inode.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842
  1. /*
  2. * hugetlbpage-backed filesystem. Based on ramfs.
  3. *
  4. * William Irwin, 2002
  5. *
  6. * Copyright (C) 2002 Linus Torvalds.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/thread_info.h>
  10. #include <asm/current.h>
  11. #include <linux/sched.h> /* remove ASAP */
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/file.h>
  15. #include <linux/writeback.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/highmem.h>
  18. #include <linux/init.h>
  19. #include <linux/string.h>
  20. #include <linux/capability.h>
  21. #include <linux/backing-dev.h>
  22. #include <linux/hugetlb.h>
  23. #include <linux/pagevec.h>
  24. #include <linux/mman.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/slab.h>
  27. #include <linux/dnotify.h>
  28. #include <linux/statfs.h>
  29. #include <linux/security.h>
  30. #include <asm/uaccess.h>
  31. /* some random number */
  32. #define HUGETLBFS_MAGIC 0x958458f6
  33. static const struct super_operations hugetlbfs_ops;
  34. static const struct address_space_operations hugetlbfs_aops;
  35. const struct file_operations hugetlbfs_file_operations;
  36. static const struct inode_operations hugetlbfs_dir_inode_operations;
  37. static const struct inode_operations hugetlbfs_inode_operations;
  38. static struct backing_dev_info hugetlbfs_backing_dev_info = {
  39. .ra_pages = 0, /* No readahead */
  40. .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
  41. };
  42. int sysctl_hugetlb_shm_group;
  43. static void huge_pagevec_release(struct pagevec *pvec)
  44. {
  45. int i;
  46. for (i = 0; i < pagevec_count(pvec); ++i)
  47. put_page(pvec->pages[i]);
  48. pagevec_reinit(pvec);
  49. }
  50. static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
  51. {
  52. struct inode *inode = file->f_path.dentry->d_inode;
  53. loff_t len, vma_len;
  54. int ret;
  55. /*
  56. * vma alignment has already been checked by prepare_hugepage_range.
  57. * If you add any error returns here, do so after setting VM_HUGETLB,
  58. * so is_vm_hugetlb_page tests below unmap_region go the right way
  59. * when do_mmap_pgoff unwinds (may be important on powerpc and ia64).
  60. */
  61. vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
  62. vma->vm_ops = &hugetlb_vm_ops;
  63. vma_len = (loff_t)(vma->vm_end - vma->vm_start);
  64. mutex_lock(&inode->i_mutex);
  65. file_accessed(file);
  66. ret = -ENOMEM;
  67. len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
  68. if (vma->vm_flags & VM_MAYSHARE &&
  69. hugetlb_reserve_pages(inode, vma->vm_pgoff >> (HPAGE_SHIFT-PAGE_SHIFT),
  70. len >> HPAGE_SHIFT))
  71. goto out;
  72. ret = 0;
  73. hugetlb_prefault_arch_hook(vma->vm_mm);
  74. if (vma->vm_flags & VM_WRITE && inode->i_size < len)
  75. inode->i_size = len;
  76. out:
  77. mutex_unlock(&inode->i_mutex);
  78. return ret;
  79. }
  80. /*
  81. * Called under down_write(mmap_sem).
  82. */
  83. #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  84. static unsigned long
  85. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  86. unsigned long len, unsigned long pgoff, unsigned long flags)
  87. {
  88. struct mm_struct *mm = current->mm;
  89. struct vm_area_struct *vma;
  90. unsigned long start_addr;
  91. if (len & ~HPAGE_MASK)
  92. return -EINVAL;
  93. if (len > TASK_SIZE)
  94. return -ENOMEM;
  95. if (flags & MAP_FIXED) {
  96. if (prepare_hugepage_range(addr, len, pgoff))
  97. return -EINVAL;
  98. return addr;
  99. }
  100. if (addr) {
  101. addr = ALIGN(addr, HPAGE_SIZE);
  102. vma = find_vma(mm, addr);
  103. if (TASK_SIZE - len >= addr &&
  104. (!vma || addr + len <= vma->vm_start))
  105. return addr;
  106. }
  107. start_addr = mm->free_area_cache;
  108. if (len <= mm->cached_hole_size)
  109. start_addr = TASK_UNMAPPED_BASE;
  110. full_search:
  111. addr = ALIGN(start_addr, HPAGE_SIZE);
  112. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  113. /* At this point: (!vma || addr < vma->vm_end). */
  114. if (TASK_SIZE - len < addr) {
  115. /*
  116. * Start a new search - just in case we missed
  117. * some holes.
  118. */
  119. if (start_addr != TASK_UNMAPPED_BASE) {
  120. start_addr = TASK_UNMAPPED_BASE;
  121. goto full_search;
  122. }
  123. return -ENOMEM;
  124. }
  125. if (!vma || addr + len <= vma->vm_start)
  126. return addr;
  127. addr = ALIGN(vma->vm_end, HPAGE_SIZE);
  128. }
  129. }
  130. #endif
  131. /*
  132. * Read a page. Again trivial. If it didn't already exist
  133. * in the page cache, it is zero-filled.
  134. */
  135. static int hugetlbfs_readpage(struct file *file, struct page * page)
  136. {
  137. unlock_page(page);
  138. return -EINVAL;
  139. }
  140. static int hugetlbfs_prepare_write(struct file *file,
  141. struct page *page, unsigned offset, unsigned to)
  142. {
  143. return -EINVAL;
  144. }
  145. static int hugetlbfs_commit_write(struct file *file,
  146. struct page *page, unsigned offset, unsigned to)
  147. {
  148. return -EINVAL;
  149. }
  150. static void truncate_huge_page(struct page *page)
  151. {
  152. cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
  153. ClearPageUptodate(page);
  154. remove_from_page_cache(page);
  155. put_page(page);
  156. }
  157. static void truncate_hugepages(struct inode *inode, loff_t lstart)
  158. {
  159. struct address_space *mapping = &inode->i_data;
  160. const pgoff_t start = lstart >> HPAGE_SHIFT;
  161. struct pagevec pvec;
  162. pgoff_t next;
  163. int i, freed = 0;
  164. pagevec_init(&pvec, 0);
  165. next = start;
  166. while (1) {
  167. if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  168. if (next == start)
  169. break;
  170. next = start;
  171. continue;
  172. }
  173. for (i = 0; i < pagevec_count(&pvec); ++i) {
  174. struct page *page = pvec.pages[i];
  175. lock_page(page);
  176. if (page->index > next)
  177. next = page->index;
  178. ++next;
  179. truncate_huge_page(page);
  180. unlock_page(page);
  181. hugetlb_put_quota(mapping);
  182. freed++;
  183. }
  184. huge_pagevec_release(&pvec);
  185. }
  186. BUG_ON(!lstart && mapping->nrpages);
  187. hugetlb_unreserve_pages(inode, start, freed);
  188. }
  189. static void hugetlbfs_delete_inode(struct inode *inode)
  190. {
  191. truncate_hugepages(inode, 0);
  192. clear_inode(inode);
  193. }
  194. static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
  195. {
  196. struct super_block *sb = inode->i_sb;
  197. if (!hlist_unhashed(&inode->i_hash)) {
  198. if (!(inode->i_state & (I_DIRTY|I_LOCK)))
  199. list_move(&inode->i_list, &inode_unused);
  200. inodes_stat.nr_unused++;
  201. if (!sb || (sb->s_flags & MS_ACTIVE)) {
  202. spin_unlock(&inode_lock);
  203. return;
  204. }
  205. inode->i_state |= I_WILL_FREE;
  206. spin_unlock(&inode_lock);
  207. /*
  208. * write_inode_now is a noop as we set BDI_CAP_NO_WRITEBACK
  209. * in our backing_dev_info.
  210. */
  211. write_inode_now(inode, 1);
  212. spin_lock(&inode_lock);
  213. inode->i_state &= ~I_WILL_FREE;
  214. inodes_stat.nr_unused--;
  215. hlist_del_init(&inode->i_hash);
  216. }
  217. list_del_init(&inode->i_list);
  218. list_del_init(&inode->i_sb_list);
  219. inode->i_state |= I_FREEING;
  220. inodes_stat.nr_inodes--;
  221. spin_unlock(&inode_lock);
  222. truncate_hugepages(inode, 0);
  223. clear_inode(inode);
  224. destroy_inode(inode);
  225. }
  226. static void hugetlbfs_drop_inode(struct inode *inode)
  227. {
  228. if (!inode->i_nlink)
  229. generic_delete_inode(inode);
  230. else
  231. hugetlbfs_forget_inode(inode);
  232. }
  233. static inline void
  234. hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
  235. {
  236. struct vm_area_struct *vma;
  237. struct prio_tree_iter iter;
  238. vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
  239. unsigned long v_offset;
  240. /*
  241. * Can the expression below overflow on 32-bit arches?
  242. * No, because the prio_tree returns us only those vmas
  243. * which overlap the truncated area starting at pgoff,
  244. * and no vma on a 32-bit arch can span beyond the 4GB.
  245. */
  246. if (vma->vm_pgoff < pgoff)
  247. v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
  248. else
  249. v_offset = 0;
  250. __unmap_hugepage_range(vma,
  251. vma->vm_start + v_offset, vma->vm_end);
  252. }
  253. }
  254. /*
  255. * Expanding truncates are not allowed.
  256. */
  257. static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
  258. {
  259. pgoff_t pgoff;
  260. struct address_space *mapping = inode->i_mapping;
  261. if (offset > inode->i_size)
  262. return -EINVAL;
  263. BUG_ON(offset & ~HPAGE_MASK);
  264. pgoff = offset >> PAGE_SHIFT;
  265. inode->i_size = offset;
  266. spin_lock(&mapping->i_mmap_lock);
  267. if (!prio_tree_empty(&mapping->i_mmap))
  268. hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
  269. spin_unlock(&mapping->i_mmap_lock);
  270. truncate_hugepages(inode, offset);
  271. return 0;
  272. }
  273. static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
  274. {
  275. struct inode *inode = dentry->d_inode;
  276. int error;
  277. unsigned int ia_valid = attr->ia_valid;
  278. BUG_ON(!inode);
  279. error = inode_change_ok(inode, attr);
  280. if (error)
  281. goto out;
  282. if (ia_valid & ATTR_SIZE) {
  283. error = -EINVAL;
  284. if (!(attr->ia_size & ~HPAGE_MASK))
  285. error = hugetlb_vmtruncate(inode, attr->ia_size);
  286. if (error)
  287. goto out;
  288. attr->ia_valid &= ~ATTR_SIZE;
  289. }
  290. error = inode_setattr(inode, attr);
  291. out:
  292. return error;
  293. }
  294. static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid,
  295. gid_t gid, int mode, dev_t dev)
  296. {
  297. struct inode *inode;
  298. inode = new_inode(sb);
  299. if (inode) {
  300. struct hugetlbfs_inode_info *info;
  301. inode->i_mode = mode;
  302. inode->i_uid = uid;
  303. inode->i_gid = gid;
  304. inode->i_blocks = 0;
  305. inode->i_mapping->a_ops = &hugetlbfs_aops;
  306. inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
  307. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  308. INIT_LIST_HEAD(&inode->i_mapping->private_list);
  309. info = HUGETLBFS_I(inode);
  310. mpol_shared_policy_init(&info->policy, MPOL_DEFAULT, NULL);
  311. switch (mode & S_IFMT) {
  312. default:
  313. init_special_inode(inode, mode, dev);
  314. break;
  315. case S_IFREG:
  316. inode->i_op = &hugetlbfs_inode_operations;
  317. inode->i_fop = &hugetlbfs_file_operations;
  318. break;
  319. case S_IFDIR:
  320. inode->i_op = &hugetlbfs_dir_inode_operations;
  321. inode->i_fop = &simple_dir_operations;
  322. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  323. inc_nlink(inode);
  324. break;
  325. case S_IFLNK:
  326. inode->i_op = &page_symlink_inode_operations;
  327. break;
  328. }
  329. }
  330. return inode;
  331. }
  332. /*
  333. * File creation. Allocate an inode, and we're done..
  334. */
  335. static int hugetlbfs_mknod(struct inode *dir,
  336. struct dentry *dentry, int mode, dev_t dev)
  337. {
  338. struct inode *inode;
  339. int error = -ENOSPC;
  340. gid_t gid;
  341. if (dir->i_mode & S_ISGID) {
  342. gid = dir->i_gid;
  343. if (S_ISDIR(mode))
  344. mode |= S_ISGID;
  345. } else {
  346. gid = current->fsgid;
  347. }
  348. inode = hugetlbfs_get_inode(dir->i_sb, current->fsuid, gid, mode, dev);
  349. if (inode) {
  350. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  351. d_instantiate(dentry, inode);
  352. dget(dentry); /* Extra count - pin the dentry in core */
  353. error = 0;
  354. }
  355. return error;
  356. }
  357. static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  358. {
  359. int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
  360. if (!retval)
  361. inc_nlink(dir);
  362. return retval;
  363. }
  364. static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
  365. {
  366. return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
  367. }
  368. static int hugetlbfs_symlink(struct inode *dir,
  369. struct dentry *dentry, const char *symname)
  370. {
  371. struct inode *inode;
  372. int error = -ENOSPC;
  373. gid_t gid;
  374. if (dir->i_mode & S_ISGID)
  375. gid = dir->i_gid;
  376. else
  377. gid = current->fsgid;
  378. inode = hugetlbfs_get_inode(dir->i_sb, current->fsuid,
  379. gid, S_IFLNK|S_IRWXUGO, 0);
  380. if (inode) {
  381. int l = strlen(symname)+1;
  382. error = page_symlink(inode, symname, l);
  383. if (!error) {
  384. d_instantiate(dentry, inode);
  385. dget(dentry);
  386. } else
  387. iput(inode);
  388. }
  389. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  390. return error;
  391. }
  392. /*
  393. * mark the head page dirty
  394. */
  395. static int hugetlbfs_set_page_dirty(struct page *page)
  396. {
  397. struct page *head = compound_head(page);
  398. SetPageDirty(head);
  399. return 0;
  400. }
  401. static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  402. {
  403. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
  404. buf->f_type = HUGETLBFS_MAGIC;
  405. buf->f_bsize = HPAGE_SIZE;
  406. if (sbinfo) {
  407. spin_lock(&sbinfo->stat_lock);
  408. /* If no limits set, just report 0 for max/free/used
  409. * blocks, like simple_statfs() */
  410. if (sbinfo->max_blocks >= 0) {
  411. buf->f_blocks = sbinfo->max_blocks;
  412. buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
  413. buf->f_files = sbinfo->max_inodes;
  414. buf->f_ffree = sbinfo->free_inodes;
  415. }
  416. spin_unlock(&sbinfo->stat_lock);
  417. }
  418. buf->f_namelen = NAME_MAX;
  419. return 0;
  420. }
  421. static void hugetlbfs_put_super(struct super_block *sb)
  422. {
  423. struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
  424. if (sbi) {
  425. sb->s_fs_info = NULL;
  426. kfree(sbi);
  427. }
  428. }
  429. static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  430. {
  431. if (sbinfo->free_inodes >= 0) {
  432. spin_lock(&sbinfo->stat_lock);
  433. if (unlikely(!sbinfo->free_inodes)) {
  434. spin_unlock(&sbinfo->stat_lock);
  435. return 0;
  436. }
  437. sbinfo->free_inodes--;
  438. spin_unlock(&sbinfo->stat_lock);
  439. }
  440. return 1;
  441. }
  442. static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  443. {
  444. if (sbinfo->free_inodes >= 0) {
  445. spin_lock(&sbinfo->stat_lock);
  446. sbinfo->free_inodes++;
  447. spin_unlock(&sbinfo->stat_lock);
  448. }
  449. }
  450. static struct kmem_cache *hugetlbfs_inode_cachep;
  451. static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
  452. {
  453. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
  454. struct hugetlbfs_inode_info *p;
  455. if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
  456. return NULL;
  457. p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
  458. if (unlikely(!p)) {
  459. hugetlbfs_inc_free_inodes(sbinfo);
  460. return NULL;
  461. }
  462. return &p->vfs_inode;
  463. }
  464. static void hugetlbfs_destroy_inode(struct inode *inode)
  465. {
  466. hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
  467. mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
  468. kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
  469. }
  470. static const struct address_space_operations hugetlbfs_aops = {
  471. .readpage = hugetlbfs_readpage,
  472. .prepare_write = hugetlbfs_prepare_write,
  473. .commit_write = hugetlbfs_commit_write,
  474. .set_page_dirty = hugetlbfs_set_page_dirty,
  475. };
  476. static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
  477. {
  478. struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
  479. inode_init_once(&ei->vfs_inode);
  480. }
  481. const struct file_operations hugetlbfs_file_operations = {
  482. .mmap = hugetlbfs_file_mmap,
  483. .fsync = simple_sync_file,
  484. .get_unmapped_area = hugetlb_get_unmapped_area,
  485. };
  486. static const struct inode_operations hugetlbfs_dir_inode_operations = {
  487. .create = hugetlbfs_create,
  488. .lookup = simple_lookup,
  489. .link = simple_link,
  490. .unlink = simple_unlink,
  491. .symlink = hugetlbfs_symlink,
  492. .mkdir = hugetlbfs_mkdir,
  493. .rmdir = simple_rmdir,
  494. .mknod = hugetlbfs_mknod,
  495. .rename = simple_rename,
  496. .setattr = hugetlbfs_setattr,
  497. };
  498. static const struct inode_operations hugetlbfs_inode_operations = {
  499. .setattr = hugetlbfs_setattr,
  500. };
  501. static const struct super_operations hugetlbfs_ops = {
  502. .alloc_inode = hugetlbfs_alloc_inode,
  503. .destroy_inode = hugetlbfs_destroy_inode,
  504. .statfs = hugetlbfs_statfs,
  505. .delete_inode = hugetlbfs_delete_inode,
  506. .drop_inode = hugetlbfs_drop_inode,
  507. .put_super = hugetlbfs_put_super,
  508. };
  509. static int
  510. hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
  511. {
  512. char *opt, *value, *rest;
  513. if (!options)
  514. return 0;
  515. while ((opt = strsep(&options, ",")) != NULL) {
  516. if (!*opt)
  517. continue;
  518. value = strchr(opt, '=');
  519. if (!value || !*value)
  520. return -EINVAL;
  521. else
  522. *value++ = '\0';
  523. if (!strcmp(opt, "uid"))
  524. pconfig->uid = simple_strtoul(value, &value, 0);
  525. else if (!strcmp(opt, "gid"))
  526. pconfig->gid = simple_strtoul(value, &value, 0);
  527. else if (!strcmp(opt, "mode"))
  528. pconfig->mode = simple_strtoul(value,&value,0) & 0777U;
  529. else if (!strcmp(opt, "size")) {
  530. unsigned long long size = memparse(value, &rest);
  531. if (*rest == '%') {
  532. size <<= HPAGE_SHIFT;
  533. size *= max_huge_pages;
  534. do_div(size, 100);
  535. rest++;
  536. }
  537. pconfig->nr_blocks = (size >> HPAGE_SHIFT);
  538. value = rest;
  539. } else if (!strcmp(opt,"nr_inodes")) {
  540. pconfig->nr_inodes = memparse(value, &rest);
  541. value = rest;
  542. } else
  543. return -EINVAL;
  544. if (*value)
  545. return -EINVAL;
  546. }
  547. return 0;
  548. }
  549. static int
  550. hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
  551. {
  552. struct inode * inode;
  553. struct dentry * root;
  554. int ret;
  555. struct hugetlbfs_config config;
  556. struct hugetlbfs_sb_info *sbinfo;
  557. config.nr_blocks = -1; /* No limit on size by default */
  558. config.nr_inodes = -1; /* No limit on number of inodes by default */
  559. config.uid = current->fsuid;
  560. config.gid = current->fsgid;
  561. config.mode = 0755;
  562. ret = hugetlbfs_parse_options(data, &config);
  563. if (ret)
  564. return ret;
  565. sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
  566. if (!sbinfo)
  567. return -ENOMEM;
  568. sb->s_fs_info = sbinfo;
  569. spin_lock_init(&sbinfo->stat_lock);
  570. sbinfo->max_blocks = config.nr_blocks;
  571. sbinfo->free_blocks = config.nr_blocks;
  572. sbinfo->max_inodes = config.nr_inodes;
  573. sbinfo->free_inodes = config.nr_inodes;
  574. sb->s_maxbytes = MAX_LFS_FILESIZE;
  575. sb->s_blocksize = HPAGE_SIZE;
  576. sb->s_blocksize_bits = HPAGE_SHIFT;
  577. sb->s_magic = HUGETLBFS_MAGIC;
  578. sb->s_op = &hugetlbfs_ops;
  579. sb->s_time_gran = 1;
  580. inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
  581. S_IFDIR | config.mode, 0);
  582. if (!inode)
  583. goto out_free;
  584. root = d_alloc_root(inode);
  585. if (!root) {
  586. iput(inode);
  587. goto out_free;
  588. }
  589. sb->s_root = root;
  590. return 0;
  591. out_free:
  592. kfree(sbinfo);
  593. return -ENOMEM;
  594. }
  595. int hugetlb_get_quota(struct address_space *mapping)
  596. {
  597. int ret = 0;
  598. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  599. if (sbinfo->free_blocks > -1) {
  600. spin_lock(&sbinfo->stat_lock);
  601. if (sbinfo->free_blocks > 0)
  602. sbinfo->free_blocks--;
  603. else
  604. ret = -ENOMEM;
  605. spin_unlock(&sbinfo->stat_lock);
  606. }
  607. return ret;
  608. }
  609. void hugetlb_put_quota(struct address_space *mapping)
  610. {
  611. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  612. if (sbinfo->free_blocks > -1) {
  613. spin_lock(&sbinfo->stat_lock);
  614. sbinfo->free_blocks++;
  615. spin_unlock(&sbinfo->stat_lock);
  616. }
  617. }
  618. static int hugetlbfs_get_sb(struct file_system_type *fs_type,
  619. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  620. {
  621. return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
  622. }
  623. static struct file_system_type hugetlbfs_fs_type = {
  624. .name = "hugetlbfs",
  625. .get_sb = hugetlbfs_get_sb,
  626. .kill_sb = kill_litter_super,
  627. };
  628. static struct vfsmount *hugetlbfs_vfsmount;
  629. static int can_do_hugetlb_shm(void)
  630. {
  631. return likely(capable(CAP_IPC_LOCK) ||
  632. in_group_p(sysctl_hugetlb_shm_group) ||
  633. can_do_mlock());
  634. }
  635. struct file *hugetlb_zero_setup(size_t size)
  636. {
  637. int error = -ENOMEM;
  638. struct file *file;
  639. struct inode *inode;
  640. struct dentry *dentry, *root;
  641. struct qstr quick_string;
  642. char buf[16];
  643. static atomic_t counter;
  644. if (!hugetlbfs_vfsmount)
  645. return ERR_PTR(-ENOENT);
  646. if (!can_do_hugetlb_shm())
  647. return ERR_PTR(-EPERM);
  648. if (!user_shm_lock(size, current->user))
  649. return ERR_PTR(-ENOMEM);
  650. root = hugetlbfs_vfsmount->mnt_root;
  651. snprintf(buf, 16, "%u", atomic_inc_return(&counter));
  652. quick_string.name = buf;
  653. quick_string.len = strlen(quick_string.name);
  654. quick_string.hash = 0;
  655. dentry = d_alloc(root, &quick_string);
  656. if (!dentry)
  657. goto out_shm_unlock;
  658. error = -ENFILE;
  659. file = get_empty_filp();
  660. if (!file)
  661. goto out_dentry;
  662. error = -ENOSPC;
  663. inode = hugetlbfs_get_inode(root->d_sb, current->fsuid,
  664. current->fsgid, S_IFREG | S_IRWXUGO, 0);
  665. if (!inode)
  666. goto out_file;
  667. error = -ENOMEM;
  668. if (hugetlb_reserve_pages(inode, 0, size >> HPAGE_SHIFT))
  669. goto out_inode;
  670. d_instantiate(dentry, inode);
  671. inode->i_size = size;
  672. inode->i_nlink = 0;
  673. file->f_path.mnt = mntget(hugetlbfs_vfsmount);
  674. file->f_path.dentry = dentry;
  675. file->f_mapping = inode->i_mapping;
  676. file->f_op = &hugetlbfs_file_operations;
  677. file->f_mode = FMODE_WRITE | FMODE_READ;
  678. return file;
  679. out_inode:
  680. iput(inode);
  681. out_file:
  682. put_filp(file);
  683. out_dentry:
  684. dput(dentry);
  685. out_shm_unlock:
  686. user_shm_unlock(size, current->user);
  687. return ERR_PTR(error);
  688. }
  689. static int __init init_hugetlbfs_fs(void)
  690. {
  691. int error;
  692. struct vfsmount *vfsmount;
  693. hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
  694. sizeof(struct hugetlbfs_inode_info),
  695. 0, 0, init_once, NULL);
  696. if (hugetlbfs_inode_cachep == NULL)
  697. return -ENOMEM;
  698. error = register_filesystem(&hugetlbfs_fs_type);
  699. if (error)
  700. goto out;
  701. vfsmount = kern_mount(&hugetlbfs_fs_type);
  702. if (!IS_ERR(vfsmount)) {
  703. hugetlbfs_vfsmount = vfsmount;
  704. return 0;
  705. }
  706. error = PTR_ERR(vfsmount);
  707. out:
  708. if (error)
  709. kmem_cache_destroy(hugetlbfs_inode_cachep);
  710. return error;
  711. }
  712. static void __exit exit_hugetlbfs_fs(void)
  713. {
  714. kmem_cache_destroy(hugetlbfs_inode_cachep);
  715. unregister_filesystem(&hugetlbfs_fs_type);
  716. }
  717. module_init(init_hugetlbfs_fs)
  718. module_exit(exit_hugetlbfs_fs)
  719. MODULE_LICENSE("GPL");