vmx.c 113 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. MODULE_AUTHOR("Qumranet");
  42. MODULE_LICENSE("GPL");
  43. static int __read_mostly bypass_guest_pf = 1;
  44. module_param(bypass_guest_pf, bool, S_IRUGO);
  45. static int __read_mostly enable_vpid = 1;
  46. module_param_named(vpid, enable_vpid, bool, 0444);
  47. static int __read_mostly flexpriority_enabled = 1;
  48. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  49. static int __read_mostly enable_ept = 1;
  50. module_param_named(ept, enable_ept, bool, S_IRUGO);
  51. static int __read_mostly enable_unrestricted_guest = 1;
  52. module_param_named(unrestricted_guest,
  53. enable_unrestricted_guest, bool, S_IRUGO);
  54. static int __read_mostly emulate_invalid_guest_state = 0;
  55. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  56. static int __read_mostly vmm_exclusive = 1;
  57. module_param(vmm_exclusive, bool, S_IRUGO);
  58. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  59. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  60. #define KVM_GUEST_CR0_MASK \
  61. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  62. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  63. (X86_CR0_WP | X86_CR0_NE)
  64. #define KVM_VM_CR0_ALWAYS_ON \
  65. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  66. #define KVM_CR4_GUEST_OWNED_BITS \
  67. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  68. | X86_CR4_OSXMMEXCPT)
  69. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  70. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  71. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  72. /*
  73. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  74. * ple_gap: upper bound on the amount of time between two successive
  75. * executions of PAUSE in a loop. Also indicate if ple enabled.
  76. * According to test, this time is usually small than 41 cycles.
  77. * ple_window: upper bound on the amount of time a guest is allowed to execute
  78. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  79. * less than 2^12 cycles
  80. * Time is measured based on a counter that runs at the same rate as the TSC,
  81. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  82. */
  83. #define KVM_VMX_DEFAULT_PLE_GAP 41
  84. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  85. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  86. module_param(ple_gap, int, S_IRUGO);
  87. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  88. module_param(ple_window, int, S_IRUGO);
  89. #define NR_AUTOLOAD_MSRS 1
  90. struct vmcs {
  91. u32 revision_id;
  92. u32 abort;
  93. char data[0];
  94. };
  95. struct shared_msr_entry {
  96. unsigned index;
  97. u64 data;
  98. u64 mask;
  99. };
  100. struct vcpu_vmx {
  101. struct kvm_vcpu vcpu;
  102. struct list_head local_vcpus_link;
  103. unsigned long host_rsp;
  104. int launched;
  105. u8 fail;
  106. u32 idt_vectoring_info;
  107. struct shared_msr_entry *guest_msrs;
  108. int nmsrs;
  109. int save_nmsrs;
  110. #ifdef CONFIG_X86_64
  111. u64 msr_host_kernel_gs_base;
  112. u64 msr_guest_kernel_gs_base;
  113. #endif
  114. struct vmcs *vmcs;
  115. struct msr_autoload {
  116. unsigned nr;
  117. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  118. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  119. } msr_autoload;
  120. struct {
  121. int loaded;
  122. u16 fs_sel, gs_sel, ldt_sel;
  123. int gs_ldt_reload_needed;
  124. int fs_reload_needed;
  125. } host_state;
  126. struct {
  127. int vm86_active;
  128. ulong save_rflags;
  129. struct kvm_save_segment {
  130. u16 selector;
  131. unsigned long base;
  132. u32 limit;
  133. u32 ar;
  134. } tr, es, ds, fs, gs;
  135. struct {
  136. bool pending;
  137. u8 vector;
  138. unsigned rip;
  139. } irq;
  140. } rmode;
  141. int vpid;
  142. bool emulation_required;
  143. /* Support for vnmi-less CPUs */
  144. int soft_vnmi_blocked;
  145. ktime_t entry_time;
  146. s64 vnmi_blocked_time;
  147. u32 exit_reason;
  148. bool rdtscp_enabled;
  149. };
  150. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  151. {
  152. return container_of(vcpu, struct vcpu_vmx, vcpu);
  153. }
  154. static int init_rmode(struct kvm *kvm);
  155. static u64 construct_eptp(unsigned long root_hpa);
  156. static void kvm_cpu_vmxon(u64 addr);
  157. static void kvm_cpu_vmxoff(void);
  158. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  159. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  160. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  161. static unsigned long *vmx_io_bitmap_a;
  162. static unsigned long *vmx_io_bitmap_b;
  163. static unsigned long *vmx_msr_bitmap_legacy;
  164. static unsigned long *vmx_msr_bitmap_longmode;
  165. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  166. static DEFINE_SPINLOCK(vmx_vpid_lock);
  167. static struct vmcs_config {
  168. int size;
  169. int order;
  170. u32 revision_id;
  171. u32 pin_based_exec_ctrl;
  172. u32 cpu_based_exec_ctrl;
  173. u32 cpu_based_2nd_exec_ctrl;
  174. u32 vmexit_ctrl;
  175. u32 vmentry_ctrl;
  176. } vmcs_config;
  177. static struct vmx_capability {
  178. u32 ept;
  179. u32 vpid;
  180. } vmx_capability;
  181. #define VMX_SEGMENT_FIELD(seg) \
  182. [VCPU_SREG_##seg] = { \
  183. .selector = GUEST_##seg##_SELECTOR, \
  184. .base = GUEST_##seg##_BASE, \
  185. .limit = GUEST_##seg##_LIMIT, \
  186. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  187. }
  188. static struct kvm_vmx_segment_field {
  189. unsigned selector;
  190. unsigned base;
  191. unsigned limit;
  192. unsigned ar_bytes;
  193. } kvm_vmx_segment_fields[] = {
  194. VMX_SEGMENT_FIELD(CS),
  195. VMX_SEGMENT_FIELD(DS),
  196. VMX_SEGMENT_FIELD(ES),
  197. VMX_SEGMENT_FIELD(FS),
  198. VMX_SEGMENT_FIELD(GS),
  199. VMX_SEGMENT_FIELD(SS),
  200. VMX_SEGMENT_FIELD(TR),
  201. VMX_SEGMENT_FIELD(LDTR),
  202. };
  203. static u64 host_efer;
  204. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  205. /*
  206. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  207. * away by decrementing the array size.
  208. */
  209. static const u32 vmx_msr_index[] = {
  210. #ifdef CONFIG_X86_64
  211. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  212. #endif
  213. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  214. };
  215. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  216. static inline bool is_page_fault(u32 intr_info)
  217. {
  218. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  219. INTR_INFO_VALID_MASK)) ==
  220. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  221. }
  222. static inline bool is_no_device(u32 intr_info)
  223. {
  224. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  225. INTR_INFO_VALID_MASK)) ==
  226. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  227. }
  228. static inline bool is_invalid_opcode(u32 intr_info)
  229. {
  230. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  231. INTR_INFO_VALID_MASK)) ==
  232. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  233. }
  234. static inline bool is_external_interrupt(u32 intr_info)
  235. {
  236. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  237. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  238. }
  239. static inline bool is_machine_check(u32 intr_info)
  240. {
  241. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  242. INTR_INFO_VALID_MASK)) ==
  243. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  244. }
  245. static inline bool cpu_has_vmx_msr_bitmap(void)
  246. {
  247. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  248. }
  249. static inline bool cpu_has_vmx_tpr_shadow(void)
  250. {
  251. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  252. }
  253. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  254. {
  255. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  256. }
  257. static inline bool cpu_has_secondary_exec_ctrls(void)
  258. {
  259. return vmcs_config.cpu_based_exec_ctrl &
  260. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  261. }
  262. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  263. {
  264. return vmcs_config.cpu_based_2nd_exec_ctrl &
  265. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  266. }
  267. static inline bool cpu_has_vmx_flexpriority(void)
  268. {
  269. return cpu_has_vmx_tpr_shadow() &&
  270. cpu_has_vmx_virtualize_apic_accesses();
  271. }
  272. static inline bool cpu_has_vmx_ept_execute_only(void)
  273. {
  274. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  275. }
  276. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  277. {
  278. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  279. }
  280. static inline bool cpu_has_vmx_eptp_writeback(void)
  281. {
  282. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  283. }
  284. static inline bool cpu_has_vmx_ept_2m_page(void)
  285. {
  286. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  287. }
  288. static inline bool cpu_has_vmx_ept_1g_page(void)
  289. {
  290. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  291. }
  292. static inline bool cpu_has_vmx_ept_4levels(void)
  293. {
  294. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  295. }
  296. static inline bool cpu_has_vmx_invept_individual_addr(void)
  297. {
  298. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  299. }
  300. static inline bool cpu_has_vmx_invept_context(void)
  301. {
  302. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  303. }
  304. static inline bool cpu_has_vmx_invept_global(void)
  305. {
  306. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  307. }
  308. static inline bool cpu_has_vmx_invvpid_single(void)
  309. {
  310. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  311. }
  312. static inline bool cpu_has_vmx_invvpid_global(void)
  313. {
  314. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  315. }
  316. static inline bool cpu_has_vmx_ept(void)
  317. {
  318. return vmcs_config.cpu_based_2nd_exec_ctrl &
  319. SECONDARY_EXEC_ENABLE_EPT;
  320. }
  321. static inline bool cpu_has_vmx_unrestricted_guest(void)
  322. {
  323. return vmcs_config.cpu_based_2nd_exec_ctrl &
  324. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  325. }
  326. static inline bool cpu_has_vmx_ple(void)
  327. {
  328. return vmcs_config.cpu_based_2nd_exec_ctrl &
  329. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  330. }
  331. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  332. {
  333. return flexpriority_enabled && irqchip_in_kernel(kvm);
  334. }
  335. static inline bool cpu_has_vmx_vpid(void)
  336. {
  337. return vmcs_config.cpu_based_2nd_exec_ctrl &
  338. SECONDARY_EXEC_ENABLE_VPID;
  339. }
  340. static inline bool cpu_has_vmx_rdtscp(void)
  341. {
  342. return vmcs_config.cpu_based_2nd_exec_ctrl &
  343. SECONDARY_EXEC_RDTSCP;
  344. }
  345. static inline bool cpu_has_virtual_nmis(void)
  346. {
  347. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  348. }
  349. static inline bool cpu_has_vmx_wbinvd_exit(void)
  350. {
  351. return vmcs_config.cpu_based_2nd_exec_ctrl &
  352. SECONDARY_EXEC_WBINVD_EXITING;
  353. }
  354. static inline bool report_flexpriority(void)
  355. {
  356. return flexpriority_enabled;
  357. }
  358. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  359. {
  360. int i;
  361. for (i = 0; i < vmx->nmsrs; ++i)
  362. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  363. return i;
  364. return -1;
  365. }
  366. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  367. {
  368. struct {
  369. u64 vpid : 16;
  370. u64 rsvd : 48;
  371. u64 gva;
  372. } operand = { vpid, 0, gva };
  373. asm volatile (__ex(ASM_VMX_INVVPID)
  374. /* CF==1 or ZF==1 --> rc = -1 */
  375. "; ja 1f ; ud2 ; 1:"
  376. : : "a"(&operand), "c"(ext) : "cc", "memory");
  377. }
  378. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  379. {
  380. struct {
  381. u64 eptp, gpa;
  382. } operand = {eptp, gpa};
  383. asm volatile (__ex(ASM_VMX_INVEPT)
  384. /* CF==1 or ZF==1 --> rc = -1 */
  385. "; ja 1f ; ud2 ; 1:\n"
  386. : : "a" (&operand), "c" (ext) : "cc", "memory");
  387. }
  388. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  389. {
  390. int i;
  391. i = __find_msr_index(vmx, msr);
  392. if (i >= 0)
  393. return &vmx->guest_msrs[i];
  394. return NULL;
  395. }
  396. static void vmcs_clear(struct vmcs *vmcs)
  397. {
  398. u64 phys_addr = __pa(vmcs);
  399. u8 error;
  400. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  401. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  402. : "cc", "memory");
  403. if (error)
  404. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  405. vmcs, phys_addr);
  406. }
  407. static void vmcs_load(struct vmcs *vmcs)
  408. {
  409. u64 phys_addr = __pa(vmcs);
  410. u8 error;
  411. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  412. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  413. : "cc", "memory");
  414. if (error)
  415. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  416. vmcs, phys_addr);
  417. }
  418. static void __vcpu_clear(void *arg)
  419. {
  420. struct vcpu_vmx *vmx = arg;
  421. int cpu = raw_smp_processor_id();
  422. if (vmx->vcpu.cpu == cpu)
  423. vmcs_clear(vmx->vmcs);
  424. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  425. per_cpu(current_vmcs, cpu) = NULL;
  426. rdtscll(vmx->vcpu.arch.host_tsc);
  427. list_del(&vmx->local_vcpus_link);
  428. vmx->vcpu.cpu = -1;
  429. vmx->launched = 0;
  430. }
  431. static void vcpu_clear(struct vcpu_vmx *vmx)
  432. {
  433. if (vmx->vcpu.cpu == -1)
  434. return;
  435. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  436. }
  437. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  438. {
  439. if (vmx->vpid == 0)
  440. return;
  441. if (cpu_has_vmx_invvpid_single())
  442. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  443. }
  444. static inline void vpid_sync_vcpu_global(void)
  445. {
  446. if (cpu_has_vmx_invvpid_global())
  447. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  448. }
  449. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  450. {
  451. if (cpu_has_vmx_invvpid_single())
  452. vpid_sync_vcpu_single(vmx);
  453. else
  454. vpid_sync_vcpu_global();
  455. }
  456. static inline void ept_sync_global(void)
  457. {
  458. if (cpu_has_vmx_invept_global())
  459. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  460. }
  461. static inline void ept_sync_context(u64 eptp)
  462. {
  463. if (enable_ept) {
  464. if (cpu_has_vmx_invept_context())
  465. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  466. else
  467. ept_sync_global();
  468. }
  469. }
  470. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  471. {
  472. if (enable_ept) {
  473. if (cpu_has_vmx_invept_individual_addr())
  474. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  475. eptp, gpa);
  476. else
  477. ept_sync_context(eptp);
  478. }
  479. }
  480. static unsigned long vmcs_readl(unsigned long field)
  481. {
  482. unsigned long value;
  483. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  484. : "=a"(value) : "d"(field) : "cc");
  485. return value;
  486. }
  487. static u16 vmcs_read16(unsigned long field)
  488. {
  489. return vmcs_readl(field);
  490. }
  491. static u32 vmcs_read32(unsigned long field)
  492. {
  493. return vmcs_readl(field);
  494. }
  495. static u64 vmcs_read64(unsigned long field)
  496. {
  497. #ifdef CONFIG_X86_64
  498. return vmcs_readl(field);
  499. #else
  500. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  501. #endif
  502. }
  503. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  504. {
  505. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  506. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  507. dump_stack();
  508. }
  509. static void vmcs_writel(unsigned long field, unsigned long value)
  510. {
  511. u8 error;
  512. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  513. : "=q"(error) : "a"(value), "d"(field) : "cc");
  514. if (unlikely(error))
  515. vmwrite_error(field, value);
  516. }
  517. static void vmcs_write16(unsigned long field, u16 value)
  518. {
  519. vmcs_writel(field, value);
  520. }
  521. static void vmcs_write32(unsigned long field, u32 value)
  522. {
  523. vmcs_writel(field, value);
  524. }
  525. static void vmcs_write64(unsigned long field, u64 value)
  526. {
  527. vmcs_writel(field, value);
  528. #ifndef CONFIG_X86_64
  529. asm volatile ("");
  530. vmcs_writel(field+1, value >> 32);
  531. #endif
  532. }
  533. static void vmcs_clear_bits(unsigned long field, u32 mask)
  534. {
  535. vmcs_writel(field, vmcs_readl(field) & ~mask);
  536. }
  537. static void vmcs_set_bits(unsigned long field, u32 mask)
  538. {
  539. vmcs_writel(field, vmcs_readl(field) | mask);
  540. }
  541. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  542. {
  543. u32 eb;
  544. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  545. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  546. if ((vcpu->guest_debug &
  547. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  548. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  549. eb |= 1u << BP_VECTOR;
  550. if (to_vmx(vcpu)->rmode.vm86_active)
  551. eb = ~0;
  552. if (enable_ept)
  553. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  554. if (vcpu->fpu_active)
  555. eb &= ~(1u << NM_VECTOR);
  556. vmcs_write32(EXCEPTION_BITMAP, eb);
  557. }
  558. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  559. {
  560. unsigned i;
  561. struct msr_autoload *m = &vmx->msr_autoload;
  562. for (i = 0; i < m->nr; ++i)
  563. if (m->guest[i].index == msr)
  564. break;
  565. if (i == m->nr)
  566. return;
  567. --m->nr;
  568. m->guest[i] = m->guest[m->nr];
  569. m->host[i] = m->host[m->nr];
  570. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  571. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  572. }
  573. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  574. u64 guest_val, u64 host_val)
  575. {
  576. unsigned i;
  577. struct msr_autoload *m = &vmx->msr_autoload;
  578. for (i = 0; i < m->nr; ++i)
  579. if (m->guest[i].index == msr)
  580. break;
  581. if (i == m->nr) {
  582. ++m->nr;
  583. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  584. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  585. }
  586. m->guest[i].index = msr;
  587. m->guest[i].value = guest_val;
  588. m->host[i].index = msr;
  589. m->host[i].value = host_val;
  590. }
  591. static void reload_tss(void)
  592. {
  593. /*
  594. * VT restores TR but not its size. Useless.
  595. */
  596. struct desc_ptr gdt;
  597. struct desc_struct *descs;
  598. native_store_gdt(&gdt);
  599. descs = (void *)gdt.address;
  600. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  601. load_TR_desc();
  602. }
  603. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  604. {
  605. u64 guest_efer;
  606. u64 ignore_bits;
  607. guest_efer = vmx->vcpu.arch.efer;
  608. /*
  609. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  610. * outside long mode
  611. */
  612. ignore_bits = EFER_NX | EFER_SCE;
  613. #ifdef CONFIG_X86_64
  614. ignore_bits |= EFER_LMA | EFER_LME;
  615. /* SCE is meaningful only in long mode on Intel */
  616. if (guest_efer & EFER_LMA)
  617. ignore_bits &= ~(u64)EFER_SCE;
  618. #endif
  619. guest_efer &= ~ignore_bits;
  620. guest_efer |= host_efer & ignore_bits;
  621. vmx->guest_msrs[efer_offset].data = guest_efer;
  622. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  623. clear_atomic_switch_msr(vmx, MSR_EFER);
  624. /* On ept, can't emulate nx, and must switch nx atomically */
  625. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  626. guest_efer = vmx->vcpu.arch.efer;
  627. if (!(guest_efer & EFER_LMA))
  628. guest_efer &= ~EFER_LME;
  629. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  630. return false;
  631. }
  632. return true;
  633. }
  634. static unsigned long segment_base(u16 selector)
  635. {
  636. struct desc_ptr gdt;
  637. struct desc_struct *d;
  638. unsigned long table_base;
  639. unsigned long v;
  640. if (!(selector & ~3))
  641. return 0;
  642. native_store_gdt(&gdt);
  643. table_base = gdt.address;
  644. if (selector & 4) { /* from ldt */
  645. u16 ldt_selector = kvm_read_ldt();
  646. if (!(ldt_selector & ~3))
  647. return 0;
  648. table_base = segment_base(ldt_selector);
  649. }
  650. d = (struct desc_struct *)(table_base + (selector & ~7));
  651. v = get_desc_base(d);
  652. #ifdef CONFIG_X86_64
  653. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  654. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  655. #endif
  656. return v;
  657. }
  658. static inline unsigned long kvm_read_tr_base(void)
  659. {
  660. u16 tr;
  661. asm("str %0" : "=g"(tr));
  662. return segment_base(tr);
  663. }
  664. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  665. {
  666. struct vcpu_vmx *vmx = to_vmx(vcpu);
  667. int i;
  668. if (vmx->host_state.loaded)
  669. return;
  670. vmx->host_state.loaded = 1;
  671. /*
  672. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  673. * allow segment selectors with cpl > 0 or ti == 1.
  674. */
  675. vmx->host_state.ldt_sel = kvm_read_ldt();
  676. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  677. vmx->host_state.fs_sel = kvm_read_fs();
  678. if (!(vmx->host_state.fs_sel & 7)) {
  679. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  680. vmx->host_state.fs_reload_needed = 0;
  681. } else {
  682. vmcs_write16(HOST_FS_SELECTOR, 0);
  683. vmx->host_state.fs_reload_needed = 1;
  684. }
  685. vmx->host_state.gs_sel = kvm_read_gs();
  686. if (!(vmx->host_state.gs_sel & 7))
  687. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  688. else {
  689. vmcs_write16(HOST_GS_SELECTOR, 0);
  690. vmx->host_state.gs_ldt_reload_needed = 1;
  691. }
  692. #ifdef CONFIG_X86_64
  693. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  694. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  695. #else
  696. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  697. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  698. #endif
  699. #ifdef CONFIG_X86_64
  700. if (is_long_mode(&vmx->vcpu)) {
  701. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  702. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  703. }
  704. #endif
  705. for (i = 0; i < vmx->save_nmsrs; ++i)
  706. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  707. vmx->guest_msrs[i].data,
  708. vmx->guest_msrs[i].mask);
  709. }
  710. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  711. {
  712. unsigned long flags;
  713. if (!vmx->host_state.loaded)
  714. return;
  715. ++vmx->vcpu.stat.host_state_reload;
  716. vmx->host_state.loaded = 0;
  717. if (vmx->host_state.fs_reload_needed)
  718. kvm_load_fs(vmx->host_state.fs_sel);
  719. if (vmx->host_state.gs_ldt_reload_needed) {
  720. kvm_load_ldt(vmx->host_state.ldt_sel);
  721. /*
  722. * If we have to reload gs, we must take care to
  723. * preserve our gs base.
  724. */
  725. local_irq_save(flags);
  726. kvm_load_gs(vmx->host_state.gs_sel);
  727. #ifdef CONFIG_X86_64
  728. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  729. #endif
  730. local_irq_restore(flags);
  731. }
  732. reload_tss();
  733. #ifdef CONFIG_X86_64
  734. if (is_long_mode(&vmx->vcpu)) {
  735. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  736. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  737. }
  738. #endif
  739. if (current_thread_info()->status & TS_USEDFPU)
  740. clts();
  741. }
  742. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  743. {
  744. preempt_disable();
  745. __vmx_load_host_state(vmx);
  746. preempt_enable();
  747. }
  748. /*
  749. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  750. * vcpu mutex is already taken.
  751. */
  752. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  753. {
  754. struct vcpu_vmx *vmx = to_vmx(vcpu);
  755. u64 tsc_this, delta, new_offset;
  756. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  757. if (!vmm_exclusive)
  758. kvm_cpu_vmxon(phys_addr);
  759. else if (vcpu->cpu != cpu)
  760. vcpu_clear(vmx);
  761. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  762. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  763. vmcs_load(vmx->vmcs);
  764. }
  765. if (vcpu->cpu != cpu) {
  766. struct desc_ptr dt;
  767. unsigned long sysenter_esp;
  768. kvm_migrate_timers(vcpu);
  769. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  770. local_irq_disable();
  771. list_add(&vmx->local_vcpus_link,
  772. &per_cpu(vcpus_on_cpu, cpu));
  773. local_irq_enable();
  774. vcpu->cpu = cpu;
  775. /*
  776. * Linux uses per-cpu TSS and GDT, so set these when switching
  777. * processors.
  778. */
  779. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  780. native_store_gdt(&dt);
  781. vmcs_writel(HOST_GDTR_BASE, dt.address); /* 22.2.4 */
  782. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  783. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  784. /*
  785. * Make sure the time stamp counter is monotonous.
  786. */
  787. rdtscll(tsc_this);
  788. if (tsc_this < vcpu->arch.host_tsc) {
  789. delta = vcpu->arch.host_tsc - tsc_this;
  790. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  791. vmcs_write64(TSC_OFFSET, new_offset);
  792. }
  793. }
  794. }
  795. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  796. {
  797. __vmx_load_host_state(to_vmx(vcpu));
  798. if (!vmm_exclusive) {
  799. __vcpu_clear(to_vmx(vcpu));
  800. kvm_cpu_vmxoff();
  801. }
  802. }
  803. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  804. {
  805. ulong cr0;
  806. if (vcpu->fpu_active)
  807. return;
  808. vcpu->fpu_active = 1;
  809. cr0 = vmcs_readl(GUEST_CR0);
  810. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  811. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  812. vmcs_writel(GUEST_CR0, cr0);
  813. update_exception_bitmap(vcpu);
  814. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  815. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  816. }
  817. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  818. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  819. {
  820. vmx_decache_cr0_guest_bits(vcpu);
  821. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  822. update_exception_bitmap(vcpu);
  823. vcpu->arch.cr0_guest_owned_bits = 0;
  824. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  825. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  826. }
  827. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  828. {
  829. unsigned long rflags, save_rflags;
  830. rflags = vmcs_readl(GUEST_RFLAGS);
  831. if (to_vmx(vcpu)->rmode.vm86_active) {
  832. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  833. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  834. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  835. }
  836. return rflags;
  837. }
  838. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  839. {
  840. if (to_vmx(vcpu)->rmode.vm86_active) {
  841. to_vmx(vcpu)->rmode.save_rflags = rflags;
  842. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  843. }
  844. vmcs_writel(GUEST_RFLAGS, rflags);
  845. }
  846. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  847. {
  848. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  849. int ret = 0;
  850. if (interruptibility & GUEST_INTR_STATE_STI)
  851. ret |= KVM_X86_SHADOW_INT_STI;
  852. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  853. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  854. return ret & mask;
  855. }
  856. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  857. {
  858. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  859. u32 interruptibility = interruptibility_old;
  860. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  861. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  862. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  863. else if (mask & KVM_X86_SHADOW_INT_STI)
  864. interruptibility |= GUEST_INTR_STATE_STI;
  865. if ((interruptibility != interruptibility_old))
  866. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  867. }
  868. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  869. {
  870. unsigned long rip;
  871. rip = kvm_rip_read(vcpu);
  872. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  873. kvm_rip_write(vcpu, rip);
  874. /* skipping an emulated instruction also counts */
  875. vmx_set_interrupt_shadow(vcpu, 0);
  876. }
  877. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  878. bool has_error_code, u32 error_code,
  879. bool reinject)
  880. {
  881. struct vcpu_vmx *vmx = to_vmx(vcpu);
  882. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  883. if (has_error_code) {
  884. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  885. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  886. }
  887. if (vmx->rmode.vm86_active) {
  888. vmx->rmode.irq.pending = true;
  889. vmx->rmode.irq.vector = nr;
  890. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  891. if (kvm_exception_is_soft(nr))
  892. vmx->rmode.irq.rip +=
  893. vmx->vcpu.arch.event_exit_inst_len;
  894. intr_info |= INTR_TYPE_SOFT_INTR;
  895. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  896. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  897. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  898. return;
  899. }
  900. if (kvm_exception_is_soft(nr)) {
  901. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  902. vmx->vcpu.arch.event_exit_inst_len);
  903. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  904. } else
  905. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  906. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  907. }
  908. static bool vmx_rdtscp_supported(void)
  909. {
  910. return cpu_has_vmx_rdtscp();
  911. }
  912. /*
  913. * Swap MSR entry in host/guest MSR entry array.
  914. */
  915. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  916. {
  917. struct shared_msr_entry tmp;
  918. tmp = vmx->guest_msrs[to];
  919. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  920. vmx->guest_msrs[from] = tmp;
  921. }
  922. /*
  923. * Set up the vmcs to automatically save and restore system
  924. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  925. * mode, as fiddling with msrs is very expensive.
  926. */
  927. static void setup_msrs(struct vcpu_vmx *vmx)
  928. {
  929. int save_nmsrs, index;
  930. unsigned long *msr_bitmap;
  931. vmx_load_host_state(vmx);
  932. save_nmsrs = 0;
  933. #ifdef CONFIG_X86_64
  934. if (is_long_mode(&vmx->vcpu)) {
  935. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  936. if (index >= 0)
  937. move_msr_up(vmx, index, save_nmsrs++);
  938. index = __find_msr_index(vmx, MSR_LSTAR);
  939. if (index >= 0)
  940. move_msr_up(vmx, index, save_nmsrs++);
  941. index = __find_msr_index(vmx, MSR_CSTAR);
  942. if (index >= 0)
  943. move_msr_up(vmx, index, save_nmsrs++);
  944. index = __find_msr_index(vmx, MSR_TSC_AUX);
  945. if (index >= 0 && vmx->rdtscp_enabled)
  946. move_msr_up(vmx, index, save_nmsrs++);
  947. /*
  948. * MSR_K6_STAR is only needed on long mode guests, and only
  949. * if efer.sce is enabled.
  950. */
  951. index = __find_msr_index(vmx, MSR_K6_STAR);
  952. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  953. move_msr_up(vmx, index, save_nmsrs++);
  954. }
  955. #endif
  956. index = __find_msr_index(vmx, MSR_EFER);
  957. if (index >= 0 && update_transition_efer(vmx, index))
  958. move_msr_up(vmx, index, save_nmsrs++);
  959. vmx->save_nmsrs = save_nmsrs;
  960. if (cpu_has_vmx_msr_bitmap()) {
  961. if (is_long_mode(&vmx->vcpu))
  962. msr_bitmap = vmx_msr_bitmap_longmode;
  963. else
  964. msr_bitmap = vmx_msr_bitmap_legacy;
  965. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  966. }
  967. }
  968. /*
  969. * reads and returns guest's timestamp counter "register"
  970. * guest_tsc = host_tsc + tsc_offset -- 21.3
  971. */
  972. static u64 guest_read_tsc(void)
  973. {
  974. u64 host_tsc, tsc_offset;
  975. rdtscll(host_tsc);
  976. tsc_offset = vmcs_read64(TSC_OFFSET);
  977. return host_tsc + tsc_offset;
  978. }
  979. /*
  980. * writes 'guest_tsc' into guest's timestamp counter "register"
  981. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  982. */
  983. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  984. {
  985. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  986. }
  987. /*
  988. * Reads an msr value (of 'msr_index') into 'pdata'.
  989. * Returns 0 on success, non-0 otherwise.
  990. * Assumes vcpu_load() was already called.
  991. */
  992. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  993. {
  994. u64 data;
  995. struct shared_msr_entry *msr;
  996. if (!pdata) {
  997. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  998. return -EINVAL;
  999. }
  1000. switch (msr_index) {
  1001. #ifdef CONFIG_X86_64
  1002. case MSR_FS_BASE:
  1003. data = vmcs_readl(GUEST_FS_BASE);
  1004. break;
  1005. case MSR_GS_BASE:
  1006. data = vmcs_readl(GUEST_GS_BASE);
  1007. break;
  1008. case MSR_KERNEL_GS_BASE:
  1009. vmx_load_host_state(to_vmx(vcpu));
  1010. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1011. break;
  1012. #endif
  1013. case MSR_EFER:
  1014. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1015. case MSR_IA32_TSC:
  1016. data = guest_read_tsc();
  1017. break;
  1018. case MSR_IA32_SYSENTER_CS:
  1019. data = vmcs_read32(GUEST_SYSENTER_CS);
  1020. break;
  1021. case MSR_IA32_SYSENTER_EIP:
  1022. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1023. break;
  1024. case MSR_IA32_SYSENTER_ESP:
  1025. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1026. break;
  1027. case MSR_TSC_AUX:
  1028. if (!to_vmx(vcpu)->rdtscp_enabled)
  1029. return 1;
  1030. /* Otherwise falls through */
  1031. default:
  1032. vmx_load_host_state(to_vmx(vcpu));
  1033. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1034. if (msr) {
  1035. vmx_load_host_state(to_vmx(vcpu));
  1036. data = msr->data;
  1037. break;
  1038. }
  1039. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1040. }
  1041. *pdata = data;
  1042. return 0;
  1043. }
  1044. /*
  1045. * Writes msr value into into the appropriate "register".
  1046. * Returns 0 on success, non-0 otherwise.
  1047. * Assumes vcpu_load() was already called.
  1048. */
  1049. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1050. {
  1051. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1052. struct shared_msr_entry *msr;
  1053. u64 host_tsc;
  1054. int ret = 0;
  1055. switch (msr_index) {
  1056. case MSR_EFER:
  1057. vmx_load_host_state(vmx);
  1058. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1059. break;
  1060. #ifdef CONFIG_X86_64
  1061. case MSR_FS_BASE:
  1062. vmcs_writel(GUEST_FS_BASE, data);
  1063. break;
  1064. case MSR_GS_BASE:
  1065. vmcs_writel(GUEST_GS_BASE, data);
  1066. break;
  1067. case MSR_KERNEL_GS_BASE:
  1068. vmx_load_host_state(vmx);
  1069. vmx->msr_guest_kernel_gs_base = data;
  1070. break;
  1071. #endif
  1072. case MSR_IA32_SYSENTER_CS:
  1073. vmcs_write32(GUEST_SYSENTER_CS, data);
  1074. break;
  1075. case MSR_IA32_SYSENTER_EIP:
  1076. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1077. break;
  1078. case MSR_IA32_SYSENTER_ESP:
  1079. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1080. break;
  1081. case MSR_IA32_TSC:
  1082. rdtscll(host_tsc);
  1083. guest_write_tsc(data, host_tsc);
  1084. break;
  1085. case MSR_IA32_CR_PAT:
  1086. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1087. vmcs_write64(GUEST_IA32_PAT, data);
  1088. vcpu->arch.pat = data;
  1089. break;
  1090. }
  1091. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1092. break;
  1093. case MSR_TSC_AUX:
  1094. if (!vmx->rdtscp_enabled)
  1095. return 1;
  1096. /* Check reserved bit, higher 32 bits should be zero */
  1097. if ((data >> 32) != 0)
  1098. return 1;
  1099. /* Otherwise falls through */
  1100. default:
  1101. msr = find_msr_entry(vmx, msr_index);
  1102. if (msr) {
  1103. vmx_load_host_state(vmx);
  1104. msr->data = data;
  1105. break;
  1106. }
  1107. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1108. }
  1109. return ret;
  1110. }
  1111. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1112. {
  1113. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1114. switch (reg) {
  1115. case VCPU_REGS_RSP:
  1116. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1117. break;
  1118. case VCPU_REGS_RIP:
  1119. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1120. break;
  1121. case VCPU_EXREG_PDPTR:
  1122. if (enable_ept)
  1123. ept_save_pdptrs(vcpu);
  1124. break;
  1125. default:
  1126. break;
  1127. }
  1128. }
  1129. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1130. {
  1131. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1132. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1133. else
  1134. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1135. update_exception_bitmap(vcpu);
  1136. }
  1137. static __init int cpu_has_kvm_support(void)
  1138. {
  1139. return cpu_has_vmx();
  1140. }
  1141. static __init int vmx_disabled_by_bios(void)
  1142. {
  1143. u64 msr;
  1144. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1145. if (msr & FEATURE_CONTROL_LOCKED) {
  1146. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1147. && tboot_enabled())
  1148. return 1;
  1149. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1150. && !tboot_enabled())
  1151. return 1;
  1152. }
  1153. return 0;
  1154. /* locked but not enabled */
  1155. }
  1156. static void kvm_cpu_vmxon(u64 addr)
  1157. {
  1158. asm volatile (ASM_VMX_VMXON_RAX
  1159. : : "a"(&addr), "m"(addr)
  1160. : "memory", "cc");
  1161. }
  1162. static int hardware_enable(void *garbage)
  1163. {
  1164. int cpu = raw_smp_processor_id();
  1165. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1166. u64 old, test_bits;
  1167. if (read_cr4() & X86_CR4_VMXE)
  1168. return -EBUSY;
  1169. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1170. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1171. test_bits = FEATURE_CONTROL_LOCKED;
  1172. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1173. if (tboot_enabled())
  1174. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1175. if ((old & test_bits) != test_bits) {
  1176. /* enable and lock */
  1177. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1178. }
  1179. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1180. if (vmm_exclusive) {
  1181. kvm_cpu_vmxon(phys_addr);
  1182. ept_sync_global();
  1183. }
  1184. return 0;
  1185. }
  1186. static void vmclear_local_vcpus(void)
  1187. {
  1188. int cpu = raw_smp_processor_id();
  1189. struct vcpu_vmx *vmx, *n;
  1190. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1191. local_vcpus_link)
  1192. __vcpu_clear(vmx);
  1193. }
  1194. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1195. * tricks.
  1196. */
  1197. static void kvm_cpu_vmxoff(void)
  1198. {
  1199. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1200. }
  1201. static void hardware_disable(void *garbage)
  1202. {
  1203. if (vmm_exclusive) {
  1204. vmclear_local_vcpus();
  1205. kvm_cpu_vmxoff();
  1206. }
  1207. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1208. }
  1209. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1210. u32 msr, u32 *result)
  1211. {
  1212. u32 vmx_msr_low, vmx_msr_high;
  1213. u32 ctl = ctl_min | ctl_opt;
  1214. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1215. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1216. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1217. /* Ensure minimum (required) set of control bits are supported. */
  1218. if (ctl_min & ~ctl)
  1219. return -EIO;
  1220. *result = ctl;
  1221. return 0;
  1222. }
  1223. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1224. {
  1225. u32 vmx_msr_low, vmx_msr_high;
  1226. u32 min, opt, min2, opt2;
  1227. u32 _pin_based_exec_control = 0;
  1228. u32 _cpu_based_exec_control = 0;
  1229. u32 _cpu_based_2nd_exec_control = 0;
  1230. u32 _vmexit_control = 0;
  1231. u32 _vmentry_control = 0;
  1232. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1233. opt = PIN_BASED_VIRTUAL_NMIS;
  1234. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1235. &_pin_based_exec_control) < 0)
  1236. return -EIO;
  1237. min = CPU_BASED_HLT_EXITING |
  1238. #ifdef CONFIG_X86_64
  1239. CPU_BASED_CR8_LOAD_EXITING |
  1240. CPU_BASED_CR8_STORE_EXITING |
  1241. #endif
  1242. CPU_BASED_CR3_LOAD_EXITING |
  1243. CPU_BASED_CR3_STORE_EXITING |
  1244. CPU_BASED_USE_IO_BITMAPS |
  1245. CPU_BASED_MOV_DR_EXITING |
  1246. CPU_BASED_USE_TSC_OFFSETING |
  1247. CPU_BASED_MWAIT_EXITING |
  1248. CPU_BASED_MONITOR_EXITING |
  1249. CPU_BASED_INVLPG_EXITING;
  1250. opt = CPU_BASED_TPR_SHADOW |
  1251. CPU_BASED_USE_MSR_BITMAPS |
  1252. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1253. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1254. &_cpu_based_exec_control) < 0)
  1255. return -EIO;
  1256. #ifdef CONFIG_X86_64
  1257. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1258. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1259. ~CPU_BASED_CR8_STORE_EXITING;
  1260. #endif
  1261. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1262. min2 = 0;
  1263. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1264. SECONDARY_EXEC_WBINVD_EXITING |
  1265. SECONDARY_EXEC_ENABLE_VPID |
  1266. SECONDARY_EXEC_ENABLE_EPT |
  1267. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1268. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1269. SECONDARY_EXEC_RDTSCP;
  1270. if (adjust_vmx_controls(min2, opt2,
  1271. MSR_IA32_VMX_PROCBASED_CTLS2,
  1272. &_cpu_based_2nd_exec_control) < 0)
  1273. return -EIO;
  1274. }
  1275. #ifndef CONFIG_X86_64
  1276. if (!(_cpu_based_2nd_exec_control &
  1277. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1278. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1279. #endif
  1280. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1281. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1282. enabled */
  1283. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1284. CPU_BASED_CR3_STORE_EXITING |
  1285. CPU_BASED_INVLPG_EXITING);
  1286. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1287. vmx_capability.ept, vmx_capability.vpid);
  1288. }
  1289. min = 0;
  1290. #ifdef CONFIG_X86_64
  1291. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1292. #endif
  1293. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1294. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1295. &_vmexit_control) < 0)
  1296. return -EIO;
  1297. min = 0;
  1298. opt = VM_ENTRY_LOAD_IA32_PAT;
  1299. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1300. &_vmentry_control) < 0)
  1301. return -EIO;
  1302. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1303. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1304. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1305. return -EIO;
  1306. #ifdef CONFIG_X86_64
  1307. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1308. if (vmx_msr_high & (1u<<16))
  1309. return -EIO;
  1310. #endif
  1311. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1312. if (((vmx_msr_high >> 18) & 15) != 6)
  1313. return -EIO;
  1314. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1315. vmcs_conf->order = get_order(vmcs_config.size);
  1316. vmcs_conf->revision_id = vmx_msr_low;
  1317. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1318. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1319. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1320. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1321. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1322. return 0;
  1323. }
  1324. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1325. {
  1326. int node = cpu_to_node(cpu);
  1327. struct page *pages;
  1328. struct vmcs *vmcs;
  1329. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1330. if (!pages)
  1331. return NULL;
  1332. vmcs = page_address(pages);
  1333. memset(vmcs, 0, vmcs_config.size);
  1334. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1335. return vmcs;
  1336. }
  1337. static struct vmcs *alloc_vmcs(void)
  1338. {
  1339. return alloc_vmcs_cpu(raw_smp_processor_id());
  1340. }
  1341. static void free_vmcs(struct vmcs *vmcs)
  1342. {
  1343. free_pages((unsigned long)vmcs, vmcs_config.order);
  1344. }
  1345. static void free_kvm_area(void)
  1346. {
  1347. int cpu;
  1348. for_each_possible_cpu(cpu) {
  1349. free_vmcs(per_cpu(vmxarea, cpu));
  1350. per_cpu(vmxarea, cpu) = NULL;
  1351. }
  1352. }
  1353. static __init int alloc_kvm_area(void)
  1354. {
  1355. int cpu;
  1356. for_each_possible_cpu(cpu) {
  1357. struct vmcs *vmcs;
  1358. vmcs = alloc_vmcs_cpu(cpu);
  1359. if (!vmcs) {
  1360. free_kvm_area();
  1361. return -ENOMEM;
  1362. }
  1363. per_cpu(vmxarea, cpu) = vmcs;
  1364. }
  1365. return 0;
  1366. }
  1367. static __init int hardware_setup(void)
  1368. {
  1369. if (setup_vmcs_config(&vmcs_config) < 0)
  1370. return -EIO;
  1371. if (boot_cpu_has(X86_FEATURE_NX))
  1372. kvm_enable_efer_bits(EFER_NX);
  1373. if (!cpu_has_vmx_vpid())
  1374. enable_vpid = 0;
  1375. if (!cpu_has_vmx_ept() ||
  1376. !cpu_has_vmx_ept_4levels()) {
  1377. enable_ept = 0;
  1378. enable_unrestricted_guest = 0;
  1379. }
  1380. if (!cpu_has_vmx_unrestricted_guest())
  1381. enable_unrestricted_guest = 0;
  1382. if (!cpu_has_vmx_flexpriority())
  1383. flexpriority_enabled = 0;
  1384. if (!cpu_has_vmx_tpr_shadow())
  1385. kvm_x86_ops->update_cr8_intercept = NULL;
  1386. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1387. kvm_disable_largepages();
  1388. if (!cpu_has_vmx_ple())
  1389. ple_gap = 0;
  1390. return alloc_kvm_area();
  1391. }
  1392. static __exit void hardware_unsetup(void)
  1393. {
  1394. free_kvm_area();
  1395. }
  1396. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1397. {
  1398. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1399. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1400. vmcs_write16(sf->selector, save->selector);
  1401. vmcs_writel(sf->base, save->base);
  1402. vmcs_write32(sf->limit, save->limit);
  1403. vmcs_write32(sf->ar_bytes, save->ar);
  1404. } else {
  1405. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1406. << AR_DPL_SHIFT;
  1407. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1408. }
  1409. }
  1410. static void enter_pmode(struct kvm_vcpu *vcpu)
  1411. {
  1412. unsigned long flags;
  1413. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1414. vmx->emulation_required = 1;
  1415. vmx->rmode.vm86_active = 0;
  1416. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1417. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1418. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1419. flags = vmcs_readl(GUEST_RFLAGS);
  1420. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1421. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1422. vmcs_writel(GUEST_RFLAGS, flags);
  1423. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1424. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1425. update_exception_bitmap(vcpu);
  1426. if (emulate_invalid_guest_state)
  1427. return;
  1428. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1429. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1430. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1431. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1432. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1433. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1434. vmcs_write16(GUEST_CS_SELECTOR,
  1435. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1436. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1437. }
  1438. static gva_t rmode_tss_base(struct kvm *kvm)
  1439. {
  1440. if (!kvm->arch.tss_addr) {
  1441. struct kvm_memslots *slots;
  1442. gfn_t base_gfn;
  1443. slots = kvm_memslots(kvm);
  1444. base_gfn = slots->memslots[0].base_gfn +
  1445. kvm->memslots->memslots[0].npages - 3;
  1446. return base_gfn << PAGE_SHIFT;
  1447. }
  1448. return kvm->arch.tss_addr;
  1449. }
  1450. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1451. {
  1452. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1453. save->selector = vmcs_read16(sf->selector);
  1454. save->base = vmcs_readl(sf->base);
  1455. save->limit = vmcs_read32(sf->limit);
  1456. save->ar = vmcs_read32(sf->ar_bytes);
  1457. vmcs_write16(sf->selector, save->base >> 4);
  1458. vmcs_write32(sf->base, save->base & 0xfffff);
  1459. vmcs_write32(sf->limit, 0xffff);
  1460. vmcs_write32(sf->ar_bytes, 0xf3);
  1461. }
  1462. static void enter_rmode(struct kvm_vcpu *vcpu)
  1463. {
  1464. unsigned long flags;
  1465. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1466. if (enable_unrestricted_guest)
  1467. return;
  1468. vmx->emulation_required = 1;
  1469. vmx->rmode.vm86_active = 1;
  1470. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1471. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1472. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1473. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1474. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1475. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1476. flags = vmcs_readl(GUEST_RFLAGS);
  1477. vmx->rmode.save_rflags = flags;
  1478. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1479. vmcs_writel(GUEST_RFLAGS, flags);
  1480. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1481. update_exception_bitmap(vcpu);
  1482. if (emulate_invalid_guest_state)
  1483. goto continue_rmode;
  1484. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1485. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1486. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1487. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1488. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1489. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1490. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1491. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1492. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1493. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1494. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1495. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1496. continue_rmode:
  1497. kvm_mmu_reset_context(vcpu);
  1498. init_rmode(vcpu->kvm);
  1499. }
  1500. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1501. {
  1502. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1503. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1504. if (!msr)
  1505. return;
  1506. /*
  1507. * Force kernel_gs_base reloading before EFER changes, as control
  1508. * of this msr depends on is_long_mode().
  1509. */
  1510. vmx_load_host_state(to_vmx(vcpu));
  1511. vcpu->arch.efer = efer;
  1512. if (efer & EFER_LMA) {
  1513. vmcs_write32(VM_ENTRY_CONTROLS,
  1514. vmcs_read32(VM_ENTRY_CONTROLS) |
  1515. VM_ENTRY_IA32E_MODE);
  1516. msr->data = efer;
  1517. } else {
  1518. vmcs_write32(VM_ENTRY_CONTROLS,
  1519. vmcs_read32(VM_ENTRY_CONTROLS) &
  1520. ~VM_ENTRY_IA32E_MODE);
  1521. msr->data = efer & ~EFER_LME;
  1522. }
  1523. setup_msrs(vmx);
  1524. }
  1525. #ifdef CONFIG_X86_64
  1526. static void enter_lmode(struct kvm_vcpu *vcpu)
  1527. {
  1528. u32 guest_tr_ar;
  1529. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1530. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1531. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1532. __func__);
  1533. vmcs_write32(GUEST_TR_AR_BYTES,
  1534. (guest_tr_ar & ~AR_TYPE_MASK)
  1535. | AR_TYPE_BUSY_64_TSS);
  1536. }
  1537. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1538. }
  1539. static void exit_lmode(struct kvm_vcpu *vcpu)
  1540. {
  1541. vmcs_write32(VM_ENTRY_CONTROLS,
  1542. vmcs_read32(VM_ENTRY_CONTROLS)
  1543. & ~VM_ENTRY_IA32E_MODE);
  1544. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1545. }
  1546. #endif
  1547. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1548. {
  1549. vpid_sync_context(to_vmx(vcpu));
  1550. if (enable_ept) {
  1551. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1552. return;
  1553. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1554. }
  1555. }
  1556. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1557. {
  1558. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1559. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1560. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1561. }
  1562. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1563. {
  1564. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1565. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1566. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1567. }
  1568. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1569. {
  1570. if (!test_bit(VCPU_EXREG_PDPTR,
  1571. (unsigned long *)&vcpu->arch.regs_dirty))
  1572. return;
  1573. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1574. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1575. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1576. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1577. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1578. }
  1579. }
  1580. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1581. {
  1582. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1583. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1584. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1585. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1586. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1587. }
  1588. __set_bit(VCPU_EXREG_PDPTR,
  1589. (unsigned long *)&vcpu->arch.regs_avail);
  1590. __set_bit(VCPU_EXREG_PDPTR,
  1591. (unsigned long *)&vcpu->arch.regs_dirty);
  1592. }
  1593. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1594. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1595. unsigned long cr0,
  1596. struct kvm_vcpu *vcpu)
  1597. {
  1598. if (!(cr0 & X86_CR0_PG)) {
  1599. /* From paging/starting to nonpaging */
  1600. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1601. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1602. (CPU_BASED_CR3_LOAD_EXITING |
  1603. CPU_BASED_CR3_STORE_EXITING));
  1604. vcpu->arch.cr0 = cr0;
  1605. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1606. } else if (!is_paging(vcpu)) {
  1607. /* From nonpaging to paging */
  1608. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1609. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1610. ~(CPU_BASED_CR3_LOAD_EXITING |
  1611. CPU_BASED_CR3_STORE_EXITING));
  1612. vcpu->arch.cr0 = cr0;
  1613. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1614. }
  1615. if (!(cr0 & X86_CR0_WP))
  1616. *hw_cr0 &= ~X86_CR0_WP;
  1617. }
  1618. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1619. {
  1620. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1621. unsigned long hw_cr0;
  1622. if (enable_unrestricted_guest)
  1623. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1624. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1625. else
  1626. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1627. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1628. enter_pmode(vcpu);
  1629. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1630. enter_rmode(vcpu);
  1631. #ifdef CONFIG_X86_64
  1632. if (vcpu->arch.efer & EFER_LME) {
  1633. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1634. enter_lmode(vcpu);
  1635. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1636. exit_lmode(vcpu);
  1637. }
  1638. #endif
  1639. if (enable_ept)
  1640. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1641. if (!vcpu->fpu_active)
  1642. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1643. vmcs_writel(CR0_READ_SHADOW, cr0);
  1644. vmcs_writel(GUEST_CR0, hw_cr0);
  1645. vcpu->arch.cr0 = cr0;
  1646. }
  1647. static u64 construct_eptp(unsigned long root_hpa)
  1648. {
  1649. u64 eptp;
  1650. /* TODO write the value reading from MSR */
  1651. eptp = VMX_EPT_DEFAULT_MT |
  1652. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1653. eptp |= (root_hpa & PAGE_MASK);
  1654. return eptp;
  1655. }
  1656. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1657. {
  1658. unsigned long guest_cr3;
  1659. u64 eptp;
  1660. guest_cr3 = cr3;
  1661. if (enable_ept) {
  1662. eptp = construct_eptp(cr3);
  1663. vmcs_write64(EPT_POINTER, eptp);
  1664. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1665. vcpu->kvm->arch.ept_identity_map_addr;
  1666. ept_load_pdptrs(vcpu);
  1667. }
  1668. vmx_flush_tlb(vcpu);
  1669. vmcs_writel(GUEST_CR3, guest_cr3);
  1670. }
  1671. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1672. {
  1673. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1674. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1675. vcpu->arch.cr4 = cr4;
  1676. if (enable_ept) {
  1677. if (!is_paging(vcpu)) {
  1678. hw_cr4 &= ~X86_CR4_PAE;
  1679. hw_cr4 |= X86_CR4_PSE;
  1680. } else if (!(cr4 & X86_CR4_PAE)) {
  1681. hw_cr4 &= ~X86_CR4_PAE;
  1682. }
  1683. }
  1684. vmcs_writel(CR4_READ_SHADOW, cr4);
  1685. vmcs_writel(GUEST_CR4, hw_cr4);
  1686. }
  1687. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1688. {
  1689. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1690. return vmcs_readl(sf->base);
  1691. }
  1692. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1693. struct kvm_segment *var, int seg)
  1694. {
  1695. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1696. u32 ar;
  1697. var->base = vmcs_readl(sf->base);
  1698. var->limit = vmcs_read32(sf->limit);
  1699. var->selector = vmcs_read16(sf->selector);
  1700. ar = vmcs_read32(sf->ar_bytes);
  1701. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1702. ar = 0;
  1703. var->type = ar & 15;
  1704. var->s = (ar >> 4) & 1;
  1705. var->dpl = (ar >> 5) & 3;
  1706. var->present = (ar >> 7) & 1;
  1707. var->avl = (ar >> 12) & 1;
  1708. var->l = (ar >> 13) & 1;
  1709. var->db = (ar >> 14) & 1;
  1710. var->g = (ar >> 15) & 1;
  1711. var->unusable = (ar >> 16) & 1;
  1712. }
  1713. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1714. {
  1715. if (!is_protmode(vcpu))
  1716. return 0;
  1717. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1718. return 3;
  1719. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1720. }
  1721. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1722. {
  1723. u32 ar;
  1724. if (var->unusable)
  1725. ar = 1 << 16;
  1726. else {
  1727. ar = var->type & 15;
  1728. ar |= (var->s & 1) << 4;
  1729. ar |= (var->dpl & 3) << 5;
  1730. ar |= (var->present & 1) << 7;
  1731. ar |= (var->avl & 1) << 12;
  1732. ar |= (var->l & 1) << 13;
  1733. ar |= (var->db & 1) << 14;
  1734. ar |= (var->g & 1) << 15;
  1735. }
  1736. if (ar == 0) /* a 0 value means unusable */
  1737. ar = AR_UNUSABLE_MASK;
  1738. return ar;
  1739. }
  1740. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1741. struct kvm_segment *var, int seg)
  1742. {
  1743. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1744. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1745. u32 ar;
  1746. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1747. vmx->rmode.tr.selector = var->selector;
  1748. vmx->rmode.tr.base = var->base;
  1749. vmx->rmode.tr.limit = var->limit;
  1750. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1751. return;
  1752. }
  1753. vmcs_writel(sf->base, var->base);
  1754. vmcs_write32(sf->limit, var->limit);
  1755. vmcs_write16(sf->selector, var->selector);
  1756. if (vmx->rmode.vm86_active && var->s) {
  1757. /*
  1758. * Hack real-mode segments into vm86 compatibility.
  1759. */
  1760. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1761. vmcs_writel(sf->base, 0xf0000);
  1762. ar = 0xf3;
  1763. } else
  1764. ar = vmx_segment_access_rights(var);
  1765. /*
  1766. * Fix the "Accessed" bit in AR field of segment registers for older
  1767. * qemu binaries.
  1768. * IA32 arch specifies that at the time of processor reset the
  1769. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1770. * is setting it to 0 in the usedland code. This causes invalid guest
  1771. * state vmexit when "unrestricted guest" mode is turned on.
  1772. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1773. * tree. Newer qemu binaries with that qemu fix would not need this
  1774. * kvm hack.
  1775. */
  1776. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1777. ar |= 0x1; /* Accessed */
  1778. vmcs_write32(sf->ar_bytes, ar);
  1779. }
  1780. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1781. {
  1782. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1783. *db = (ar >> 14) & 1;
  1784. *l = (ar >> 13) & 1;
  1785. }
  1786. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1787. {
  1788. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  1789. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  1790. }
  1791. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1792. {
  1793. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  1794. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  1795. }
  1796. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1797. {
  1798. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  1799. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  1800. }
  1801. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1802. {
  1803. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  1804. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  1805. }
  1806. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1807. {
  1808. struct kvm_segment var;
  1809. u32 ar;
  1810. vmx_get_segment(vcpu, &var, seg);
  1811. ar = vmx_segment_access_rights(&var);
  1812. if (var.base != (var.selector << 4))
  1813. return false;
  1814. if (var.limit != 0xffff)
  1815. return false;
  1816. if (ar != 0xf3)
  1817. return false;
  1818. return true;
  1819. }
  1820. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1821. {
  1822. struct kvm_segment cs;
  1823. unsigned int cs_rpl;
  1824. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1825. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1826. if (cs.unusable)
  1827. return false;
  1828. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1829. return false;
  1830. if (!cs.s)
  1831. return false;
  1832. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1833. if (cs.dpl > cs_rpl)
  1834. return false;
  1835. } else {
  1836. if (cs.dpl != cs_rpl)
  1837. return false;
  1838. }
  1839. if (!cs.present)
  1840. return false;
  1841. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1842. return true;
  1843. }
  1844. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1845. {
  1846. struct kvm_segment ss;
  1847. unsigned int ss_rpl;
  1848. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1849. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1850. if (ss.unusable)
  1851. return true;
  1852. if (ss.type != 3 && ss.type != 7)
  1853. return false;
  1854. if (!ss.s)
  1855. return false;
  1856. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1857. return false;
  1858. if (!ss.present)
  1859. return false;
  1860. return true;
  1861. }
  1862. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1863. {
  1864. struct kvm_segment var;
  1865. unsigned int rpl;
  1866. vmx_get_segment(vcpu, &var, seg);
  1867. rpl = var.selector & SELECTOR_RPL_MASK;
  1868. if (var.unusable)
  1869. return true;
  1870. if (!var.s)
  1871. return false;
  1872. if (!var.present)
  1873. return false;
  1874. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1875. if (var.dpl < rpl) /* DPL < RPL */
  1876. return false;
  1877. }
  1878. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1879. * rights flags
  1880. */
  1881. return true;
  1882. }
  1883. static bool tr_valid(struct kvm_vcpu *vcpu)
  1884. {
  1885. struct kvm_segment tr;
  1886. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1887. if (tr.unusable)
  1888. return false;
  1889. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1890. return false;
  1891. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1892. return false;
  1893. if (!tr.present)
  1894. return false;
  1895. return true;
  1896. }
  1897. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1898. {
  1899. struct kvm_segment ldtr;
  1900. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1901. if (ldtr.unusable)
  1902. return true;
  1903. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1904. return false;
  1905. if (ldtr.type != 2)
  1906. return false;
  1907. if (!ldtr.present)
  1908. return false;
  1909. return true;
  1910. }
  1911. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1912. {
  1913. struct kvm_segment cs, ss;
  1914. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1915. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1916. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1917. (ss.selector & SELECTOR_RPL_MASK));
  1918. }
  1919. /*
  1920. * Check if guest state is valid. Returns true if valid, false if
  1921. * not.
  1922. * We assume that registers are always usable
  1923. */
  1924. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1925. {
  1926. /* real mode guest state checks */
  1927. if (!is_protmode(vcpu)) {
  1928. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1929. return false;
  1930. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1931. return false;
  1932. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1933. return false;
  1934. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1935. return false;
  1936. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1937. return false;
  1938. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1939. return false;
  1940. } else {
  1941. /* protected mode guest state checks */
  1942. if (!cs_ss_rpl_check(vcpu))
  1943. return false;
  1944. if (!code_segment_valid(vcpu))
  1945. return false;
  1946. if (!stack_segment_valid(vcpu))
  1947. return false;
  1948. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1949. return false;
  1950. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1951. return false;
  1952. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1953. return false;
  1954. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1955. return false;
  1956. if (!tr_valid(vcpu))
  1957. return false;
  1958. if (!ldtr_valid(vcpu))
  1959. return false;
  1960. }
  1961. /* TODO:
  1962. * - Add checks on RIP
  1963. * - Add checks on RFLAGS
  1964. */
  1965. return true;
  1966. }
  1967. static int init_rmode_tss(struct kvm *kvm)
  1968. {
  1969. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1970. u16 data = 0;
  1971. int ret = 0;
  1972. int r;
  1973. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1974. if (r < 0)
  1975. goto out;
  1976. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1977. r = kvm_write_guest_page(kvm, fn++, &data,
  1978. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1979. if (r < 0)
  1980. goto out;
  1981. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1982. if (r < 0)
  1983. goto out;
  1984. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1985. if (r < 0)
  1986. goto out;
  1987. data = ~0;
  1988. r = kvm_write_guest_page(kvm, fn, &data,
  1989. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1990. sizeof(u8));
  1991. if (r < 0)
  1992. goto out;
  1993. ret = 1;
  1994. out:
  1995. return ret;
  1996. }
  1997. static int init_rmode_identity_map(struct kvm *kvm)
  1998. {
  1999. int i, r, ret;
  2000. pfn_t identity_map_pfn;
  2001. u32 tmp;
  2002. if (!enable_ept)
  2003. return 1;
  2004. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2005. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2006. "haven't been allocated!\n");
  2007. return 0;
  2008. }
  2009. if (likely(kvm->arch.ept_identity_pagetable_done))
  2010. return 1;
  2011. ret = 0;
  2012. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2013. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2014. if (r < 0)
  2015. goto out;
  2016. /* Set up identity-mapping pagetable for EPT in real mode */
  2017. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2018. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2019. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2020. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2021. &tmp, i * sizeof(tmp), sizeof(tmp));
  2022. if (r < 0)
  2023. goto out;
  2024. }
  2025. kvm->arch.ept_identity_pagetable_done = true;
  2026. ret = 1;
  2027. out:
  2028. return ret;
  2029. }
  2030. static void seg_setup(int seg)
  2031. {
  2032. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2033. unsigned int ar;
  2034. vmcs_write16(sf->selector, 0);
  2035. vmcs_writel(sf->base, 0);
  2036. vmcs_write32(sf->limit, 0xffff);
  2037. if (enable_unrestricted_guest) {
  2038. ar = 0x93;
  2039. if (seg == VCPU_SREG_CS)
  2040. ar |= 0x08; /* code segment */
  2041. } else
  2042. ar = 0xf3;
  2043. vmcs_write32(sf->ar_bytes, ar);
  2044. }
  2045. static int alloc_apic_access_page(struct kvm *kvm)
  2046. {
  2047. struct kvm_userspace_memory_region kvm_userspace_mem;
  2048. int r = 0;
  2049. mutex_lock(&kvm->slots_lock);
  2050. if (kvm->arch.apic_access_page)
  2051. goto out;
  2052. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2053. kvm_userspace_mem.flags = 0;
  2054. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2055. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2056. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2057. if (r)
  2058. goto out;
  2059. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2060. out:
  2061. mutex_unlock(&kvm->slots_lock);
  2062. return r;
  2063. }
  2064. static int alloc_identity_pagetable(struct kvm *kvm)
  2065. {
  2066. struct kvm_userspace_memory_region kvm_userspace_mem;
  2067. int r = 0;
  2068. mutex_lock(&kvm->slots_lock);
  2069. if (kvm->arch.ept_identity_pagetable)
  2070. goto out;
  2071. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2072. kvm_userspace_mem.flags = 0;
  2073. kvm_userspace_mem.guest_phys_addr =
  2074. kvm->arch.ept_identity_map_addr;
  2075. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2076. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2077. if (r)
  2078. goto out;
  2079. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2080. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2081. out:
  2082. mutex_unlock(&kvm->slots_lock);
  2083. return r;
  2084. }
  2085. static void allocate_vpid(struct vcpu_vmx *vmx)
  2086. {
  2087. int vpid;
  2088. vmx->vpid = 0;
  2089. if (!enable_vpid)
  2090. return;
  2091. spin_lock(&vmx_vpid_lock);
  2092. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2093. if (vpid < VMX_NR_VPIDS) {
  2094. vmx->vpid = vpid;
  2095. __set_bit(vpid, vmx_vpid_bitmap);
  2096. }
  2097. spin_unlock(&vmx_vpid_lock);
  2098. }
  2099. static void free_vpid(struct vcpu_vmx *vmx)
  2100. {
  2101. if (!enable_vpid)
  2102. return;
  2103. spin_lock(&vmx_vpid_lock);
  2104. if (vmx->vpid != 0)
  2105. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2106. spin_unlock(&vmx_vpid_lock);
  2107. }
  2108. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2109. {
  2110. int f = sizeof(unsigned long);
  2111. if (!cpu_has_vmx_msr_bitmap())
  2112. return;
  2113. /*
  2114. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2115. * have the write-low and read-high bitmap offsets the wrong way round.
  2116. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2117. */
  2118. if (msr <= 0x1fff) {
  2119. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2120. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2121. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2122. msr &= 0x1fff;
  2123. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2124. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2125. }
  2126. }
  2127. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2128. {
  2129. if (!longmode_only)
  2130. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2131. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2132. }
  2133. /*
  2134. * Sets up the vmcs for emulated real mode.
  2135. */
  2136. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2137. {
  2138. u32 host_sysenter_cs, msr_low, msr_high;
  2139. u32 junk;
  2140. u64 host_pat, tsc_this, tsc_base;
  2141. unsigned long a;
  2142. struct desc_ptr dt;
  2143. int i;
  2144. unsigned long kvm_vmx_return;
  2145. u32 exec_control;
  2146. /* I/O */
  2147. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2148. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2149. if (cpu_has_vmx_msr_bitmap())
  2150. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2151. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2152. /* Control */
  2153. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2154. vmcs_config.pin_based_exec_ctrl);
  2155. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2156. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2157. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2158. #ifdef CONFIG_X86_64
  2159. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2160. CPU_BASED_CR8_LOAD_EXITING;
  2161. #endif
  2162. }
  2163. if (!enable_ept)
  2164. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2165. CPU_BASED_CR3_LOAD_EXITING |
  2166. CPU_BASED_INVLPG_EXITING;
  2167. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2168. if (cpu_has_secondary_exec_ctrls()) {
  2169. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2170. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2171. exec_control &=
  2172. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2173. if (vmx->vpid == 0)
  2174. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2175. if (!enable_ept) {
  2176. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2177. enable_unrestricted_guest = 0;
  2178. }
  2179. if (!enable_unrestricted_guest)
  2180. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2181. if (!ple_gap)
  2182. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2183. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2184. }
  2185. if (ple_gap) {
  2186. vmcs_write32(PLE_GAP, ple_gap);
  2187. vmcs_write32(PLE_WINDOW, ple_window);
  2188. }
  2189. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2190. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2191. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2192. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2193. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2194. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2195. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2196. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2197. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2198. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2199. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2200. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2201. #ifdef CONFIG_X86_64
  2202. rdmsrl(MSR_FS_BASE, a);
  2203. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2204. rdmsrl(MSR_GS_BASE, a);
  2205. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2206. #else
  2207. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2208. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2209. #endif
  2210. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2211. native_store_idt(&dt);
  2212. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2213. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2214. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2215. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2216. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2217. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2218. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2219. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2220. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2221. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2222. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2223. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2224. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2225. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2226. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2227. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2228. host_pat = msr_low | ((u64) msr_high << 32);
  2229. vmcs_write64(HOST_IA32_PAT, host_pat);
  2230. }
  2231. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2232. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2233. host_pat = msr_low | ((u64) msr_high << 32);
  2234. /* Write the default value follow host pat */
  2235. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2236. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2237. vmx->vcpu.arch.pat = host_pat;
  2238. }
  2239. for (i = 0; i < NR_VMX_MSR; ++i) {
  2240. u32 index = vmx_msr_index[i];
  2241. u32 data_low, data_high;
  2242. int j = vmx->nmsrs;
  2243. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2244. continue;
  2245. if (wrmsr_safe(index, data_low, data_high) < 0)
  2246. continue;
  2247. vmx->guest_msrs[j].index = i;
  2248. vmx->guest_msrs[j].data = 0;
  2249. vmx->guest_msrs[j].mask = -1ull;
  2250. ++vmx->nmsrs;
  2251. }
  2252. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2253. /* 22.2.1, 20.8.1 */
  2254. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2255. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2256. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2257. if (enable_ept)
  2258. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2259. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2260. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2261. rdtscll(tsc_this);
  2262. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2263. tsc_base = tsc_this;
  2264. guest_write_tsc(0, tsc_base);
  2265. return 0;
  2266. }
  2267. static int init_rmode(struct kvm *kvm)
  2268. {
  2269. int idx, ret = 0;
  2270. idx = srcu_read_lock(&kvm->srcu);
  2271. if (!init_rmode_tss(kvm))
  2272. goto exit;
  2273. if (!init_rmode_identity_map(kvm))
  2274. goto exit;
  2275. ret = 1;
  2276. exit:
  2277. srcu_read_unlock(&kvm->srcu, idx);
  2278. return ret;
  2279. }
  2280. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2281. {
  2282. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2283. u64 msr;
  2284. int ret;
  2285. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2286. if (!init_rmode(vmx->vcpu.kvm)) {
  2287. ret = -ENOMEM;
  2288. goto out;
  2289. }
  2290. vmx->rmode.vm86_active = 0;
  2291. vmx->soft_vnmi_blocked = 0;
  2292. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2293. kvm_set_cr8(&vmx->vcpu, 0);
  2294. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2295. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2296. msr |= MSR_IA32_APICBASE_BSP;
  2297. kvm_set_apic_base(&vmx->vcpu, msr);
  2298. ret = fx_init(&vmx->vcpu);
  2299. if (ret != 0)
  2300. goto out;
  2301. seg_setup(VCPU_SREG_CS);
  2302. /*
  2303. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2304. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2305. */
  2306. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2307. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2308. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2309. } else {
  2310. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2311. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2312. }
  2313. seg_setup(VCPU_SREG_DS);
  2314. seg_setup(VCPU_SREG_ES);
  2315. seg_setup(VCPU_SREG_FS);
  2316. seg_setup(VCPU_SREG_GS);
  2317. seg_setup(VCPU_SREG_SS);
  2318. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2319. vmcs_writel(GUEST_TR_BASE, 0);
  2320. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2321. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2322. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2323. vmcs_writel(GUEST_LDTR_BASE, 0);
  2324. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2325. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2326. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2327. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2328. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2329. vmcs_writel(GUEST_RFLAGS, 0x02);
  2330. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2331. kvm_rip_write(vcpu, 0xfff0);
  2332. else
  2333. kvm_rip_write(vcpu, 0);
  2334. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2335. vmcs_writel(GUEST_DR7, 0x400);
  2336. vmcs_writel(GUEST_GDTR_BASE, 0);
  2337. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2338. vmcs_writel(GUEST_IDTR_BASE, 0);
  2339. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2340. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2341. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2342. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2343. /* Special registers */
  2344. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2345. setup_msrs(vmx);
  2346. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2347. if (cpu_has_vmx_tpr_shadow()) {
  2348. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2349. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2350. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2351. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2352. vmcs_write32(TPR_THRESHOLD, 0);
  2353. }
  2354. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2355. vmcs_write64(APIC_ACCESS_ADDR,
  2356. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2357. if (vmx->vpid != 0)
  2358. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2359. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2360. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2361. vmx_set_cr4(&vmx->vcpu, 0);
  2362. vmx_set_efer(&vmx->vcpu, 0);
  2363. vmx_fpu_activate(&vmx->vcpu);
  2364. update_exception_bitmap(&vmx->vcpu);
  2365. vpid_sync_context(vmx);
  2366. ret = 0;
  2367. /* HACK: Don't enable emulation on guest boot/reset */
  2368. vmx->emulation_required = 0;
  2369. out:
  2370. return ret;
  2371. }
  2372. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2373. {
  2374. u32 cpu_based_vm_exec_control;
  2375. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2376. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2377. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2378. }
  2379. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2380. {
  2381. u32 cpu_based_vm_exec_control;
  2382. if (!cpu_has_virtual_nmis()) {
  2383. enable_irq_window(vcpu);
  2384. return;
  2385. }
  2386. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2387. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2388. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2389. }
  2390. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2391. {
  2392. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2393. uint32_t intr;
  2394. int irq = vcpu->arch.interrupt.nr;
  2395. trace_kvm_inj_virq(irq);
  2396. ++vcpu->stat.irq_injections;
  2397. if (vmx->rmode.vm86_active) {
  2398. vmx->rmode.irq.pending = true;
  2399. vmx->rmode.irq.vector = irq;
  2400. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2401. if (vcpu->arch.interrupt.soft)
  2402. vmx->rmode.irq.rip +=
  2403. vmx->vcpu.arch.event_exit_inst_len;
  2404. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2405. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2406. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2407. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2408. return;
  2409. }
  2410. intr = irq | INTR_INFO_VALID_MASK;
  2411. if (vcpu->arch.interrupt.soft) {
  2412. intr |= INTR_TYPE_SOFT_INTR;
  2413. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2414. vmx->vcpu.arch.event_exit_inst_len);
  2415. } else
  2416. intr |= INTR_TYPE_EXT_INTR;
  2417. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2418. }
  2419. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2420. {
  2421. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2422. if (!cpu_has_virtual_nmis()) {
  2423. /*
  2424. * Tracking the NMI-blocked state in software is built upon
  2425. * finding the next open IRQ window. This, in turn, depends on
  2426. * well-behaving guests: They have to keep IRQs disabled at
  2427. * least as long as the NMI handler runs. Otherwise we may
  2428. * cause NMI nesting, maybe breaking the guest. But as this is
  2429. * highly unlikely, we can live with the residual risk.
  2430. */
  2431. vmx->soft_vnmi_blocked = 1;
  2432. vmx->vnmi_blocked_time = 0;
  2433. }
  2434. ++vcpu->stat.nmi_injections;
  2435. if (vmx->rmode.vm86_active) {
  2436. vmx->rmode.irq.pending = true;
  2437. vmx->rmode.irq.vector = NMI_VECTOR;
  2438. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2439. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2440. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2441. INTR_INFO_VALID_MASK);
  2442. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2443. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2444. return;
  2445. }
  2446. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2447. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2448. }
  2449. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2450. {
  2451. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2452. return 0;
  2453. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2454. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
  2455. }
  2456. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2457. {
  2458. if (!cpu_has_virtual_nmis())
  2459. return to_vmx(vcpu)->soft_vnmi_blocked;
  2460. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  2461. }
  2462. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2463. {
  2464. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2465. if (!cpu_has_virtual_nmis()) {
  2466. if (vmx->soft_vnmi_blocked != masked) {
  2467. vmx->soft_vnmi_blocked = masked;
  2468. vmx->vnmi_blocked_time = 0;
  2469. }
  2470. } else {
  2471. if (masked)
  2472. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2473. GUEST_INTR_STATE_NMI);
  2474. else
  2475. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2476. GUEST_INTR_STATE_NMI);
  2477. }
  2478. }
  2479. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2480. {
  2481. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2482. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2483. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2484. }
  2485. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2486. {
  2487. int ret;
  2488. struct kvm_userspace_memory_region tss_mem = {
  2489. .slot = TSS_PRIVATE_MEMSLOT,
  2490. .guest_phys_addr = addr,
  2491. .memory_size = PAGE_SIZE * 3,
  2492. .flags = 0,
  2493. };
  2494. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2495. if (ret)
  2496. return ret;
  2497. kvm->arch.tss_addr = addr;
  2498. return 0;
  2499. }
  2500. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2501. int vec, u32 err_code)
  2502. {
  2503. /*
  2504. * Instruction with address size override prefix opcode 0x67
  2505. * Cause the #SS fault with 0 error code in VM86 mode.
  2506. */
  2507. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2508. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2509. return 1;
  2510. /*
  2511. * Forward all other exceptions that are valid in real mode.
  2512. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2513. * the required debugging infrastructure rework.
  2514. */
  2515. switch (vec) {
  2516. case DB_VECTOR:
  2517. if (vcpu->guest_debug &
  2518. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2519. return 0;
  2520. kvm_queue_exception(vcpu, vec);
  2521. return 1;
  2522. case BP_VECTOR:
  2523. /*
  2524. * Update instruction length as we may reinject the exception
  2525. * from user space while in guest debugging mode.
  2526. */
  2527. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2528. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2529. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2530. return 0;
  2531. /* fall through */
  2532. case DE_VECTOR:
  2533. case OF_VECTOR:
  2534. case BR_VECTOR:
  2535. case UD_VECTOR:
  2536. case DF_VECTOR:
  2537. case SS_VECTOR:
  2538. case GP_VECTOR:
  2539. case MF_VECTOR:
  2540. kvm_queue_exception(vcpu, vec);
  2541. return 1;
  2542. }
  2543. return 0;
  2544. }
  2545. /*
  2546. * Trigger machine check on the host. We assume all the MSRs are already set up
  2547. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2548. * We pass a fake environment to the machine check handler because we want
  2549. * the guest to be always treated like user space, no matter what context
  2550. * it used internally.
  2551. */
  2552. static void kvm_machine_check(void)
  2553. {
  2554. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2555. struct pt_regs regs = {
  2556. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2557. .flags = X86_EFLAGS_IF,
  2558. };
  2559. do_machine_check(&regs, 0);
  2560. #endif
  2561. }
  2562. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2563. {
  2564. /* already handled by vcpu_run */
  2565. return 1;
  2566. }
  2567. static int handle_exception(struct kvm_vcpu *vcpu)
  2568. {
  2569. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2570. struct kvm_run *kvm_run = vcpu->run;
  2571. u32 intr_info, ex_no, error_code;
  2572. unsigned long cr2, rip, dr6;
  2573. u32 vect_info;
  2574. enum emulation_result er;
  2575. vect_info = vmx->idt_vectoring_info;
  2576. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2577. if (is_machine_check(intr_info))
  2578. return handle_machine_check(vcpu);
  2579. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2580. !is_page_fault(intr_info)) {
  2581. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2582. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2583. vcpu->run->internal.ndata = 2;
  2584. vcpu->run->internal.data[0] = vect_info;
  2585. vcpu->run->internal.data[1] = intr_info;
  2586. return 0;
  2587. }
  2588. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2589. return 1; /* already handled by vmx_vcpu_run() */
  2590. if (is_no_device(intr_info)) {
  2591. vmx_fpu_activate(vcpu);
  2592. return 1;
  2593. }
  2594. if (is_invalid_opcode(intr_info)) {
  2595. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2596. if (er != EMULATE_DONE)
  2597. kvm_queue_exception(vcpu, UD_VECTOR);
  2598. return 1;
  2599. }
  2600. error_code = 0;
  2601. rip = kvm_rip_read(vcpu);
  2602. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2603. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2604. if (is_page_fault(intr_info)) {
  2605. /* EPT won't cause page fault directly */
  2606. if (enable_ept)
  2607. BUG();
  2608. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2609. trace_kvm_page_fault(cr2, error_code);
  2610. if (kvm_event_needs_reinjection(vcpu))
  2611. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2612. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2613. }
  2614. if (vmx->rmode.vm86_active &&
  2615. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2616. error_code)) {
  2617. if (vcpu->arch.halt_request) {
  2618. vcpu->arch.halt_request = 0;
  2619. return kvm_emulate_halt(vcpu);
  2620. }
  2621. return 1;
  2622. }
  2623. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2624. switch (ex_no) {
  2625. case DB_VECTOR:
  2626. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2627. if (!(vcpu->guest_debug &
  2628. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2629. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2630. kvm_queue_exception(vcpu, DB_VECTOR);
  2631. return 1;
  2632. }
  2633. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2634. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2635. /* fall through */
  2636. case BP_VECTOR:
  2637. /*
  2638. * Update instruction length as we may reinject #BP from
  2639. * user space while in guest debugging mode. Reading it for
  2640. * #DB as well causes no harm, it is not used in that case.
  2641. */
  2642. vmx->vcpu.arch.event_exit_inst_len =
  2643. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2644. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2645. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2646. kvm_run->debug.arch.exception = ex_no;
  2647. break;
  2648. default:
  2649. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2650. kvm_run->ex.exception = ex_no;
  2651. kvm_run->ex.error_code = error_code;
  2652. break;
  2653. }
  2654. return 0;
  2655. }
  2656. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2657. {
  2658. ++vcpu->stat.irq_exits;
  2659. return 1;
  2660. }
  2661. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2662. {
  2663. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2664. return 0;
  2665. }
  2666. static int handle_io(struct kvm_vcpu *vcpu)
  2667. {
  2668. unsigned long exit_qualification;
  2669. int size, in, string;
  2670. unsigned port;
  2671. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2672. string = (exit_qualification & 16) != 0;
  2673. in = (exit_qualification & 8) != 0;
  2674. ++vcpu->stat.io_exits;
  2675. if (string || in)
  2676. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  2677. port = exit_qualification >> 16;
  2678. size = (exit_qualification & 7) + 1;
  2679. skip_emulated_instruction(vcpu);
  2680. return kvm_fast_pio_out(vcpu, size, port);
  2681. }
  2682. static void
  2683. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2684. {
  2685. /*
  2686. * Patch in the VMCALL instruction:
  2687. */
  2688. hypercall[0] = 0x0f;
  2689. hypercall[1] = 0x01;
  2690. hypercall[2] = 0xc1;
  2691. }
  2692. static void complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  2693. {
  2694. if (err)
  2695. kvm_inject_gp(vcpu, 0);
  2696. else
  2697. skip_emulated_instruction(vcpu);
  2698. }
  2699. static int handle_cr(struct kvm_vcpu *vcpu)
  2700. {
  2701. unsigned long exit_qualification, val;
  2702. int cr;
  2703. int reg;
  2704. int err;
  2705. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2706. cr = exit_qualification & 15;
  2707. reg = (exit_qualification >> 8) & 15;
  2708. switch ((exit_qualification >> 4) & 3) {
  2709. case 0: /* mov to cr */
  2710. val = kvm_register_read(vcpu, reg);
  2711. trace_kvm_cr_write(cr, val);
  2712. switch (cr) {
  2713. case 0:
  2714. err = kvm_set_cr0(vcpu, val);
  2715. complete_insn_gp(vcpu, err);
  2716. return 1;
  2717. case 3:
  2718. err = kvm_set_cr3(vcpu, val);
  2719. complete_insn_gp(vcpu, err);
  2720. return 1;
  2721. case 4:
  2722. err = kvm_set_cr4(vcpu, val);
  2723. complete_insn_gp(vcpu, err);
  2724. return 1;
  2725. case 8: {
  2726. u8 cr8_prev = kvm_get_cr8(vcpu);
  2727. u8 cr8 = kvm_register_read(vcpu, reg);
  2728. kvm_set_cr8(vcpu, cr8);
  2729. skip_emulated_instruction(vcpu);
  2730. if (irqchip_in_kernel(vcpu->kvm))
  2731. return 1;
  2732. if (cr8_prev <= cr8)
  2733. return 1;
  2734. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2735. return 0;
  2736. }
  2737. };
  2738. break;
  2739. case 2: /* clts */
  2740. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2741. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2742. skip_emulated_instruction(vcpu);
  2743. vmx_fpu_activate(vcpu);
  2744. return 1;
  2745. case 1: /*mov from cr*/
  2746. switch (cr) {
  2747. case 3:
  2748. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2749. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2750. skip_emulated_instruction(vcpu);
  2751. return 1;
  2752. case 8:
  2753. val = kvm_get_cr8(vcpu);
  2754. kvm_register_write(vcpu, reg, val);
  2755. trace_kvm_cr_read(cr, val);
  2756. skip_emulated_instruction(vcpu);
  2757. return 1;
  2758. }
  2759. break;
  2760. case 3: /* lmsw */
  2761. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2762. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2763. kvm_lmsw(vcpu, val);
  2764. skip_emulated_instruction(vcpu);
  2765. return 1;
  2766. default:
  2767. break;
  2768. }
  2769. vcpu->run->exit_reason = 0;
  2770. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2771. (int)(exit_qualification >> 4) & 3, cr);
  2772. return 0;
  2773. }
  2774. static int handle_dr(struct kvm_vcpu *vcpu)
  2775. {
  2776. unsigned long exit_qualification;
  2777. int dr, reg;
  2778. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2779. if (!kvm_require_cpl(vcpu, 0))
  2780. return 1;
  2781. dr = vmcs_readl(GUEST_DR7);
  2782. if (dr & DR7_GD) {
  2783. /*
  2784. * As the vm-exit takes precedence over the debug trap, we
  2785. * need to emulate the latter, either for the host or the
  2786. * guest debugging itself.
  2787. */
  2788. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2789. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2790. vcpu->run->debug.arch.dr7 = dr;
  2791. vcpu->run->debug.arch.pc =
  2792. vmcs_readl(GUEST_CS_BASE) +
  2793. vmcs_readl(GUEST_RIP);
  2794. vcpu->run->debug.arch.exception = DB_VECTOR;
  2795. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2796. return 0;
  2797. } else {
  2798. vcpu->arch.dr7 &= ~DR7_GD;
  2799. vcpu->arch.dr6 |= DR6_BD;
  2800. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2801. kvm_queue_exception(vcpu, DB_VECTOR);
  2802. return 1;
  2803. }
  2804. }
  2805. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2806. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2807. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2808. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2809. unsigned long val;
  2810. if (!kvm_get_dr(vcpu, dr, &val))
  2811. kvm_register_write(vcpu, reg, val);
  2812. } else
  2813. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  2814. skip_emulated_instruction(vcpu);
  2815. return 1;
  2816. }
  2817. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  2818. {
  2819. vmcs_writel(GUEST_DR7, val);
  2820. }
  2821. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2822. {
  2823. kvm_emulate_cpuid(vcpu);
  2824. return 1;
  2825. }
  2826. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2827. {
  2828. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2829. u64 data;
  2830. if (vmx_get_msr(vcpu, ecx, &data)) {
  2831. trace_kvm_msr_read_ex(ecx);
  2832. kvm_inject_gp(vcpu, 0);
  2833. return 1;
  2834. }
  2835. trace_kvm_msr_read(ecx, data);
  2836. /* FIXME: handling of bits 32:63 of rax, rdx */
  2837. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2838. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2839. skip_emulated_instruction(vcpu);
  2840. return 1;
  2841. }
  2842. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2843. {
  2844. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2845. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2846. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2847. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2848. trace_kvm_msr_write_ex(ecx, data);
  2849. kvm_inject_gp(vcpu, 0);
  2850. return 1;
  2851. }
  2852. trace_kvm_msr_write(ecx, data);
  2853. skip_emulated_instruction(vcpu);
  2854. return 1;
  2855. }
  2856. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2857. {
  2858. return 1;
  2859. }
  2860. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2861. {
  2862. u32 cpu_based_vm_exec_control;
  2863. /* clear pending irq */
  2864. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2865. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2866. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2867. ++vcpu->stat.irq_window_exits;
  2868. /*
  2869. * If the user space waits to inject interrupts, exit as soon as
  2870. * possible
  2871. */
  2872. if (!irqchip_in_kernel(vcpu->kvm) &&
  2873. vcpu->run->request_interrupt_window &&
  2874. !kvm_cpu_has_interrupt(vcpu)) {
  2875. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2876. return 0;
  2877. }
  2878. return 1;
  2879. }
  2880. static int handle_halt(struct kvm_vcpu *vcpu)
  2881. {
  2882. skip_emulated_instruction(vcpu);
  2883. return kvm_emulate_halt(vcpu);
  2884. }
  2885. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2886. {
  2887. skip_emulated_instruction(vcpu);
  2888. kvm_emulate_hypercall(vcpu);
  2889. return 1;
  2890. }
  2891. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2892. {
  2893. kvm_queue_exception(vcpu, UD_VECTOR);
  2894. return 1;
  2895. }
  2896. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2897. {
  2898. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2899. kvm_mmu_invlpg(vcpu, exit_qualification);
  2900. skip_emulated_instruction(vcpu);
  2901. return 1;
  2902. }
  2903. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2904. {
  2905. skip_emulated_instruction(vcpu);
  2906. kvm_emulate_wbinvd(vcpu);
  2907. return 1;
  2908. }
  2909. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  2910. {
  2911. u64 new_bv = kvm_read_edx_eax(vcpu);
  2912. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2913. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  2914. skip_emulated_instruction(vcpu);
  2915. return 1;
  2916. }
  2917. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2918. {
  2919. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  2920. }
  2921. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2922. {
  2923. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2924. unsigned long exit_qualification;
  2925. bool has_error_code = false;
  2926. u32 error_code = 0;
  2927. u16 tss_selector;
  2928. int reason, type, idt_v;
  2929. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2930. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2931. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2932. reason = (u32)exit_qualification >> 30;
  2933. if (reason == TASK_SWITCH_GATE && idt_v) {
  2934. switch (type) {
  2935. case INTR_TYPE_NMI_INTR:
  2936. vcpu->arch.nmi_injected = false;
  2937. if (cpu_has_virtual_nmis())
  2938. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2939. GUEST_INTR_STATE_NMI);
  2940. break;
  2941. case INTR_TYPE_EXT_INTR:
  2942. case INTR_TYPE_SOFT_INTR:
  2943. kvm_clear_interrupt_queue(vcpu);
  2944. break;
  2945. case INTR_TYPE_HARD_EXCEPTION:
  2946. if (vmx->idt_vectoring_info &
  2947. VECTORING_INFO_DELIVER_CODE_MASK) {
  2948. has_error_code = true;
  2949. error_code =
  2950. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2951. }
  2952. /* fall through */
  2953. case INTR_TYPE_SOFT_EXCEPTION:
  2954. kvm_clear_exception_queue(vcpu);
  2955. break;
  2956. default:
  2957. break;
  2958. }
  2959. }
  2960. tss_selector = exit_qualification;
  2961. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2962. type != INTR_TYPE_EXT_INTR &&
  2963. type != INTR_TYPE_NMI_INTR))
  2964. skip_emulated_instruction(vcpu);
  2965. if (kvm_task_switch(vcpu, tss_selector, reason,
  2966. has_error_code, error_code) == EMULATE_FAIL) {
  2967. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2968. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2969. vcpu->run->internal.ndata = 0;
  2970. return 0;
  2971. }
  2972. /* clear all local breakpoint enable flags */
  2973. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2974. /*
  2975. * TODO: What about debug traps on tss switch?
  2976. * Are we supposed to inject them and update dr6?
  2977. */
  2978. return 1;
  2979. }
  2980. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2981. {
  2982. unsigned long exit_qualification;
  2983. gpa_t gpa;
  2984. int gla_validity;
  2985. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2986. if (exit_qualification & (1 << 6)) {
  2987. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2988. return -EINVAL;
  2989. }
  2990. gla_validity = (exit_qualification >> 7) & 0x3;
  2991. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2992. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2993. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2994. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2995. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2996. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2997. (long unsigned int)exit_qualification);
  2998. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2999. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  3000. return 0;
  3001. }
  3002. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3003. trace_kvm_page_fault(gpa, exit_qualification);
  3004. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  3005. }
  3006. static u64 ept_rsvd_mask(u64 spte, int level)
  3007. {
  3008. int i;
  3009. u64 mask = 0;
  3010. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  3011. mask |= (1ULL << i);
  3012. if (level > 2)
  3013. /* bits 7:3 reserved */
  3014. mask |= 0xf8;
  3015. else if (level == 2) {
  3016. if (spte & (1ULL << 7))
  3017. /* 2MB ref, bits 20:12 reserved */
  3018. mask |= 0x1ff000;
  3019. else
  3020. /* bits 6:3 reserved */
  3021. mask |= 0x78;
  3022. }
  3023. return mask;
  3024. }
  3025. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  3026. int level)
  3027. {
  3028. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  3029. /* 010b (write-only) */
  3030. WARN_ON((spte & 0x7) == 0x2);
  3031. /* 110b (write/execute) */
  3032. WARN_ON((spte & 0x7) == 0x6);
  3033. /* 100b (execute-only) and value not supported by logical processor */
  3034. if (!cpu_has_vmx_ept_execute_only())
  3035. WARN_ON((spte & 0x7) == 0x4);
  3036. /* not 000b */
  3037. if ((spte & 0x7)) {
  3038. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  3039. if (rsvd_bits != 0) {
  3040. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  3041. __func__, rsvd_bits);
  3042. WARN_ON(1);
  3043. }
  3044. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  3045. u64 ept_mem_type = (spte & 0x38) >> 3;
  3046. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  3047. ept_mem_type == 7) {
  3048. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  3049. __func__, ept_mem_type);
  3050. WARN_ON(1);
  3051. }
  3052. }
  3053. }
  3054. }
  3055. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  3056. {
  3057. u64 sptes[4];
  3058. int nr_sptes, i;
  3059. gpa_t gpa;
  3060. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3061. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3062. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3063. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3064. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3065. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3066. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3067. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3068. return 0;
  3069. }
  3070. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3071. {
  3072. u32 cpu_based_vm_exec_control;
  3073. /* clear pending NMI */
  3074. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3075. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3076. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3077. ++vcpu->stat.nmi_window_exits;
  3078. return 1;
  3079. }
  3080. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3081. {
  3082. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3083. enum emulation_result err = EMULATE_DONE;
  3084. int ret = 1;
  3085. while (!guest_state_valid(vcpu)) {
  3086. err = emulate_instruction(vcpu, 0, 0, 0);
  3087. if (err == EMULATE_DO_MMIO) {
  3088. ret = 0;
  3089. goto out;
  3090. }
  3091. if (err != EMULATE_DONE)
  3092. return 0;
  3093. if (signal_pending(current))
  3094. goto out;
  3095. if (need_resched())
  3096. schedule();
  3097. }
  3098. vmx->emulation_required = 0;
  3099. out:
  3100. return ret;
  3101. }
  3102. /*
  3103. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3104. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3105. */
  3106. static int handle_pause(struct kvm_vcpu *vcpu)
  3107. {
  3108. skip_emulated_instruction(vcpu);
  3109. kvm_vcpu_on_spin(vcpu);
  3110. return 1;
  3111. }
  3112. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3113. {
  3114. kvm_queue_exception(vcpu, UD_VECTOR);
  3115. return 1;
  3116. }
  3117. /*
  3118. * The exit handlers return 1 if the exit was handled fully and guest execution
  3119. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3120. * to be done to userspace and return 0.
  3121. */
  3122. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3123. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3124. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3125. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3126. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3127. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3128. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3129. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3130. [EXIT_REASON_CPUID] = handle_cpuid,
  3131. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3132. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3133. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3134. [EXIT_REASON_HLT] = handle_halt,
  3135. [EXIT_REASON_INVLPG] = handle_invlpg,
  3136. [EXIT_REASON_VMCALL] = handle_vmcall,
  3137. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3138. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3139. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3140. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3141. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3142. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3143. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3144. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3145. [EXIT_REASON_VMON] = handle_vmx_insn,
  3146. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3147. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3148. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3149. [EXIT_REASON_XSETBV] = handle_xsetbv,
  3150. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3151. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3152. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3153. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3154. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3155. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3156. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3157. };
  3158. static const int kvm_vmx_max_exit_handlers =
  3159. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3160. /*
  3161. * The guest has exited. See if we can fix it or if we need userspace
  3162. * assistance.
  3163. */
  3164. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3165. {
  3166. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3167. u32 exit_reason = vmx->exit_reason;
  3168. u32 vectoring_info = vmx->idt_vectoring_info;
  3169. trace_kvm_exit(exit_reason, vcpu);
  3170. /* If guest state is invalid, start emulating */
  3171. if (vmx->emulation_required && emulate_invalid_guest_state)
  3172. return handle_invalid_guest_state(vcpu);
  3173. /* Access CR3 don't cause VMExit in paging mode, so we need
  3174. * to sync with guest real CR3. */
  3175. if (enable_ept && is_paging(vcpu))
  3176. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3177. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  3178. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3179. vcpu->run->fail_entry.hardware_entry_failure_reason
  3180. = exit_reason;
  3181. return 0;
  3182. }
  3183. if (unlikely(vmx->fail)) {
  3184. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3185. vcpu->run->fail_entry.hardware_entry_failure_reason
  3186. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3187. return 0;
  3188. }
  3189. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3190. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3191. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3192. exit_reason != EXIT_REASON_TASK_SWITCH))
  3193. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3194. "(0x%x) and exit reason is 0x%x\n",
  3195. __func__, vectoring_info, exit_reason);
  3196. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3197. if (vmx_interrupt_allowed(vcpu)) {
  3198. vmx->soft_vnmi_blocked = 0;
  3199. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3200. vcpu->arch.nmi_pending) {
  3201. /*
  3202. * This CPU don't support us in finding the end of an
  3203. * NMI-blocked window if the guest runs with IRQs
  3204. * disabled. So we pull the trigger after 1 s of
  3205. * futile waiting, but inform the user about this.
  3206. */
  3207. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3208. "state on VCPU %d after 1 s timeout\n",
  3209. __func__, vcpu->vcpu_id);
  3210. vmx->soft_vnmi_blocked = 0;
  3211. }
  3212. }
  3213. if (exit_reason < kvm_vmx_max_exit_handlers
  3214. && kvm_vmx_exit_handlers[exit_reason])
  3215. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3216. else {
  3217. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3218. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3219. }
  3220. return 0;
  3221. }
  3222. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3223. {
  3224. if (irr == -1 || tpr < irr) {
  3225. vmcs_write32(TPR_THRESHOLD, 0);
  3226. return;
  3227. }
  3228. vmcs_write32(TPR_THRESHOLD, irr);
  3229. }
  3230. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3231. {
  3232. u32 exit_intr_info;
  3233. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3234. bool unblock_nmi;
  3235. u8 vector;
  3236. int type;
  3237. bool idtv_info_valid;
  3238. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3239. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3240. /* Handle machine checks before interrupts are enabled */
  3241. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3242. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3243. && is_machine_check(exit_intr_info)))
  3244. kvm_machine_check();
  3245. /* We need to handle NMIs before interrupts are enabled */
  3246. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3247. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3248. kvm_before_handle_nmi(&vmx->vcpu);
  3249. asm("int $2");
  3250. kvm_after_handle_nmi(&vmx->vcpu);
  3251. }
  3252. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3253. if (cpu_has_virtual_nmis()) {
  3254. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3255. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3256. /*
  3257. * SDM 3: 27.7.1.2 (September 2008)
  3258. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3259. * a guest IRET fault.
  3260. * SDM 3: 23.2.2 (September 2008)
  3261. * Bit 12 is undefined in any of the following cases:
  3262. * If the VM exit sets the valid bit in the IDT-vectoring
  3263. * information field.
  3264. * If the VM exit is due to a double fault.
  3265. */
  3266. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3267. vector != DF_VECTOR && !idtv_info_valid)
  3268. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3269. GUEST_INTR_STATE_NMI);
  3270. } else if (unlikely(vmx->soft_vnmi_blocked))
  3271. vmx->vnmi_blocked_time +=
  3272. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3273. vmx->vcpu.arch.nmi_injected = false;
  3274. kvm_clear_exception_queue(&vmx->vcpu);
  3275. kvm_clear_interrupt_queue(&vmx->vcpu);
  3276. if (!idtv_info_valid)
  3277. return;
  3278. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3279. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3280. switch (type) {
  3281. case INTR_TYPE_NMI_INTR:
  3282. vmx->vcpu.arch.nmi_injected = true;
  3283. /*
  3284. * SDM 3: 27.7.1.2 (September 2008)
  3285. * Clear bit "block by NMI" before VM entry if a NMI
  3286. * delivery faulted.
  3287. */
  3288. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3289. GUEST_INTR_STATE_NMI);
  3290. break;
  3291. case INTR_TYPE_SOFT_EXCEPTION:
  3292. vmx->vcpu.arch.event_exit_inst_len =
  3293. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3294. /* fall through */
  3295. case INTR_TYPE_HARD_EXCEPTION:
  3296. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3297. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3298. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3299. } else
  3300. kvm_queue_exception(&vmx->vcpu, vector);
  3301. break;
  3302. case INTR_TYPE_SOFT_INTR:
  3303. vmx->vcpu.arch.event_exit_inst_len =
  3304. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3305. /* fall through */
  3306. case INTR_TYPE_EXT_INTR:
  3307. kvm_queue_interrupt(&vmx->vcpu, vector,
  3308. type == INTR_TYPE_SOFT_INTR);
  3309. break;
  3310. default:
  3311. break;
  3312. }
  3313. }
  3314. /*
  3315. * Failure to inject an interrupt should give us the information
  3316. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3317. * when fetching the interrupt redirection bitmap in the real-mode
  3318. * tss, this doesn't happen. So we do it ourselves.
  3319. */
  3320. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3321. {
  3322. vmx->rmode.irq.pending = 0;
  3323. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3324. return;
  3325. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3326. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3327. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3328. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3329. return;
  3330. }
  3331. vmx->idt_vectoring_info =
  3332. VECTORING_INFO_VALID_MASK
  3333. | INTR_TYPE_EXT_INTR
  3334. | vmx->rmode.irq.vector;
  3335. }
  3336. #ifdef CONFIG_X86_64
  3337. #define R "r"
  3338. #define Q "q"
  3339. #else
  3340. #define R "e"
  3341. #define Q "l"
  3342. #endif
  3343. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3344. {
  3345. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3346. /* Record the guest's net vcpu time for enforced NMI injections. */
  3347. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3348. vmx->entry_time = ktime_get();
  3349. /* Don't enter VMX if guest state is invalid, let the exit handler
  3350. start emulation until we arrive back to a valid state */
  3351. if (vmx->emulation_required && emulate_invalid_guest_state)
  3352. return;
  3353. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3354. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3355. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3356. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3357. /* When single-stepping over STI and MOV SS, we must clear the
  3358. * corresponding interruptibility bits in the guest state. Otherwise
  3359. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3360. * exceptions being set, but that's not correct for the guest debugging
  3361. * case. */
  3362. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3363. vmx_set_interrupt_shadow(vcpu, 0);
  3364. asm(
  3365. /* Store host registers */
  3366. "push %%"R"dx; push %%"R"bp;"
  3367. "push %%"R"cx \n\t"
  3368. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3369. "je 1f \n\t"
  3370. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3371. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3372. "1: \n\t"
  3373. /* Reload cr2 if changed */
  3374. "mov %c[cr2](%0), %%"R"ax \n\t"
  3375. "mov %%cr2, %%"R"dx \n\t"
  3376. "cmp %%"R"ax, %%"R"dx \n\t"
  3377. "je 2f \n\t"
  3378. "mov %%"R"ax, %%cr2 \n\t"
  3379. "2: \n\t"
  3380. /* Check if vmlaunch of vmresume is needed */
  3381. "cmpl $0, %c[launched](%0) \n\t"
  3382. /* Load guest registers. Don't clobber flags. */
  3383. "mov %c[rax](%0), %%"R"ax \n\t"
  3384. "mov %c[rbx](%0), %%"R"bx \n\t"
  3385. "mov %c[rdx](%0), %%"R"dx \n\t"
  3386. "mov %c[rsi](%0), %%"R"si \n\t"
  3387. "mov %c[rdi](%0), %%"R"di \n\t"
  3388. "mov %c[rbp](%0), %%"R"bp \n\t"
  3389. #ifdef CONFIG_X86_64
  3390. "mov %c[r8](%0), %%r8 \n\t"
  3391. "mov %c[r9](%0), %%r9 \n\t"
  3392. "mov %c[r10](%0), %%r10 \n\t"
  3393. "mov %c[r11](%0), %%r11 \n\t"
  3394. "mov %c[r12](%0), %%r12 \n\t"
  3395. "mov %c[r13](%0), %%r13 \n\t"
  3396. "mov %c[r14](%0), %%r14 \n\t"
  3397. "mov %c[r15](%0), %%r15 \n\t"
  3398. #endif
  3399. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3400. /* Enter guest mode */
  3401. "jne .Llaunched \n\t"
  3402. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3403. "jmp .Lkvm_vmx_return \n\t"
  3404. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3405. ".Lkvm_vmx_return: "
  3406. /* Save guest registers, load host registers, keep flags */
  3407. "xchg %0, (%%"R"sp) \n\t"
  3408. "mov %%"R"ax, %c[rax](%0) \n\t"
  3409. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3410. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3411. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3412. "mov %%"R"si, %c[rsi](%0) \n\t"
  3413. "mov %%"R"di, %c[rdi](%0) \n\t"
  3414. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3415. #ifdef CONFIG_X86_64
  3416. "mov %%r8, %c[r8](%0) \n\t"
  3417. "mov %%r9, %c[r9](%0) \n\t"
  3418. "mov %%r10, %c[r10](%0) \n\t"
  3419. "mov %%r11, %c[r11](%0) \n\t"
  3420. "mov %%r12, %c[r12](%0) \n\t"
  3421. "mov %%r13, %c[r13](%0) \n\t"
  3422. "mov %%r14, %c[r14](%0) \n\t"
  3423. "mov %%r15, %c[r15](%0) \n\t"
  3424. #endif
  3425. "mov %%cr2, %%"R"ax \n\t"
  3426. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3427. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3428. "setbe %c[fail](%0) \n\t"
  3429. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3430. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3431. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3432. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3433. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3434. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3435. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3436. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3437. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3438. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3439. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3440. #ifdef CONFIG_X86_64
  3441. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3442. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3443. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3444. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3445. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3446. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3447. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3448. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3449. #endif
  3450. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3451. : "cc", "memory"
  3452. , R"bx", R"di", R"si"
  3453. #ifdef CONFIG_X86_64
  3454. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3455. #endif
  3456. );
  3457. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3458. | (1 << VCPU_EXREG_PDPTR));
  3459. vcpu->arch.regs_dirty = 0;
  3460. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3461. if (vmx->rmode.irq.pending)
  3462. fixup_rmode_irq(vmx);
  3463. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3464. vmx->launched = 1;
  3465. vmx_complete_interrupts(vmx);
  3466. }
  3467. #undef R
  3468. #undef Q
  3469. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3470. {
  3471. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3472. if (vmx->vmcs) {
  3473. vcpu_clear(vmx);
  3474. free_vmcs(vmx->vmcs);
  3475. vmx->vmcs = NULL;
  3476. }
  3477. }
  3478. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3479. {
  3480. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3481. free_vpid(vmx);
  3482. vmx_free_vmcs(vcpu);
  3483. kfree(vmx->guest_msrs);
  3484. kvm_vcpu_uninit(vcpu);
  3485. kmem_cache_free(kvm_vcpu_cache, vmx);
  3486. }
  3487. static inline void vmcs_init(struct vmcs *vmcs)
  3488. {
  3489. u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
  3490. if (!vmm_exclusive)
  3491. kvm_cpu_vmxon(phys_addr);
  3492. vmcs_clear(vmcs);
  3493. if (!vmm_exclusive)
  3494. kvm_cpu_vmxoff();
  3495. }
  3496. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3497. {
  3498. int err;
  3499. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3500. int cpu;
  3501. if (!vmx)
  3502. return ERR_PTR(-ENOMEM);
  3503. allocate_vpid(vmx);
  3504. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3505. if (err)
  3506. goto free_vcpu;
  3507. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3508. if (!vmx->guest_msrs) {
  3509. err = -ENOMEM;
  3510. goto uninit_vcpu;
  3511. }
  3512. vmx->vmcs = alloc_vmcs();
  3513. if (!vmx->vmcs)
  3514. goto free_msrs;
  3515. vmcs_init(vmx->vmcs);
  3516. cpu = get_cpu();
  3517. vmx_vcpu_load(&vmx->vcpu, cpu);
  3518. err = vmx_vcpu_setup(vmx);
  3519. vmx_vcpu_put(&vmx->vcpu);
  3520. put_cpu();
  3521. if (err)
  3522. goto free_vmcs;
  3523. if (vm_need_virtualize_apic_accesses(kvm))
  3524. if (alloc_apic_access_page(kvm) != 0)
  3525. goto free_vmcs;
  3526. if (enable_ept) {
  3527. if (!kvm->arch.ept_identity_map_addr)
  3528. kvm->arch.ept_identity_map_addr =
  3529. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3530. if (alloc_identity_pagetable(kvm) != 0)
  3531. goto free_vmcs;
  3532. }
  3533. return &vmx->vcpu;
  3534. free_vmcs:
  3535. free_vmcs(vmx->vmcs);
  3536. free_msrs:
  3537. kfree(vmx->guest_msrs);
  3538. uninit_vcpu:
  3539. kvm_vcpu_uninit(&vmx->vcpu);
  3540. free_vcpu:
  3541. free_vpid(vmx);
  3542. kmem_cache_free(kvm_vcpu_cache, vmx);
  3543. return ERR_PTR(err);
  3544. }
  3545. static void __init vmx_check_processor_compat(void *rtn)
  3546. {
  3547. struct vmcs_config vmcs_conf;
  3548. *(int *)rtn = 0;
  3549. if (setup_vmcs_config(&vmcs_conf) < 0)
  3550. *(int *)rtn = -EIO;
  3551. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3552. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3553. smp_processor_id());
  3554. *(int *)rtn = -EIO;
  3555. }
  3556. }
  3557. static int get_ept_level(void)
  3558. {
  3559. return VMX_EPT_DEFAULT_GAW + 1;
  3560. }
  3561. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3562. {
  3563. u64 ret;
  3564. /* For VT-d and EPT combination
  3565. * 1. MMIO: always map as UC
  3566. * 2. EPT with VT-d:
  3567. * a. VT-d without snooping control feature: can't guarantee the
  3568. * result, try to trust guest.
  3569. * b. VT-d with snooping control feature: snooping control feature of
  3570. * VT-d engine can guarantee the cache correctness. Just set it
  3571. * to WB to keep consistent with host. So the same as item 3.
  3572. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3573. * consistent with host MTRR
  3574. */
  3575. if (is_mmio)
  3576. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3577. else if (vcpu->kvm->arch.iommu_domain &&
  3578. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3579. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3580. VMX_EPT_MT_EPTE_SHIFT;
  3581. else
  3582. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3583. | VMX_EPT_IPAT_BIT;
  3584. return ret;
  3585. }
  3586. #define _ER(x) { EXIT_REASON_##x, #x }
  3587. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3588. _ER(EXCEPTION_NMI),
  3589. _ER(EXTERNAL_INTERRUPT),
  3590. _ER(TRIPLE_FAULT),
  3591. _ER(PENDING_INTERRUPT),
  3592. _ER(NMI_WINDOW),
  3593. _ER(TASK_SWITCH),
  3594. _ER(CPUID),
  3595. _ER(HLT),
  3596. _ER(INVLPG),
  3597. _ER(RDPMC),
  3598. _ER(RDTSC),
  3599. _ER(VMCALL),
  3600. _ER(VMCLEAR),
  3601. _ER(VMLAUNCH),
  3602. _ER(VMPTRLD),
  3603. _ER(VMPTRST),
  3604. _ER(VMREAD),
  3605. _ER(VMRESUME),
  3606. _ER(VMWRITE),
  3607. _ER(VMOFF),
  3608. _ER(VMON),
  3609. _ER(CR_ACCESS),
  3610. _ER(DR_ACCESS),
  3611. _ER(IO_INSTRUCTION),
  3612. _ER(MSR_READ),
  3613. _ER(MSR_WRITE),
  3614. _ER(MWAIT_INSTRUCTION),
  3615. _ER(MONITOR_INSTRUCTION),
  3616. _ER(PAUSE_INSTRUCTION),
  3617. _ER(MCE_DURING_VMENTRY),
  3618. _ER(TPR_BELOW_THRESHOLD),
  3619. _ER(APIC_ACCESS),
  3620. _ER(EPT_VIOLATION),
  3621. _ER(EPT_MISCONFIG),
  3622. _ER(WBINVD),
  3623. { -1, NULL }
  3624. };
  3625. #undef _ER
  3626. static int vmx_get_lpage_level(void)
  3627. {
  3628. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3629. return PT_DIRECTORY_LEVEL;
  3630. else
  3631. /* For shadow and EPT supported 1GB page */
  3632. return PT_PDPE_LEVEL;
  3633. }
  3634. static inline u32 bit(int bitno)
  3635. {
  3636. return 1 << (bitno & 31);
  3637. }
  3638. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3639. {
  3640. struct kvm_cpuid_entry2 *best;
  3641. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3642. u32 exec_control;
  3643. vmx->rdtscp_enabled = false;
  3644. if (vmx_rdtscp_supported()) {
  3645. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3646. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3647. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3648. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3649. vmx->rdtscp_enabled = true;
  3650. else {
  3651. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3652. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3653. exec_control);
  3654. }
  3655. }
  3656. }
  3657. }
  3658. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  3659. {
  3660. }
  3661. static struct kvm_x86_ops vmx_x86_ops = {
  3662. .cpu_has_kvm_support = cpu_has_kvm_support,
  3663. .disabled_by_bios = vmx_disabled_by_bios,
  3664. .hardware_setup = hardware_setup,
  3665. .hardware_unsetup = hardware_unsetup,
  3666. .check_processor_compatibility = vmx_check_processor_compat,
  3667. .hardware_enable = hardware_enable,
  3668. .hardware_disable = hardware_disable,
  3669. .cpu_has_accelerated_tpr = report_flexpriority,
  3670. .vcpu_create = vmx_create_vcpu,
  3671. .vcpu_free = vmx_free_vcpu,
  3672. .vcpu_reset = vmx_vcpu_reset,
  3673. .prepare_guest_switch = vmx_save_host_state,
  3674. .vcpu_load = vmx_vcpu_load,
  3675. .vcpu_put = vmx_vcpu_put,
  3676. .set_guest_debug = set_guest_debug,
  3677. .get_msr = vmx_get_msr,
  3678. .set_msr = vmx_set_msr,
  3679. .get_segment_base = vmx_get_segment_base,
  3680. .get_segment = vmx_get_segment,
  3681. .set_segment = vmx_set_segment,
  3682. .get_cpl = vmx_get_cpl,
  3683. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3684. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3685. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3686. .set_cr0 = vmx_set_cr0,
  3687. .set_cr3 = vmx_set_cr3,
  3688. .set_cr4 = vmx_set_cr4,
  3689. .set_efer = vmx_set_efer,
  3690. .get_idt = vmx_get_idt,
  3691. .set_idt = vmx_set_idt,
  3692. .get_gdt = vmx_get_gdt,
  3693. .set_gdt = vmx_set_gdt,
  3694. .set_dr7 = vmx_set_dr7,
  3695. .cache_reg = vmx_cache_reg,
  3696. .get_rflags = vmx_get_rflags,
  3697. .set_rflags = vmx_set_rflags,
  3698. .fpu_activate = vmx_fpu_activate,
  3699. .fpu_deactivate = vmx_fpu_deactivate,
  3700. .tlb_flush = vmx_flush_tlb,
  3701. .run = vmx_vcpu_run,
  3702. .handle_exit = vmx_handle_exit,
  3703. .skip_emulated_instruction = skip_emulated_instruction,
  3704. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3705. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3706. .patch_hypercall = vmx_patch_hypercall,
  3707. .set_irq = vmx_inject_irq,
  3708. .set_nmi = vmx_inject_nmi,
  3709. .queue_exception = vmx_queue_exception,
  3710. .interrupt_allowed = vmx_interrupt_allowed,
  3711. .nmi_allowed = vmx_nmi_allowed,
  3712. .get_nmi_mask = vmx_get_nmi_mask,
  3713. .set_nmi_mask = vmx_set_nmi_mask,
  3714. .enable_nmi_window = enable_nmi_window,
  3715. .enable_irq_window = enable_irq_window,
  3716. .update_cr8_intercept = update_cr8_intercept,
  3717. .set_tss_addr = vmx_set_tss_addr,
  3718. .get_tdp_level = get_ept_level,
  3719. .get_mt_mask = vmx_get_mt_mask,
  3720. .exit_reasons_str = vmx_exit_reasons_str,
  3721. .get_lpage_level = vmx_get_lpage_level,
  3722. .cpuid_update = vmx_cpuid_update,
  3723. .rdtscp_supported = vmx_rdtscp_supported,
  3724. .set_supported_cpuid = vmx_set_supported_cpuid,
  3725. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  3726. };
  3727. static int __init vmx_init(void)
  3728. {
  3729. int r, i;
  3730. rdmsrl_safe(MSR_EFER, &host_efer);
  3731. for (i = 0; i < NR_VMX_MSR; ++i)
  3732. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3733. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3734. if (!vmx_io_bitmap_a)
  3735. return -ENOMEM;
  3736. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3737. if (!vmx_io_bitmap_b) {
  3738. r = -ENOMEM;
  3739. goto out;
  3740. }
  3741. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3742. if (!vmx_msr_bitmap_legacy) {
  3743. r = -ENOMEM;
  3744. goto out1;
  3745. }
  3746. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3747. if (!vmx_msr_bitmap_longmode) {
  3748. r = -ENOMEM;
  3749. goto out2;
  3750. }
  3751. /*
  3752. * Allow direct access to the PC debug port (it is often used for I/O
  3753. * delays, but the vmexits simply slow things down).
  3754. */
  3755. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3756. clear_bit(0x80, vmx_io_bitmap_a);
  3757. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3758. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3759. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3760. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3761. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  3762. __alignof__(struct vcpu_vmx), THIS_MODULE);
  3763. if (r)
  3764. goto out3;
  3765. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3766. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3767. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3768. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3769. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3770. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3771. if (enable_ept) {
  3772. bypass_guest_pf = 0;
  3773. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3774. VMX_EPT_WRITABLE_MASK);
  3775. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3776. VMX_EPT_EXECUTABLE_MASK);
  3777. kvm_enable_tdp();
  3778. } else
  3779. kvm_disable_tdp();
  3780. if (bypass_guest_pf)
  3781. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3782. return 0;
  3783. out3:
  3784. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3785. out2:
  3786. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3787. out1:
  3788. free_page((unsigned long)vmx_io_bitmap_b);
  3789. out:
  3790. free_page((unsigned long)vmx_io_bitmap_a);
  3791. return r;
  3792. }
  3793. static void __exit vmx_exit(void)
  3794. {
  3795. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3796. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3797. free_page((unsigned long)vmx_io_bitmap_b);
  3798. free_page((unsigned long)vmx_io_bitmap_a);
  3799. kvm_exit();
  3800. }
  3801. module_init(vmx_init)
  3802. module_exit(vmx_exit)