raid1.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include <linux/slab.h>
  34. #include <linux/delay.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/ratelimit.h>
  38. #include "md.h"
  39. #include "raid1.h"
  40. #include "bitmap.h"
  41. /*
  42. * Number of guaranteed r1bios in case of extreme VM load:
  43. */
  44. #define NR_RAID1_BIOS 256
  45. /* When there are this many requests queue to be written by
  46. * the raid1 thread, we become 'congested' to provide back-pressure
  47. * for writeback.
  48. */
  49. static int max_queued_requests = 1024;
  50. static void allow_barrier(struct r1conf *conf);
  51. static void lower_barrier(struct r1conf *conf);
  52. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  53. {
  54. struct pool_info *pi = data;
  55. int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  56. /* allocate a r1bio with room for raid_disks entries in the bios array */
  57. return kzalloc(size, gfp_flags);
  58. }
  59. static void r1bio_pool_free(void *r1_bio, void *data)
  60. {
  61. kfree(r1_bio);
  62. }
  63. #define RESYNC_BLOCK_SIZE (64*1024)
  64. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  65. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  66. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  67. #define RESYNC_WINDOW (2048*1024)
  68. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  69. {
  70. struct pool_info *pi = data;
  71. struct page *page;
  72. struct r1bio *r1_bio;
  73. struct bio *bio;
  74. int i, j;
  75. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  76. if (!r1_bio)
  77. return NULL;
  78. /*
  79. * Allocate bios : 1 for reading, n-1 for writing
  80. */
  81. for (j = pi->raid_disks ; j-- ; ) {
  82. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  83. if (!bio)
  84. goto out_free_bio;
  85. r1_bio->bios[j] = bio;
  86. }
  87. /*
  88. * Allocate RESYNC_PAGES data pages and attach them to
  89. * the first bio.
  90. * If this is a user-requested check/repair, allocate
  91. * RESYNC_PAGES for each bio.
  92. */
  93. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  94. j = pi->raid_disks;
  95. else
  96. j = 1;
  97. while(j--) {
  98. bio = r1_bio->bios[j];
  99. for (i = 0; i < RESYNC_PAGES; i++) {
  100. page = alloc_page(gfp_flags);
  101. if (unlikely(!page))
  102. goto out_free_pages;
  103. bio->bi_io_vec[i].bv_page = page;
  104. bio->bi_vcnt = i+1;
  105. }
  106. }
  107. /* If not user-requests, copy the page pointers to all bios */
  108. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  109. for (i=0; i<RESYNC_PAGES ; i++)
  110. for (j=1; j<pi->raid_disks; j++)
  111. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  112. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  113. }
  114. r1_bio->master_bio = NULL;
  115. return r1_bio;
  116. out_free_pages:
  117. for (j=0 ; j < pi->raid_disks; j++)
  118. for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
  119. put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  120. j = -1;
  121. out_free_bio:
  122. while ( ++j < pi->raid_disks )
  123. bio_put(r1_bio->bios[j]);
  124. r1bio_pool_free(r1_bio, data);
  125. return NULL;
  126. }
  127. static void r1buf_pool_free(void *__r1_bio, void *data)
  128. {
  129. struct pool_info *pi = data;
  130. int i,j;
  131. struct r1bio *r1bio = __r1_bio;
  132. for (i = 0; i < RESYNC_PAGES; i++)
  133. for (j = pi->raid_disks; j-- ;) {
  134. if (j == 0 ||
  135. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  136. r1bio->bios[0]->bi_io_vec[i].bv_page)
  137. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  138. }
  139. for (i=0 ; i < pi->raid_disks; i++)
  140. bio_put(r1bio->bios[i]);
  141. r1bio_pool_free(r1bio, data);
  142. }
  143. static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
  144. {
  145. int i;
  146. for (i = 0; i < conf->raid_disks; i++) {
  147. struct bio **bio = r1_bio->bios + i;
  148. if (!BIO_SPECIAL(*bio))
  149. bio_put(*bio);
  150. *bio = NULL;
  151. }
  152. }
  153. static void free_r1bio(struct r1bio *r1_bio)
  154. {
  155. struct r1conf *conf = r1_bio->mddev->private;
  156. put_all_bios(conf, r1_bio);
  157. mempool_free(r1_bio, conf->r1bio_pool);
  158. }
  159. static void put_buf(struct r1bio *r1_bio)
  160. {
  161. struct r1conf *conf = r1_bio->mddev->private;
  162. int i;
  163. for (i=0; i<conf->raid_disks; i++) {
  164. struct bio *bio = r1_bio->bios[i];
  165. if (bio->bi_end_io)
  166. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  167. }
  168. mempool_free(r1_bio, conf->r1buf_pool);
  169. lower_barrier(conf);
  170. }
  171. static void reschedule_retry(struct r1bio *r1_bio)
  172. {
  173. unsigned long flags;
  174. struct mddev *mddev = r1_bio->mddev;
  175. struct r1conf *conf = mddev->private;
  176. spin_lock_irqsave(&conf->device_lock, flags);
  177. list_add(&r1_bio->retry_list, &conf->retry_list);
  178. conf->nr_queued ++;
  179. spin_unlock_irqrestore(&conf->device_lock, flags);
  180. wake_up(&conf->wait_barrier);
  181. md_wakeup_thread(mddev->thread);
  182. }
  183. /*
  184. * raid_end_bio_io() is called when we have finished servicing a mirrored
  185. * operation and are ready to return a success/failure code to the buffer
  186. * cache layer.
  187. */
  188. static void call_bio_endio(struct r1bio *r1_bio)
  189. {
  190. struct bio *bio = r1_bio->master_bio;
  191. int done;
  192. struct r1conf *conf = r1_bio->mddev->private;
  193. if (bio->bi_phys_segments) {
  194. unsigned long flags;
  195. spin_lock_irqsave(&conf->device_lock, flags);
  196. bio->bi_phys_segments--;
  197. done = (bio->bi_phys_segments == 0);
  198. spin_unlock_irqrestore(&conf->device_lock, flags);
  199. } else
  200. done = 1;
  201. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  202. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  203. if (done) {
  204. bio_endio(bio, 0);
  205. /*
  206. * Wake up any possible resync thread that waits for the device
  207. * to go idle.
  208. */
  209. allow_barrier(conf);
  210. }
  211. }
  212. static void raid_end_bio_io(struct r1bio *r1_bio)
  213. {
  214. struct bio *bio = r1_bio->master_bio;
  215. /* if nobody has done the final endio yet, do it now */
  216. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  217. pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
  218. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  219. (unsigned long long) bio->bi_sector,
  220. (unsigned long long) bio->bi_sector +
  221. (bio->bi_size >> 9) - 1);
  222. call_bio_endio(r1_bio);
  223. }
  224. free_r1bio(r1_bio);
  225. }
  226. /*
  227. * Update disk head position estimator based on IRQ completion info.
  228. */
  229. static inline void update_head_pos(int disk, struct r1bio *r1_bio)
  230. {
  231. struct r1conf *conf = r1_bio->mddev->private;
  232. conf->mirrors[disk].head_position =
  233. r1_bio->sector + (r1_bio->sectors);
  234. }
  235. /*
  236. * Find the disk number which triggered given bio
  237. */
  238. static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
  239. {
  240. int mirror;
  241. int raid_disks = r1_bio->mddev->raid_disks;
  242. for (mirror = 0; mirror < raid_disks; mirror++)
  243. if (r1_bio->bios[mirror] == bio)
  244. break;
  245. BUG_ON(mirror == raid_disks);
  246. update_head_pos(mirror, r1_bio);
  247. return mirror;
  248. }
  249. static void raid1_end_read_request(struct bio *bio, int error)
  250. {
  251. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  252. struct r1bio *r1_bio = bio->bi_private;
  253. int mirror;
  254. struct r1conf *conf = r1_bio->mddev->private;
  255. mirror = r1_bio->read_disk;
  256. /*
  257. * this branch is our 'one mirror IO has finished' event handler:
  258. */
  259. update_head_pos(mirror, r1_bio);
  260. if (uptodate)
  261. set_bit(R1BIO_Uptodate, &r1_bio->state);
  262. else {
  263. /* If all other devices have failed, we want to return
  264. * the error upwards rather than fail the last device.
  265. * Here we redefine "uptodate" to mean "Don't want to retry"
  266. */
  267. unsigned long flags;
  268. spin_lock_irqsave(&conf->device_lock, flags);
  269. if (r1_bio->mddev->degraded == conf->raid_disks ||
  270. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  271. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  272. uptodate = 1;
  273. spin_unlock_irqrestore(&conf->device_lock, flags);
  274. }
  275. if (uptodate)
  276. raid_end_bio_io(r1_bio);
  277. else {
  278. /*
  279. * oops, read error:
  280. */
  281. char b[BDEVNAME_SIZE];
  282. printk_ratelimited(
  283. KERN_ERR "md/raid1:%s: %s: "
  284. "rescheduling sector %llu\n",
  285. mdname(conf->mddev),
  286. bdevname(conf->mirrors[mirror].rdev->bdev,
  287. b),
  288. (unsigned long long)r1_bio->sector);
  289. set_bit(R1BIO_ReadError, &r1_bio->state);
  290. reschedule_retry(r1_bio);
  291. }
  292. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  293. }
  294. static void close_write(struct r1bio *r1_bio)
  295. {
  296. /* it really is the end of this request */
  297. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  298. /* free extra copy of the data pages */
  299. int i = r1_bio->behind_page_count;
  300. while (i--)
  301. safe_put_page(r1_bio->behind_bvecs[i].bv_page);
  302. kfree(r1_bio->behind_bvecs);
  303. r1_bio->behind_bvecs = NULL;
  304. }
  305. /* clear the bitmap if all writes complete successfully */
  306. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  307. r1_bio->sectors,
  308. !test_bit(R1BIO_Degraded, &r1_bio->state),
  309. test_bit(R1BIO_BehindIO, &r1_bio->state));
  310. md_write_end(r1_bio->mddev);
  311. }
  312. static void r1_bio_write_done(struct r1bio *r1_bio)
  313. {
  314. if (!atomic_dec_and_test(&r1_bio->remaining))
  315. return;
  316. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  317. reschedule_retry(r1_bio);
  318. else {
  319. close_write(r1_bio);
  320. if (test_bit(R1BIO_MadeGood, &r1_bio->state))
  321. reschedule_retry(r1_bio);
  322. else
  323. raid_end_bio_io(r1_bio);
  324. }
  325. }
  326. static void raid1_end_write_request(struct bio *bio, int error)
  327. {
  328. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  329. struct r1bio *r1_bio = bio->bi_private;
  330. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  331. struct r1conf *conf = r1_bio->mddev->private;
  332. struct bio *to_put = NULL;
  333. mirror = find_bio_disk(r1_bio, bio);
  334. /*
  335. * 'one mirror IO has finished' event handler:
  336. */
  337. if (!uptodate) {
  338. set_bit(WriteErrorSeen,
  339. &conf->mirrors[mirror].rdev->flags);
  340. set_bit(R1BIO_WriteError, &r1_bio->state);
  341. } else {
  342. /*
  343. * Set R1BIO_Uptodate in our master bio, so that we
  344. * will return a good error code for to the higher
  345. * levels even if IO on some other mirrored buffer
  346. * fails.
  347. *
  348. * The 'master' represents the composite IO operation
  349. * to user-side. So if something waits for IO, then it
  350. * will wait for the 'master' bio.
  351. */
  352. sector_t first_bad;
  353. int bad_sectors;
  354. r1_bio->bios[mirror] = NULL;
  355. to_put = bio;
  356. set_bit(R1BIO_Uptodate, &r1_bio->state);
  357. /* Maybe we can clear some bad blocks. */
  358. if (is_badblock(conf->mirrors[mirror].rdev,
  359. r1_bio->sector, r1_bio->sectors,
  360. &first_bad, &bad_sectors)) {
  361. r1_bio->bios[mirror] = IO_MADE_GOOD;
  362. set_bit(R1BIO_MadeGood, &r1_bio->state);
  363. }
  364. }
  365. if (behind) {
  366. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  367. atomic_dec(&r1_bio->behind_remaining);
  368. /*
  369. * In behind mode, we ACK the master bio once the I/O
  370. * has safely reached all non-writemostly
  371. * disks. Setting the Returned bit ensures that this
  372. * gets done only once -- we don't ever want to return
  373. * -EIO here, instead we'll wait
  374. */
  375. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  376. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  377. /* Maybe we can return now */
  378. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  379. struct bio *mbio = r1_bio->master_bio;
  380. pr_debug("raid1: behind end write sectors"
  381. " %llu-%llu\n",
  382. (unsigned long long) mbio->bi_sector,
  383. (unsigned long long) mbio->bi_sector +
  384. (mbio->bi_size >> 9) - 1);
  385. call_bio_endio(r1_bio);
  386. }
  387. }
  388. }
  389. if (r1_bio->bios[mirror] == NULL)
  390. rdev_dec_pending(conf->mirrors[mirror].rdev,
  391. conf->mddev);
  392. /*
  393. * Let's see if all mirrored write operations have finished
  394. * already.
  395. */
  396. r1_bio_write_done(r1_bio);
  397. if (to_put)
  398. bio_put(to_put);
  399. }
  400. /*
  401. * This routine returns the disk from which the requested read should
  402. * be done. There is a per-array 'next expected sequential IO' sector
  403. * number - if this matches on the next IO then we use the last disk.
  404. * There is also a per-disk 'last know head position' sector that is
  405. * maintained from IRQ contexts, both the normal and the resync IO
  406. * completion handlers update this position correctly. If there is no
  407. * perfect sequential match then we pick the disk whose head is closest.
  408. *
  409. * If there are 2 mirrors in the same 2 devices, performance degrades
  410. * because position is mirror, not device based.
  411. *
  412. * The rdev for the device selected will have nr_pending incremented.
  413. */
  414. static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
  415. {
  416. const sector_t this_sector = r1_bio->sector;
  417. int sectors;
  418. int best_good_sectors;
  419. int start_disk;
  420. int best_disk;
  421. int i;
  422. sector_t best_dist;
  423. struct md_rdev *rdev;
  424. int choose_first;
  425. rcu_read_lock();
  426. /*
  427. * Check if we can balance. We can balance on the whole
  428. * device if no resync is going on, or below the resync window.
  429. * We take the first readable disk when above the resync window.
  430. */
  431. retry:
  432. sectors = r1_bio->sectors;
  433. best_disk = -1;
  434. best_dist = MaxSector;
  435. best_good_sectors = 0;
  436. if (conf->mddev->recovery_cp < MaxSector &&
  437. (this_sector + sectors >= conf->next_resync)) {
  438. choose_first = 1;
  439. start_disk = 0;
  440. } else {
  441. choose_first = 0;
  442. start_disk = conf->last_used;
  443. }
  444. for (i = 0 ; i < conf->raid_disks ; i++) {
  445. sector_t dist;
  446. sector_t first_bad;
  447. int bad_sectors;
  448. int disk = start_disk + i;
  449. if (disk >= conf->raid_disks)
  450. disk -= conf->raid_disks;
  451. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  452. if (r1_bio->bios[disk] == IO_BLOCKED
  453. || rdev == NULL
  454. || test_bit(Faulty, &rdev->flags))
  455. continue;
  456. if (!test_bit(In_sync, &rdev->flags) &&
  457. rdev->recovery_offset < this_sector + sectors)
  458. continue;
  459. if (test_bit(WriteMostly, &rdev->flags)) {
  460. /* Don't balance among write-mostly, just
  461. * use the first as a last resort */
  462. if (best_disk < 0)
  463. best_disk = disk;
  464. continue;
  465. }
  466. /* This is a reasonable device to use. It might
  467. * even be best.
  468. */
  469. if (is_badblock(rdev, this_sector, sectors,
  470. &first_bad, &bad_sectors)) {
  471. if (best_dist < MaxSector)
  472. /* already have a better device */
  473. continue;
  474. if (first_bad <= this_sector) {
  475. /* cannot read here. If this is the 'primary'
  476. * device, then we must not read beyond
  477. * bad_sectors from another device..
  478. */
  479. bad_sectors -= (this_sector - first_bad);
  480. if (choose_first && sectors > bad_sectors)
  481. sectors = bad_sectors;
  482. if (best_good_sectors > sectors)
  483. best_good_sectors = sectors;
  484. } else {
  485. sector_t good_sectors = first_bad - this_sector;
  486. if (good_sectors > best_good_sectors) {
  487. best_good_sectors = good_sectors;
  488. best_disk = disk;
  489. }
  490. if (choose_first)
  491. break;
  492. }
  493. continue;
  494. } else
  495. best_good_sectors = sectors;
  496. dist = abs(this_sector - conf->mirrors[disk].head_position);
  497. if (choose_first
  498. /* Don't change to another disk for sequential reads */
  499. || conf->next_seq_sect == this_sector
  500. || dist == 0
  501. /* If device is idle, use it */
  502. || atomic_read(&rdev->nr_pending) == 0) {
  503. best_disk = disk;
  504. break;
  505. }
  506. if (dist < best_dist) {
  507. best_dist = dist;
  508. best_disk = disk;
  509. }
  510. }
  511. if (best_disk >= 0) {
  512. rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
  513. if (!rdev)
  514. goto retry;
  515. atomic_inc(&rdev->nr_pending);
  516. if (test_bit(Faulty, &rdev->flags)) {
  517. /* cannot risk returning a device that failed
  518. * before we inc'ed nr_pending
  519. */
  520. rdev_dec_pending(rdev, conf->mddev);
  521. goto retry;
  522. }
  523. sectors = best_good_sectors;
  524. conf->next_seq_sect = this_sector + sectors;
  525. conf->last_used = best_disk;
  526. }
  527. rcu_read_unlock();
  528. *max_sectors = sectors;
  529. return best_disk;
  530. }
  531. int md_raid1_congested(struct mddev *mddev, int bits)
  532. {
  533. struct r1conf *conf = mddev->private;
  534. int i, ret = 0;
  535. if ((bits & (1 << BDI_async_congested)) &&
  536. conf->pending_count >= max_queued_requests)
  537. return 1;
  538. rcu_read_lock();
  539. for (i = 0; i < mddev->raid_disks; i++) {
  540. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  541. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  542. struct request_queue *q = bdev_get_queue(rdev->bdev);
  543. BUG_ON(!q);
  544. /* Note the '|| 1' - when read_balance prefers
  545. * non-congested targets, it can be removed
  546. */
  547. if ((bits & (1<<BDI_async_congested)) || 1)
  548. ret |= bdi_congested(&q->backing_dev_info, bits);
  549. else
  550. ret &= bdi_congested(&q->backing_dev_info, bits);
  551. }
  552. }
  553. rcu_read_unlock();
  554. return ret;
  555. }
  556. EXPORT_SYMBOL_GPL(md_raid1_congested);
  557. static int raid1_congested(void *data, int bits)
  558. {
  559. struct mddev *mddev = data;
  560. return mddev_congested(mddev, bits) ||
  561. md_raid1_congested(mddev, bits);
  562. }
  563. static void flush_pending_writes(struct r1conf *conf)
  564. {
  565. /* Any writes that have been queued but are awaiting
  566. * bitmap updates get flushed here.
  567. */
  568. spin_lock_irq(&conf->device_lock);
  569. if (conf->pending_bio_list.head) {
  570. struct bio *bio;
  571. bio = bio_list_get(&conf->pending_bio_list);
  572. conf->pending_count = 0;
  573. spin_unlock_irq(&conf->device_lock);
  574. /* flush any pending bitmap writes to
  575. * disk before proceeding w/ I/O */
  576. bitmap_unplug(conf->mddev->bitmap);
  577. wake_up(&conf->wait_barrier);
  578. while (bio) { /* submit pending writes */
  579. struct bio *next = bio->bi_next;
  580. bio->bi_next = NULL;
  581. generic_make_request(bio);
  582. bio = next;
  583. }
  584. } else
  585. spin_unlock_irq(&conf->device_lock);
  586. }
  587. /* Barriers....
  588. * Sometimes we need to suspend IO while we do something else,
  589. * either some resync/recovery, or reconfigure the array.
  590. * To do this we raise a 'barrier'.
  591. * The 'barrier' is a counter that can be raised multiple times
  592. * to count how many activities are happening which preclude
  593. * normal IO.
  594. * We can only raise the barrier if there is no pending IO.
  595. * i.e. if nr_pending == 0.
  596. * We choose only to raise the barrier if no-one is waiting for the
  597. * barrier to go down. This means that as soon as an IO request
  598. * is ready, no other operations which require a barrier will start
  599. * until the IO request has had a chance.
  600. *
  601. * So: regular IO calls 'wait_barrier'. When that returns there
  602. * is no backgroup IO happening, It must arrange to call
  603. * allow_barrier when it has finished its IO.
  604. * backgroup IO calls must call raise_barrier. Once that returns
  605. * there is no normal IO happeing. It must arrange to call
  606. * lower_barrier when the particular background IO completes.
  607. */
  608. #define RESYNC_DEPTH 32
  609. static void raise_barrier(struct r1conf *conf)
  610. {
  611. spin_lock_irq(&conf->resync_lock);
  612. /* Wait until no block IO is waiting */
  613. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  614. conf->resync_lock, );
  615. /* block any new IO from starting */
  616. conf->barrier++;
  617. /* Now wait for all pending IO to complete */
  618. wait_event_lock_irq(conf->wait_barrier,
  619. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  620. conf->resync_lock, );
  621. spin_unlock_irq(&conf->resync_lock);
  622. }
  623. static void lower_barrier(struct r1conf *conf)
  624. {
  625. unsigned long flags;
  626. BUG_ON(conf->barrier <= 0);
  627. spin_lock_irqsave(&conf->resync_lock, flags);
  628. conf->barrier--;
  629. spin_unlock_irqrestore(&conf->resync_lock, flags);
  630. wake_up(&conf->wait_barrier);
  631. }
  632. static void wait_barrier(struct r1conf *conf)
  633. {
  634. spin_lock_irq(&conf->resync_lock);
  635. if (conf->barrier) {
  636. conf->nr_waiting++;
  637. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  638. conf->resync_lock,
  639. );
  640. conf->nr_waiting--;
  641. }
  642. conf->nr_pending++;
  643. spin_unlock_irq(&conf->resync_lock);
  644. }
  645. static void allow_barrier(struct r1conf *conf)
  646. {
  647. unsigned long flags;
  648. spin_lock_irqsave(&conf->resync_lock, flags);
  649. conf->nr_pending--;
  650. spin_unlock_irqrestore(&conf->resync_lock, flags);
  651. wake_up(&conf->wait_barrier);
  652. }
  653. static void freeze_array(struct r1conf *conf)
  654. {
  655. /* stop syncio and normal IO and wait for everything to
  656. * go quite.
  657. * We increment barrier and nr_waiting, and then
  658. * wait until nr_pending match nr_queued+1
  659. * This is called in the context of one normal IO request
  660. * that has failed. Thus any sync request that might be pending
  661. * will be blocked by nr_pending, and we need to wait for
  662. * pending IO requests to complete or be queued for re-try.
  663. * Thus the number queued (nr_queued) plus this request (1)
  664. * must match the number of pending IOs (nr_pending) before
  665. * we continue.
  666. */
  667. spin_lock_irq(&conf->resync_lock);
  668. conf->barrier++;
  669. conf->nr_waiting++;
  670. wait_event_lock_irq(conf->wait_barrier,
  671. conf->nr_pending == conf->nr_queued+1,
  672. conf->resync_lock,
  673. flush_pending_writes(conf));
  674. spin_unlock_irq(&conf->resync_lock);
  675. }
  676. static void unfreeze_array(struct r1conf *conf)
  677. {
  678. /* reverse the effect of the freeze */
  679. spin_lock_irq(&conf->resync_lock);
  680. conf->barrier--;
  681. conf->nr_waiting--;
  682. wake_up(&conf->wait_barrier);
  683. spin_unlock_irq(&conf->resync_lock);
  684. }
  685. /* duplicate the data pages for behind I/O
  686. */
  687. static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
  688. {
  689. int i;
  690. struct bio_vec *bvec;
  691. struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
  692. GFP_NOIO);
  693. if (unlikely(!bvecs))
  694. return;
  695. bio_for_each_segment(bvec, bio, i) {
  696. bvecs[i] = *bvec;
  697. bvecs[i].bv_page = alloc_page(GFP_NOIO);
  698. if (unlikely(!bvecs[i].bv_page))
  699. goto do_sync_io;
  700. memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
  701. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  702. kunmap(bvecs[i].bv_page);
  703. kunmap(bvec->bv_page);
  704. }
  705. r1_bio->behind_bvecs = bvecs;
  706. r1_bio->behind_page_count = bio->bi_vcnt;
  707. set_bit(R1BIO_BehindIO, &r1_bio->state);
  708. return;
  709. do_sync_io:
  710. for (i = 0; i < bio->bi_vcnt; i++)
  711. if (bvecs[i].bv_page)
  712. put_page(bvecs[i].bv_page);
  713. kfree(bvecs);
  714. pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  715. }
  716. static int make_request(struct mddev *mddev, struct bio * bio)
  717. {
  718. struct r1conf *conf = mddev->private;
  719. struct mirror_info *mirror;
  720. struct r1bio *r1_bio;
  721. struct bio *read_bio;
  722. int i, disks;
  723. struct bitmap *bitmap;
  724. unsigned long flags;
  725. const int rw = bio_data_dir(bio);
  726. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  727. const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
  728. struct md_rdev *blocked_rdev;
  729. int plugged;
  730. int first_clone;
  731. int sectors_handled;
  732. int max_sectors;
  733. /*
  734. * Register the new request and wait if the reconstruction
  735. * thread has put up a bar for new requests.
  736. * Continue immediately if no resync is active currently.
  737. */
  738. md_write_start(mddev, bio); /* wait on superblock update early */
  739. if (bio_data_dir(bio) == WRITE &&
  740. bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
  741. bio->bi_sector < mddev->suspend_hi) {
  742. /* As the suspend_* range is controlled by
  743. * userspace, we want an interruptible
  744. * wait.
  745. */
  746. DEFINE_WAIT(w);
  747. for (;;) {
  748. flush_signals(current);
  749. prepare_to_wait(&conf->wait_barrier,
  750. &w, TASK_INTERRUPTIBLE);
  751. if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
  752. bio->bi_sector >= mddev->suspend_hi)
  753. break;
  754. schedule();
  755. }
  756. finish_wait(&conf->wait_barrier, &w);
  757. }
  758. wait_barrier(conf);
  759. bitmap = mddev->bitmap;
  760. /*
  761. * make_request() can abort the operation when READA is being
  762. * used and no empty request is available.
  763. *
  764. */
  765. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  766. r1_bio->master_bio = bio;
  767. r1_bio->sectors = bio->bi_size >> 9;
  768. r1_bio->state = 0;
  769. r1_bio->mddev = mddev;
  770. r1_bio->sector = bio->bi_sector;
  771. /* We might need to issue multiple reads to different
  772. * devices if there are bad blocks around, so we keep
  773. * track of the number of reads in bio->bi_phys_segments.
  774. * If this is 0, there is only one r1_bio and no locking
  775. * will be needed when requests complete. If it is
  776. * non-zero, then it is the number of not-completed requests.
  777. */
  778. bio->bi_phys_segments = 0;
  779. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  780. if (rw == READ) {
  781. /*
  782. * read balancing logic:
  783. */
  784. int rdisk;
  785. read_again:
  786. rdisk = read_balance(conf, r1_bio, &max_sectors);
  787. if (rdisk < 0) {
  788. /* couldn't find anywhere to read from */
  789. raid_end_bio_io(r1_bio);
  790. return 0;
  791. }
  792. mirror = conf->mirrors + rdisk;
  793. if (test_bit(WriteMostly, &mirror->rdev->flags) &&
  794. bitmap) {
  795. /* Reading from a write-mostly device must
  796. * take care not to over-take any writes
  797. * that are 'behind'
  798. */
  799. wait_event(bitmap->behind_wait,
  800. atomic_read(&bitmap->behind_writes) == 0);
  801. }
  802. r1_bio->read_disk = rdisk;
  803. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  804. md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
  805. max_sectors);
  806. r1_bio->bios[rdisk] = read_bio;
  807. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  808. read_bio->bi_bdev = mirror->rdev->bdev;
  809. read_bio->bi_end_io = raid1_end_read_request;
  810. read_bio->bi_rw = READ | do_sync;
  811. read_bio->bi_private = r1_bio;
  812. if (max_sectors < r1_bio->sectors) {
  813. /* could not read all from this device, so we will
  814. * need another r1_bio.
  815. */
  816. sectors_handled = (r1_bio->sector + max_sectors
  817. - bio->bi_sector);
  818. r1_bio->sectors = max_sectors;
  819. spin_lock_irq(&conf->device_lock);
  820. if (bio->bi_phys_segments == 0)
  821. bio->bi_phys_segments = 2;
  822. else
  823. bio->bi_phys_segments++;
  824. spin_unlock_irq(&conf->device_lock);
  825. /* Cannot call generic_make_request directly
  826. * as that will be queued in __make_request
  827. * and subsequent mempool_alloc might block waiting
  828. * for it. So hand bio over to raid1d.
  829. */
  830. reschedule_retry(r1_bio);
  831. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  832. r1_bio->master_bio = bio;
  833. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  834. r1_bio->state = 0;
  835. r1_bio->mddev = mddev;
  836. r1_bio->sector = bio->bi_sector + sectors_handled;
  837. goto read_again;
  838. } else
  839. generic_make_request(read_bio);
  840. return 0;
  841. }
  842. /*
  843. * WRITE:
  844. */
  845. if (conf->pending_count >= max_queued_requests) {
  846. md_wakeup_thread(mddev->thread);
  847. wait_event(conf->wait_barrier,
  848. conf->pending_count < max_queued_requests);
  849. }
  850. /* first select target devices under rcu_lock and
  851. * inc refcount on their rdev. Record them by setting
  852. * bios[x] to bio
  853. * If there are known/acknowledged bad blocks on any device on
  854. * which we have seen a write error, we want to avoid writing those
  855. * blocks.
  856. * This potentially requires several writes to write around
  857. * the bad blocks. Each set of writes gets it's own r1bio
  858. * with a set of bios attached.
  859. */
  860. plugged = mddev_check_plugged(mddev);
  861. disks = conf->raid_disks;
  862. retry_write:
  863. blocked_rdev = NULL;
  864. rcu_read_lock();
  865. max_sectors = r1_bio->sectors;
  866. for (i = 0; i < disks; i++) {
  867. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  868. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  869. atomic_inc(&rdev->nr_pending);
  870. blocked_rdev = rdev;
  871. break;
  872. }
  873. r1_bio->bios[i] = NULL;
  874. if (!rdev || test_bit(Faulty, &rdev->flags)) {
  875. set_bit(R1BIO_Degraded, &r1_bio->state);
  876. continue;
  877. }
  878. atomic_inc(&rdev->nr_pending);
  879. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  880. sector_t first_bad;
  881. int bad_sectors;
  882. int is_bad;
  883. is_bad = is_badblock(rdev, r1_bio->sector,
  884. max_sectors,
  885. &first_bad, &bad_sectors);
  886. if (is_bad < 0) {
  887. /* mustn't write here until the bad block is
  888. * acknowledged*/
  889. set_bit(BlockedBadBlocks, &rdev->flags);
  890. blocked_rdev = rdev;
  891. break;
  892. }
  893. if (is_bad && first_bad <= r1_bio->sector) {
  894. /* Cannot write here at all */
  895. bad_sectors -= (r1_bio->sector - first_bad);
  896. if (bad_sectors < max_sectors)
  897. /* mustn't write more than bad_sectors
  898. * to other devices yet
  899. */
  900. max_sectors = bad_sectors;
  901. rdev_dec_pending(rdev, mddev);
  902. /* We don't set R1BIO_Degraded as that
  903. * only applies if the disk is
  904. * missing, so it might be re-added,
  905. * and we want to know to recover this
  906. * chunk.
  907. * In this case the device is here,
  908. * and the fact that this chunk is not
  909. * in-sync is recorded in the bad
  910. * block log
  911. */
  912. continue;
  913. }
  914. if (is_bad) {
  915. int good_sectors = first_bad - r1_bio->sector;
  916. if (good_sectors < max_sectors)
  917. max_sectors = good_sectors;
  918. }
  919. }
  920. r1_bio->bios[i] = bio;
  921. }
  922. rcu_read_unlock();
  923. if (unlikely(blocked_rdev)) {
  924. /* Wait for this device to become unblocked */
  925. int j;
  926. for (j = 0; j < i; j++)
  927. if (r1_bio->bios[j])
  928. rdev_dec_pending(conf->mirrors[j].rdev, mddev);
  929. r1_bio->state = 0;
  930. allow_barrier(conf);
  931. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  932. wait_barrier(conf);
  933. goto retry_write;
  934. }
  935. if (max_sectors < r1_bio->sectors) {
  936. /* We are splitting this write into multiple parts, so
  937. * we need to prepare for allocating another r1_bio.
  938. */
  939. r1_bio->sectors = max_sectors;
  940. spin_lock_irq(&conf->device_lock);
  941. if (bio->bi_phys_segments == 0)
  942. bio->bi_phys_segments = 2;
  943. else
  944. bio->bi_phys_segments++;
  945. spin_unlock_irq(&conf->device_lock);
  946. }
  947. sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
  948. atomic_set(&r1_bio->remaining, 1);
  949. atomic_set(&r1_bio->behind_remaining, 0);
  950. first_clone = 1;
  951. for (i = 0; i < disks; i++) {
  952. struct bio *mbio;
  953. if (!r1_bio->bios[i])
  954. continue;
  955. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  956. md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
  957. if (first_clone) {
  958. /* do behind I/O ?
  959. * Not if there are too many, or cannot
  960. * allocate memory, or a reader on WriteMostly
  961. * is waiting for behind writes to flush */
  962. if (bitmap &&
  963. (atomic_read(&bitmap->behind_writes)
  964. < mddev->bitmap_info.max_write_behind) &&
  965. !waitqueue_active(&bitmap->behind_wait))
  966. alloc_behind_pages(mbio, r1_bio);
  967. bitmap_startwrite(bitmap, r1_bio->sector,
  968. r1_bio->sectors,
  969. test_bit(R1BIO_BehindIO,
  970. &r1_bio->state));
  971. first_clone = 0;
  972. }
  973. if (r1_bio->behind_bvecs) {
  974. struct bio_vec *bvec;
  975. int j;
  976. /* Yes, I really want the '__' version so that
  977. * we clear any unused pointer in the io_vec, rather
  978. * than leave them unchanged. This is important
  979. * because when we come to free the pages, we won't
  980. * know the original bi_idx, so we just free
  981. * them all
  982. */
  983. __bio_for_each_segment(bvec, mbio, j, 0)
  984. bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
  985. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  986. atomic_inc(&r1_bio->behind_remaining);
  987. }
  988. r1_bio->bios[i] = mbio;
  989. mbio->bi_sector = (r1_bio->sector +
  990. conf->mirrors[i].rdev->data_offset);
  991. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  992. mbio->bi_end_io = raid1_end_write_request;
  993. mbio->bi_rw = WRITE | do_flush_fua | do_sync;
  994. mbio->bi_private = r1_bio;
  995. atomic_inc(&r1_bio->remaining);
  996. spin_lock_irqsave(&conf->device_lock, flags);
  997. bio_list_add(&conf->pending_bio_list, mbio);
  998. conf->pending_count++;
  999. spin_unlock_irqrestore(&conf->device_lock, flags);
  1000. }
  1001. /* Mustn't call r1_bio_write_done before this next test,
  1002. * as it could result in the bio being freed.
  1003. */
  1004. if (sectors_handled < (bio->bi_size >> 9)) {
  1005. r1_bio_write_done(r1_bio);
  1006. /* We need another r1_bio. It has already been counted
  1007. * in bio->bi_phys_segments
  1008. */
  1009. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1010. r1_bio->master_bio = bio;
  1011. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  1012. r1_bio->state = 0;
  1013. r1_bio->mddev = mddev;
  1014. r1_bio->sector = bio->bi_sector + sectors_handled;
  1015. goto retry_write;
  1016. }
  1017. r1_bio_write_done(r1_bio);
  1018. /* In case raid1d snuck in to freeze_array */
  1019. wake_up(&conf->wait_barrier);
  1020. if (do_sync || !bitmap || !plugged)
  1021. md_wakeup_thread(mddev->thread);
  1022. return 0;
  1023. }
  1024. static void status(struct seq_file *seq, struct mddev *mddev)
  1025. {
  1026. struct r1conf *conf = mddev->private;
  1027. int i;
  1028. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  1029. conf->raid_disks - mddev->degraded);
  1030. rcu_read_lock();
  1031. for (i = 0; i < conf->raid_disks; i++) {
  1032. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1033. seq_printf(seq, "%s",
  1034. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  1035. }
  1036. rcu_read_unlock();
  1037. seq_printf(seq, "]");
  1038. }
  1039. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1040. {
  1041. char b[BDEVNAME_SIZE];
  1042. struct r1conf *conf = mddev->private;
  1043. /*
  1044. * If it is not operational, then we have already marked it as dead
  1045. * else if it is the last working disks, ignore the error, let the
  1046. * next level up know.
  1047. * else mark the drive as failed
  1048. */
  1049. if (test_bit(In_sync, &rdev->flags)
  1050. && (conf->raid_disks - mddev->degraded) == 1) {
  1051. /*
  1052. * Don't fail the drive, act as though we were just a
  1053. * normal single drive.
  1054. * However don't try a recovery from this drive as
  1055. * it is very likely to fail.
  1056. */
  1057. conf->recovery_disabled = mddev->recovery_disabled;
  1058. return;
  1059. }
  1060. set_bit(Blocked, &rdev->flags);
  1061. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1062. unsigned long flags;
  1063. spin_lock_irqsave(&conf->device_lock, flags);
  1064. mddev->degraded++;
  1065. set_bit(Faulty, &rdev->flags);
  1066. spin_unlock_irqrestore(&conf->device_lock, flags);
  1067. /*
  1068. * if recovery is running, make sure it aborts.
  1069. */
  1070. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1071. } else
  1072. set_bit(Faulty, &rdev->flags);
  1073. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1074. printk(KERN_ALERT
  1075. "md/raid1:%s: Disk failure on %s, disabling device.\n"
  1076. "md/raid1:%s: Operation continuing on %d devices.\n",
  1077. mdname(mddev), bdevname(rdev->bdev, b),
  1078. mdname(mddev), conf->raid_disks - mddev->degraded);
  1079. }
  1080. static void print_conf(struct r1conf *conf)
  1081. {
  1082. int i;
  1083. printk(KERN_DEBUG "RAID1 conf printout:\n");
  1084. if (!conf) {
  1085. printk(KERN_DEBUG "(!conf)\n");
  1086. return;
  1087. }
  1088. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  1089. conf->raid_disks);
  1090. rcu_read_lock();
  1091. for (i = 0; i < conf->raid_disks; i++) {
  1092. char b[BDEVNAME_SIZE];
  1093. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1094. if (rdev)
  1095. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  1096. i, !test_bit(In_sync, &rdev->flags),
  1097. !test_bit(Faulty, &rdev->flags),
  1098. bdevname(rdev->bdev,b));
  1099. }
  1100. rcu_read_unlock();
  1101. }
  1102. static void close_sync(struct r1conf *conf)
  1103. {
  1104. wait_barrier(conf);
  1105. allow_barrier(conf);
  1106. mempool_destroy(conf->r1buf_pool);
  1107. conf->r1buf_pool = NULL;
  1108. }
  1109. static int raid1_spare_active(struct mddev *mddev)
  1110. {
  1111. int i;
  1112. struct r1conf *conf = mddev->private;
  1113. int count = 0;
  1114. unsigned long flags;
  1115. /*
  1116. * Find all failed disks within the RAID1 configuration
  1117. * and mark them readable.
  1118. * Called under mddev lock, so rcu protection not needed.
  1119. */
  1120. for (i = 0; i < conf->raid_disks; i++) {
  1121. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1122. if (rdev
  1123. && !test_bit(Faulty, &rdev->flags)
  1124. && !test_and_set_bit(In_sync, &rdev->flags)) {
  1125. count++;
  1126. sysfs_notify_dirent_safe(rdev->sysfs_state);
  1127. }
  1128. }
  1129. spin_lock_irqsave(&conf->device_lock, flags);
  1130. mddev->degraded -= count;
  1131. spin_unlock_irqrestore(&conf->device_lock, flags);
  1132. print_conf(conf);
  1133. return count;
  1134. }
  1135. static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1136. {
  1137. struct r1conf *conf = mddev->private;
  1138. int err = -EEXIST;
  1139. int mirror = 0;
  1140. struct mirror_info *p;
  1141. int first = 0;
  1142. int last = mddev->raid_disks - 1;
  1143. if (mddev->recovery_disabled == conf->recovery_disabled)
  1144. return -EBUSY;
  1145. if (rdev->raid_disk >= 0)
  1146. first = last = rdev->raid_disk;
  1147. for (mirror = first; mirror <= last; mirror++)
  1148. if ( !(p=conf->mirrors+mirror)->rdev) {
  1149. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1150. rdev->data_offset << 9);
  1151. /* as we don't honour merge_bvec_fn, we must
  1152. * never risk violating it, so limit
  1153. * ->max_segments to one lying with a single
  1154. * page, as a one page request is never in
  1155. * violation.
  1156. */
  1157. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  1158. blk_queue_max_segments(mddev->queue, 1);
  1159. blk_queue_segment_boundary(mddev->queue,
  1160. PAGE_CACHE_SIZE - 1);
  1161. }
  1162. p->head_position = 0;
  1163. rdev->raid_disk = mirror;
  1164. err = 0;
  1165. /* As all devices are equivalent, we don't need a full recovery
  1166. * if this was recently any drive of the array
  1167. */
  1168. if (rdev->saved_raid_disk < 0)
  1169. conf->fullsync = 1;
  1170. rcu_assign_pointer(p->rdev, rdev);
  1171. break;
  1172. }
  1173. md_integrity_add_rdev(rdev, mddev);
  1174. print_conf(conf);
  1175. return err;
  1176. }
  1177. static int raid1_remove_disk(struct mddev *mddev, int number)
  1178. {
  1179. struct r1conf *conf = mddev->private;
  1180. int err = 0;
  1181. struct md_rdev *rdev;
  1182. struct mirror_info *p = conf->mirrors+ number;
  1183. print_conf(conf);
  1184. rdev = p->rdev;
  1185. if (rdev) {
  1186. if (test_bit(In_sync, &rdev->flags) ||
  1187. atomic_read(&rdev->nr_pending)) {
  1188. err = -EBUSY;
  1189. goto abort;
  1190. }
  1191. /* Only remove non-faulty devices if recovery
  1192. * is not possible.
  1193. */
  1194. if (!test_bit(Faulty, &rdev->flags) &&
  1195. mddev->recovery_disabled != conf->recovery_disabled &&
  1196. mddev->degraded < conf->raid_disks) {
  1197. err = -EBUSY;
  1198. goto abort;
  1199. }
  1200. p->rdev = NULL;
  1201. synchronize_rcu();
  1202. if (atomic_read(&rdev->nr_pending)) {
  1203. /* lost the race, try later */
  1204. err = -EBUSY;
  1205. p->rdev = rdev;
  1206. goto abort;
  1207. }
  1208. err = md_integrity_register(mddev);
  1209. }
  1210. abort:
  1211. print_conf(conf);
  1212. return err;
  1213. }
  1214. static void end_sync_read(struct bio *bio, int error)
  1215. {
  1216. struct r1bio *r1_bio = bio->bi_private;
  1217. update_head_pos(r1_bio->read_disk, r1_bio);
  1218. /*
  1219. * we have read a block, now it needs to be re-written,
  1220. * or re-read if the read failed.
  1221. * We don't do much here, just schedule handling by raid1d
  1222. */
  1223. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1224. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1225. if (atomic_dec_and_test(&r1_bio->remaining))
  1226. reschedule_retry(r1_bio);
  1227. }
  1228. static void end_sync_write(struct bio *bio, int error)
  1229. {
  1230. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1231. struct r1bio *r1_bio = bio->bi_private;
  1232. struct mddev *mddev = r1_bio->mddev;
  1233. struct r1conf *conf = mddev->private;
  1234. int mirror=0;
  1235. sector_t first_bad;
  1236. int bad_sectors;
  1237. mirror = find_bio_disk(r1_bio, bio);
  1238. if (!uptodate) {
  1239. sector_t sync_blocks = 0;
  1240. sector_t s = r1_bio->sector;
  1241. long sectors_to_go = r1_bio->sectors;
  1242. /* make sure these bits doesn't get cleared. */
  1243. do {
  1244. bitmap_end_sync(mddev->bitmap, s,
  1245. &sync_blocks, 1);
  1246. s += sync_blocks;
  1247. sectors_to_go -= sync_blocks;
  1248. } while (sectors_to_go > 0);
  1249. set_bit(WriteErrorSeen,
  1250. &conf->mirrors[mirror].rdev->flags);
  1251. set_bit(R1BIO_WriteError, &r1_bio->state);
  1252. } else if (is_badblock(conf->mirrors[mirror].rdev,
  1253. r1_bio->sector,
  1254. r1_bio->sectors,
  1255. &first_bad, &bad_sectors) &&
  1256. !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
  1257. r1_bio->sector,
  1258. r1_bio->sectors,
  1259. &first_bad, &bad_sectors)
  1260. )
  1261. set_bit(R1BIO_MadeGood, &r1_bio->state);
  1262. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1263. int s = r1_bio->sectors;
  1264. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1265. test_bit(R1BIO_WriteError, &r1_bio->state))
  1266. reschedule_retry(r1_bio);
  1267. else {
  1268. put_buf(r1_bio);
  1269. md_done_sync(mddev, s, uptodate);
  1270. }
  1271. }
  1272. }
  1273. static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
  1274. int sectors, struct page *page, int rw)
  1275. {
  1276. if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
  1277. /* success */
  1278. return 1;
  1279. if (rw == WRITE)
  1280. set_bit(WriteErrorSeen, &rdev->flags);
  1281. /* need to record an error - either for the block or the device */
  1282. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  1283. md_error(rdev->mddev, rdev);
  1284. return 0;
  1285. }
  1286. static int fix_sync_read_error(struct r1bio *r1_bio)
  1287. {
  1288. /* Try some synchronous reads of other devices to get
  1289. * good data, much like with normal read errors. Only
  1290. * read into the pages we already have so we don't
  1291. * need to re-issue the read request.
  1292. * We don't need to freeze the array, because being in an
  1293. * active sync request, there is no normal IO, and
  1294. * no overlapping syncs.
  1295. * We don't need to check is_badblock() again as we
  1296. * made sure that anything with a bad block in range
  1297. * will have bi_end_io clear.
  1298. */
  1299. struct mddev *mddev = r1_bio->mddev;
  1300. struct r1conf *conf = mddev->private;
  1301. struct bio *bio = r1_bio->bios[r1_bio->read_disk];
  1302. sector_t sect = r1_bio->sector;
  1303. int sectors = r1_bio->sectors;
  1304. int idx = 0;
  1305. while(sectors) {
  1306. int s = sectors;
  1307. int d = r1_bio->read_disk;
  1308. int success = 0;
  1309. struct md_rdev *rdev;
  1310. int start;
  1311. if (s > (PAGE_SIZE>>9))
  1312. s = PAGE_SIZE >> 9;
  1313. do {
  1314. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1315. /* No rcu protection needed here devices
  1316. * can only be removed when no resync is
  1317. * active, and resync is currently active
  1318. */
  1319. rdev = conf->mirrors[d].rdev;
  1320. if (sync_page_io(rdev, sect, s<<9,
  1321. bio->bi_io_vec[idx].bv_page,
  1322. READ, false)) {
  1323. success = 1;
  1324. break;
  1325. }
  1326. }
  1327. d++;
  1328. if (d == conf->raid_disks)
  1329. d = 0;
  1330. } while (!success && d != r1_bio->read_disk);
  1331. if (!success) {
  1332. char b[BDEVNAME_SIZE];
  1333. int abort = 0;
  1334. /* Cannot read from anywhere, this block is lost.
  1335. * Record a bad block on each device. If that doesn't
  1336. * work just disable and interrupt the recovery.
  1337. * Don't fail devices as that won't really help.
  1338. */
  1339. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
  1340. " for block %llu\n",
  1341. mdname(mddev),
  1342. bdevname(bio->bi_bdev, b),
  1343. (unsigned long long)r1_bio->sector);
  1344. for (d = 0; d < conf->raid_disks; d++) {
  1345. rdev = conf->mirrors[d].rdev;
  1346. if (!rdev || test_bit(Faulty, &rdev->flags))
  1347. continue;
  1348. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1349. abort = 1;
  1350. }
  1351. if (abort) {
  1352. conf->recovery_disabled =
  1353. mddev->recovery_disabled;
  1354. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1355. md_done_sync(mddev, r1_bio->sectors, 0);
  1356. put_buf(r1_bio);
  1357. return 0;
  1358. }
  1359. /* Try next page */
  1360. sectors -= s;
  1361. sect += s;
  1362. idx++;
  1363. continue;
  1364. }
  1365. start = d;
  1366. /* write it back and re-read */
  1367. while (d != r1_bio->read_disk) {
  1368. if (d == 0)
  1369. d = conf->raid_disks;
  1370. d--;
  1371. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1372. continue;
  1373. rdev = conf->mirrors[d].rdev;
  1374. if (r1_sync_page_io(rdev, sect, s,
  1375. bio->bi_io_vec[idx].bv_page,
  1376. WRITE) == 0) {
  1377. r1_bio->bios[d]->bi_end_io = NULL;
  1378. rdev_dec_pending(rdev, mddev);
  1379. }
  1380. }
  1381. d = start;
  1382. while (d != r1_bio->read_disk) {
  1383. if (d == 0)
  1384. d = conf->raid_disks;
  1385. d--;
  1386. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1387. continue;
  1388. rdev = conf->mirrors[d].rdev;
  1389. if (r1_sync_page_io(rdev, sect, s,
  1390. bio->bi_io_vec[idx].bv_page,
  1391. READ) != 0)
  1392. atomic_add(s, &rdev->corrected_errors);
  1393. }
  1394. sectors -= s;
  1395. sect += s;
  1396. idx ++;
  1397. }
  1398. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1399. set_bit(BIO_UPTODATE, &bio->bi_flags);
  1400. return 1;
  1401. }
  1402. static int process_checks(struct r1bio *r1_bio)
  1403. {
  1404. /* We have read all readable devices. If we haven't
  1405. * got the block, then there is no hope left.
  1406. * If we have, then we want to do a comparison
  1407. * and skip the write if everything is the same.
  1408. * If any blocks failed to read, then we need to
  1409. * attempt an over-write
  1410. */
  1411. struct mddev *mddev = r1_bio->mddev;
  1412. struct r1conf *conf = mddev->private;
  1413. int primary;
  1414. int i;
  1415. for (primary = 0; primary < conf->raid_disks; primary++)
  1416. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1417. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1418. r1_bio->bios[primary]->bi_end_io = NULL;
  1419. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1420. break;
  1421. }
  1422. r1_bio->read_disk = primary;
  1423. for (i = 0; i < conf->raid_disks; i++) {
  1424. int j;
  1425. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1426. struct bio *pbio = r1_bio->bios[primary];
  1427. struct bio *sbio = r1_bio->bios[i];
  1428. int size;
  1429. if (r1_bio->bios[i]->bi_end_io != end_sync_read)
  1430. continue;
  1431. if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
  1432. for (j = vcnt; j-- ; ) {
  1433. struct page *p, *s;
  1434. p = pbio->bi_io_vec[j].bv_page;
  1435. s = sbio->bi_io_vec[j].bv_page;
  1436. if (memcmp(page_address(p),
  1437. page_address(s),
  1438. PAGE_SIZE))
  1439. break;
  1440. }
  1441. } else
  1442. j = 0;
  1443. if (j >= 0)
  1444. mddev->resync_mismatches += r1_bio->sectors;
  1445. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1446. && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
  1447. /* No need to write to this device. */
  1448. sbio->bi_end_io = NULL;
  1449. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1450. continue;
  1451. }
  1452. /* fixup the bio for reuse */
  1453. sbio->bi_vcnt = vcnt;
  1454. sbio->bi_size = r1_bio->sectors << 9;
  1455. sbio->bi_idx = 0;
  1456. sbio->bi_phys_segments = 0;
  1457. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1458. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1459. sbio->bi_next = NULL;
  1460. sbio->bi_sector = r1_bio->sector +
  1461. conf->mirrors[i].rdev->data_offset;
  1462. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1463. size = sbio->bi_size;
  1464. for (j = 0; j < vcnt ; j++) {
  1465. struct bio_vec *bi;
  1466. bi = &sbio->bi_io_vec[j];
  1467. bi->bv_offset = 0;
  1468. if (size > PAGE_SIZE)
  1469. bi->bv_len = PAGE_SIZE;
  1470. else
  1471. bi->bv_len = size;
  1472. size -= PAGE_SIZE;
  1473. memcpy(page_address(bi->bv_page),
  1474. page_address(pbio->bi_io_vec[j].bv_page),
  1475. PAGE_SIZE);
  1476. }
  1477. }
  1478. return 0;
  1479. }
  1480. static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
  1481. {
  1482. struct r1conf *conf = mddev->private;
  1483. int i;
  1484. int disks = conf->raid_disks;
  1485. struct bio *bio, *wbio;
  1486. bio = r1_bio->bios[r1_bio->read_disk];
  1487. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  1488. /* ouch - failed to read all of that. */
  1489. if (!fix_sync_read_error(r1_bio))
  1490. return;
  1491. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1492. if (process_checks(r1_bio) < 0)
  1493. return;
  1494. /*
  1495. * schedule writes
  1496. */
  1497. atomic_set(&r1_bio->remaining, 1);
  1498. for (i = 0; i < disks ; i++) {
  1499. wbio = r1_bio->bios[i];
  1500. if (wbio->bi_end_io == NULL ||
  1501. (wbio->bi_end_io == end_sync_read &&
  1502. (i == r1_bio->read_disk ||
  1503. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1504. continue;
  1505. wbio->bi_rw = WRITE;
  1506. wbio->bi_end_io = end_sync_write;
  1507. atomic_inc(&r1_bio->remaining);
  1508. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1509. generic_make_request(wbio);
  1510. }
  1511. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1512. /* if we're here, all write(s) have completed, so clean up */
  1513. md_done_sync(mddev, r1_bio->sectors, 1);
  1514. put_buf(r1_bio);
  1515. }
  1516. }
  1517. /*
  1518. * This is a kernel thread which:
  1519. *
  1520. * 1. Retries failed read operations on working mirrors.
  1521. * 2. Updates the raid superblock when problems encounter.
  1522. * 3. Performs writes following reads for array synchronising.
  1523. */
  1524. static void fix_read_error(struct r1conf *conf, int read_disk,
  1525. sector_t sect, int sectors)
  1526. {
  1527. struct mddev *mddev = conf->mddev;
  1528. while(sectors) {
  1529. int s = sectors;
  1530. int d = read_disk;
  1531. int success = 0;
  1532. int start;
  1533. struct md_rdev *rdev;
  1534. if (s > (PAGE_SIZE>>9))
  1535. s = PAGE_SIZE >> 9;
  1536. do {
  1537. /* Note: no rcu protection needed here
  1538. * as this is synchronous in the raid1d thread
  1539. * which is the thread that might remove
  1540. * a device. If raid1d ever becomes multi-threaded....
  1541. */
  1542. sector_t first_bad;
  1543. int bad_sectors;
  1544. rdev = conf->mirrors[d].rdev;
  1545. if (rdev &&
  1546. test_bit(In_sync, &rdev->flags) &&
  1547. is_badblock(rdev, sect, s,
  1548. &first_bad, &bad_sectors) == 0 &&
  1549. sync_page_io(rdev, sect, s<<9,
  1550. conf->tmppage, READ, false))
  1551. success = 1;
  1552. else {
  1553. d++;
  1554. if (d == conf->raid_disks)
  1555. d = 0;
  1556. }
  1557. } while (!success && d != read_disk);
  1558. if (!success) {
  1559. /* Cannot read from anywhere - mark it bad */
  1560. struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
  1561. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1562. md_error(mddev, rdev);
  1563. break;
  1564. }
  1565. /* write it back and re-read */
  1566. start = d;
  1567. while (d != read_disk) {
  1568. if (d==0)
  1569. d = conf->raid_disks;
  1570. d--;
  1571. rdev = conf->mirrors[d].rdev;
  1572. if (rdev &&
  1573. test_bit(In_sync, &rdev->flags))
  1574. r1_sync_page_io(rdev, sect, s,
  1575. conf->tmppage, WRITE);
  1576. }
  1577. d = start;
  1578. while (d != read_disk) {
  1579. char b[BDEVNAME_SIZE];
  1580. if (d==0)
  1581. d = conf->raid_disks;
  1582. d--;
  1583. rdev = conf->mirrors[d].rdev;
  1584. if (rdev &&
  1585. test_bit(In_sync, &rdev->flags)) {
  1586. if (r1_sync_page_io(rdev, sect, s,
  1587. conf->tmppage, READ)) {
  1588. atomic_add(s, &rdev->corrected_errors);
  1589. printk(KERN_INFO
  1590. "md/raid1:%s: read error corrected "
  1591. "(%d sectors at %llu on %s)\n",
  1592. mdname(mddev), s,
  1593. (unsigned long long)(sect +
  1594. rdev->data_offset),
  1595. bdevname(rdev->bdev, b));
  1596. }
  1597. }
  1598. }
  1599. sectors -= s;
  1600. sect += s;
  1601. }
  1602. }
  1603. static void bi_complete(struct bio *bio, int error)
  1604. {
  1605. complete((struct completion *)bio->bi_private);
  1606. }
  1607. static int submit_bio_wait(int rw, struct bio *bio)
  1608. {
  1609. struct completion event;
  1610. rw |= REQ_SYNC;
  1611. init_completion(&event);
  1612. bio->bi_private = &event;
  1613. bio->bi_end_io = bi_complete;
  1614. submit_bio(rw, bio);
  1615. wait_for_completion(&event);
  1616. return test_bit(BIO_UPTODATE, &bio->bi_flags);
  1617. }
  1618. static int narrow_write_error(struct r1bio *r1_bio, int i)
  1619. {
  1620. struct mddev *mddev = r1_bio->mddev;
  1621. struct r1conf *conf = mddev->private;
  1622. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1623. int vcnt, idx;
  1624. struct bio_vec *vec;
  1625. /* bio has the data to be written to device 'i' where
  1626. * we just recently had a write error.
  1627. * We repeatedly clone the bio and trim down to one block,
  1628. * then try the write. Where the write fails we record
  1629. * a bad block.
  1630. * It is conceivable that the bio doesn't exactly align with
  1631. * blocks. We must handle this somehow.
  1632. *
  1633. * We currently own a reference on the rdev.
  1634. */
  1635. int block_sectors;
  1636. sector_t sector;
  1637. int sectors;
  1638. int sect_to_write = r1_bio->sectors;
  1639. int ok = 1;
  1640. if (rdev->badblocks.shift < 0)
  1641. return 0;
  1642. block_sectors = 1 << rdev->badblocks.shift;
  1643. sector = r1_bio->sector;
  1644. sectors = ((sector + block_sectors)
  1645. & ~(sector_t)(block_sectors - 1))
  1646. - sector;
  1647. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  1648. vcnt = r1_bio->behind_page_count;
  1649. vec = r1_bio->behind_bvecs;
  1650. idx = 0;
  1651. while (vec[idx].bv_page == NULL)
  1652. idx++;
  1653. } else {
  1654. vcnt = r1_bio->master_bio->bi_vcnt;
  1655. vec = r1_bio->master_bio->bi_io_vec;
  1656. idx = r1_bio->master_bio->bi_idx;
  1657. }
  1658. while (sect_to_write) {
  1659. struct bio *wbio;
  1660. if (sectors > sect_to_write)
  1661. sectors = sect_to_write;
  1662. /* Write at 'sector' for 'sectors'*/
  1663. wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
  1664. memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
  1665. wbio->bi_sector = r1_bio->sector;
  1666. wbio->bi_rw = WRITE;
  1667. wbio->bi_vcnt = vcnt;
  1668. wbio->bi_size = r1_bio->sectors << 9;
  1669. wbio->bi_idx = idx;
  1670. md_trim_bio(wbio, sector - r1_bio->sector, sectors);
  1671. wbio->bi_sector += rdev->data_offset;
  1672. wbio->bi_bdev = rdev->bdev;
  1673. if (submit_bio_wait(WRITE, wbio) == 0)
  1674. /* failure! */
  1675. ok = rdev_set_badblocks(rdev, sector,
  1676. sectors, 0)
  1677. && ok;
  1678. bio_put(wbio);
  1679. sect_to_write -= sectors;
  1680. sector += sectors;
  1681. sectors = block_sectors;
  1682. }
  1683. return ok;
  1684. }
  1685. static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1686. {
  1687. int m;
  1688. int s = r1_bio->sectors;
  1689. for (m = 0; m < conf->raid_disks ; m++) {
  1690. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1691. struct bio *bio = r1_bio->bios[m];
  1692. if (bio->bi_end_io == NULL)
  1693. continue;
  1694. if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1695. test_bit(R1BIO_MadeGood, &r1_bio->state)) {
  1696. rdev_clear_badblocks(rdev, r1_bio->sector, s);
  1697. }
  1698. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1699. test_bit(R1BIO_WriteError, &r1_bio->state)) {
  1700. if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
  1701. md_error(conf->mddev, rdev);
  1702. }
  1703. }
  1704. put_buf(r1_bio);
  1705. md_done_sync(conf->mddev, s, 1);
  1706. }
  1707. static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1708. {
  1709. int m;
  1710. for (m = 0; m < conf->raid_disks ; m++)
  1711. if (r1_bio->bios[m] == IO_MADE_GOOD) {
  1712. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1713. rdev_clear_badblocks(rdev,
  1714. r1_bio->sector,
  1715. r1_bio->sectors);
  1716. rdev_dec_pending(rdev, conf->mddev);
  1717. } else if (r1_bio->bios[m] != NULL) {
  1718. /* This drive got a write error. We need to
  1719. * narrow down and record precise write
  1720. * errors.
  1721. */
  1722. if (!narrow_write_error(r1_bio, m)) {
  1723. md_error(conf->mddev,
  1724. conf->mirrors[m].rdev);
  1725. /* an I/O failed, we can't clear the bitmap */
  1726. set_bit(R1BIO_Degraded, &r1_bio->state);
  1727. }
  1728. rdev_dec_pending(conf->mirrors[m].rdev,
  1729. conf->mddev);
  1730. }
  1731. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  1732. close_write(r1_bio);
  1733. raid_end_bio_io(r1_bio);
  1734. }
  1735. static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
  1736. {
  1737. int disk;
  1738. int max_sectors;
  1739. struct mddev *mddev = conf->mddev;
  1740. struct bio *bio;
  1741. char b[BDEVNAME_SIZE];
  1742. struct md_rdev *rdev;
  1743. clear_bit(R1BIO_ReadError, &r1_bio->state);
  1744. /* we got a read error. Maybe the drive is bad. Maybe just
  1745. * the block and we can fix it.
  1746. * We freeze all other IO, and try reading the block from
  1747. * other devices. When we find one, we re-write
  1748. * and check it that fixes the read error.
  1749. * This is all done synchronously while the array is
  1750. * frozen
  1751. */
  1752. if (mddev->ro == 0) {
  1753. freeze_array(conf);
  1754. fix_read_error(conf, r1_bio->read_disk,
  1755. r1_bio->sector, r1_bio->sectors);
  1756. unfreeze_array(conf);
  1757. } else
  1758. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1759. bio = r1_bio->bios[r1_bio->read_disk];
  1760. bdevname(bio->bi_bdev, b);
  1761. read_more:
  1762. disk = read_balance(conf, r1_bio, &max_sectors);
  1763. if (disk == -1) {
  1764. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
  1765. " read error for block %llu\n",
  1766. mdname(mddev), b, (unsigned long long)r1_bio->sector);
  1767. raid_end_bio_io(r1_bio);
  1768. } else {
  1769. const unsigned long do_sync
  1770. = r1_bio->master_bio->bi_rw & REQ_SYNC;
  1771. if (bio) {
  1772. r1_bio->bios[r1_bio->read_disk] =
  1773. mddev->ro ? IO_BLOCKED : NULL;
  1774. bio_put(bio);
  1775. }
  1776. r1_bio->read_disk = disk;
  1777. bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
  1778. md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
  1779. r1_bio->bios[r1_bio->read_disk] = bio;
  1780. rdev = conf->mirrors[disk].rdev;
  1781. printk_ratelimited(KERN_ERR
  1782. "md/raid1:%s: redirecting sector %llu"
  1783. " to other mirror: %s\n",
  1784. mdname(mddev),
  1785. (unsigned long long)r1_bio->sector,
  1786. bdevname(rdev->bdev, b));
  1787. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1788. bio->bi_bdev = rdev->bdev;
  1789. bio->bi_end_io = raid1_end_read_request;
  1790. bio->bi_rw = READ | do_sync;
  1791. bio->bi_private = r1_bio;
  1792. if (max_sectors < r1_bio->sectors) {
  1793. /* Drat - have to split this up more */
  1794. struct bio *mbio = r1_bio->master_bio;
  1795. int sectors_handled = (r1_bio->sector + max_sectors
  1796. - mbio->bi_sector);
  1797. r1_bio->sectors = max_sectors;
  1798. spin_lock_irq(&conf->device_lock);
  1799. if (mbio->bi_phys_segments == 0)
  1800. mbio->bi_phys_segments = 2;
  1801. else
  1802. mbio->bi_phys_segments++;
  1803. spin_unlock_irq(&conf->device_lock);
  1804. generic_make_request(bio);
  1805. bio = NULL;
  1806. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1807. r1_bio->master_bio = mbio;
  1808. r1_bio->sectors = (mbio->bi_size >> 9)
  1809. - sectors_handled;
  1810. r1_bio->state = 0;
  1811. set_bit(R1BIO_ReadError, &r1_bio->state);
  1812. r1_bio->mddev = mddev;
  1813. r1_bio->sector = mbio->bi_sector + sectors_handled;
  1814. goto read_more;
  1815. } else
  1816. generic_make_request(bio);
  1817. }
  1818. }
  1819. static void raid1d(struct mddev *mddev)
  1820. {
  1821. struct r1bio *r1_bio;
  1822. unsigned long flags;
  1823. struct r1conf *conf = mddev->private;
  1824. struct list_head *head = &conf->retry_list;
  1825. struct blk_plug plug;
  1826. md_check_recovery(mddev);
  1827. blk_start_plug(&plug);
  1828. for (;;) {
  1829. if (atomic_read(&mddev->plug_cnt) == 0)
  1830. flush_pending_writes(conf);
  1831. spin_lock_irqsave(&conf->device_lock, flags);
  1832. if (list_empty(head)) {
  1833. spin_unlock_irqrestore(&conf->device_lock, flags);
  1834. break;
  1835. }
  1836. r1_bio = list_entry(head->prev, struct r1bio, retry_list);
  1837. list_del(head->prev);
  1838. conf->nr_queued--;
  1839. spin_unlock_irqrestore(&conf->device_lock, flags);
  1840. mddev = r1_bio->mddev;
  1841. conf = mddev->private;
  1842. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1843. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1844. test_bit(R1BIO_WriteError, &r1_bio->state))
  1845. handle_sync_write_finished(conf, r1_bio);
  1846. else
  1847. sync_request_write(mddev, r1_bio);
  1848. } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1849. test_bit(R1BIO_WriteError, &r1_bio->state))
  1850. handle_write_finished(conf, r1_bio);
  1851. else if (test_bit(R1BIO_ReadError, &r1_bio->state))
  1852. handle_read_error(conf, r1_bio);
  1853. else
  1854. /* just a partial read to be scheduled from separate
  1855. * context
  1856. */
  1857. generic_make_request(r1_bio->bios[r1_bio->read_disk]);
  1858. cond_resched();
  1859. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  1860. md_check_recovery(mddev);
  1861. }
  1862. blk_finish_plug(&plug);
  1863. }
  1864. static int init_resync(struct r1conf *conf)
  1865. {
  1866. int buffs;
  1867. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1868. BUG_ON(conf->r1buf_pool);
  1869. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1870. conf->poolinfo);
  1871. if (!conf->r1buf_pool)
  1872. return -ENOMEM;
  1873. conf->next_resync = 0;
  1874. return 0;
  1875. }
  1876. /*
  1877. * perform a "sync" on one "block"
  1878. *
  1879. * We need to make sure that no normal I/O request - particularly write
  1880. * requests - conflict with active sync requests.
  1881. *
  1882. * This is achieved by tracking pending requests and a 'barrier' concept
  1883. * that can be installed to exclude normal IO requests.
  1884. */
  1885. static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1886. {
  1887. struct r1conf *conf = mddev->private;
  1888. struct r1bio *r1_bio;
  1889. struct bio *bio;
  1890. sector_t max_sector, nr_sectors;
  1891. int disk = -1;
  1892. int i;
  1893. int wonly = -1;
  1894. int write_targets = 0, read_targets = 0;
  1895. sector_t sync_blocks;
  1896. int still_degraded = 0;
  1897. int good_sectors = RESYNC_SECTORS;
  1898. int min_bad = 0; /* number of sectors that are bad in all devices */
  1899. if (!conf->r1buf_pool)
  1900. if (init_resync(conf))
  1901. return 0;
  1902. max_sector = mddev->dev_sectors;
  1903. if (sector_nr >= max_sector) {
  1904. /* If we aborted, we need to abort the
  1905. * sync on the 'current' bitmap chunk (there will
  1906. * only be one in raid1 resync.
  1907. * We can find the current addess in mddev->curr_resync
  1908. */
  1909. if (mddev->curr_resync < max_sector) /* aborted */
  1910. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1911. &sync_blocks, 1);
  1912. else /* completed sync */
  1913. conf->fullsync = 0;
  1914. bitmap_close_sync(mddev->bitmap);
  1915. close_sync(conf);
  1916. return 0;
  1917. }
  1918. if (mddev->bitmap == NULL &&
  1919. mddev->recovery_cp == MaxSector &&
  1920. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1921. conf->fullsync == 0) {
  1922. *skipped = 1;
  1923. return max_sector - sector_nr;
  1924. }
  1925. /* before building a request, check if we can skip these blocks..
  1926. * This call the bitmap_start_sync doesn't actually record anything
  1927. */
  1928. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1929. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1930. /* We can skip this block, and probably several more */
  1931. *skipped = 1;
  1932. return sync_blocks;
  1933. }
  1934. /*
  1935. * If there is non-resync activity waiting for a turn,
  1936. * and resync is going fast enough,
  1937. * then let it though before starting on this new sync request.
  1938. */
  1939. if (!go_faster && conf->nr_waiting)
  1940. msleep_interruptible(1000);
  1941. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  1942. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1943. raise_barrier(conf);
  1944. conf->next_resync = sector_nr;
  1945. rcu_read_lock();
  1946. /*
  1947. * If we get a correctably read error during resync or recovery,
  1948. * we might want to read from a different device. So we
  1949. * flag all drives that could conceivably be read from for READ,
  1950. * and any others (which will be non-In_sync devices) for WRITE.
  1951. * If a read fails, we try reading from something else for which READ
  1952. * is OK.
  1953. */
  1954. r1_bio->mddev = mddev;
  1955. r1_bio->sector = sector_nr;
  1956. r1_bio->state = 0;
  1957. set_bit(R1BIO_IsSync, &r1_bio->state);
  1958. for (i=0; i < conf->raid_disks; i++) {
  1959. struct md_rdev *rdev;
  1960. bio = r1_bio->bios[i];
  1961. /* take from bio_init */
  1962. bio->bi_next = NULL;
  1963. bio->bi_flags &= ~(BIO_POOL_MASK-1);
  1964. bio->bi_flags |= 1 << BIO_UPTODATE;
  1965. bio->bi_comp_cpu = -1;
  1966. bio->bi_rw = READ;
  1967. bio->bi_vcnt = 0;
  1968. bio->bi_idx = 0;
  1969. bio->bi_phys_segments = 0;
  1970. bio->bi_size = 0;
  1971. bio->bi_end_io = NULL;
  1972. bio->bi_private = NULL;
  1973. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1974. if (rdev == NULL ||
  1975. test_bit(Faulty, &rdev->flags)) {
  1976. still_degraded = 1;
  1977. } else if (!test_bit(In_sync, &rdev->flags)) {
  1978. bio->bi_rw = WRITE;
  1979. bio->bi_end_io = end_sync_write;
  1980. write_targets ++;
  1981. } else {
  1982. /* may need to read from here */
  1983. sector_t first_bad = MaxSector;
  1984. int bad_sectors;
  1985. if (is_badblock(rdev, sector_nr, good_sectors,
  1986. &first_bad, &bad_sectors)) {
  1987. if (first_bad > sector_nr)
  1988. good_sectors = first_bad - sector_nr;
  1989. else {
  1990. bad_sectors -= (sector_nr - first_bad);
  1991. if (min_bad == 0 ||
  1992. min_bad > bad_sectors)
  1993. min_bad = bad_sectors;
  1994. }
  1995. }
  1996. if (sector_nr < first_bad) {
  1997. if (test_bit(WriteMostly, &rdev->flags)) {
  1998. if (wonly < 0)
  1999. wonly = i;
  2000. } else {
  2001. if (disk < 0)
  2002. disk = i;
  2003. }
  2004. bio->bi_rw = READ;
  2005. bio->bi_end_io = end_sync_read;
  2006. read_targets++;
  2007. }
  2008. }
  2009. if (bio->bi_end_io) {
  2010. atomic_inc(&rdev->nr_pending);
  2011. bio->bi_sector = sector_nr + rdev->data_offset;
  2012. bio->bi_bdev = rdev->bdev;
  2013. bio->bi_private = r1_bio;
  2014. }
  2015. }
  2016. rcu_read_unlock();
  2017. if (disk < 0)
  2018. disk = wonly;
  2019. r1_bio->read_disk = disk;
  2020. if (read_targets == 0 && min_bad > 0) {
  2021. /* These sectors are bad on all InSync devices, so we
  2022. * need to mark them bad on all write targets
  2023. */
  2024. int ok = 1;
  2025. for (i = 0 ; i < conf->raid_disks ; i++)
  2026. if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
  2027. struct md_rdev *rdev =
  2028. rcu_dereference(conf->mirrors[i].rdev);
  2029. ok = rdev_set_badblocks(rdev, sector_nr,
  2030. min_bad, 0
  2031. ) && ok;
  2032. }
  2033. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2034. *skipped = 1;
  2035. put_buf(r1_bio);
  2036. if (!ok) {
  2037. /* Cannot record the badblocks, so need to
  2038. * abort the resync.
  2039. * If there are multiple read targets, could just
  2040. * fail the really bad ones ???
  2041. */
  2042. conf->recovery_disabled = mddev->recovery_disabled;
  2043. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2044. return 0;
  2045. } else
  2046. return min_bad;
  2047. }
  2048. if (min_bad > 0 && min_bad < good_sectors) {
  2049. /* only resync enough to reach the next bad->good
  2050. * transition */
  2051. good_sectors = min_bad;
  2052. }
  2053. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  2054. /* extra read targets are also write targets */
  2055. write_targets += read_targets-1;
  2056. if (write_targets == 0 || read_targets == 0) {
  2057. /* There is nowhere to write, so all non-sync
  2058. * drives must be failed - so we are finished
  2059. */
  2060. sector_t rv = max_sector - sector_nr;
  2061. *skipped = 1;
  2062. put_buf(r1_bio);
  2063. return rv;
  2064. }
  2065. if (max_sector > mddev->resync_max)
  2066. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2067. if (max_sector > sector_nr + good_sectors)
  2068. max_sector = sector_nr + good_sectors;
  2069. nr_sectors = 0;
  2070. sync_blocks = 0;
  2071. do {
  2072. struct page *page;
  2073. int len = PAGE_SIZE;
  2074. if (sector_nr + (len>>9) > max_sector)
  2075. len = (max_sector - sector_nr) << 9;
  2076. if (len == 0)
  2077. break;
  2078. if (sync_blocks == 0) {
  2079. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2080. &sync_blocks, still_degraded) &&
  2081. !conf->fullsync &&
  2082. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2083. break;
  2084. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  2085. if ((len >> 9) > sync_blocks)
  2086. len = sync_blocks<<9;
  2087. }
  2088. for (i=0 ; i < conf->raid_disks; i++) {
  2089. bio = r1_bio->bios[i];
  2090. if (bio->bi_end_io) {
  2091. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  2092. if (bio_add_page(bio, page, len, 0) == 0) {
  2093. /* stop here */
  2094. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  2095. while (i > 0) {
  2096. i--;
  2097. bio = r1_bio->bios[i];
  2098. if (bio->bi_end_io==NULL)
  2099. continue;
  2100. /* remove last page from this bio */
  2101. bio->bi_vcnt--;
  2102. bio->bi_size -= len;
  2103. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  2104. }
  2105. goto bio_full;
  2106. }
  2107. }
  2108. }
  2109. nr_sectors += len>>9;
  2110. sector_nr += len>>9;
  2111. sync_blocks -= (len>>9);
  2112. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  2113. bio_full:
  2114. r1_bio->sectors = nr_sectors;
  2115. /* For a user-requested sync, we read all readable devices and do a
  2116. * compare
  2117. */
  2118. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  2119. atomic_set(&r1_bio->remaining, read_targets);
  2120. for (i=0; i<conf->raid_disks; i++) {
  2121. bio = r1_bio->bios[i];
  2122. if (bio->bi_end_io == end_sync_read) {
  2123. md_sync_acct(bio->bi_bdev, nr_sectors);
  2124. generic_make_request(bio);
  2125. }
  2126. }
  2127. } else {
  2128. atomic_set(&r1_bio->remaining, 1);
  2129. bio = r1_bio->bios[r1_bio->read_disk];
  2130. md_sync_acct(bio->bi_bdev, nr_sectors);
  2131. generic_make_request(bio);
  2132. }
  2133. return nr_sectors;
  2134. }
  2135. static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  2136. {
  2137. if (sectors)
  2138. return sectors;
  2139. return mddev->dev_sectors;
  2140. }
  2141. static struct r1conf *setup_conf(struct mddev *mddev)
  2142. {
  2143. struct r1conf *conf;
  2144. int i;
  2145. struct mirror_info *disk;
  2146. struct md_rdev *rdev;
  2147. int err = -ENOMEM;
  2148. conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
  2149. if (!conf)
  2150. goto abort;
  2151. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  2152. GFP_KERNEL);
  2153. if (!conf->mirrors)
  2154. goto abort;
  2155. conf->tmppage = alloc_page(GFP_KERNEL);
  2156. if (!conf->tmppage)
  2157. goto abort;
  2158. conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  2159. if (!conf->poolinfo)
  2160. goto abort;
  2161. conf->poolinfo->raid_disks = mddev->raid_disks;
  2162. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2163. r1bio_pool_free,
  2164. conf->poolinfo);
  2165. if (!conf->r1bio_pool)
  2166. goto abort;
  2167. conf->poolinfo->mddev = mddev;
  2168. spin_lock_init(&conf->device_lock);
  2169. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2170. int disk_idx = rdev->raid_disk;
  2171. if (disk_idx >= mddev->raid_disks
  2172. || disk_idx < 0)
  2173. continue;
  2174. disk = conf->mirrors + disk_idx;
  2175. disk->rdev = rdev;
  2176. disk->head_position = 0;
  2177. }
  2178. conf->raid_disks = mddev->raid_disks;
  2179. conf->mddev = mddev;
  2180. INIT_LIST_HEAD(&conf->retry_list);
  2181. spin_lock_init(&conf->resync_lock);
  2182. init_waitqueue_head(&conf->wait_barrier);
  2183. bio_list_init(&conf->pending_bio_list);
  2184. conf->pending_count = 0;
  2185. conf->recovery_disabled = mddev->recovery_disabled - 1;
  2186. conf->last_used = -1;
  2187. for (i = 0; i < conf->raid_disks; i++) {
  2188. disk = conf->mirrors + i;
  2189. if (!disk->rdev ||
  2190. !test_bit(In_sync, &disk->rdev->flags)) {
  2191. disk->head_position = 0;
  2192. if (disk->rdev)
  2193. conf->fullsync = 1;
  2194. } else if (conf->last_used < 0)
  2195. /*
  2196. * The first working device is used as a
  2197. * starting point to read balancing.
  2198. */
  2199. conf->last_used = i;
  2200. }
  2201. err = -EIO;
  2202. if (conf->last_used < 0) {
  2203. printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
  2204. mdname(mddev));
  2205. goto abort;
  2206. }
  2207. err = -ENOMEM;
  2208. conf->thread = md_register_thread(raid1d, mddev, NULL);
  2209. if (!conf->thread) {
  2210. printk(KERN_ERR
  2211. "md/raid1:%s: couldn't allocate thread\n",
  2212. mdname(mddev));
  2213. goto abort;
  2214. }
  2215. return conf;
  2216. abort:
  2217. if (conf) {
  2218. if (conf->r1bio_pool)
  2219. mempool_destroy(conf->r1bio_pool);
  2220. kfree(conf->mirrors);
  2221. safe_put_page(conf->tmppage);
  2222. kfree(conf->poolinfo);
  2223. kfree(conf);
  2224. }
  2225. return ERR_PTR(err);
  2226. }
  2227. static int run(struct mddev *mddev)
  2228. {
  2229. struct r1conf *conf;
  2230. int i;
  2231. struct md_rdev *rdev;
  2232. if (mddev->level != 1) {
  2233. printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
  2234. mdname(mddev), mddev->level);
  2235. return -EIO;
  2236. }
  2237. if (mddev->reshape_position != MaxSector) {
  2238. printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
  2239. mdname(mddev));
  2240. return -EIO;
  2241. }
  2242. /*
  2243. * copy the already verified devices into our private RAID1
  2244. * bookkeeping area. [whatever we allocate in run(),
  2245. * should be freed in stop()]
  2246. */
  2247. if (mddev->private == NULL)
  2248. conf = setup_conf(mddev);
  2249. else
  2250. conf = mddev->private;
  2251. if (IS_ERR(conf))
  2252. return PTR_ERR(conf);
  2253. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2254. if (!mddev->gendisk)
  2255. continue;
  2256. disk_stack_limits(mddev->gendisk, rdev->bdev,
  2257. rdev->data_offset << 9);
  2258. /* as we don't honour merge_bvec_fn, we must never risk
  2259. * violating it, so limit ->max_segments to 1 lying within
  2260. * a single page, as a one page request is never in violation.
  2261. */
  2262. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  2263. blk_queue_max_segments(mddev->queue, 1);
  2264. blk_queue_segment_boundary(mddev->queue,
  2265. PAGE_CACHE_SIZE - 1);
  2266. }
  2267. }
  2268. mddev->degraded = 0;
  2269. for (i=0; i < conf->raid_disks; i++)
  2270. if (conf->mirrors[i].rdev == NULL ||
  2271. !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
  2272. test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  2273. mddev->degraded++;
  2274. if (conf->raid_disks - mddev->degraded == 1)
  2275. mddev->recovery_cp = MaxSector;
  2276. if (mddev->recovery_cp != MaxSector)
  2277. printk(KERN_NOTICE "md/raid1:%s: not clean"
  2278. " -- starting background reconstruction\n",
  2279. mdname(mddev));
  2280. printk(KERN_INFO
  2281. "md/raid1:%s: active with %d out of %d mirrors\n",
  2282. mdname(mddev), mddev->raid_disks - mddev->degraded,
  2283. mddev->raid_disks);
  2284. /*
  2285. * Ok, everything is just fine now
  2286. */
  2287. mddev->thread = conf->thread;
  2288. conf->thread = NULL;
  2289. mddev->private = conf;
  2290. md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
  2291. if (mddev->queue) {
  2292. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  2293. mddev->queue->backing_dev_info.congested_data = mddev;
  2294. }
  2295. return md_integrity_register(mddev);
  2296. }
  2297. static int stop(struct mddev *mddev)
  2298. {
  2299. struct r1conf *conf = mddev->private;
  2300. struct bitmap *bitmap = mddev->bitmap;
  2301. /* wait for behind writes to complete */
  2302. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  2303. printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
  2304. mdname(mddev));
  2305. /* need to kick something here to make sure I/O goes? */
  2306. wait_event(bitmap->behind_wait,
  2307. atomic_read(&bitmap->behind_writes) == 0);
  2308. }
  2309. raise_barrier(conf);
  2310. lower_barrier(conf);
  2311. md_unregister_thread(&mddev->thread);
  2312. if (conf->r1bio_pool)
  2313. mempool_destroy(conf->r1bio_pool);
  2314. kfree(conf->mirrors);
  2315. kfree(conf->poolinfo);
  2316. kfree(conf);
  2317. mddev->private = NULL;
  2318. return 0;
  2319. }
  2320. static int raid1_resize(struct mddev *mddev, sector_t sectors)
  2321. {
  2322. /* no resync is happening, and there is enough space
  2323. * on all devices, so we can resize.
  2324. * We need to make sure resync covers any new space.
  2325. * If the array is shrinking we should possibly wait until
  2326. * any io in the removed space completes, but it hardly seems
  2327. * worth it.
  2328. */
  2329. md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
  2330. if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
  2331. return -EINVAL;
  2332. set_capacity(mddev->gendisk, mddev->array_sectors);
  2333. revalidate_disk(mddev->gendisk);
  2334. if (sectors > mddev->dev_sectors &&
  2335. mddev->recovery_cp > mddev->dev_sectors) {
  2336. mddev->recovery_cp = mddev->dev_sectors;
  2337. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2338. }
  2339. mddev->dev_sectors = sectors;
  2340. mddev->resync_max_sectors = sectors;
  2341. return 0;
  2342. }
  2343. static int raid1_reshape(struct mddev *mddev)
  2344. {
  2345. /* We need to:
  2346. * 1/ resize the r1bio_pool
  2347. * 2/ resize conf->mirrors
  2348. *
  2349. * We allocate a new r1bio_pool if we can.
  2350. * Then raise a device barrier and wait until all IO stops.
  2351. * Then resize conf->mirrors and swap in the new r1bio pool.
  2352. *
  2353. * At the same time, we "pack" the devices so that all the missing
  2354. * devices have the higher raid_disk numbers.
  2355. */
  2356. mempool_t *newpool, *oldpool;
  2357. struct pool_info *newpoolinfo;
  2358. struct mirror_info *newmirrors;
  2359. struct r1conf *conf = mddev->private;
  2360. int cnt, raid_disks;
  2361. unsigned long flags;
  2362. int d, d2, err;
  2363. /* Cannot change chunk_size, layout, or level */
  2364. if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
  2365. mddev->layout != mddev->new_layout ||
  2366. mddev->level != mddev->new_level) {
  2367. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2368. mddev->new_layout = mddev->layout;
  2369. mddev->new_level = mddev->level;
  2370. return -EINVAL;
  2371. }
  2372. err = md_allow_write(mddev);
  2373. if (err)
  2374. return err;
  2375. raid_disks = mddev->raid_disks + mddev->delta_disks;
  2376. if (raid_disks < conf->raid_disks) {
  2377. cnt=0;
  2378. for (d= 0; d < conf->raid_disks; d++)
  2379. if (conf->mirrors[d].rdev)
  2380. cnt++;
  2381. if (cnt > raid_disks)
  2382. return -EBUSY;
  2383. }
  2384. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  2385. if (!newpoolinfo)
  2386. return -ENOMEM;
  2387. newpoolinfo->mddev = mddev;
  2388. newpoolinfo->raid_disks = raid_disks;
  2389. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2390. r1bio_pool_free, newpoolinfo);
  2391. if (!newpool) {
  2392. kfree(newpoolinfo);
  2393. return -ENOMEM;
  2394. }
  2395. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
  2396. if (!newmirrors) {
  2397. kfree(newpoolinfo);
  2398. mempool_destroy(newpool);
  2399. return -ENOMEM;
  2400. }
  2401. raise_barrier(conf);
  2402. /* ok, everything is stopped */
  2403. oldpool = conf->r1bio_pool;
  2404. conf->r1bio_pool = newpool;
  2405. for (d = d2 = 0; d < conf->raid_disks; d++) {
  2406. struct md_rdev *rdev = conf->mirrors[d].rdev;
  2407. if (rdev && rdev->raid_disk != d2) {
  2408. sysfs_unlink_rdev(mddev, rdev);
  2409. rdev->raid_disk = d2;
  2410. sysfs_unlink_rdev(mddev, rdev);
  2411. if (sysfs_link_rdev(mddev, rdev))
  2412. printk(KERN_WARNING
  2413. "md/raid1:%s: cannot register rd%d\n",
  2414. mdname(mddev), rdev->raid_disk);
  2415. }
  2416. if (rdev)
  2417. newmirrors[d2++].rdev = rdev;
  2418. }
  2419. kfree(conf->mirrors);
  2420. conf->mirrors = newmirrors;
  2421. kfree(conf->poolinfo);
  2422. conf->poolinfo = newpoolinfo;
  2423. spin_lock_irqsave(&conf->device_lock, flags);
  2424. mddev->degraded += (raid_disks - conf->raid_disks);
  2425. spin_unlock_irqrestore(&conf->device_lock, flags);
  2426. conf->raid_disks = mddev->raid_disks = raid_disks;
  2427. mddev->delta_disks = 0;
  2428. conf->last_used = 0; /* just make sure it is in-range */
  2429. lower_barrier(conf);
  2430. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2431. md_wakeup_thread(mddev->thread);
  2432. mempool_destroy(oldpool);
  2433. return 0;
  2434. }
  2435. static void raid1_quiesce(struct mddev *mddev, int state)
  2436. {
  2437. struct r1conf *conf = mddev->private;
  2438. switch(state) {
  2439. case 2: /* wake for suspend */
  2440. wake_up(&conf->wait_barrier);
  2441. break;
  2442. case 1:
  2443. raise_barrier(conf);
  2444. break;
  2445. case 0:
  2446. lower_barrier(conf);
  2447. break;
  2448. }
  2449. }
  2450. static void *raid1_takeover(struct mddev *mddev)
  2451. {
  2452. /* raid1 can take over:
  2453. * raid5 with 2 devices, any layout or chunk size
  2454. */
  2455. if (mddev->level == 5 && mddev->raid_disks == 2) {
  2456. struct r1conf *conf;
  2457. mddev->new_level = 1;
  2458. mddev->new_layout = 0;
  2459. mddev->new_chunk_sectors = 0;
  2460. conf = setup_conf(mddev);
  2461. if (!IS_ERR(conf))
  2462. conf->barrier = 1;
  2463. return conf;
  2464. }
  2465. return ERR_PTR(-EINVAL);
  2466. }
  2467. static struct md_personality raid1_personality =
  2468. {
  2469. .name = "raid1",
  2470. .level = 1,
  2471. .owner = THIS_MODULE,
  2472. .make_request = make_request,
  2473. .run = run,
  2474. .stop = stop,
  2475. .status = status,
  2476. .error_handler = error,
  2477. .hot_add_disk = raid1_add_disk,
  2478. .hot_remove_disk= raid1_remove_disk,
  2479. .spare_active = raid1_spare_active,
  2480. .sync_request = sync_request,
  2481. .resize = raid1_resize,
  2482. .size = raid1_size,
  2483. .check_reshape = raid1_reshape,
  2484. .quiesce = raid1_quiesce,
  2485. .takeover = raid1_takeover,
  2486. };
  2487. static int __init raid_init(void)
  2488. {
  2489. return register_md_personality(&raid1_personality);
  2490. }
  2491. static void raid_exit(void)
  2492. {
  2493. unregister_md_personality(&raid1_personality);
  2494. }
  2495. module_init(raid_init);
  2496. module_exit(raid_exit);
  2497. MODULE_LICENSE("GPL");
  2498. MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
  2499. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  2500. MODULE_ALIAS("md-raid1");
  2501. MODULE_ALIAS("md-level-1");
  2502. module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);