mrf24j40.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. /*
  2. * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2012 Alan Ott <alan@signal11.us>
  5. * Signal 11 Software
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. #include <linux/spi/spi.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/module.h>
  24. #include <linux/pinctrl/consumer.h>
  25. #include <net/wpan-phy.h>
  26. #include <net/mac802154.h>
  27. #include <net/ieee802154.h>
  28. /* MRF24J40 Short Address Registers */
  29. #define REG_RXMCR 0x00 /* Receive MAC control */
  30. #define REG_PANIDL 0x01 /* PAN ID (low) */
  31. #define REG_PANIDH 0x02 /* PAN ID (high) */
  32. #define REG_SADRL 0x03 /* Short address (low) */
  33. #define REG_SADRH 0x04 /* Short address (high) */
  34. #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
  35. #define REG_TXMCR 0x11 /* Transmit MAC control */
  36. #define REG_PACON0 0x16 /* Power Amplifier Control */
  37. #define REG_PACON1 0x17 /* Power Amplifier Control */
  38. #define REG_PACON2 0x18 /* Power Amplifier Control */
  39. #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
  40. #define REG_TXSTAT 0x24 /* TX MAC Status Register */
  41. #define REG_SOFTRST 0x2A /* Soft Reset */
  42. #define REG_TXSTBL 0x2E /* TX Stabilization */
  43. #define REG_INTSTAT 0x31 /* Interrupt Status */
  44. #define REG_INTCON 0x32 /* Interrupt Control */
  45. #define REG_RFCTL 0x36 /* RF Control Mode Register */
  46. #define REG_BBREG1 0x39 /* Baseband Registers */
  47. #define REG_BBREG2 0x3A /* */
  48. #define REG_BBREG6 0x3E /* */
  49. #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
  50. /* MRF24J40 Long Address Registers */
  51. #define REG_RFCON0 0x200 /* RF Control Registers */
  52. #define REG_RFCON1 0x201
  53. #define REG_RFCON2 0x202
  54. #define REG_RFCON3 0x203
  55. #define REG_RFCON5 0x205
  56. #define REG_RFCON6 0x206
  57. #define REG_RFCON7 0x207
  58. #define REG_RFCON8 0x208
  59. #define REG_RSSI 0x210
  60. #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
  61. #define REG_SLPCON1 0x220
  62. #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
  63. #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
  64. #define REG_RX_FIFO 0x300 /* Receive FIFO */
  65. /* Device configuration: Only channels 11-26 on page 0 are supported. */
  66. #define MRF24J40_CHAN_MIN 11
  67. #define MRF24J40_CHAN_MAX 26
  68. #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
  69. - ((u32)1 << MRF24J40_CHAN_MIN))
  70. #define TX_FIFO_SIZE 128 /* From datasheet */
  71. #define RX_FIFO_SIZE 144 /* From datasheet */
  72. #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
  73. /* Device Private Data */
  74. struct mrf24j40 {
  75. struct spi_device *spi;
  76. struct ieee802154_dev *dev;
  77. struct mutex buffer_mutex; /* only used to protect buf */
  78. struct completion tx_complete;
  79. struct work_struct irqwork;
  80. u8 *buf; /* 3 bytes. Used for SPI single-register transfers. */
  81. };
  82. /* Read/Write SPI Commands for Short and Long Address registers. */
  83. #define MRF24J40_READSHORT(reg) ((reg) << 1)
  84. #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
  85. #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
  86. #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  87. /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
  88. #define MAX_SPI_SPEED_HZ 10000000
  89. #define printdev(X) (&X->spi->dev)
  90. static int write_short_reg(struct mrf24j40 *devrec, u8 reg, u8 value)
  91. {
  92. int ret;
  93. struct spi_message msg;
  94. struct spi_transfer xfer = {
  95. .len = 2,
  96. .tx_buf = devrec->buf,
  97. .rx_buf = devrec->buf,
  98. };
  99. spi_message_init(&msg);
  100. spi_message_add_tail(&xfer, &msg);
  101. mutex_lock(&devrec->buffer_mutex);
  102. devrec->buf[0] = MRF24J40_WRITESHORT(reg);
  103. devrec->buf[1] = value;
  104. ret = spi_sync(devrec->spi, &msg);
  105. if (ret)
  106. dev_err(printdev(devrec),
  107. "SPI write Failed for short register 0x%hhx\n", reg);
  108. mutex_unlock(&devrec->buffer_mutex);
  109. return ret;
  110. }
  111. static int read_short_reg(struct mrf24j40 *devrec, u8 reg, u8 *val)
  112. {
  113. int ret = -1;
  114. struct spi_message msg;
  115. struct spi_transfer xfer = {
  116. .len = 2,
  117. .tx_buf = devrec->buf,
  118. .rx_buf = devrec->buf,
  119. };
  120. spi_message_init(&msg);
  121. spi_message_add_tail(&xfer, &msg);
  122. mutex_lock(&devrec->buffer_mutex);
  123. devrec->buf[0] = MRF24J40_READSHORT(reg);
  124. devrec->buf[1] = 0;
  125. ret = spi_sync(devrec->spi, &msg);
  126. if (ret)
  127. dev_err(printdev(devrec),
  128. "SPI read Failed for short register 0x%hhx\n", reg);
  129. else
  130. *val = devrec->buf[1];
  131. mutex_unlock(&devrec->buffer_mutex);
  132. return ret;
  133. }
  134. static int read_long_reg(struct mrf24j40 *devrec, u16 reg, u8 *value)
  135. {
  136. int ret;
  137. u16 cmd;
  138. struct spi_message msg;
  139. struct spi_transfer xfer = {
  140. .len = 3,
  141. .tx_buf = devrec->buf,
  142. .rx_buf = devrec->buf,
  143. };
  144. spi_message_init(&msg);
  145. spi_message_add_tail(&xfer, &msg);
  146. cmd = MRF24J40_READLONG(reg);
  147. mutex_lock(&devrec->buffer_mutex);
  148. devrec->buf[0] = cmd >> 8 & 0xff;
  149. devrec->buf[1] = cmd & 0xff;
  150. devrec->buf[2] = 0;
  151. ret = spi_sync(devrec->spi, &msg);
  152. if (ret)
  153. dev_err(printdev(devrec),
  154. "SPI read Failed for long register 0x%hx\n", reg);
  155. else
  156. *value = devrec->buf[2];
  157. mutex_unlock(&devrec->buffer_mutex);
  158. return ret;
  159. }
  160. static int write_long_reg(struct mrf24j40 *devrec, u16 reg, u8 val)
  161. {
  162. int ret;
  163. u16 cmd;
  164. struct spi_message msg;
  165. struct spi_transfer xfer = {
  166. .len = 3,
  167. .tx_buf = devrec->buf,
  168. .rx_buf = devrec->buf,
  169. };
  170. spi_message_init(&msg);
  171. spi_message_add_tail(&xfer, &msg);
  172. cmd = MRF24J40_WRITELONG(reg);
  173. mutex_lock(&devrec->buffer_mutex);
  174. devrec->buf[0] = cmd >> 8 & 0xff;
  175. devrec->buf[1] = cmd & 0xff;
  176. devrec->buf[2] = val;
  177. ret = spi_sync(devrec->spi, &msg);
  178. if (ret)
  179. dev_err(printdev(devrec),
  180. "SPI write Failed for long register 0x%hx\n", reg);
  181. mutex_unlock(&devrec->buffer_mutex);
  182. return ret;
  183. }
  184. /* This function relies on an undocumented write method. Once a write command
  185. and address is set, as many bytes of data as desired can be clocked into
  186. the device. The datasheet only shows setting one byte at a time. */
  187. static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
  188. const u8 *data, size_t length)
  189. {
  190. int ret;
  191. u16 cmd;
  192. u8 lengths[2];
  193. struct spi_message msg;
  194. struct spi_transfer addr_xfer = {
  195. .len = 2,
  196. .tx_buf = devrec->buf,
  197. };
  198. struct spi_transfer lengths_xfer = {
  199. .len = 2,
  200. .tx_buf = &lengths, /* TODO: Is DMA really required for SPI? */
  201. };
  202. struct spi_transfer data_xfer = {
  203. .len = length,
  204. .tx_buf = data,
  205. };
  206. /* Range check the length. 2 bytes are used for the length fields.*/
  207. if (length > TX_FIFO_SIZE-2) {
  208. dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
  209. length = TX_FIFO_SIZE-2;
  210. }
  211. spi_message_init(&msg);
  212. spi_message_add_tail(&addr_xfer, &msg);
  213. spi_message_add_tail(&lengths_xfer, &msg);
  214. spi_message_add_tail(&data_xfer, &msg);
  215. cmd = MRF24J40_WRITELONG(reg);
  216. mutex_lock(&devrec->buffer_mutex);
  217. devrec->buf[0] = cmd >> 8 & 0xff;
  218. devrec->buf[1] = cmd & 0xff;
  219. lengths[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
  220. lengths[1] = length; /* Total length */
  221. ret = spi_sync(devrec->spi, &msg);
  222. if (ret)
  223. dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
  224. mutex_unlock(&devrec->buffer_mutex);
  225. return ret;
  226. }
  227. static int mrf24j40_read_rx_buf(struct mrf24j40 *devrec,
  228. u8 *data, u8 *len, u8 *lqi)
  229. {
  230. u8 rx_len;
  231. u8 addr[2];
  232. u8 lqi_rssi[2];
  233. u16 cmd;
  234. int ret;
  235. struct spi_message msg;
  236. struct spi_transfer addr_xfer = {
  237. .len = 2,
  238. .tx_buf = &addr,
  239. };
  240. struct spi_transfer data_xfer = {
  241. .len = 0x0, /* set below */
  242. .rx_buf = data,
  243. };
  244. struct spi_transfer status_xfer = {
  245. .len = 2,
  246. .rx_buf = &lqi_rssi,
  247. };
  248. /* Get the length of the data in the RX FIFO. The length in this
  249. * register exclues the 1-byte length field at the beginning. */
  250. ret = read_long_reg(devrec, REG_RX_FIFO, &rx_len);
  251. if (ret)
  252. goto out;
  253. /* Range check the RX FIFO length, accounting for the one-byte
  254. * length field at the begining. */
  255. if (rx_len > RX_FIFO_SIZE-1) {
  256. dev_err(printdev(devrec), "Invalid length read from device. Performing short read.\n");
  257. rx_len = RX_FIFO_SIZE-1;
  258. }
  259. if (rx_len > *len) {
  260. /* Passed in buffer wasn't big enough. Should never happen. */
  261. dev_err(printdev(devrec), "Buffer not big enough. Performing short read\n");
  262. rx_len = *len;
  263. }
  264. /* Set up the commands to read the data. */
  265. cmd = MRF24J40_READLONG(REG_RX_FIFO+1);
  266. addr[0] = cmd >> 8 & 0xff;
  267. addr[1] = cmd & 0xff;
  268. data_xfer.len = rx_len;
  269. spi_message_init(&msg);
  270. spi_message_add_tail(&addr_xfer, &msg);
  271. spi_message_add_tail(&data_xfer, &msg);
  272. spi_message_add_tail(&status_xfer, &msg);
  273. ret = spi_sync(devrec->spi, &msg);
  274. if (ret) {
  275. dev_err(printdev(devrec), "SPI RX Buffer Read Failed.\n");
  276. goto out;
  277. }
  278. *lqi = lqi_rssi[0];
  279. *len = rx_len;
  280. #ifdef DEBUG
  281. print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ",
  282. DUMP_PREFIX_OFFSET, 16, 1, data, *len, 0);
  283. printk(KERN_DEBUG "mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
  284. lqi_rssi[0], lqi_rssi[1]);
  285. #endif
  286. out:
  287. return ret;
  288. }
  289. static int mrf24j40_tx(struct ieee802154_dev *dev, struct sk_buff *skb)
  290. {
  291. struct mrf24j40 *devrec = dev->priv;
  292. u8 val;
  293. int ret = 0;
  294. dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
  295. ret = write_tx_buf(devrec, 0x000, skb->data, skb->len);
  296. if (ret)
  297. goto err;
  298. /* Set TXNTRIG bit of TXNCON to send packet */
  299. ret = read_short_reg(devrec, REG_TXNCON, &val);
  300. if (ret)
  301. goto err;
  302. val |= 0x1;
  303. /* Set TXNACKREQ if the ACK bit is set in the packet. */
  304. if (skb->data[0] & IEEE802154_FC_ACK_REQ)
  305. val |= 0x4;
  306. write_short_reg(devrec, REG_TXNCON, val);
  307. INIT_COMPLETION(devrec->tx_complete);
  308. /* Wait for the device to send the TX complete interrupt. */
  309. ret = wait_for_completion_interruptible_timeout(
  310. &devrec->tx_complete,
  311. 5 * HZ);
  312. if (ret == -ERESTARTSYS)
  313. goto err;
  314. if (ret == 0) {
  315. dev_warn(printdev(devrec), "Timeout waiting for TX interrupt\n");
  316. ret = -ETIMEDOUT;
  317. goto err;
  318. }
  319. /* Check for send error from the device. */
  320. ret = read_short_reg(devrec, REG_TXSTAT, &val);
  321. if (ret)
  322. goto err;
  323. if (val & 0x1) {
  324. dev_dbg(printdev(devrec), "Error Sending. Retry count exceeded\n");
  325. ret = -ECOMM; /* TODO: Better error code ? */
  326. } else
  327. dev_dbg(printdev(devrec), "Packet Sent\n");
  328. err:
  329. return ret;
  330. }
  331. static int mrf24j40_ed(struct ieee802154_dev *dev, u8 *level)
  332. {
  333. /* TODO: */
  334. printk(KERN_WARNING "mrf24j40: ed not implemented\n");
  335. *level = 0;
  336. return 0;
  337. }
  338. static int mrf24j40_start(struct ieee802154_dev *dev)
  339. {
  340. struct mrf24j40 *devrec = dev->priv;
  341. u8 val;
  342. int ret;
  343. dev_dbg(printdev(devrec), "start\n");
  344. ret = read_short_reg(devrec, REG_INTCON, &val);
  345. if (ret)
  346. return ret;
  347. val &= ~(0x1|0x8); /* Clear TXNIE and RXIE. Enable interrupts */
  348. write_short_reg(devrec, REG_INTCON, val);
  349. return 0;
  350. }
  351. static void mrf24j40_stop(struct ieee802154_dev *dev)
  352. {
  353. struct mrf24j40 *devrec = dev->priv;
  354. u8 val;
  355. int ret;
  356. dev_dbg(printdev(devrec), "stop\n");
  357. ret = read_short_reg(devrec, REG_INTCON, &val);
  358. if (ret)
  359. return;
  360. val |= 0x1|0x8; /* Set TXNIE and RXIE. Disable Interrupts */
  361. write_short_reg(devrec, REG_INTCON, val);
  362. return;
  363. }
  364. static int mrf24j40_set_channel(struct ieee802154_dev *dev,
  365. int page, int channel)
  366. {
  367. struct mrf24j40 *devrec = dev->priv;
  368. u8 val;
  369. int ret;
  370. dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
  371. WARN_ON(page != 0);
  372. WARN_ON(channel < MRF24J40_CHAN_MIN);
  373. WARN_ON(channel > MRF24J40_CHAN_MAX);
  374. /* Set Channel TODO */
  375. val = (channel-11) << 4 | 0x03;
  376. write_long_reg(devrec, REG_RFCON0, val);
  377. /* RF Reset */
  378. ret = read_short_reg(devrec, REG_RFCTL, &val);
  379. if (ret)
  380. return ret;
  381. val |= 0x04;
  382. write_short_reg(devrec, REG_RFCTL, val);
  383. val &= ~0x04;
  384. write_short_reg(devrec, REG_RFCTL, val);
  385. udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
  386. return 0;
  387. }
  388. static int mrf24j40_filter(struct ieee802154_dev *dev,
  389. struct ieee802154_hw_addr_filt *filt,
  390. unsigned long changed)
  391. {
  392. struct mrf24j40 *devrec = dev->priv;
  393. dev_dbg(printdev(devrec), "filter\n");
  394. if (changed & IEEE802515_AFILT_SADDR_CHANGED) {
  395. /* Short Addr */
  396. u8 addrh, addrl;
  397. addrh = filt->short_addr >> 8 & 0xff;
  398. addrl = filt->short_addr & 0xff;
  399. write_short_reg(devrec, REG_SADRH, addrh);
  400. write_short_reg(devrec, REG_SADRL, addrl);
  401. dev_dbg(printdev(devrec),
  402. "Set short addr to %04hx\n", filt->short_addr);
  403. }
  404. if (changed & IEEE802515_AFILT_IEEEADDR_CHANGED) {
  405. /* Device Address */
  406. int i;
  407. for (i = 0; i < 8; i++)
  408. write_short_reg(devrec, REG_EADR0+i,
  409. filt->ieee_addr[7-i]);
  410. #ifdef DEBUG
  411. printk(KERN_DEBUG "Set long addr to: ");
  412. for (i = 0; i < 8; i++)
  413. printk("%02hhx ", filt->ieee_addr[i]);
  414. printk(KERN_DEBUG "\n");
  415. #endif
  416. }
  417. if (changed & IEEE802515_AFILT_PANID_CHANGED) {
  418. /* PAN ID */
  419. u8 panidl, panidh;
  420. panidh = filt->pan_id >> 8 & 0xff;
  421. panidl = filt->pan_id & 0xff;
  422. write_short_reg(devrec, REG_PANIDH, panidh);
  423. write_short_reg(devrec, REG_PANIDL, panidl);
  424. dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
  425. }
  426. if (changed & IEEE802515_AFILT_PANC_CHANGED) {
  427. /* Pan Coordinator */
  428. u8 val;
  429. int ret;
  430. ret = read_short_reg(devrec, REG_RXMCR, &val);
  431. if (ret)
  432. return ret;
  433. if (filt->pan_coord)
  434. val |= 0x8;
  435. else
  436. val &= ~0x8;
  437. write_short_reg(devrec, REG_RXMCR, val);
  438. /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
  439. * REG_ORDER is maintained as default (no beacon/superframe).
  440. */
  441. dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
  442. filt->pan_coord ? "on" : "off");
  443. }
  444. return 0;
  445. }
  446. static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
  447. {
  448. u8 len = RX_FIFO_SIZE;
  449. u8 lqi = 0;
  450. u8 val;
  451. int ret = 0;
  452. struct sk_buff *skb;
  453. /* Turn off reception of packets off the air. This prevents the
  454. * device from overwriting the buffer while we're reading it. */
  455. ret = read_short_reg(devrec, REG_BBREG1, &val);
  456. if (ret)
  457. goto out;
  458. val |= 4; /* SET RXDECINV */
  459. write_short_reg(devrec, REG_BBREG1, val);
  460. skb = alloc_skb(len, GFP_KERNEL);
  461. if (!skb) {
  462. ret = -ENOMEM;
  463. goto out;
  464. }
  465. ret = mrf24j40_read_rx_buf(devrec, skb_put(skb, len), &len, &lqi);
  466. if (ret < 0) {
  467. dev_err(printdev(devrec), "Failure reading RX FIFO\n");
  468. kfree_skb(skb);
  469. ret = -EINVAL;
  470. goto out;
  471. }
  472. /* Cut off the checksum */
  473. skb_trim(skb, len-2);
  474. /* TODO: Other drivers call ieee20154_rx_irqsafe() here (eg: cc2040,
  475. * also from a workqueue). I think irqsafe is not necessary here.
  476. * Can someone confirm? */
  477. ieee802154_rx_irqsafe(devrec->dev, skb, lqi);
  478. dev_dbg(printdev(devrec), "RX Handled\n");
  479. out:
  480. /* Turn back on reception of packets off the air. */
  481. ret = read_short_reg(devrec, REG_BBREG1, &val);
  482. if (ret)
  483. return ret;
  484. val &= ~0x4; /* Clear RXDECINV */
  485. write_short_reg(devrec, REG_BBREG1, val);
  486. return ret;
  487. }
  488. static struct ieee802154_ops mrf24j40_ops = {
  489. .owner = THIS_MODULE,
  490. .xmit = mrf24j40_tx,
  491. .ed = mrf24j40_ed,
  492. .start = mrf24j40_start,
  493. .stop = mrf24j40_stop,
  494. .set_channel = mrf24j40_set_channel,
  495. .set_hw_addr_filt = mrf24j40_filter,
  496. };
  497. static irqreturn_t mrf24j40_isr(int irq, void *data)
  498. {
  499. struct mrf24j40 *devrec = data;
  500. disable_irq_nosync(irq);
  501. schedule_work(&devrec->irqwork);
  502. return IRQ_HANDLED;
  503. }
  504. static void mrf24j40_isrwork(struct work_struct *work)
  505. {
  506. struct mrf24j40 *devrec = container_of(work, struct mrf24j40, irqwork);
  507. u8 intstat;
  508. int ret;
  509. /* Read the interrupt status */
  510. ret = read_short_reg(devrec, REG_INTSTAT, &intstat);
  511. if (ret)
  512. goto out;
  513. /* Check for TX complete */
  514. if (intstat & 0x1)
  515. complete(&devrec->tx_complete);
  516. /* Check for Rx */
  517. if (intstat & 0x8)
  518. mrf24j40_handle_rx(devrec);
  519. out:
  520. enable_irq(devrec->spi->irq);
  521. }
  522. static int mrf24j40_probe(struct spi_device *spi)
  523. {
  524. int ret = -ENOMEM;
  525. u8 val;
  526. struct mrf24j40 *devrec;
  527. struct pinctrl *pinctrl;
  528. printk(KERN_INFO "mrf24j40: probe(). IRQ: %d\n", spi->irq);
  529. devrec = kzalloc(sizeof(struct mrf24j40), GFP_KERNEL);
  530. if (!devrec)
  531. goto err_devrec;
  532. devrec->buf = kzalloc(3, GFP_KERNEL);
  533. if (!devrec->buf)
  534. goto err_buf;
  535. pinctrl = devm_pinctrl_get_select_default(&spi->dev);
  536. if (IS_ERR(pinctrl))
  537. dev_warn(&spi->dev,
  538. "pinctrl pins are not configured from the driver");
  539. spi->mode = SPI_MODE_0; /* TODO: Is this appropriate for right here? */
  540. if (spi->max_speed_hz > MAX_SPI_SPEED_HZ)
  541. spi->max_speed_hz = MAX_SPI_SPEED_HZ;
  542. mutex_init(&devrec->buffer_mutex);
  543. init_completion(&devrec->tx_complete);
  544. INIT_WORK(&devrec->irqwork, mrf24j40_isrwork);
  545. devrec->spi = spi;
  546. spi_set_drvdata(spi, devrec);
  547. /* Register with the 802154 subsystem */
  548. devrec->dev = ieee802154_alloc_device(0, &mrf24j40_ops);
  549. if (!devrec->dev)
  550. goto err_alloc_dev;
  551. devrec->dev->priv = devrec;
  552. devrec->dev->parent = &devrec->spi->dev;
  553. devrec->dev->phy->channels_supported[0] = CHANNEL_MASK;
  554. devrec->dev->flags = IEEE802154_HW_OMIT_CKSUM|IEEE802154_HW_AACK;
  555. dev_dbg(printdev(devrec), "registered mrf24j40\n");
  556. ret = ieee802154_register_device(devrec->dev);
  557. if (ret)
  558. goto err_register_device;
  559. /* Initialize the device.
  560. From datasheet section 3.2: Initialization. */
  561. write_short_reg(devrec, REG_SOFTRST, 0x07);
  562. write_short_reg(devrec, REG_PACON2, 0x98);
  563. write_short_reg(devrec, REG_TXSTBL, 0x95);
  564. write_long_reg(devrec, REG_RFCON0, 0x03);
  565. write_long_reg(devrec, REG_RFCON1, 0x01);
  566. write_long_reg(devrec, REG_RFCON2, 0x80);
  567. write_long_reg(devrec, REG_RFCON6, 0x90);
  568. write_long_reg(devrec, REG_RFCON7, 0x80);
  569. write_long_reg(devrec, REG_RFCON8, 0x10);
  570. write_long_reg(devrec, REG_SLPCON1, 0x21);
  571. write_short_reg(devrec, REG_BBREG2, 0x80);
  572. write_short_reg(devrec, REG_CCAEDTH, 0x60);
  573. write_short_reg(devrec, REG_BBREG6, 0x40);
  574. write_short_reg(devrec, REG_RFCTL, 0x04);
  575. write_short_reg(devrec, REG_RFCTL, 0x0);
  576. udelay(192);
  577. /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
  578. ret = read_short_reg(devrec, REG_RXMCR, &val);
  579. if (ret)
  580. goto err_read_reg;
  581. val &= ~0x3; /* Clear RX mode (normal) */
  582. write_short_reg(devrec, REG_RXMCR, val);
  583. ret = request_irq(spi->irq,
  584. mrf24j40_isr,
  585. IRQF_TRIGGER_FALLING,
  586. dev_name(&spi->dev),
  587. devrec);
  588. if (ret) {
  589. dev_err(printdev(devrec), "Unable to get IRQ");
  590. goto err_irq;
  591. }
  592. return 0;
  593. err_irq:
  594. err_read_reg:
  595. ieee802154_unregister_device(devrec->dev);
  596. err_register_device:
  597. ieee802154_free_device(devrec->dev);
  598. err_alloc_dev:
  599. kfree(devrec->buf);
  600. err_buf:
  601. kfree(devrec);
  602. err_devrec:
  603. return ret;
  604. }
  605. static int mrf24j40_remove(struct spi_device *spi)
  606. {
  607. struct mrf24j40 *devrec = spi_get_drvdata(spi);
  608. dev_dbg(printdev(devrec), "remove\n");
  609. free_irq(spi->irq, devrec);
  610. flush_work(&devrec->irqwork); /* TODO: Is this the right call? */
  611. ieee802154_unregister_device(devrec->dev);
  612. ieee802154_free_device(devrec->dev);
  613. /* TODO: Will ieee802154_free_device() wait until ->xmit() is
  614. * complete? */
  615. /* Clean up the SPI stuff. */
  616. spi_set_drvdata(spi, NULL);
  617. kfree(devrec->buf);
  618. kfree(devrec);
  619. return 0;
  620. }
  621. static const struct spi_device_id mrf24j40_ids[] = {
  622. { "mrf24j40", 0 },
  623. { "mrf24j40ma", 0 },
  624. { },
  625. };
  626. MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
  627. static struct spi_driver mrf24j40_driver = {
  628. .driver = {
  629. .name = "mrf24j40",
  630. .bus = &spi_bus_type,
  631. .owner = THIS_MODULE,
  632. },
  633. .id_table = mrf24j40_ids,
  634. .probe = mrf24j40_probe,
  635. .remove = mrf24j40_remove,
  636. };
  637. module_spi_driver(mrf24j40_driver);
  638. MODULE_LICENSE("GPL");
  639. MODULE_AUTHOR("Alan Ott");
  640. MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");