the background threshold, or until we're all clean.
  525. */
  526. static void background_writeout(unsigned long _min_pages)
  527. {
  528. long min_pages = _min_pages;
  529. struct writeback_control wbc = {
  530. .bdi = NULL,
  531. .sync_mode = WB_SYNC_NONE,
  532. .older_than_this = NULL,
  533. .nr_to_write = 0,
  534. .nonblocking = 1,
  535. .range_cyclic = 1,
  536. };
  537. for ( ; ; ) {
  538. long background_thresh;
  539. long dirty_thresh;
  540. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  541. if (global_page_state(NR_FILE_DIRTY) +
  542. global_page_state(NR_UNSTABLE_NFS) < background_thresh
  543. && min_pages <= 0)
  544. break;
  545. wbc.more_io = 0;
  546. wbc.encountered_congestion = 0;
  547. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  548. wbc.pages_skipped = 0;
  549. writeback_inodes(&wbc);
  550. min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  551. if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
  552. /* Wrote less than expected */
  553. if (wbc.encountered_congestion || wbc.more_io)
  554. congestion_wait(WRITE, HZ/10);
  555. else
  556. break;
  557. }
  558. }
  559. }
  560. /*
  561. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  562. * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
  563. * -1 if all pdflush threads were busy.
  564. */
  565. int wakeup_pdflush(long nr_pages)
  566. {
  567. if (nr_pages == 0)
  568. nr_pages = global_page_state(NR_FILE_DIRTY) +
  569. global_page_state(NR_UNSTABLE_NFS);
  570. return pdflush_operation(background_writeout, nr_pages);
  571. }
  572. static void wb_timer_fn(unsigned long unused);
  573. static void laptop_timer_fn(unsigned long unused);
  574. static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
  575. static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
  576. /*
  577. * Periodic writeback of "old" data.
  578. *
  579. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  580. * dirtying-time in the inode's address_space. So this periodic writeback code
  581. * just walks the superblock inode list, writing back any inodes which are
  582. * older than a specific point in time.
  583. *
  584. * Try to run once per dirty_writeback_interval. But if a writeback event
  585. * takes longer than a dirty_writeback_interval interval, then leave a
  586. * one-second gap.
  587. *
  588. * older_than_this takes precedence over nr_to_write. So we'll only write back
  589. * all dirty pages if they are all attached to "old" mappings.
  590. */
  591. static void wb_kupdate(unsigned long arg)
  592. {
  593. unsigned long oldest_jif;
  594. unsigned long start_jif;
  595. unsigned long next_jif;
  596. long nr_to_write;
  597. struct writeback_control wbc = {
  598. .bdi = NULL,
  599. .sync_mode = WB_SYNC_NONE,
  600. .older_than_this = &oldest_jif,
  601. .nr_to_write = 0,
  602. .nonblocking = 1,
  603. .for_kupdate = 1,
  604. .range_cyclic = 1,
  605. };
  606. sync_supers();
  607. oldest_jif = jiffies - dirty_expire_interval;
  608. start_jif = jiffies;
  609. next_jif = start_jif + dirty_writeback_interval;
  610. nr_to_write = global_page_state(NR_FILE_DIRTY) +
  611. global_page_state(NR_UNSTABLE_NFS) +
  612. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  613. while (nr_to_write > 0) {
  614. wbc.more_io = 0;
  615. wbc.encountered_congestion = 0;
  616. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  617. writeback_inodes(&wbc);
  618. if (wbc.nr_to_write > 0) {
  619. if (wbc.encountered_congestion || wbc.more_io)
  620. congestion_wait(WRITE, HZ/10);
  621. else
  622. break; /* All the old data is written */
  623. }
  624. nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  625. }
  626. if (time_before(next_jif, jiffies + HZ))
  627. next_jif = jiffies + HZ;
  628. if (dirty_writeback_interval)
  629. mod_timer(&wb_timer, next_jif);
  630. }
  631. /*
  632. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  633. */
  634. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  635. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  636. {
  637. proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
  638. if (dirty_writeback_interval)
  639. mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
  640. else
  641. del_timer(&wb_timer);
  642. return 0;
  643. }
  644. static void wb_timer_fn(unsigned long unused)
  645. {
  646. if (pdflush_operation(wb_kupdate, 0) < 0)
  647. mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
  648. }
  649. static void laptop_flush(unsigned long unused)
  650. {
  651. sys_sync();
  652. }
  653. static void laptop_timer_fn(unsigned long unused)
  654. {
  655. pdflush_operation(laptop_flush, 0);
  656. }
  657. /*
  658. * We've spun up the disk and we're in laptop mode: schedule writeback
  659. * of all dirty data a few seconds from now. If the flush is already scheduled
  660. * then push it back - the user is still using the disk.
  661. */
  662. void laptop_io_completion(void)
  663. {
  664. mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
  665. }
  666. /*
  667. * We're in laptop mode and we've just synced. The sync's writes will have
  668. * caused another writeback to be scheduled by laptop_io_completion.
  669. * Nothing needs to be written back anymore, so we unschedule the writeback.
  670. */
  671. void laptop_sync_completion(void)
  672. {
  673. del_timer(&laptop_mode_wb_timer);
  674. }
  675. /*
  676. * If ratelimit_pages is too high then we can get into dirty-data overload
  677. * if a large number of processes all perform writes at the same time.
  678. * If it is too low then SMP machines will call the (expensive)
  679. * get_writeback_state too often.
  680. *
  681. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  682. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  683. * thresholds before writeback cuts in.
  684. *
  685. * But the limit should not be set too high. Because it also controls the
  686. * amount of memory which the balance_dirty_pages() caller has to write back.
  687. * If this is too large then the caller will block on the IO queue all the
  688. * time. So limit it to four megabytes - the balance_dirty_pages() caller
  689. * will write six megabyte chunks, max.
  690. */
  691. void writeback_set_ratelimit(void)
  692. {
  693. ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
  694. if (ratelimit_pages < 16)
  695. ratelimit_pages = 16;
  696. if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
  697. ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
  698. }
  699. static int __cpuinit
  700. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  701. {
  702. writeback_set_ratelimit();
  703. return NOTIFY_DONE;
  704. }
  705. static struct notifier_block __cpuinitdata ratelimit_nb = {
  706. .notifier_call = ratelimit_handler,
  707. .next = NULL,
  708. };
  709. /*
  710. * Called early on to tune the page writeback dirty limits.
  711. *
  712. * We used to scale dirty pages according to how total memory
  713. * related to pages that could be allocated for buffers (by
  714. * comparing nr_free_buffer_pages() to vm_total_pages.
  715. *
  716. * However, that was when we used "dirty_ratio" to scale with
  717. * all memory, and we don't do that any more. "dirty_ratio"
  718. * is now applied to total non-HIGHPAGE memory (by subtracting
  719. * totalhigh_pages from vm_total_pages), and as such we can't
  720. * get into the old insane situation any more where we had
  721. * large amounts of dirty pages compared to a small amount of
  722. * non-HIGHMEM memory.
  723. *
  724. * But we might still want to scale the dirty_ratio by how
  725. * much memory the box has..
  726. */
  727. void __init page_writeback_init(void)
  728. {
  729. int shift;
  730. mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
  731. writeback_set_ratelimit();
  732. register_cpu_notifier(&ratelimit_nb);
  733. shift = calc_period_shift();
  734. prop_descriptor_init(&vm_completions, shift);
  735. prop_descriptor_init(&vm_dirties, shift);
  736. }
  737. /**
  738. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  739. * @mapping: address space structure to write
  740. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  741. * @writepage: function called for each page
  742. * @data: data passed to writepage function
  743. *
  744. * If a page is already under I/O, write_cache_pages() skips it, even
  745. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  746. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  747. * and msync() need to guarantee that all the data which was dirty at the time
  748. * the call was made get new I/O started against them. If wbc->sync_mode is
  749. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  750. * existing IO to complete.
  751. */
  752. int write_cache_pages(struct address_space *mapping,
  753. struct writeback_control *wbc, writepage_t writepage,
  754. void *data)
  755. {
  756. struct backing_dev_info *bdi = mapping->backing_dev_info;
  757. int ret = 0;
  758. int done = 0;
  759. struct pagevec pvec;
  760. int nr_pages;
  761. pgoff_t index;
  762. pgoff_t end; /* Inclusive */
  763. int scanned = 0;
  764. int range_whole = 0;
  765. if (wbc->nonblocking && bdi_write_congested(bdi)) {
  766. wbc->encountered_congestion = 1;
  767. return 0;
  768. }
  769. pagevec_init(&pvec, 0);
  770. if (wbc->range_cyclic) {
  771. index = mapping->writeback_index; /* Start from prev offset */
  772. end = -1;
  773. } else {
  774. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  775. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  776. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  777. range_whole = 1;
  778. scanned = 1;
  779. }
  780. retry:
  781. while (!done && (index <= end) &&
  782. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  783. PAGECACHE_TAG_DIRTY,
  784. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
  785. unsigned i;
  786. scanned = 1;
  787. for (i = 0; i < nr_pages; i++) {
  788. struct page *page = pvec.pages[i];
  789. /*
  790. * At this point we hold neither mapping->tree_lock nor
  791. * lock on the page itself: the page may be truncated or
  792. * invalidated (changing page->mapping to NULL), or even
  793. * swizzled back from swapper_space to tmpfs file
  794. * mapping
  795. */
  796. lock_page(page);
  797. if (unlikely(page->mapping != mapping)) {
  798. unlock_page(page);
  799. continue;
  800. }
  801. if (!wbc->range_cyclic && page->index > end) {
  802. done = 1;
  803. unlock_page(page);
  804. continue;
  805. }
  806. if (wbc->sync_mode != WB_SYNC_NONE)
  807. wait_on_page_writeback(page);
  808. if (PageWriteback(page) ||
  809. !clear_page_dirty_for_io(page)) {
  810. unlock_page(page);
  811. continue;
  812. }
  813. ret = (*writepage)(page, wbc, data);
  814. if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
  815. unlock_page(page);
  816. ret = 0;
  817. }
  818. if (ret || (--(wbc->nr_to_write) <= 0))
  819. done = 1;
  820. if (wbc->nonblocking && bdi_write_congested(bdi)) {
  821. wbc->encountered_congestion = 1;
  822. done = 1;
  823. }
  824. }
  825. pagevec_release(&pvec);
  826. cond_resched();
  827. }
  828. if (!scanned && !done) {
  829. /*
  830. * We hit the last page and there is more work to be done: wrap
  831. * back to the start of the file
  832. */
  833. scanned = 1;
  834. index = 0;
  835. goto retry;
  836. }
  837. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  838. mapping->writeback_index = index;
  839. return ret;
  840. }
  841. EXPORT_SYMBOL(write_cache_pages);
  842. /*
  843. * Function used by generic_writepages to call the real writepage
  844. * function and set the mapping flags on error
  845. */
  846. static int __writepage(struct page *page, struct writeback_control *wbc,
  847. void *data)
  848. {
  849. struct address_space *mapping = data;
  850. int ret = mapping->a_ops->writepage(page, wbc);
  851. mapping_set_error(mapping, ret);
  852. return ret;
  853. }
  854. /**
  855. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  856. * @mapping: address space structure to write
  857. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  858. *
  859. * This is a library function, which implements the writepages()
  860. * address_space_operation.
  861. */
  862. int generic_writepages(struct address_space *mapping,
  863. struct writeback_control *wbc)
  864. {
  865. /* deal with chardevs and other special file */
  866. if (!mapping->a_ops->writepage)
  867. return 0;
  868. return write_cache_pages(mapping, wbc, __writepage, mapping);
  869. }
  870. EXPORT_SYMBOL(generic_writepages);
  871. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  872. {
  873. int ret;
  874. if (wbc->nr_to_write <= 0)
  875. return 0;
  876. wbc->for_writepages = 1;
  877. if (mapping->a_ops->writepages)
  878. ret = mapping->a_ops->writepages(mapping, wbc);
  879. else
  880. ret = generic_writepages(mapping, wbc);
  881. wbc->for_writepages = 0;
  882. return ret;
  883. }
  884. /**
  885. * write_one_page - write out a single page and optionally wait on I/O
  886. * @page: the page to write
  887. * @wait: if true, wait on writeout
  888. *
  889. * The page must be locked by the caller and will be unlocked upon return.
  890. *
  891. * write_one_page() returns a negative error code if I/O failed.
  892. */
  893. int write_one_page(struct page *page, int wait)
  894. {
  895. struct address_space *mapping = page->mapping;
  896. int ret = 0;
  897. struct writeback_control wbc = {
  898. .sync_mode = WB_SYNC_ALL,
  899. .nr_to_write = 1,
  900. };
  901. BUG_ON(!PageLocked(page));
  902. if (wait)
  903. wait_on_page_writeback(page);
  904. if (clear_page_dirty_for_io(page)) {
  905. page_cache_get(page);
  906. ret = mapping->a_ops->writepage(page, &wbc);
  907. if (ret == 0 && wait) {
  908. wait_on_page_writeback(page);
  909. if (PageError(page))
  910. ret = -EIO;
  911. }
  912. page_cache_release(page);
  913. } else {
  914. unlock_page(page);
  915. }
  916. return ret;
  917. }
  918. EXPORT_SYMBOL(write_one_page);
  919. /*
  920. * For address_spaces which do not use buffers nor write back.
  921. */
  922. int __set_page_dirty_no_writeback(struct page *page)
  923. {
  924. if (!PageDirty(page))
  925. SetPageDirty(page);
  926. return 0;
  927. }
  928. /*
  929. * For address_spaces which do not use buffers. Just tag the page as dirty in
  930. * its radix tree.
  931. *
  932. * This is also used when a single buffer is being dirtied: we want to set the
  933. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  934. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  935. *
  936. * Most callers have locked the page, which pins the address_space in memory.
  937. * But zap_pte_range() does not lock the page, however in that case the
  938. * mapping is pinned by the vma's ->vm_file reference.
  939. *
  940. * We take care to handle the case where the page was truncated from the
  941. * mapping by re-checking page_mapping() inside tree_lock.
  942. */
  943. int __set_page_dirty_nobuffers(struct page *page)
  944. {
  945. if (!TestSetPageDirty(page)) {
  946. struct address_space *mapping = page_mapping(page);
  947. struct address_space *mapping2;
  948. if (!mapping)
  949. return 1;
  950. write_lock_irq(&mapping->tree_lock);
  951. mapping2 = page_mapping(page);
  952. if (mapping2) { /* Race with truncate? */
  953. BUG_ON(mapping2 != mapping);
  954. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  955. if (mapping_cap_account_dirty(mapping)) {
  956. __inc_zone_page_state(page, NR_FILE_DIRTY);
  957. __inc_bdi_stat(mapping->backing_dev_info,
  958. BDI_RECLAIMABLE);
  959. task_io_account_write(PAGE_CACHE_SIZE);
  960. }
  961. radix_tree_tag_set(&mapping->page_tree,
  962. page_index(page), PAGECACHE_TAG_DIRTY);
  963. }
  964. write_unlock_irq(&mapping->tree_lock);
  965. if (mapping->host) {
  966. /* !PageAnon && !swapper_space */
  967. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  968. }
  969. return 1;
  970. }
  971. return 0;
  972. }
  973. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  974. /*
  975. * When a writepage implementation decides that it doesn't want to write this
  976. * page for some reason, it should redirty the locked page via
  977. * redirty_page_for_writepage() and it should then unlock the page and return 0
  978. */
  979. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  980. {
  981. wbc->pages_skipped++;
  982. return __set_page_dirty_nobuffers(page);
  983. }
  984. EXPORT_SYMBOL(redirty_page_for_writepage);
  985. /*
  986. * If the mapping doesn't provide a set_page_dirty a_op, then
  987. * just fall through and assume that it wants buffer_heads.
  988. */
  989. static int __set_page_dirty(struct page *page)
  990. {
  991. struct address_space *mapping = page_mapping(page);
  992. if (likely(mapping)) {
  993. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  994. #ifdef CONFIG_BLOCK
  995. if (!spd)
  996. spd = __set_page_dirty_buffers;
  997. #endif
  998. return (*spd)(page);
  999. }
  1000. if (!PageDirty(page)) {
  1001. if (!TestSetPageDirty(page))
  1002. return 1;
  1003. }
  1004. return 0;
  1005. }
  1006. int set_page_dirty(struct page *page)
  1007. {
  1008. int ret = __set_page_dirty(page);
  1009. if (ret)
  1010. task_dirty_inc(current);
  1011. return ret;
  1012. }
  1013. EXPORT_SYMBOL(set_page_dirty);
  1014. /*
  1015. * set_page_dirty() is racy if the caller has no reference against
  1016. * page->mapping->host, and if the page is unlocked. This is because another
  1017. * CPU could truncate the page off the mapping and then free the mapping.
  1018. *
  1019. * Usually, the page _is_ locked, or the caller is a user-space process which
  1020. * holds a reference on the inode by having an open file.
  1021. *
  1022. * In other cases, the page should be locked before running set_page_dirty().
  1023. */
  1024. int set_page_dirty_lock(struct page *page)
  1025. {
  1026. int ret;
  1027. lock_page_nosync(page);
  1028. ret = set_page_dirty(page);
  1029. unlock_page(page);
  1030. return ret;
  1031. }
  1032. EXPORT_SYMBOL(set_page_dirty_lock);
  1033. /*
  1034. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1035. * Returns true if the page was previously dirty.
  1036. *
  1037. * This is for preparing to put the page under writeout. We leave the page
  1038. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1039. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1040. * implementation will run either set_page_writeback() or set_page_dirty(),
  1041. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1042. * back into sync.
  1043. *
  1044. * This incoherency between the page's dirty flag and radix-tree tag is
  1045. * unfortunate, but it only exists while the page is locked.
  1046. */
  1047. int clear_page_dirty_for_io(struct page *page)
  1048. {
  1049. struct address_space *mapping = page_mapping(page);
  1050. BUG_ON(!PageLocked(page));
  1051. ClearPageReclaim(page);
  1052. if (mapping && mapping_cap_account_dirty(mapping)) {
  1053. /*
  1054. * Yes, Virginia, this is indeed insane.
  1055. *
  1056. * We use this sequence to make sure that
  1057. * (a) we account for dirty stats properly
  1058. * (b) we tell the low-level filesystem to
  1059. * mark the whole page dirty if it was
  1060. * dirty in a pagetable. Only to then
  1061. * (c) clean the page again and return 1 to
  1062. * cause the writeback.
  1063. *
  1064. * This way we avoid all nasty races with the
  1065. * dirty bit in multiple places and clearing
  1066. * them concurrently from different threads.
  1067. *
  1068. * Note! Normally the "set_page_dirty(page)"
  1069. * has no effect on the actual dirty bit - since
  1070. * that will already usually be set. But we
  1071. * need the side effects, and it can help us
  1072. * avoid races.
  1073. *
  1074. * We basically use the page "master dirty bit"
  1075. * as a serialization point for all the different
  1076. * threads doing their things.
  1077. */
  1078. if (page_mkclean(page))
  1079. set_page_dirty(page);
  1080. /*
  1081. * We carefully synchronise fault handlers against
  1082. * installing a dirty pte and marking the page dirty
  1083. * at this point. We do this by having them hold the
  1084. * page lock at some point after installing their
  1085. * pte, but before marking the page dirty.
  1086. * Pages are always locked coming in here, so we get
  1087. * the desired exclusion. See mm/memory.c:do_wp_page()
  1088. * for more comments.
  1089. */
  1090. if (TestClearPageDirty(page)) {
  1091. dec_zone_page_state(page, NR_FILE_DIRTY);
  1092. dec_bdi_stat(mapping->backing_dev_info,
  1093. BDI_RECLAIMABLE);
  1094. return 1;
  1095. }
  1096. return 0;
  1097. }
  1098. return TestClearPageDirty(page);
  1099. }
  1100. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1101. int test_clear_page_writeback(struct page *page)
  1102. {
  1103. struct address_space *mapping = page_mapping(page);
  1104. int ret;
  1105. if (mapping) {
  1106. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1107. unsigned long flags;
  1108. write_lock_irqsave(&mapping->tree_lock, flags);
  1109. ret = TestClearPageWriteback(page);
  1110. if (ret) {
  1111. radix_tree_tag_clear(&mapping->page_tree,
  1112. page_index(page),
  1113. PAGECACHE_TAG_WRITEBACK);
  1114. if (bdi_cap_account_writeback(bdi)) {
  1115. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1116. __bdi_writeout_inc(bdi);
  1117. }
  1118. }
  1119. write_unlock_irqrestore(&mapping->tree_lock, flags);
  1120. } else {
  1121. ret = TestClearPageWriteback(page);
  1122. }
  1123. if (ret)
  1124. dec_zone_page_state(page, NR_WRITEBACK);
  1125. return ret;
  1126. }
  1127. int test_set_page_writeback(struct page *page)
  1128. {
  1129. struct address_space *mapping = page_mapping(page);
  1130. int ret;
  1131. if (mapping) {
  1132. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1133. unsigned long flags;
  1134. write_lock_irqsave(&mapping->tree_lock, flags);
  1135. ret = TestSetPageWriteback(page);
  1136. if (!ret) {
  1137. radix_tree_tag_set(&mapping->page_tree,
  1138. page_index(page),
  1139. PAGECACHE_TAG_WRITEBACK);
  1140. if (bdi_cap_account_writeback(bdi))
  1141. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1142. }
  1143. if (!PageDirty(page))
  1144. radix_tree_tag_clear(&mapping->page_tree,
  1145. page_index(page),
  1146. PAGECACHE_TAG_DIRTY);
  1147. write_unlock_irqrestore(&mapping->tree_lock, flags);
  1148. } else {
  1149. ret = TestSetPageWriteback(page);
  1150. }
  1151. if (!ret)
  1152. inc_zone_page_state(page, NR_WRITEBACK);
  1153. return ret;
  1154. }
  1155. EXPORT_SYMBOL(test_set_page_writeback);
  1156. /*
  1157. * Return true if any of the pages in the mapping are marked with the
  1158. * passed tag.
  1159. */
  1160. int mapping_tagged(struct address_space *mapping, int tag)
  1161. {
  1162. int ret;
  1163. rcu_read_lock();
  1164. ret = radix_tree_tagged(&mapping->page_tree, tag);
  1165. rcu_read_unlock();
  1166. return ret;
  1167. }
  1168. EXPORT_SYMBOL(mapping_tagged);