slab.h 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. /*
  2. * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
  3. *
  4. * (C) SGI 2006, Christoph Lameter <clameter@sgi.com>
  5. * Cleaned up and restructured to ease the addition of alternative
  6. * implementations of SLAB allocators.
  7. */
  8. #ifndef _LINUX_SLAB_H
  9. #define _LINUX_SLAB_H
  10. #ifdef __KERNEL__
  11. #include <linux/gfp.h>
  12. #include <linux/types.h>
  13. typedef struct kmem_cache kmem_cache_t __deprecated;
  14. /*
  15. * Flags to pass to kmem_cache_create().
  16. * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  17. */
  18. #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
  19. #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
  20. #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
  21. #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
  22. #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
  23. #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
  24. #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
  25. #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
  26. #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
  27. #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
  28. #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
  29. /*
  30. * struct kmem_cache related prototypes
  31. */
  32. void __init kmem_cache_init(void);
  33. int slab_is_available(void);
  34. struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  35. unsigned long,
  36. void (*)(void *, struct kmem_cache *, unsigned long),
  37. void (*)(void *, struct kmem_cache *, unsigned long));
  38. void kmem_cache_destroy(struct kmem_cache *);
  39. int kmem_cache_shrink(struct kmem_cache *);
  40. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  41. void *kmem_cache_zalloc(struct kmem_cache *, gfp_t);
  42. void kmem_cache_free(struct kmem_cache *, void *);
  43. unsigned int kmem_cache_size(struct kmem_cache *);
  44. const char *kmem_cache_name(struct kmem_cache *);
  45. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
  46. /*
  47. * Please use this macro to create slab caches. Simply specify the
  48. * name of the structure and maybe some flags that are listed above.
  49. *
  50. * The alignment of the struct determines object alignment. If you
  51. * f.e. add ____cacheline_aligned_in_smp to the struct declaration
  52. * then the objects will be properly aligned in SMP configurations.
  53. */
  54. #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
  55. sizeof(struct __struct), __alignof__(struct __struct),\
  56. (__flags), NULL, NULL)
  57. #ifdef CONFIG_NUMA
  58. extern void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  59. #else
  60. static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
  61. gfp_t flags, int node)
  62. {
  63. return kmem_cache_alloc(cachep, flags);
  64. }
  65. #endif
  66. /*
  67. * The largest kmalloc size supported by the slab allocators is
  68. * 32 megabyte (2^25) or the maximum allocatable page order if that is
  69. * less than 32 MB.
  70. *
  71. * WARNING: Its not easy to increase this value since the allocators have
  72. * to do various tricks to work around compiler limitations in order to
  73. * ensure proper constant folding.
  74. */
  75. #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT) <= 25 ? \
  76. (MAX_ORDER + PAGE_SHIFT) : 25)
  77. #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
  78. #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
  79. /*
  80. * Common kmalloc functions provided by all allocators
  81. */
  82. void *__kmalloc(size_t, gfp_t);
  83. void *__kzalloc(size_t, gfp_t);
  84. void * __must_check krealloc(const void *, size_t, gfp_t);
  85. void kfree(const void *);
  86. size_t ksize(const void *);
  87. /**
  88. * kcalloc - allocate memory for an array. The memory is set to zero.
  89. * @n: number of elements.
  90. * @size: element size.
  91. * @flags: the type of memory to allocate.
  92. */
  93. static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
  94. {
  95. if (n != 0 && size > ULONG_MAX / n)
  96. return NULL;
  97. return __kzalloc(n * size, flags);
  98. }
  99. /*
  100. * Allocator specific definitions. These are mainly used to establish optimized
  101. * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by selecting
  102. * the appropriate general cache at compile time.
  103. */
  104. #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB)
  105. #ifdef CONFIG_SLUB
  106. #include <linux/slub_def.h>
  107. #else
  108. #include <linux/slab_def.h>
  109. #endif /* !CONFIG_SLUB */
  110. #else
  111. /*
  112. * Fallback definitions for an allocator not wanting to provide
  113. * its own optimized kmalloc definitions (like SLOB).
  114. */
  115. /**
  116. * kmalloc - allocate memory
  117. * @size: how many bytes of memory are required.
  118. * @flags: the type of memory to allocate.
  119. *
  120. * kmalloc is the normal method of allocating memory
  121. * in the kernel.
  122. *
  123. * The @flags argument may be one of:
  124. *
  125. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  126. *
  127. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  128. *
  129. * %GFP_ATOMIC - Allocation will not sleep.
  130. * For example, use this inside interrupt handlers.
  131. *
  132. * %GFP_HIGHUSER - Allocate pages from high memory.
  133. *
  134. * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
  135. *
  136. * %GFP_NOFS - Do not make any fs calls while trying to get memory.
  137. *
  138. * Also it is possible to set different flags by OR'ing
  139. * in one or more of the following additional @flags:
  140. *
  141. * %__GFP_COLD - Request cache-cold pages instead of
  142. * trying to return cache-warm pages.
  143. *
  144. * %__GFP_DMA - Request memory from the DMA-capable zone.
  145. *
  146. * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
  147. *
  148. * %__GFP_HIGHMEM - Allocated memory may be from highmem.
  149. *
  150. * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
  151. * (think twice before using).
  152. *
  153. * %__GFP_NORETRY - If memory is not immediately available,
  154. * then give up at once.
  155. *
  156. * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
  157. *
  158. * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
  159. */
  160. static inline void *kmalloc(size_t size, gfp_t flags)
  161. {
  162. return __kmalloc(size, flags);
  163. }
  164. /**
  165. * kzalloc - allocate memory. The memory is set to zero.
  166. * @size: how many bytes of memory are required.
  167. * @flags: the type of memory to allocate (see kmalloc).
  168. */
  169. static inline void *kzalloc(size_t size, gfp_t flags)
  170. {
  171. return __kzalloc(size, flags);
  172. }
  173. #endif
  174. #ifndef CONFIG_NUMA
  175. static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  176. {
  177. return kmalloc(size, flags);
  178. }
  179. static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
  180. {
  181. return __kmalloc(size, flags);
  182. }
  183. #endif /* !CONFIG_NUMA */
  184. /*
  185. * kmalloc_track_caller is a special version of kmalloc that records the
  186. * calling function of the routine calling it for slab leak tracking instead
  187. * of just the calling function (confusing, eh?).
  188. * It's useful when the call to kmalloc comes from a widely-used standard
  189. * allocator where we care about the real place the memory allocation
  190. * request comes from.
  191. */
  192. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
  193. extern void *__kmalloc_track_caller(size_t, gfp_t, void*);
  194. #define kmalloc_track_caller(size, flags) \
  195. __kmalloc_track_caller(size, flags, __builtin_return_address(0))
  196. #else
  197. #define kmalloc_track_caller(size, flags) \
  198. __kmalloc(size, flags)
  199. #endif /* DEBUG_SLAB */
  200. #ifdef CONFIG_NUMA
  201. /*
  202. * kmalloc_node_track_caller is a special version of kmalloc_node that
  203. * records the calling function of the routine calling it for slab leak
  204. * tracking instead of just the calling function (confusing, eh?).
  205. * It's useful when the call to kmalloc_node comes from a widely-used
  206. * standard allocator where we care about the real place the memory
  207. * allocation request comes from.
  208. */
  209. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
  210. extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *);
  211. #define kmalloc_node_track_caller(size, flags, node) \
  212. __kmalloc_node_track_caller(size, flags, node, \
  213. __builtin_return_address(0))
  214. #else
  215. #define kmalloc_node_track_caller(size, flags, node) \
  216. __kmalloc_node(size, flags, node)
  217. #endif
  218. #else /* CONFIG_NUMA */
  219. #define kmalloc_node_track_caller(size, flags, node) \
  220. kmalloc_track_caller(size, flags)
  221. #endif /* DEBUG_SLAB */
  222. #endif /* __KERNEL__ */
  223. #endif /* _LINUX_SLAB_H */