inode.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. /*
  2. * linux/fs/ufs/inode.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/inode.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
  24. * Big-endian to little-endian byte-swapping/bitmaps by
  25. * David S. Miller (davem@caip.rutgers.edu), 1995
  26. */
  27. #include <asm/uaccess.h>
  28. #include <asm/system.h>
  29. #include <linux/errno.h>
  30. #include <linux/fs.h>
  31. #include <linux/ufs_fs.h>
  32. #include <linux/time.h>
  33. #include <linux/stat.h>
  34. #include <linux/string.h>
  35. #include <linux/mm.h>
  36. #include <linux/smp_lock.h>
  37. #include <linux/buffer_head.h>
  38. #include "swab.h"
  39. #include "util.h"
  40. static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
  41. {
  42. struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
  43. int ptrs = uspi->s_apb;
  44. int ptrs_bits = uspi->s_apbshift;
  45. const long direct_blocks = UFS_NDADDR,
  46. indirect_blocks = ptrs,
  47. double_blocks = (1 << (ptrs_bits * 2));
  48. int n = 0;
  49. UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
  50. if (i_block < 0) {
  51. ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
  52. } else if (i_block < direct_blocks) {
  53. offsets[n++] = i_block;
  54. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  55. offsets[n++] = UFS_IND_BLOCK;
  56. offsets[n++] = i_block;
  57. } else if ((i_block -= indirect_blocks) < double_blocks) {
  58. offsets[n++] = UFS_DIND_BLOCK;
  59. offsets[n++] = i_block >> ptrs_bits;
  60. offsets[n++] = i_block & (ptrs - 1);
  61. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  62. offsets[n++] = UFS_TIND_BLOCK;
  63. offsets[n++] = i_block >> (ptrs_bits * 2);
  64. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  65. offsets[n++] = i_block & (ptrs - 1);
  66. } else {
  67. ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
  68. }
  69. return n;
  70. }
  71. /*
  72. * Returns the location of the fragment from
  73. * the begining of the filesystem.
  74. */
  75. u64 ufs_frag_map(struct inode *inode, sector_t frag)
  76. {
  77. struct ufs_inode_info *ufsi = UFS_I(inode);
  78. struct super_block *sb = inode->i_sb;
  79. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  80. u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
  81. int shift = uspi->s_apbshift-uspi->s_fpbshift;
  82. sector_t offsets[4], *p;
  83. int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
  84. u64 ret = 0L;
  85. __fs32 block;
  86. __fs64 u2_block = 0L;
  87. unsigned flags = UFS_SB(sb)->s_flags;
  88. u64 temp = 0L;
  89. UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
  90. UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",uspi->s_fpbshift,uspi->s_apbmask,mask);
  91. if (depth == 0)
  92. return 0;
  93. p = offsets;
  94. lock_kernel();
  95. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  96. goto ufs2;
  97. block = ufsi->i_u1.i_data[*p++];
  98. if (!block)
  99. goto out;
  100. while (--depth) {
  101. struct buffer_head *bh;
  102. sector_t n = *p++;
  103. bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
  104. if (!bh)
  105. goto out;
  106. block = ((__fs32 *) bh->b_data)[n & mask];
  107. brelse (bh);
  108. if (!block)
  109. goto out;
  110. }
  111. ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
  112. goto out;
  113. ufs2:
  114. u2_block = ufsi->i_u1.u2_i_data[*p++];
  115. if (!u2_block)
  116. goto out;
  117. while (--depth) {
  118. struct buffer_head *bh;
  119. sector_t n = *p++;
  120. temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
  121. bh = sb_bread(sb, temp +(u64) (n>>shift));
  122. if (!bh)
  123. goto out;
  124. u2_block = ((__fs64 *)bh->b_data)[n & mask];
  125. brelse(bh);
  126. if (!u2_block)
  127. goto out;
  128. }
  129. temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
  130. ret = temp + (u64) (frag & uspi->s_fpbmask);
  131. out:
  132. unlock_kernel();
  133. return ret;
  134. }
  135. static void ufs_clear_block(struct inode *inode, struct buffer_head *bh)
  136. {
  137. lock_buffer(bh);
  138. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  139. set_buffer_uptodate(bh);
  140. mark_buffer_dirty(bh);
  141. unlock_buffer(bh);
  142. if (IS_SYNC(inode))
  143. sync_dirty_buffer(bh);
  144. }
  145. static struct buffer_head *ufs_inode_getfrag(struct inode *inode,
  146. unsigned int fragment, unsigned int new_fragment,
  147. unsigned int required, int *err, int metadata,
  148. long *phys, int *new, struct page *locked_page)
  149. {
  150. struct ufs_inode_info *ufsi = UFS_I(inode);
  151. struct super_block * sb;
  152. struct ufs_sb_private_info * uspi;
  153. struct buffer_head * result;
  154. unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
  155. unsigned tmp, goal;
  156. __fs32 * p, * p2;
  157. unsigned flags = 0;
  158. UFSD("ENTER, ino %lu, fragment %u, new_fragment %u, required %u\n",
  159. inode->i_ino, fragment, new_fragment, required);
  160. sb = inode->i_sb;
  161. uspi = UFS_SB(sb)->s_uspi;
  162. flags = UFS_SB(sb)->s_flags;
  163. /* TODO : to be done for write support
  164. if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  165. goto ufs2;
  166. */
  167. block = ufs_fragstoblks (fragment);
  168. blockoff = ufs_fragnum (fragment);
  169. p = ufsi->i_u1.i_data + block;
  170. goal = 0;
  171. repeat:
  172. tmp = fs32_to_cpu(sb, *p);
  173. lastfrag = ufsi->i_lastfrag;
  174. if (tmp && fragment < lastfrag) {
  175. if (metadata) {
  176. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  177. if (tmp == fs32_to_cpu(sb, *p)) {
  178. UFSD("EXIT, result %u\n", tmp + blockoff);
  179. return result;
  180. }
  181. brelse (result);
  182. goto repeat;
  183. } else {
  184. *phys = tmp + blockoff;
  185. return NULL;
  186. }
  187. }
  188. lastblock = ufs_fragstoblks (lastfrag);
  189. lastblockoff = ufs_fragnum (lastfrag);
  190. /*
  191. * We will extend file into new block beyond last allocated block
  192. */
  193. if (lastblock < block) {
  194. /*
  195. * We must reallocate last allocated block
  196. */
  197. if (lastblockoff) {
  198. p2 = ufsi->i_u1.i_data + lastblock;
  199. tmp = ufs_new_fragments (inode, p2, lastfrag,
  200. fs32_to_cpu(sb, *p2), uspi->s_fpb - lastblockoff,
  201. err, locked_page);
  202. if (!tmp) {
  203. if (lastfrag != ufsi->i_lastfrag)
  204. goto repeat;
  205. else
  206. return NULL;
  207. }
  208. lastfrag = ufsi->i_lastfrag;
  209. }
  210. goal = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock]) + uspi->s_fpb;
  211. tmp = ufs_new_fragments (inode, p, fragment - blockoff,
  212. goal, required + blockoff,
  213. err, locked_page);
  214. }
  215. /*
  216. * We will extend last allocated block
  217. */
  218. else if (lastblock == block) {
  219. tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff),
  220. fs32_to_cpu(sb, *p), required + (blockoff - lastblockoff),
  221. err, locked_page);
  222. }
  223. /*
  224. * We will allocate new block before last allocated block
  225. */
  226. else /* (lastblock > block) */ {
  227. if (lastblock && (tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock-1])))
  228. goal = tmp + uspi->s_fpb;
  229. tmp = ufs_new_fragments(inode, p, fragment - blockoff,
  230. goal, uspi->s_fpb, err, locked_page);
  231. }
  232. if (!tmp) {
  233. if ((!blockoff && *p) ||
  234. (blockoff && lastfrag != ufsi->i_lastfrag))
  235. goto repeat;
  236. *err = -ENOSPC;
  237. return NULL;
  238. }
  239. if (metadata) {
  240. result = sb_getblk(inode->i_sb, tmp + blockoff);
  241. ufs_clear_block(inode, result);
  242. } else {
  243. *phys = tmp + blockoff;
  244. result = NULL;
  245. *err = 0;
  246. *new = 1;
  247. }
  248. inode->i_ctime = CURRENT_TIME_SEC;
  249. if (IS_SYNC(inode))
  250. ufs_sync_inode (inode);
  251. mark_inode_dirty(inode);
  252. UFSD("EXIT, result %u\n", tmp + blockoff);
  253. return result;
  254. /* This part : To be implemented ....
  255. Required only for writing, not required for READ-ONLY.
  256. ufs2:
  257. u2_block = ufs_fragstoblks(fragment);
  258. u2_blockoff = ufs_fragnum(fragment);
  259. p = ufsi->i_u1.u2_i_data + block;
  260. goal = 0;
  261. repeat2:
  262. tmp = fs32_to_cpu(sb, *p);
  263. lastfrag = ufsi->i_lastfrag;
  264. */
  265. }
  266. static struct buffer_head *ufs_block_getfrag(struct inode *inode, struct buffer_head *bh,
  267. unsigned int fragment, unsigned int new_fragment,
  268. unsigned int blocksize, int * err, int metadata,
  269. long *phys, int *new, struct page *locked_page)
  270. {
  271. struct super_block * sb;
  272. struct ufs_sb_private_info * uspi;
  273. struct buffer_head * result;
  274. unsigned tmp, goal, block, blockoff;
  275. __fs32 * p;
  276. sb = inode->i_sb;
  277. uspi = UFS_SB(sb)->s_uspi;
  278. block = ufs_fragstoblks (fragment);
  279. blockoff = ufs_fragnum (fragment);
  280. UFSD("ENTER, ino %lu, fragment %u, new_fragment %u\n", inode->i_ino, fragment, new_fragment);
  281. result = NULL;
  282. if (!bh)
  283. goto out;
  284. if (!buffer_uptodate(bh)) {
  285. ll_rw_block (READ, 1, &bh);
  286. wait_on_buffer (bh);
  287. if (!buffer_uptodate(bh))
  288. goto out;
  289. }
  290. p = (__fs32 *) bh->b_data + block;
  291. repeat:
  292. tmp = fs32_to_cpu(sb, *p);
  293. if (tmp) {
  294. if (metadata) {
  295. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  296. if (tmp == fs32_to_cpu(sb, *p))
  297. goto out;
  298. brelse (result);
  299. goto repeat;
  300. } else {
  301. *phys = tmp + blockoff;
  302. goto out;
  303. }
  304. }
  305. if (block && (tmp = fs32_to_cpu(sb, ((__fs32*)bh->b_data)[block-1]) + uspi->s_fpb))
  306. goal = tmp + uspi->s_fpb;
  307. else
  308. goal = bh->b_blocknr + uspi->s_fpb;
  309. tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
  310. uspi->s_fpb, err, locked_page);
  311. if (!tmp) {
  312. if (fs32_to_cpu(sb, *p))
  313. goto repeat;
  314. goto out;
  315. }
  316. if (metadata) {
  317. result = sb_getblk(sb, tmp + blockoff);
  318. ufs_clear_block(inode, result);
  319. } else {
  320. *phys = tmp + blockoff;
  321. *new = 1;
  322. }
  323. mark_buffer_dirty(bh);
  324. if (IS_SYNC(inode))
  325. sync_dirty_buffer(bh);
  326. inode->i_ctime = CURRENT_TIME_SEC;
  327. mark_inode_dirty(inode);
  328. UFSD("result %u\n", tmp + blockoff);
  329. out:
  330. brelse (bh);
  331. UFSD("EXIT\n");
  332. return result;
  333. }
  334. /*
  335. * This function gets the block which contains the fragment.
  336. */
  337. int ufs_getfrag_block (struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
  338. {
  339. struct super_block * sb = inode->i_sb;
  340. struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
  341. struct buffer_head * bh;
  342. int ret, err, new;
  343. unsigned long ptr,phys;
  344. u64 phys64 = 0;
  345. if (!create) {
  346. phys64 = ufs_frag_map(inode, fragment);
  347. UFSD("phys64 = %llu \n",phys64);
  348. if (phys64)
  349. map_bh(bh_result, sb, phys64);
  350. return 0;
  351. }
  352. /* This code entered only while writing ....? */
  353. err = -EIO;
  354. new = 0;
  355. ret = 0;
  356. bh = NULL;
  357. lock_kernel();
  358. UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
  359. if (fragment < 0)
  360. goto abort_negative;
  361. if (fragment >
  362. ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
  363. << uspi->s_fpbshift))
  364. goto abort_too_big;
  365. err = 0;
  366. ptr = fragment;
  367. /*
  368. * ok, these macros clean the logic up a bit and make
  369. * it much more readable:
  370. */
  371. #define GET_INODE_DATABLOCK(x) \
  372. ufs_inode_getfrag(inode, x, fragment, 1, &err, 0, &phys, &new, bh_result->b_page)
  373. #define GET_INODE_PTR(x) \
  374. ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, 1, NULL, NULL, bh_result->b_page)
  375. #define GET_INDIRECT_DATABLOCK(x) \
  376. ufs_block_getfrag(inode, bh, x, fragment, sb->s_blocksize, \
  377. &err, 0, &phys, &new, bh_result->b_page);
  378. #define GET_INDIRECT_PTR(x) \
  379. ufs_block_getfrag(inode, bh, x, fragment, sb->s_blocksize, \
  380. &err, 1, NULL, NULL, bh_result->b_page);
  381. if (ptr < UFS_NDIR_FRAGMENT) {
  382. bh = GET_INODE_DATABLOCK(ptr);
  383. goto out;
  384. }
  385. ptr -= UFS_NDIR_FRAGMENT;
  386. if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
  387. bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
  388. goto get_indirect;
  389. }
  390. ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
  391. if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
  392. bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
  393. goto get_double;
  394. }
  395. ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
  396. bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
  397. bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
  398. get_double:
  399. bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
  400. get_indirect:
  401. bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
  402. #undef GET_INODE_DATABLOCK
  403. #undef GET_INODE_PTR
  404. #undef GET_INDIRECT_DATABLOCK
  405. #undef GET_INDIRECT_PTR
  406. out:
  407. if (err)
  408. goto abort;
  409. if (new)
  410. set_buffer_new(bh_result);
  411. map_bh(bh_result, sb, phys);
  412. abort:
  413. unlock_kernel();
  414. return err;
  415. abort_negative:
  416. ufs_warning(sb, "ufs_get_block", "block < 0");
  417. goto abort;
  418. abort_too_big:
  419. ufs_warning(sb, "ufs_get_block", "block > big");
  420. goto abort;
  421. }
  422. struct buffer_head *ufs_getfrag(struct inode *inode, unsigned int fragment,
  423. int create, int *err)
  424. {
  425. struct buffer_head dummy;
  426. int error;
  427. dummy.b_state = 0;
  428. dummy.b_blocknr = -1000;
  429. error = ufs_getfrag_block(inode, fragment, &dummy, create);
  430. *err = error;
  431. if (!error && buffer_mapped(&dummy)) {
  432. struct buffer_head *bh;
  433. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  434. if (buffer_new(&dummy)) {
  435. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  436. set_buffer_uptodate(bh);
  437. mark_buffer_dirty(bh);
  438. }
  439. return bh;
  440. }
  441. return NULL;
  442. }
  443. struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
  444. int create, int * err)
  445. {
  446. struct buffer_head * bh;
  447. UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
  448. bh = ufs_getfrag (inode, fragment, create, err);
  449. if (!bh || buffer_uptodate(bh))
  450. return bh;
  451. ll_rw_block (READ, 1, &bh);
  452. wait_on_buffer (bh);
  453. if (buffer_uptodate(bh))
  454. return bh;
  455. brelse (bh);
  456. *err = -EIO;
  457. return NULL;
  458. }
  459. static int ufs_writepage(struct page *page, struct writeback_control *wbc)
  460. {
  461. return block_write_full_page(page,ufs_getfrag_block,wbc);
  462. }
  463. static int ufs_readpage(struct file *file, struct page *page)
  464. {
  465. return block_read_full_page(page,ufs_getfrag_block);
  466. }
  467. static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
  468. {
  469. return block_prepare_write(page,from,to,ufs_getfrag_block);
  470. }
  471. static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
  472. {
  473. return generic_block_bmap(mapping,block,ufs_getfrag_block);
  474. }
  475. struct address_space_operations ufs_aops = {
  476. .readpage = ufs_readpage,
  477. .writepage = ufs_writepage,
  478. .sync_page = block_sync_page,
  479. .prepare_write = ufs_prepare_write,
  480. .commit_write = generic_commit_write,
  481. .bmap = ufs_bmap
  482. };
  483. static void ufs_set_inode_ops(struct inode *inode)
  484. {
  485. if (S_ISREG(inode->i_mode)) {
  486. inode->i_op = &ufs_file_inode_operations;
  487. inode->i_fop = &ufs_file_operations;
  488. inode->i_mapping->a_ops = &ufs_aops;
  489. } else if (S_ISDIR(inode->i_mode)) {
  490. inode->i_op = &ufs_dir_inode_operations;
  491. inode->i_fop = &ufs_dir_operations;
  492. inode->i_mapping->a_ops = &ufs_aops;
  493. } else if (S_ISLNK(inode->i_mode)) {
  494. if (!inode->i_blocks)
  495. inode->i_op = &ufs_fast_symlink_inode_operations;
  496. else {
  497. inode->i_op = &page_symlink_inode_operations;
  498. inode->i_mapping->a_ops = &ufs_aops;
  499. }
  500. } else
  501. init_special_inode(inode, inode->i_mode,
  502. ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
  503. }
  504. void ufs_read_inode (struct inode * inode)
  505. {
  506. struct ufs_inode_info *ufsi = UFS_I(inode);
  507. struct super_block * sb;
  508. struct ufs_sb_private_info * uspi;
  509. struct ufs_inode * ufs_inode;
  510. struct ufs2_inode *ufs2_inode;
  511. struct buffer_head * bh;
  512. mode_t mode;
  513. unsigned i;
  514. unsigned flags;
  515. UFSD("ENTER, ino %lu\n", inode->i_ino);
  516. sb = inode->i_sb;
  517. uspi = UFS_SB(sb)->s_uspi;
  518. flags = UFS_SB(sb)->s_flags;
  519. if (inode->i_ino < UFS_ROOTINO ||
  520. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  521. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  522. goto bad_inode;
  523. }
  524. bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
  525. if (!bh) {
  526. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  527. goto bad_inode;
  528. }
  529. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  530. goto ufs2_inode;
  531. ufs_inode = (struct ufs_inode *) (bh->b_data + sizeof(struct ufs_inode) * ufs_inotofsbo(inode->i_ino));
  532. /*
  533. * Copy data to the in-core inode.
  534. */
  535. inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
  536. inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
  537. if (inode->i_nlink == 0)
  538. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  539. /*
  540. * Linux now has 32-bit uid and gid, so we can support EFT.
  541. */
  542. inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
  543. inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
  544. inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
  545. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
  546. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
  547. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
  548. inode->i_mtime.tv_nsec = 0;
  549. inode->i_atime.tv_nsec = 0;
  550. inode->i_ctime.tv_nsec = 0;
  551. inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
  552. inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat) */
  553. inode->i_version++;
  554. ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
  555. ufsi->i_gen = fs32_to_cpu(sb, ufs_inode->ui_gen);
  556. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  557. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  558. ufsi->i_lastfrag = (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
  559. ufsi->i_dir_start_lookup = 0;
  560. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  561. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  562. ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
  563. } else {
  564. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  565. ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
  566. }
  567. ufsi->i_osync = 0;
  568. ufs_set_inode_ops(inode);
  569. brelse (bh);
  570. UFSD("EXIT\n");
  571. return;
  572. bad_inode:
  573. make_bad_inode(inode);
  574. return;
  575. ufs2_inode :
  576. UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
  577. ufs2_inode = (struct ufs2_inode *)(bh->b_data + sizeof(struct ufs2_inode) * ufs_inotofsbo(inode->i_ino));
  578. /*
  579. * Copy data to the in-core inode.
  580. */
  581. inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
  582. inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
  583. if (inode->i_nlink == 0)
  584. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  585. /*
  586. * Linux now has 32-bit uid and gid, so we can support EFT.
  587. */
  588. inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
  589. inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
  590. inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
  591. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_atime.tv_sec);
  592. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_ctime.tv_sec);
  593. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_mtime.tv_sec);
  594. inode->i_mtime.tv_nsec = 0;
  595. inode->i_atime.tv_nsec = 0;
  596. inode->i_ctime.tv_nsec = 0;
  597. inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
  598. inode->i_blksize = PAGE_SIZE; /*This is the optimal IO size(for stat)*/
  599. inode->i_version++;
  600. ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
  601. ufsi->i_gen = fs32_to_cpu(sb, ufs2_inode->ui_gen);
  602. /*
  603. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  604. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  605. */
  606. ufsi->i_lastfrag= (inode->i_size + uspi->s_fsize- 1) >> uspi->s_fshift;
  607. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  608. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  609. ufsi->i_u1.u2_i_data[i] =
  610. ufs2_inode->ui_u2.ui_addr.ui_db[i];
  611. }
  612. else {
  613. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  614. ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
  615. }
  616. ufsi->i_osync = 0;
  617. ufs_set_inode_ops(inode);
  618. brelse(bh);
  619. UFSD("EXIT\n");
  620. return;
  621. }
  622. static int ufs_update_inode(struct inode * inode, int do_sync)
  623. {
  624. struct ufs_inode_info *ufsi = UFS_I(inode);
  625. struct super_block * sb;
  626. struct ufs_sb_private_info * uspi;
  627. struct buffer_head * bh;
  628. struct ufs_inode * ufs_inode;
  629. unsigned i;
  630. unsigned flags;
  631. UFSD("ENTER, ino %lu\n", inode->i_ino);
  632. sb = inode->i_sb;
  633. uspi = UFS_SB(sb)->s_uspi;
  634. flags = UFS_SB(sb)->s_flags;
  635. if (inode->i_ino < UFS_ROOTINO ||
  636. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  637. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  638. return -1;
  639. }
  640. bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
  641. if (!bh) {
  642. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  643. return -1;
  644. }
  645. ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
  646. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  647. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  648. ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
  649. ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
  650. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  651. ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
  652. ufs_inode->ui_atime.tv_usec = 0;
  653. ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
  654. ufs_inode->ui_ctime.tv_usec = 0;
  655. ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
  656. ufs_inode->ui_mtime.tv_usec = 0;
  657. ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
  658. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  659. ufs_inode->ui_gen = cpu_to_fs32(sb, ufsi->i_gen);
  660. if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
  661. ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
  662. ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
  663. }
  664. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  665. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  666. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
  667. } else if (inode->i_blocks) {
  668. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  669. ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
  670. }
  671. else {
  672. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  673. ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
  674. }
  675. if (!inode->i_nlink)
  676. memset (ufs_inode, 0, sizeof(struct ufs_inode));
  677. mark_buffer_dirty(bh);
  678. if (do_sync)
  679. sync_dirty_buffer(bh);
  680. brelse (bh);
  681. UFSD("EXIT\n");
  682. return 0;
  683. }
  684. int ufs_write_inode (struct inode * inode, int wait)
  685. {
  686. int ret;
  687. lock_kernel();
  688. ret = ufs_update_inode (inode, wait);
  689. unlock_kernel();
  690. return ret;
  691. }
  692. int ufs_sync_inode (struct inode *inode)
  693. {
  694. return ufs_update_inode (inode, 1);
  695. }
  696. void ufs_delete_inode (struct inode * inode)
  697. {
  698. truncate_inode_pages(&inode->i_data, 0);
  699. /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
  700. lock_kernel();
  701. mark_inode_dirty(inode);
  702. ufs_update_inode(inode, IS_SYNC(inode));
  703. inode->i_size = 0;
  704. if (inode->i_blocks)
  705. ufs_truncate (inode);
  706. ufs_free_inode (inode);
  707. unlock_kernel();
  708. }